
Excess Power

Patrick Brady, Duncan Brown, Kipp Cannon, Saikat Ray-Majumder

2007-7-6

1 Pipeline Overview

The excess power pipeline implements an “incoherent” search for unmodeled gravitational waves. A schematic
diagram of the data flow through the pipeline is shown in Figure 1. Here and in what follows we’ll discuss
the multi-detector version of the pipeline. The pipeline can analyze any number of detectors, but in the 1
detector case much of the pipeline (e.g., the coincidence stages) reduces to no-ops and is uninteresting.

The pipeline begins by scanning the outputs of the gravitational wave detectors for statistically significant
excursions from the background noise. In particular, it searches for excursions from the noise, or bursts, that
can be characterized by a frequency band and time interval. The raw events identified in the outputs of the
individual detectors are clustered, which reduces the event rate and assists in parameter estimation. The
clusters are tested for coincidence across instruments, that is events are discarded unless matching events are
also found in all other detectors. A set of events that, together, passes the coincidence test will be refered
to as a coincident n-tuple.

Prior to applying the coincidence test, optional delays can be applied to the events. In the LIGO-only case,
delays are only applied to events from the L1 detector. The delay facility is used to collect two populations
of coincident n-tuples: n-tuples with delays applied which are refered to as time-slide coincidences, and
n-tuples with no delays applied which are refered to as zero-lag coincidences.

It is also possible to insert software injections into the detector time series. The injection facility is used
to simulate the presense of gravitational waves in the data. When software injections are inserted into the
time series, the coincidence test is followed by an injection identification step. This stage identifies two
populations of recovered injections: injections that are recovered very well, and injections that are recovered
poorly.

The time-slide non-injection n-tuples, and the n-tuples corresponding to well-recovered software injections
are collected together and their parameters measured to yield two distribution density functions. The
parameter distribution density function measured from the time-slide n-tuples is interpreted as the parameter
distribution for noise-like n-tuples, while the parameter distribution density function measured from the
software injections is interpreted as the parameter distribution for gravitational wave-like n-tuples. The
ratio of these two distributions is used to assign a likelihood ratio to each n-tuple.

Finally, a likelihood-ratio based threshold is applied to each n-tuple. The zero-lag n-tuples that survive
this final cut are gravitational wave detection candidates. The same cut is applied to software injection
n-tuples to measure the detection efficiency of the pipeline. If the final threshold is adjusted so that just
exactly 0 zero-lag n-tuples survive, the efficiency measured for the pipeline in that configuration can be used
to derive an upper-limit result.

2 Program lalapps power

2.1 Man Page

Name
lalapps power — apply excess power event selection algorithm to real or simulated gravitational wave
detector data.

1

Figure 1: Data flow in the excess power pipeline. The dashed line marks the division between the “top half”
and “bottom half” of the pipeline (See Section 10).

2

Synopsis
lalapps power

--bandwidth Hz
[--calibration-cache cache file]
--channel-name string
--confidence-threshold threshold
[--debug-level info|warn|error|off]
[--dump-diagnostics XML filename]
--filter-corruption samples
--frame-cache cache file
[--gaussian-noise-rms RMS]
--gps-end-time seconds
--gps-start-time seconds
[--help]
--high-pass Hz
[--injection-file file name]
--low-freq-cutoff Hz
[--max-event-rate Hz]
--max-tile-bandwidth Hz
--max-tile-duration seconds
[--mdc-cache cache file]
[--mdc-channel channel name]
[--output file name]
--psd-average-points samples
[--ram-limit MebiBytes]
--resample-rate Hz
[--sim-cache cache file]
[--sim-seconds sec.s]
[--siminjection-file injection file]
[--seed seed]
--target-sample-rate Hz
--tile-stride-fraction fraction
[--user-tag comment]
--window-length samples

Description
lalapps power performs an excess power analysis on real or simulated data. This program’s input
consists of gravitational wave detector time series data, and an optional list of injections to add to the
time series prior to analysis. The program’s output is a list of events identified as being statistically
significant in the input time series.

Gravitational wave detector time series data is read from LIGO/VIRGO .gwf frame files. This program
analyzes data from only a single detector at a time, but it can analyze data that spans multiple frame
files. Usually a collection of frame files is specified by providing as input to this program a LAL cache file,
as might be obtained from LSCdataFind. Internally, all processing is performed using double-precision
IEEE floating point arithmetic. The type of data in the input channel is auto-detected and the data is
cast to double precision if needed.

If software injections are desired, then a LIGO LW XML file containing a sim burst table describing
the software injections must also be provided as input. In the past it has also been possible to read
sim inspiral tables and MDC injection frame files, but these facilities have not been tested in a long time.
See the lalapps binj program described in Sec. 3 for information on constructing injection description
files.

3

The output is written to a LIGO LW XML file containing a sngl burst table listing the events found
in the input time series. The output file also contains process, process params, and search summary
tables containing metadata describing the analysis that was performed. In particular, these other tables
provide precise information about the instrument and interval of time that the program analyzed.

By default, the output file is named following the standard frame file naming convention.

instrument-POWER comment-start-duration.xml

For example, if a search was run on the Hanford 4 km interferometer and generated triggers starting at
GPS time 731488397 s, the triggers cover 33 s after that time, and the command line includes the option
“--comment TEST”, then the file name would be

H1-POWER TEST-731488397-33.xml

The output file name can be set explicitly with the --output command line option. If the name ends
in “.gz”, then it will be gzip-compressed.

Options

--bandwidth Hz
Set the bandwidth in which the search is to be performed. This must be an integer power of 2.
This and the --low-freq-cutoff option together set the frequency band to be searched.

--calibration-cache cache file
Specify the location of calibration information. cache file gives the path to a LAL-format frame
cache file describing locations of .gwf frame files that provide the calibration data (α and β coeffi-
cients) for the analysis. Frame cache files are explained in the “framedata” package in LAL. This
option also controls the units assumed for the data (frame files don’t provide that information).
When this command line option is present the input time series data is assumed to have units of
“ADC counts”, otherwise it is assumed to have units of strain.

--channel-name string
Set the name of the data channel to analyze to string. This must match the name of one of the
data channels in the input frame files. For example, “H2:LSC-AS_Q”.

--confidence-threshold threshold
Set the confidence threshold below which events should be discarded. The “confidence” of an
event is − lnP (event|stationary Gaussian white noise), so an event with a confidence of 30 has
a probability of e−30 of having been found in stationary Gaussian white noise. For the LIGO
instruments, a practical treshold is typically around 10.

--debug-level info|warn|error|off

Sets the level of verbosity: info = print all messages, warn = print only warnings and errors, error
= print only errors, and off = be silent. The default value is error.

--dump-diagnostics XML filename

Dump diagnostic snapshots of internal time and frequency series data to a LIGO Light Weight
XML file of the given name. The file is overwritten.

--filter-corruption samples
The input time series data is passed through a conditioning filter prior to analysis. Generally, the
conditioning filter should be expected to corrupt some amount of the beginning and end of the time
series due to edge effects. This parameter tells the code how much data, in samples, should be
ignored from the start and end of the time series. A reasonable value is 0.5 seconds worth of data.

4

--frame-cache cache file
Obtain the locations of input .gwf frame files from the LAL frame cache file cache file. LAL
frame cache files are explained in the “framedata” package in LAL and can be constructed by
running LSCDataFind on some systems. One of --frame-cache, or --gaussian-noise-rms must
be specified.

