import pyfstat import numpy as np import matplotlib.pyplot as plt F0 = 30.0 F1 = -1e-10 F2 = 0 Alpha = 1.0 Delta = 0.5 # Properties of the GW data sqrtSX = 1e-23 tstart = 1000000000 duration = 100*86400 tend = tstart+duration tref = .5*(tstart+tend) depth = 50 data_label = 'weak_signal_follow_up_depth_{:1.0f}'.format(depth) h0 = sqrtSX / depth data = pyfstat.Writer( label=data_label, outdir='data', tref=tref, tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX) data.make_data() # The predicted twoF, given by lalapps_predictFstat can be accessed by twoF = data.predict_fstat() print 'Predicted twoF value: {}\n'.format(twoF) # Search VF0 = VF1 = 500 DeltaF0 = VF0 * np.sqrt(3)/(np.pi*duration) DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*duration**2) DeltaAlpha = 1e-1 DeltaDelta = 1e-1 theta_prior = {'F0': {'type': 'unif', 'lower': F0-DeltaF0/2., 'upper': F0+DeltaF0/2}, 'F1': {'type': 'unif', 'lower': F1-DeltaF1/2., 'upper': F1+DeltaF1/2}, 'F2': F2, 'Alpha': {'type': 'unif', 'lower': Alpha-DeltaAlpha, 'upper': Alpha+DeltaAlpha}, 'Delta': {'type': 'unif', 'lower': Delta-DeltaDelta, 'upper': Delta+DeltaDelta}, } ntemps = 3 log10temperature_min = -0.5 nwalkers = 100 scatter_val = 1e-10 nsteps = [100, 100] mcmc = pyfstat.MCMCFollowUpSearch( label='weak_signal_follow_up', outdir='data', sftfilepath='data/*'+data_label+'*sft', theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend, nwalkers=nwalkers, nsteps=nsteps, ntemps=ntemps, log10temperature_min=log10temperature_min, scatter_val=scatter_val) fig, axes = plt.subplots(nrows=2, ncols=2) mcmc.run( R=10, Nsegs0=100, subtractions=[F0, F1, Alpha, Delta], context='paper', fig=fig, axes=axes, plot_det_stat=False, return_fig=True) mcmc.plot_corner(add_prior=True) mcmc.print_summary()