diff --git a/examples/semi_coherent_directed_follow_up.py b/examples/semi_coherent_directed_follow_up.py index f8ca5620b8d295a45040c95bd485b6914a67d016..1ae81449b1e4c8f171559f73118366f07b485b63 100644 --- a/examples/semi_coherent_directed_follow_up.py +++ b/examples/semi_coherent_directed_follow_up.py @@ -7,8 +7,8 @@ plt.style.use('./paper-style.mplstyle') F0 = 30.0 F1 = -1e-10 F2 = 0 -Alpha = 1.0 -Delta = 0.5 +Alpha = np.radians(83.6292) +Delta = np.radians(22.0144) # Properties of the GW data sqrtSX = 1e-23 @@ -33,21 +33,21 @@ twoF = data.predict_fstat() print 'Predicted twoF value: {}\n'.format(twoF) # Search -VF0 = VF1 = 100 -DeltaF0 = VF0 * np.sqrt(3)/(np.pi*duration) -DeltaF1 = VF1 * np.sqrt(180)/(np.pi*duration**2) -DeltaAlpha = 1e-2 -DeltaDelta = 1e-2 -theta_prior = {'F0': {'type': 'unif', 'lower': F0-DeltaF0/2., +VF0 = VF1 = 1e5 +DeltaF0 = np.sqrt(VF0) * np.sqrt(3)/(np.pi*duration) +DeltaF1 = np.sqrt(VF1) * np.sqrt(180)/(np.pi*duration**2) +theta_prior = {'F0': {'type': 'unif', + 'lower': F0-DeltaF0/2., 'upper': F0+DeltaF0/2}, - 'F1': {'type': 'unif', 'lower': F1-DeltaF1/2., + 'F1': {'type': 'unif', + 'lower': F1-DeltaF1/2., 'upper': F1+DeltaF1/2}, 'F2': F2, 'Alpha': Alpha, 'Delta': Delta } -ntemps = 2 +ntemps = 3 log10beta_min = -0.5 nwalkers = 100 nsteps = [100, 100]