--gaussian-noise-rms RMS
If this parameter is provided instead of --frame-cache, then Gaussian white noise will be syn-
thesized and used as the input data. One of --frame-cache, or --gaussian-noise-rms must be
specified.

--gps-end-time seconds
Set the GPS time up to which input data should be read. Non-integer values are permitted, but
the fractional part must not contain more than 9 digits (accurate to nanoseconds).

--gps-start-time seconds
Set the GPS time from which to start reading input data. Non-integer values are permitted, but
the fractional part must not contain more than 9 digits (accurate to nanoseconds).

--help

Display a usage message and exit.

--high-pass Hz
The input time series is high-pass filtered as part of the input data conditioning. This argument sets
the cut-off frequency for this filter. In older versions of the program, this frequency was hard-coded
to be 10 Hz below the lower bound of the frequency band being searched or 150 Hz, which ever was
lower.

--injection-file file name
Read lists of injections from the LIGO LW XML file file name, and adds the software injections
described therein to the input time series prior to analysis. sim_burst and sim_inspiral injec-
tion tables are supported. See lalapps bin and lalapps bbhinj for information on constructing
injection lists.

--low-freq-cutoff Hz
Set the lower bound for the frequency band in which to search for gravitational waves. This and
the --bandwidth option together set the frequency band to be searched.

--max-event-rate Hz
Exit with a failure if the event rate, averaged over the entire analysis segment, exceeds this limit.
This provides a safety valve to prevent the code from filling up disks if the threshold is set improperly.
A value of 0 (the default) disables this feature.

--max-tile-bandwidth Hz
This specifies the maximum frequency bandwidth, B, that a tile can have. This also fixes the
minimum time duration of the tiles, ∆t = 1/B. This must be an integer power of 2.

--max-tile-duration s
This specifies the maximum duration that a tile can have. This also fixes the minimum bandwidth
of the tiles. This must be an integer power of 2.

--mdc-cache cache file
Use cache file as a LAL format frame cache file describing the locations of MDC frames to be used
for injections.

5

--mdc-channel channel name
Use the data found in the channel channel name in the MDC frames for injections.

--output file name
Set the name of the LIGO Light Weight XML file to which results will be written. The default is
“instrument-POWER comment-start-duration.xml”. Where instrument is derived from the name
of the channel being analyzed, and comment is obtained from the command line. start is the integar
part of the GPS start time from the command line, and duration is the difference of the integer
parts of the GPS start and end times from the command line.

--psd-average-points samples
Use samples samples from the input time series to estimate the average power spectral density
of the detector’s noise. The average PSD is used to whiten the data prior to applying the excess
power statistic. The number of samples used for estimating the average PSD must be commensurate
with the analysis window length and analysis window spacing — i.e. an integer number of analysis
windows must fit in the data used to estimate the average PSD — however this program will
automatically round the actual number of samples used down to the nearest integer for which
this is true. This elliminates the need of the user to carefully determine a valid number for this
parameter, allowing him/her to instead select a number that matches the observed length of time
for which the instrument’s noise is stationary.

--ram-limit MebiBytes
The start and stop GPS times may encompass a greater quantity of data than can be analyzed at
once due to RAM limitations. This parameter can be used to tell the code how much RAM, in
MebiBytes, is available on the machine, which it then uses to heursitically guess at a maximum
time series length that should be read. The code then loops over the input data, processing it in
chunks of this size, until it has completed the analysis. If this parameter is not supplied, then the
entire time series for the segment identified by the GPS start and end times will be loaded into
RAM.

--resample-rate Hz
The sample frequency to which the data should be resampled prior to analysis. This must be a
power of 2 in the range 2 Hz to 16386 Hz inclusively.

--seed seed
When synthesizing Gaussian white noise with --gaussian-noise-rms, this option can be optionally
used to set the random number generator’s seed.

--tile-stride-fraction fraction
This parameter controls the amount by which adjacent time-frequency tiles of the same size overlap
one-another. This numeric parameter must be = 2−n, where n ∈ Integers. A reasonable value is
0.5, which causes each tile to overlap its neighbours in time by 1

2 its duration and in frequency by
1
2 its bandwidth.

--user-tag comment
Set the user tag to the string comment. This string must not contain spaces or dashes (“-”). This
string will appear in the name of the file to which output information is written, and is recorded
in the various XML tables within the file.

--window-length samples
Set the number of samples to use for an analysis window to samples. Only the central half of the
window will be analyzed, the first quarter and last quarter of the window are used as padding to
avoid corruption at certain stages of the analysis. For example, if you wish the code to analyze the
data in 1 second windows, you need to set this parameter to the number of samples corresponding
to 2 seconds of data. This parameter must be a power of 2.

6

Example
To run the program, type:

lalapps_power \

--bandwidth 2048 \

--channel-name "H1:LSC-STRAIN" \

--debug-level info \

--filter-corruption 4096 \

--frame-cache H-754008315-754008371.cache \

--gps-end-time 754008363 \

--gps-start-time 754008323 \

--high-pass 60.0 \

--low-freq-cutoff 70.0 \

--max-event-rate 10000 \

--psd-average-points 274432 \

--ram-limit 1024 \

--resample-rate 8192 \

--tile-stride-fraction 0.5 \

--user-tag testing \

--window-length 16384

For this to succeed, the current directory must contain the file H-754008315-754008931.cache describ-
ing the locations of the .gwf frame files containing the channel H1:LSC-STRAIN spanning the GPS times
754008323.0 s through 754008363.0 s.

Authors
Patrick Brady, Saikat Ray-Majumder and Kipp Cannon.

2.2 Time-Frequency Analysis Algorithm

2.2.1 Overview

The Excess Power search method is motivated by the classical theory of signal detection in Gaussian noise.
The method is the optimal search strategy [1], having only knowledge of the time duration and frequency
band of the expected signal, but having no other information about the power distribution in advance of
detection.

The algorithm amounts to projecting the data onto a basis of test functions, each of which is a prototype
for the waveforms being sought in the data. The projection procedure is the following. The input time series
is passed through a comb of frequency-domain filters, generating several output time series, one each for a
number of frequency channels. Summing the squares of the samples in any one of these channels amounts
to summing the “energy” in the corresponding frequency band. Summing only the samples from a range of
times produces a number that is interpreted as the energy in that frequency band for that period of time —
the energy in a time-frequency tile whose bandwidth is that of the frequency channel, and whose duration
is the length of the sum.

The search is a multi-resolution search, so tiles of many different bandwidths and durations are scanned.
For performance purposes, only a single frequency channel decomposition is used. “Virtual” wide bandwidth
channels are constructed by summing the samples from multiple channels, and correcting for the overlap
between adjacent channel filters.

Once the energy in a tile has been measured, a threshold is applied to select the “important” tiles.
The quantity thresholded on is the probability of measuring at least that much energy in a tile with that
bandwidth and that duration in stationary Gaussian noise. The procedure employed to assess this probability
is to first whiten and normalize the data, to transform it into what is then assumed to be stationary white

7

unit-variance Gaussian noise, and then read off the probability of the observed energy from a theoretical
distribution derived from that assumption.

2.2.2 The Whitening Procedure

Consider a discretely-sampled time-series of N samples, sj where 0 ≤ j < N and the sample period is ∆t.
Much of the signal processing to be described below is done in the frequency domain, so the first step is to
multiply the time series by a window function, wj , tapering it to 0 at the start and end to reduce the noise
arising from the data’s aperiodicity at its boundary. The mean square of the tapering window’s samples is

σ2
w =

1

N

N−1∑
j=0

w2
j . (1)

Following multiplication by the tapering window, the data is Fourier transformed to the frequency domain.
The complex amplitude of the frequency bin k is

s̃k =
∆t

σw

N−1∑
j=0

wjsje
−2πijk/N , (2)

where 0 ≤ k < N . The frequency bins bN/2c < k < N correspond to negative frequency components, and
are not stored because the input time series is real-valued and so the negative frequency components are
redundant (they are the complex conjugates of the positive frequency components). For the non-negative
frequencies, bin k corresponds to frequency

fk = k∆f, (3)

where the bin spacing is ∆f = (N∆t)−1. Defining the power spectral density as

Pk = ∆f
〈
|s̃k|2 + |s̃N−k|2

〉
= 2∆f

〈
|s̃k|2

〉
, (4)

for 0 ≤ k < bN/2c, the “whitened” frequency series is

ŝk =

√
2∆f

Pk
s̃k (5)

so that 〈
|ŝk|2

〉
= 1. (6)

The definition of the power spectral density is such that

〈
s2
j

〉
=

1

N2∆t2

N−1∑
k=0

N−1∑
k′=0

〈s̃ks̃∗k′〉 e2πij(k−k′)/N (7)

=
1

2N∆t

N−1∑
k=0

Pk, (8)

when the frequency components are independent (the input time series is a stationary process).
If the original time series is stationary Gaussian noise, this construction makes each frequency bin’s real

and imaginary parts Gaussian random variables with variances of 0.5. The definition of the power spectral
density and of the Fourier transform shown above both match those of the LIGO Algorithm Library, as
documented in LIGO-T010095-00-Z. Figure 2 shows the distribution of the real and imaginary components
of ŝk obtained from a sample of h(t) taken from the LIGO L1 instrument during S4.

If the input time series is a stationary random process, then the components of its Fourier transform are
uncorrelated, and we would find that 〈ŝkŝ∗k′〉 = δkk′ . However, because we have windowed the time series

8

Figure 2: The distribution of the real and imaginary components of ŝk obtained from a sample of h(t) taken
from the LIGO L1 instrument during S4. The aparent bias away from the expected normalization (actually
non-Gaussianity) and the two horn features, are the result of correlations between the power spectrum and
the data. Recall that the power spectrum is estimated from the same data it is used to whiten.

9

Figure 3: The two-point spectral correlation in the whitened data when a Tukey window with 50% flat top
is used to taper the input time series. The “expected” curve is what is expected in the limit of an average
over an infinite number of measurements. Since a finite number of measurements were made, a residual
“floor” is expected, and it should go as (number of measurements)−1/2. Approximately 4 million samples
were averaged in each bin so the floor, which is 〈ŝkŝ∗k′〉 ∼ 2000−1, is consistent with what is expected.

(which is equivalent to convolving its Fourier transform with that of the window), the frequency components
are now correlated. We can compute 〈ŝkŝ∗k′〉 by assuming the whitened time series consists of independently-
distributed random variables, because then the Wiener-Khinchin theorem tells us that its two-point spectral
correlation function is the Fourier transform of its variance which we’ll assume is proportional to the square
of the tapering window function. Therefore,

〈ŝkŝ∗k′〉 ∝
N−1∑
j=0

w2
j e
−2πij(k−k′)/N . (9)

The proportionality constant is obtained from (6), which tells us that

〈ŝkŝ∗k′〉 =
1

σ2
w

N−1∑
j=0

w2
j e
−2πij(k−k′)/N . (10)

A comparison of this prediction to the observed two-point spectral correlation in ŝk obtained from h(t)
recorded at the LIGO L1 instrument during S4 is shown in Figure 3.

Using (10) in place of the two-point spectral correlation function in (7) allows us to compute the variance
of the time series that results from inverse transforming the whitened frequency-domain data. This is〈

s2
j

〉
=

1

∆t2σ2
w

w2
j . (11)

One finds the shape of the original window function preserved in the whitened time series.

10

The power spectral density is estimated using the median power at each frequency for a number of
overlapping segments. The use of the median avoids bias in the spectrum caused by the presence of a
gravitational wave or other large non-astrophysical transients present in any of the segments.

2.2.3 The Channel Filter

The choice of the channel filter is mostly irrelevant, except that it correspond in some meaningful way to a
particular frequency band. We’ll denote the channel filter spanning frequencyes f1 ≤ fk < f2 as Θ̃k(f1, B),
where the bandwidth of the filter is B = f2 − f1. If b is the bandwidth of the narrowest channel, excess
power achieves a multi-resolution search by computing only the narrowest channels, and choosing

Θ̃k(f1, nb) =

n−1∑
i=0

Θk(f1 + ib, b), (12)

where B = nb. That is, the filters for wide band channels are chosen to be the sums of adjacent filters
from narrower bands. The specific choice made in excess power is to use Hann windows for the narrowest
channels. The narrow channels are all the same width, and the Hann windows are adjusted to be centred
on their channel and extend over a range of frequencies twice the width of the channel,

Θ̃k(f1, b) ∝

{
sin2 π

2b (fk − f1 + b
2), f1 − b

2 ≤ fk < f1 + 3b
2

0, othewise.
(13)

In this way, when the filters for two adjacent channels are summed the result is a Tukey window — a window
with a flat top in the middle and sin2 tapers at each end.

All windows are real-valued, so that they are phase preserving. The narrowest channel filters, the filters
of bandwidth b, are normalized so that

N−1∑
k=0

N−1∑
k′=0

−1(k−k′) 〈ŝkŝ∗k′〉 Θ̃∗k(f1, b)Θ̃k′(f1, b) =
b

∆f
, (14)

where the two-point spectral correlation is given in (10). The reason for this choice will become clear later.
For convenience, let us introduce the notation{

X̃, Ỹ
}

=

N−1∑
k=0

N−1∑
k′=0

−1(k−k′) 〈ŝkŝ∗k′〉 X̃∗k Ỹk′ , (15)

so {
Θ̃(f1, b), Θ̃(f1, b)

}
=

b

∆f
. (16)

Notice that if the two-point spectral correlation is a Kroniker δ (the input data is not windowed), and the
channel filter is flat, Θ̃k = Θ̃, and spans the entire frequency band from DC to Nyquist, b/∆f = N , then
the normalization would lead to

Θ̃ = 1. (17)

In the LIGO Algorithm Library, the Fourier transforms of real-valued time series contain only postive
frequency components (the negative frequency components being the complex conjugates of these), and
so the channel filters are also stored as only positive frequency components. Since the two-point spectral
correlation function is usually strongly-peaked around k − k′ = 0, and since the channel filters all go to
zero far from the DC and Nyquist components, in practice it is safe to sum over only the positive frequency
components, and require the sum to be

2

bN/2c+1∑
k=0

bN/2c+1∑
k′=0

−1(k−k′) 〈ŝkŝ∗k′〉 Θ̃∗k(f1, b)Θ̃k′(f1, b) =
b

∆f
. (18)

11

So the argument is that in practice this normalization is identical to (14), but it is easier to implement
because these are the only components stored in memory.

For wide channels, channels formed by summing the filters from two or more narrow channels, the
“magnitude” of the channel filter will not be nb/∆f . For example,

Θ̃k(f1, 2b) = Θ̃k(f1, b) + Θ̃k(f1 + b, b), (19)

and using the symmetry of 〈ŝkŝ∗k′〉 the magnitude of this channel filter is found to be{
Θ̃(f1, 2b), Θ̃(f1, 2b)

}
=

2b

∆f
+ 2

{
Θ̃(f1, b), Θ̃(f1 + b, b)

}
. (20)

The channel construction described above, with Hann windows for the narrowest channels yielding Tukey
windows for wider channels, allows us to make the approximation that only adjacent channel filters have
sufficient overlap that their inner products are non-zero, and so the cross terms from adjacent channels are
the only ones that need to be accounted for. Therefore, in general, a filter spanning n channels is

Θ̃k(f1, nb) =

n−1∑
i=0

Θ̃k(f1 + ib, b), (21)

and its magnitude is

{
Θ̃(f1, nb), Θ̃(f1, nb)

}
=

nb

∆f
+ 2

n−2∑
i=0

{
Θ̃(f1 + ib, b), Θ̃(f1 + (i+ 1)b, b)

}
. (22)

Let us denote this magnitude as µ2(f1, nb),

µ2(f1, nb) =
nb

∆f
+ 2

n−2∑
i=0

N−1∑
k=0

N−1∑
k′=0

−1(k−k′) 〈ŝkŝ∗k′〉 Θ̃k(f1 + ib, b)Θ̃∗k′(f1 + (i+ 1)b, b). (23)

When n = 1, µ2 = b/∆f .
Figure 4 illustrates the construction of a 16Hz channel filter from four 4Hz channel filters when 〈ŝkŝ∗k′〉 =

δkk′ . The 16Hz channel filter has had its normalization adjusted by the factor in (23) to illustrate the relative
amplitudes of the channel filters when all are normalized to have magnitudes of 1. This figure also shows
how the approximation that only adjacent channels have non-zero overlap becomes exact in the limit of a
two-point spectral correlation function that is a Kroniker δ (the “tapering” window is flat, wj = 1), because
the third channel filter can only overlap the first when there is mixing between k. The time-domain versions
of two sample channel filters are shown in Figure 5.

2.2.4 The Channel Time Series

The time series for a channel is extracted by multiplying the whitened frequency-domain input data by the
channel filter, and transforming the result back to the time domain. The time series for the channel of
bandwidth b starting at frequency f1 is

zj(f1, b) =
1

N∆t

N−1∑
k=0

ŝkΘ̃∗k(f1, b)e
2πijk/N , (24)

and the mean square is

〈
z2
j (f1, b)

〉
=

1

N2∆t2

N−1∑
k=0

N−1∑
k′=0

〈ŝkŝ∗k′〉 Θ̃∗k(f1, b)Θ̃k′(f1, b)e
2πij(k−k′)/N . (25)

12

Figure 4: Summing narrow Hann channel filters to obtain wide-band Tukey filters.

The mean square is sample-dependent (depends on j) because the original time series had the window wj
applied to it. We will now require that the window be of a kind with a flat portion in the middle, so that

wj =

{
1 if 0 ≤ j1 ≤ j < j2 ≤ N,
≤ 1 otherwise.

(26)

For example, a Tukey window is suitable. In that case, the mean square of zj(f1, b) should be independent
of j when j1 ≤ j < j2. If we further require the flat portion of the window to be in the middle, in other
words require j1 and j2 to be such that j1 ≤ N/2 < j2, then we can pick j = N/2 as representative of the
mean square of zj(f1, b) in the flat portion of the window. Therefore,

〈
z2
j (f1, b)

〉
=

1

N2∆t2

N−1∑
k=0

N−1∑
k′=0

−1(k−k′) 〈ŝkŝ∗k′〉 Θ̃∗k(f1, b)Θ̃k′(f1, b). (27)

From the normalization of the channel filters (the motivation for the formulation of which is now seen), the
sum is b/∆f , and therefore 〈

z2
j (f1, b)

〉
=

1

N2∆t2
b

∆f
, (28)

for j1 ≤ j < j2.
The LIGO Algorithm Library’s XLALREAL4ReverseFFT() function computes the inverse transform omit-

ting the factor of ∆f = 1/(N∆t) that appears in (24). The time series returned by this function is

Zj(f1, b) = N∆tzj(f1, b), (29)

and the mean squares of the samples in the time series are〈
Z2
j (f1, b)

〉
=

b

∆f
, (30)

13

Figure 5: Two examples of channel filters in the time domain.

14

Figure 6: The distribution of Zj(f1, B)/
√
µ2(f1, B) observed in data derived from a sample of h(t) taken

from the LIGO L1 instrument during S4. This distribution is measured from all samples used to form
time-frequency tiles.

for j1 ≤ j < j2. For a channel spanning n narrow channels,

Zj(f1, nb) =

N−1∑
k=0

ŝkΘ̃∗k(f1, nb)e
2πijk/N (31)

=

N−1∑
k=0

ŝk

(
n−1∑
i=0

Θ̃∗k(f1 + ib, b)

)
e2πijk/N (32)

=

n−1∑
i=0

Zj(f1 + ib, b), (33)

and so the samples in the time series for a wide channel are obtained by summing the samples from the
appropriate narrow channel time series. The mean squares of the samples of a wide channel’s time series are
given by the quantity in (23), 〈

Z2
j (f1, nb)

〉
= µ2(f1, nb). (34)

Figure 6 shows the distribution of Zj(f1, B) observed in the same data used to measure the ŝk distribution
in Figure 2. This distribution appears more Gaussian than does the distribution of the real and imaginary
components of the whitened frequency series, and generally exhibits better agreement with its expected
behaviour. Presumably this is a result of the central limit theorem: the real and imaginary components of
the whitened frequency series may not be Gaussian, but they do have unit variance, and since the time-
domain samples of Zj are computed from many thousands of frequency bins, they end up being unit variance
Gaussian random variables.

15

2.2.5 The Time-Frequency Tile

Having projected the whitened input time series onto a comb of frequency channels, including channels with
a variety of widths, we now procede to project it onto a collection of time-frequency tiles. For this, we need
to know that the number of degrees of freedom in a tile of bandwidth B and duration T is

d = 2BT. (35)

This can be understood as follows. A real-valued signal with a bandwidth of B can be represented without
loss of information as a discrete real-valued time series with a sample rate equal to the Nyquist frequency
2B (the time series may be a heterodyned version of the signal). Therefore, 2BT real-valued samples are
sufficient to encode all the information contained in a signal of bandwidth B and duration T . We will require
the number of degrees of freedom to be an even integer not less than 2.

To construct the time-frequency tile spanning the frequencies f1 ≤ f < f1 + B, and the times t1 ≤ t <
t1 + T , we will use the samples from the channel time series Zj(f1, B). The channel time series’ sample
period is ∆t, the same sample period as the original input time series, but because the channel time series
corresponds to a more narrow frequency band than does the original input time series (except in the special
case of a channel spanning the entire input band), there are more samples per unit time in the channel time
series than there are degrees of freedom per unit time — the channel time series is over sampled. To obtain
a time series with the correct sample rate, a sample rate matching the actual number of degrees of freedom
per second, we need to down-sample the channel time series.

Let j1 = t1/∆t be the time series sample index corresponding to the start time of the tile. The tile’s
duration spans a total of T/∆t samples in the channel time series, but the tile has d degrees of freedom so we
need to down-sample the channel time series so that from the T/∆t samples starting at j1 we are left with d
linearly independent numbers. A simple down sampling procedure is to select d evenly-spaced samples from
the T/∆t samples starting at j1. Let these be the d samples at the indices

j = j1 + (i+
1

2
)∆j, (36)

where i = 0, . . . , d−1, and ∆j = T/(d∆t). These samples are linearly independent in the sense that it is not
possible to compute any one of them from the d − 1 other samples, but they are correlated because of the
impulse response of the channel filter in the time domain. See, for example, Figure 5. In what follows we
will need the d samples forming the time-frequency tile to be independent Gaussian random variables when
the input time series is stationary Gaussian noise.

Let us say that our d samples are the result of convolving the channel impulse response with the “real”
samples, and assume that if we deconvolve the channel’s impulse response from our samples we will be left
with d independent random variables. The impulse response is proportional to the inverse Fourier transform
of the channel filter,

Θj(f1, B) =
1

N∆t

N−1∑
k=0

Θ̃k(f1, B)e2πijk/N . (37)

Labeling the “real” samples as Z ′j(f1, B), our assumption is that our samples are derived from them by
...

Zj(f1, B)
...

 ∝


...
· · · Θj−j′(f1, B) · · ·

...




...
Z ′j′(f1, B)

...

 , (38)

where the j and j′ indices are taken from (36). Let’s write this matrix equation as

~Z(f1, B) ∝ Θ̄(f1, B) · ~Z ′(f1, B). (39)

Inverting the equation gives the “real” samples in terms of our measured samples,

~Z ′(f1, B) ∝ Θ̄−1(f1, B) · ~Z(f1, B). (40)

The proportionality constant is obtained by demanding that
〈
Z ′2j′ (f1, B)

〉
= 1.

16

2.2.6 Excess Power (Energy)

We define the whitened energy contained in the tile spanning the frequencies f1 ≤ f < f1 +B and the times
t1 ≤ t < t1 + T as the sum of the squares of the down-sampled channel time series

E =
1

µ2(f1, B)
~Z(f1, B) · ~Z(f1, B) (41)

=
1

µ2(f1, B)

d−1∑
i=0

Z2
j1+(i+ 1

2)∆j(f1, B), (42)

where j1 = t1/∆t is the time series index corresponding to the start of the tile, and ∆j = T/(d∆t) is the
number of time series samples separating pixels in the time-frequency tile.

When the input time series is stationary Gaussian noise, E is the sum of the squares of d Gaussian
random variables each of whose mean is 0 and whose mean square is 1 (the factor of µ2 normalizes them).
Therefore, E should be a χ2-distributed random variable of d degrees of freedom. Having measured an E for
a tile, we can calculate the probability that a tile would be found with at least that E in stationary Gaussian
noise, and threshold on this probability. We discard all tiles except those for which this probability is close
to 0. The tiling results in a large number of tiles being tested in every second of data, and so a practical
threshold is P (≥ E) ∼ 10−7, yielding an event rate of O(few) Hz. Figure 7 shows a histogram of whitened
tile energies observed in the same strain data used to generate Figures 2 and 6.

When a tile is identified as being unusual, the event is recorded in the output file, and several properties
of the event are measured and recorded. One property is the “confidence”, defined as

confidence = − lnP (≥ E), (43)

the negative of the natural logarithm of the probability of observing a tile with a whitened energy of E or
greater in stationary Gaussian noise. This probability is typically close to 0, so the natural logarithm is a
large negative number, and the confidence a large positive number. Larger “confidence” means a tile less like
one would find in stationary Gaussian noise. A second quantity recorded for each event is the signal-to-noise
ratio (SNR). The “excess power” (really excess energy), of an event is

excess power = E − d. (44)

The expectation value of the whitened energy is 〈E〉 = d, so E − d is the amount of whitened energy in the
time-frequency tile beyond what was expected — the “signal”. Since the expected whitened energy is d, the
SNR is

ρ =
E − d
d

. (45)

2.2.7 Estimating hrss

The final quantity recorded for each event is the root-sum-squared strain, or hrss. We want the hrss associated
with a particular time-frequency tile, and to do this we would like to have the strain time series for the
channel from which the time-frequency tile has been constructed, hj(f1, B). Unfortunately, we don’t have
this information because we don’t know what of the data is noise and what is gravitational wave strain.
However, if we assume that the strain time series and the noise time series are independent of one another,
then the mean square of data time series is the sum of the mean squares of the strain and gravitational wave
time series, 〈

s2
j (f1, B)

〉
=
〈
h2
j (f1, B)

〉
+
〈
n2
j (f1, B)

〉
. (46)

This is true on average, but we can use it to estimate the sum-of-squares of h by summing the squares of s
and subtracing the estimate of the sum-of-squares of n derived from the measured power spectral density.

17

Figure 7: The distribution of tile energies observed in a sample of h(t) data collected from LIGO’s L1
instrument during S4, the same data used to obtain Figure 6. The curves, in left-to-right order, correspond
to tiles with d = 2, 4, 8, 16, 32, 64, and 128 degrees of freedom. The means appear to agree well with the
expected values, but the variances are little higher than expected. This is consistent with the tiles possessing
fewer degrees of freedom than believed, which is demonstrated in the smaller image where the energies and
number of degrees of freedom have been multiplied by 0.65, and the agreement has improved. This is likely
the result of the overlap of the channel responses in the time domain.

18

Essentially, we measure the “energy” in a time-frequency tile, and subtract the mean noise energy to leave
us with the gravitational wave strain energy. Therefore,

∑
d

h2
j (f1, B) =

(∑
d

s2
j (f1, B)

)
− d

〈
n2
j (f1, B)

〉
(47)

=

(∑
d

s2
j (f1, B)

)
− d

〈
s2
j (f1, B)

〉
. (48)

In this last line the notation has gotten a little confusing. There is the actual sum of squares of the data,
and there is the expected sum of squares. We are using the (measured) mean square of the data in place
of the mean square of the noise on the assumption that it is noise that dominates this quantity. Also,

∑
d

indicates the sum of d time samples whose indices are the same as was used in (42).
The unwhitened time series corresponding to a single frequency channel is the inverse Fourier transform

of the unwhitened frequency series input data multiplied by the corresponding channel filter,

sj(f1, b) =
1

N∆t

N−1∑
k=0

s̃kΘ̃∗k(f1, b)e
2πijk/N (49)

=
1

N∆t
√

2∆f

N−1∑
k=0

√
PkŝkΘ̃∗k(f1, b)e

2πijk/N (50)

=
1√

2N∆t

N−1∑
k=0

√
PkŝkΘ̃∗k(f1, b)e

2πijk/N . (51)

For a wide channel, Θ̃k(f1, nb), we find just as for Zj(f1, nb), that

sj(f1, nb) =

n−1∑
i=0

sj(f1 + ib, b). (52)

The mean square of the unwhitened time series for a single channel is

〈
s2
j (f1, b)

〉
=

1

2N∆t

N−1∑
k=0

N−1∑
k′=0

√
PkPk′ 〈ŝkŝ∗k′〉 Θ̃∗k(f1, b)Θ̃k′(f1, b)e

2πij(k−k′)/N . (53)

Making the same assumption as before, that the time series’ mean square is independent of the sample index
j in the flat part of the input tapering window, we can set j = N/2 inside the sum to leave us with

〈
s2
j (f1, b)

〉
=

1

2N∆t

N−1∑
k=0

N−1∑
k′=0

−1(k−k′)
√
PkPk′ 〈ŝkŝ∗k′〉 Θ̃∗k(f1, b)Θ̃k′(f1, b). (54)

The double sum is a spectral density weighted version of the inner product defined earlier for channel filters.
Introducing the notation

{X,Y ;P} =

N−1∑
k=0

N−1∑
k′=0

−1(k−k′)
√
PkPk′ 〈ŝkŝ∗k′〉X∗kYk, (55)

we can write the mean square as〈
s2
j (f1, b)

〉
=

1

2N∆t

{
Θ̃(f1, b), Θ̃(f1, b);P

}
. (56)

19

If we again make the assumption that only adjacent channels have any significant non-zero overlap, then the
mean square of the samples in an unwhitened wide channel is

〈
s2
j (f1, nb)

〉
=

n−1∑
i=0

〈
s2
j (f1 + ib, b)

〉
+

1

N∆t

n−2∑
i=0

{
Θ̃(f1 + ib, b), Θ̃(f1 + (i+ 1)b, b);P

}
. (57)

We need the sj(f1, nb) time series in order to compute the unwhitened sum-of-squares for a particular
tile, but constructing this time series explicitly with the likes of (51) incurs a factor of 2 cost in both time
and memory. An approximation that works well in practice is to assume that single channels of bandwidth
b are sufficiently narrow that the power spectral density is approximately constant in each one. This allows
Pk in (51) to be replaced with some sort of average and factored out of the sum to leave

sj(f1, b) ∝ Zj(f1, b). (58)

The constant of proportionality is obtained from the known mean squares of sj(f1, b) and Zj(f1, b), both of
which are computed (almost) without approximation. Therefore,

sj(f1, b) ≈
√

∆f

b

√〈
s2
j (f1, b)

〉
Zj(f1, b). (59)

We compute sj(f1, nb) for a wide channel by summing samples across narrow channels,

sj(f1, nb) =

n−1∑
i=0

sj(f1 + ib, b) ∝
√

∆f

b

n−1∑
i=0

√〈
s2
j (f1 + ib, b)

〉
Zj(f1 + ib, b), (60)

and again we solve for the proportionality constant from the ratio of the mean squares of the left- and
right-hand sides. The mean square of the left-hand side is given above, and that of the right-hand side is

〈(√
∆f

b

n−1∑
i=0

√〈
s2
j (f1 + ib, b)

〉
Zj(f1 + ib, b)

)2〉
=

n−1∑
i=0

〈
s2
j (f1 + ib, b)

〉
+

2∆f

b

n−2∑
i=0

√〈
s2
j (f1 + ib, b)

〉 〈
s2
j (f1 + (i+ 1)b, b)

〉{
Θ̃(f1 + ib, b), Θ̃(f1 + (i+ 1)b, b)

}
. (61)

Denoting the ratio as

Υ2(f1, nb) =
〈
s2
j (f1, nb)

〉〈(n−1∑
i=0

√〈
s2
j (f1 + ib, b)

〉
Zj(f1 + ib, b)

)2〉−1

, (62)

the approximate unwhitened time series is

sj(f1, nb) ≈
√

Υ2(f1, nb)

√
∆f

b

n−1∑
i=0

√〈
s2
j (f1, b)

〉
Zj(f1, b). (63)

Figure 8 shows a comparison of the distribution observed in the samples of the approximate unwhitened
time series sj(f1, nb) values, for all bandwidths, as derived from the same sample of h(t) recorded at the
LIGO Livingston L1 instrument during S4 that has been used for the other plots.

Finally, ∑
j

h2
j (f1, nb)∆t =

∑
j

s2
j (f1, nb)∆t− d

〈
s2
j (f1, nb)

〉
∆t, (64)

20

Figure 8: The distribution of samples observed in the approximate unwhitened time series (of varying
bandwidths) normalized to the expected root mean square value.

so,

hrss =

√∑
j

s2
j (f1, nb)∆t− d

〈
s2
j (f1, nb)

〉
∆t. (65)

A example of the results can be see in Figures 9.
It must be remarked that this procedure can occasionally yield an estimated hrss that is not real-valued.

This happens when the observed unwhitened energy,
∑
j s

2
j∆t, proves to be less than the expected unwhitened

energy, d
〈
s2
j

〉
∆t. The whitened energy is always greater than the expected amount by construction because

we threshold on it, discarding any tiles below some cut-off. Another way of expressing this is to say that
the whitened SNR is always greater than 1, but the unwhitened SNR need not be. This should not be
unexpected because the arithmetic by which the frequency-domain data is turned into a whitened and
unwhitened sum-squares weights different frequency bins differently. In particular, non-real hrss values are
seen more frequency in the vicinity of strong line features such as the violin modes, where the difference
between the whitened and unwhitened spectra are the greatest. The search code discards any tiles whose
estimated hrss is not real-valued.

2.2.8 Over-Whitening

Section 2.2.3 began with the comment that the choice of channel filter is mostly irrelevant, so long as there
is some sense in which it corresponds to a particular frequency band. In the derivations that followed,
the approximation was made that only adjacent channel filters have any appreciable overlap. A particular
choice of channel filter was described, but other choices are possible. One improvement that can be made
is to identify lines in the spectral density, and add notches to the channel filters to remove them. Often
these spectral line features are the result of noise processes in the instrument or its environment. For
example, suspension wire resonances, harmonics of the 60 Hz power line frequency, and optic resonances
are all prominently visible in the spectrum of LIGO interfermeter. The effect of adding notches at these

21

Figure 9: Scatter plots of recovered vs. injected hdet
rss for an all-sky population of Q = 8.89 sine-Gaussian

linearly-polarized waveforms. In both plots colour indicates the frequency at which the event was recovered.
The top plot is recovered vs. injected hdet

rss , the bottom plot shows the recovered-to-injected hdet
rss ratio vs. the

frequency at which the event was recovered. In both plots, the colour indicates the centre frequency of the
injection.

22

frequencies is to cause the search to measure the energy in the time-frequency tiles preferentially from those
frequency bands less contaminated by these noise sources.

A simple way of deweighting contaminated frequency bands is to divide the channel filters by some power
of the power spectral density,

Θ̃′k(f1, B) ∝ P−ak Θ̃k(f1, B). (66)

The modified channel filters are normalized as before. When a = 1
2 , that is the nominal channel filters are

divided by the square root of the power spectral density, the procedure is called “over whitening”. There
are, aparently, theoretical reasons to make this choice. Over-whitening is found to significantly improve the
ability of the excess power search to reject noise, and so the actual channel filters used by the search are not
only the Hann windows described above but also contain one inverse power of the square root of the power
spectral density.

2.3 Time Domain Segmentation

The excess power analysis code does not process the input data as a continuous time series; rather the
time series is split into a sequence of discrete “analysis windows”, which are each analyzed individually. To
account for the possibility of a burst event stradling the boundary between two analysis windows, successive
windows are staggered in such a way that they overlap one another in time. In this way, a burst event
occuring on the boundary of one window will (typically) be centred in the next.

Because edge effects at various stages of the analysis can corrupt the beginning and end of the analysis
window, the actual quantity of data extracted from the input time series to form a window is twice the
amount that is analyzed. Only results from the central half of the window are retained, with the first and
last quarters of each window being discarded. The arrangement is shown in the following diagram.

0 32768 573448192

Here we see a discrete time series (represented by the bottom-most horizontal line) that contains 57344
samples. It has been divided into a sequence of four analysis windows, each containing 32768 samples. A
fifth, greyed-out, analysis window is shown to indicate where the next window in the sequence would start.
In the analysis of each window, the first and last 8192 samples (first and last quarter) are discarded as
indicated by the crossed-out sections in each window. In this particular example, each window is shifted
8192 samples (also equal to one quarter of the window length) from the start of the previous window. This
choice of window length and window shift causes the sections of each window that are actually searched for
events (the sections that are not crossed out) to overlap their neighbours by half of their own width. This
is the typical mode of operation for the search code. Notice that the first and last quarter window length of
the complete time series (the cross-out sections in the bottom line) are not analyzed, as they are discarded
from the only analysis windows in which they appear.

The excess power code whitens the input time series using an estimate of the instrument’s noise power
spectral density (PSD). The estimated noise PSD is computed by averaging the PSDs from a number of suc-
cessive analysis windows. The noise PSD is not estimated by averaging over the entire time series in order to
allow the code to track the (possibly) changing character of the instrument’s noise. For convenience, the user
is permitted to enter the number of samples that should be used to estimate the PSD. The number of samples

23

entered should correspond to the time for which the instrument’s noise can be approximated as stationary for
the purpose of the excess power analysis. Since, however, the actual estimation procedure involves averaging
over an integer number of analysis windows, it is necessary for the number of samples selected to correspond
to the boundary of an analysis window. For convenience, lalapps power will automatically round the value
entered down to the nearest analysis window boundary.

The LAL function EPSearch() performs the parts of the analysis described above. It is given a time series
that it divides into analysis windows, which it uses to estimate the noise PSD. Using the estimated noise
PSD, it whitens each analysis window and then searches them for burst events. Only the analysis windows
within the data used to estimate the noise PSD are whitened using that estimate. Once those windows have
been searched for burst events, EPSearch() returns to the calling procedure which then extracts a new time
series from the input data and the process repeats. The parameter provided via the command line option
--psd-average-points sets the length of the time series that is passed to EPSearch().

As successive time series are passed to EPSearch(), in order for the first analysis window to correctly
overlap the last window from the previous time series — i.e. to ensure the same overlap between analysis
windows in neighbouring time series as exists between neighbouring windows within a series — it is necessary
for the latter time series to begin (window length−window shift) samples before the end of the former series.
The arrangement is shown in the following figure.

0 32768 57344 90112

Here we see two of the time series from the first diagram above, each of which is to be passed to EPSearch()

for analysis. To see why the overlap between these two time series must be chosen as it is, refer to the first
diagram above to see where the greyed-out fifth analysis window was to be placed. That is where the first
analysis window in the second time series here will be placed.

Prior to looping over the data one noise PSD estimation length at a time, the data is passed through
a conditioning filter. To account for edge effects in the filter, an amount of data set by the command line
option --filter-corruption is dropped from the analysis at both the begining and end of the time series.
The arrangement is shown in the following diagram.

0 8192 40960 65536 98304 106496

The bottom-most line in this diagram represents the time series as read into memory from disk. In this
example we have read 106496 samples into memory, and after passing it through the conditioning filter
8192 samples are dropped from the beginning and end of the series. The remaining data is then passed
to EPSearch() 57344 samples at a time — just as was done in the earlier examples — with appropriate
overlaps. In this example, it happens that an integer number of overlaping noise PSD intervals fits into the
data that survives the conditioning. In general this will not be the case. If the last noise PSD interval would
extend beyond the end of the time series, it is moved to an earlier time so that its end is aligned with the
end of the available data.

If more data needs to be analyzed than will fit in RAM at one time, we must read it into memory
and analyze it in pieces. In doing this, we again want the analysis windows in neighbouring read cycles

24

to overlap one another in the same manner that neighbouring analysis windows within a single noise PSD
interval overlap one another. This will be assured if, in the diagram above, the start of the next data to
be read from disk is arranged so that the first noise PSD interval to be analyzed within it starts at the
correct location relative to the last PSD interval analyzed from the previous read cycle. Consideration of
the diagram above reveals that in order to meet this condition, the next data to be read into memory should
start (2× filter corruption + window length −window shift) samples prior to the end of the previous data to
have been read.

2.4 Band and Time Limited White-Noise Burst Injections

2.4.1 Overview

The excess power algorithm is the optimum detection strategy for waveforms whose energy is confined to a
given pass band and time interval, but where nothing else is known about the waveform. For characterizing
the pipeline, it is necessary to produce such waveforms: waveforms of unknown structure except for having
their energy confined to a chosen pass band and time interval. We can construct such waveforms by applying
to stationary white Gaussian noise a time-domain window function and then a frequency domain window
function so as to retain energy only within the desired time interval and frequency band. We shall refer to
the result of this procedure a band- and time-limited white-noise burst waveform (BTLWNB).

2.4.2 Construction

The construction of a BTLWNB waveform with duration ∆t and bandwidth ∆f centred on f0 begins by
populating a time series with independent Gaussian random numbers. The origin of the time co-ordinate
corresponds to the middle sample in the time series. We apply an initial time-limiting window function to
the time series by multiplying the time series with a Gaussian window function

w1(t) ∝ e−
1
2 t

2/σ2
t , (67)

where σt sets the duration of the window. The windowed time series is then Fourier transformed and a
second Gaussian window applied in the frequency domain

w̃2(f) ∝ e−
1
2 (f−f0)2/σ2

f , (68)

where σf = 1
2∆f .

Since the inital time series is real-valued, the negative frequency components of the Fourier transform are
the complex conjugates of the positive frequency components and need not be stored. The frequency-domain
filter is real-valued (phase preserving), and so when the positive frequency components are the only ones
being stored applying the window function to them alone achieves the correct result.

The multiplication of the frequency domain data by the window function is equivalent to convolving the
time domain data with the Fourier transform of the window. Since the Fourier transform of the frequency
window is not a δ function, the application of the band-limiting window has the effect of spreading the signal
in the time domain, i.e. increasing its duration. We can compensate for this by choosing an appropriate
value for σt so that the waveform has the correct duration after application of the frequency domain window.
The inverse Fourier transform of w̃2(f) is

w2(t) ∝ e−2π2σ2
f t

2

. (69)

The result of convolving two Gaussians with one another is another Gaussian, so the effective time-domain
window is

w(t) = w1(t)⊗ w2(t) ∝ e−
1
2 t

2/σ2

, (70)

where

σ2 = σ2
t +

1

4π2σ2
f

= σ2
t +

1

π2∆f2
(71)

25

We wish this Gaussian’s width to be σ = 1
2∆t, therefore

σt =

√
1

4
∆t2 − 1

π2∆f2
. (72)

Note that σt is only real-valued when

∆t∆f ≥ 2

π
. (73)

After application of the frequency domain window the data is inverse transformed to the time domain
for injection into the strain data.

2.4.3 Details

The algorithm described here yields a single time series containing a band- and time-limited white noise burst
waveform. The injection generator produces both h+ and h× waveforms. These are independent waveforms
constructed by simply applying the time series construction algorithm twice. The injection code uses a time
series whose length is 30∆t rounded to the nearest odd integer,

L = 2

⌊
1

2

30∆t

δt

⌋
+ 1 (74)

where δt is the sample period of the time series. The middle sample is t = 0, so the first and last
samples are at t = ±δt(L − 1)/2. The time-domain Gaussian window is constructed with a call to
XLALCreateGaussREAL8Window() with a shape parameter of

β =
(L− 1)δt/2

σt
. (75)

The numerator transforms the normalized co-ordinate y ∈ [−1,+1] in the definition of the window function
to t.1.

The time series is transformed to the frequency domain with a call to XLALREAL8TimeFreqFFT(), which
populates the metadata of the output frequency series with the appropriate values. There are (L + 1)/2
complex-valued frequency components with a bin spacing of δf = (Lδt)−1. The frequency domain Gaussian
window is constructed with a call to XLALCreateGaussREAL8Window() requesting a window with a length of
L+ 2 (twice the length of the frequency series rounded up to the next odd integer), and a shape parameter
of

β =
(L+ 1)δf/2

σf
. (76)

The numerator in the shape parameter converts the normalized co-ordinate y ∈ [−1,+1] in the definition
of the window function to frequency.2 The window is created with the peak in the middle sample at index
(L+1)/2, and we use XLALResizeREAL8Sequence() to extract as many samples as there are in the frequency
series with the peak shifted to the correct bin. We want the peak to be at sample index f0/δf , so we extract
(L+ 1)/2 samples starting at index (L+ 1)/2− bf0/δf + 0.5c.

Following application of the frequency-domain window, the injection is transformed back to the time
domain with a call to XLALREAL8FreqTimeFFT(). If h̃k are the complex values in the frequency bins, the
output time series is

hj = δf

L−1∑
k=0

h̃ke2πijk/L = δf

L−1∑
k=0

h̃ke2πitk/(Lδt), (77)

1See the LAL documentation for more information. Sample index 0 is y = −1, sample index L − 1 is y = +1, so there are
(L− 1)/2 sample indexes per unit of y.

2See the LAL documentation for more information. The window has L+2 samples, sample index 0 is y = −1, sample index
L+ 1 is y = +1, so there are (L+ 1)/2 sample indexes per unit of y.

26

where t = jδt. Differentiating with respect to t,

ḣj = δf

L−1∑
k=0

(
2πik

Lδt

)
h̃ke2πijk/L, (78)

and so

L−1∑
j=0

ḣ2
jδt = δf2δt

L−1∑
k=0

L−1∑
k′=0

(
4π2kk′

L2δt2

)
h̃kh̃

∗
k′

L−1∑
j=0

e2πij(k−k′)/L (79)

= δf2Lδt

L−1∑
k=0

(
4π2k2

L2δt2

) ∣∣∣h̃k∣∣∣2 (80)

= 4π2δf

L−1∑
k=0

(kδf)2
∣∣∣h̃k∣∣∣2 . (81)

This relationship is used to normalize the injection time series. The expression on the left hand side is
∫
ḣ2 dt.

For both polarizations the right hand side is computed in the frequency domain following application of the
Gaussian window, and the amplitudes of the frequency components scaled prior to conversion to the time
domain so that

∫
(ḣ2

+ + ḣ2
×) dt has the desired value.

To ensure no discontinuities in the strain time series when the injection is added to it, a final Tukey
window is applied to the injection in the time domain. The Tukey window is constructed with a call to
XLALCreateTukeyREAL8Window() with a shape parameter of β = 0.5 so that the tapers span a total of 50%
of the injection time series. Because the Tukey window is flat with unit amplitude in the middle, it has no
effect on the injection time series where the bulk of the energy is concentrated, and the large tapers ensure
the Tukey window induces negligble spread of the injection in the frequency domain. Because the injection
is normalized in the frequency domain prior to transformation to the time domain, the application of the
Tukey window does bias the normalization slightly by reducing the total energy in the injection, however
the Tukey window’s tapers start several σt away from the injection’s peak and so this effect is negligble.

In order that the waveforms be reproducable so that an analysis can be repeated, or the waveforms
constructed multiple times for injection into the strain data from more than one instrument, it is necessary
to specify how the initial time series of independent Gaussian random numbers is to be constructed. This is
done by specifying the seed to be used with the random number generator. The random number generator
is not specified, so the same seed may produce different injections with different versions of the code, but a
seed and CVS tag combination should be guaranteed to produce the same injection. Note also that changing
the length of the injection time series changes the number of random numbers used to construct it, so the
injection waveform also depends on the time series’ sample rate. One has to be careful when constructing
injection waveforms for instruments with different sample rates (e.g., LIGO and VIRGO). The injection must
be constructed at the same sample rate for both instruments and then up- or down-sampled as needed when
injected into the instrument’s time series.

An example of the output of this algorithm is shown in Figure 10

2.4.4 Normalization

The local gravitational wave energy flux in the two independent polarizations, h+(t) and h×(t), is [2]

dE

dAdt
=

1

16π

c3

G

(
ḣ2

+ + ḣ2
×

)
. (82)

For a source at non-cosmological distances (distances small enough that for spheres of that radius A = 4πr2),
the equivalent isotropic radiated energy in a gravitational wave for a source at a distance r is

E =
c3

4G
r2

∫ (
ḣ2

+(t) + ḣ2
×(t)

)
dt. (83)

27

0.0 0.1 0.2 0.3 0.4 0.5
-0.010

-0.005

0.000

0.005

0.010
BTLWNB +

0.0 0.1 0.2 0.3 0.4 0.5
-0.010

-0.005

0.000

0.005

0.010

0.015
BTLWNB x

Figure 10: Example of the + and × polarizations of a band- and time-limited white-noise burst injection
waveform. The horizontal axis is time in seconds, the vertical axis is strain, and the plots show the full
extent of the time series produced by the injection generator. The waveform’s paraters were ∆t = 0.05 ms,
∆f = 8 2

π/∆t (16 degrees of freedom per polarization), and f0 = 100 Hz. The amplitude was normalized so

that
∫

(ḣ2
+ + ḣ2

×) dt = 1.

3 Program lalapps binj

Name
lalapps binj — produces burst injection data files.

Synopsis
lalapps binj --gps-start-time seconds --gps-end-time seconds [--help] [--max-amplitude value]
[--min-amplitude value] [--max-bandwidth Hertz] [--min-bandwidth Hertz] [--max-duration sec-
onds] [--min-duration seconds] [--max-e-over-r2M�/pc2] [--min-e-over-r2M�/pc2] [--max-frequency Hertz]
[--min-frequency Hertz] [--output filename] [--population name] [--q value] [--ra-dec radians,radians]
[--seed value] [--time-step value] --time-slide-file filename [--user-tag string]

Description
lalapps binj produces a LIGO Light-Weight XML file containing a sim burst table describing a se-
quence of burst software injections. This file can be read by lalapps power and lalapps StringSearch,
which will perform the software injections described therein while analyzing data.

lalapps binj produces one of three injection populations: an injection population simulating cosmolog-
ical string cusp burst events, an injection population consisting of sine-Gaussians uniformly distributed
over the sky, and an injection population of band- and time-limited white-noise burst waveforms orig-
inating from a specific location on the sky. These populations are selected with the --population

option. Each population required additional parameters to characterize it, and other command line
options are associated with these.

The output is written to a file name in the standard burst pipeline format:

HL-INJECTIONS USERTAG-GPSSTART-DURATION.xml

where USERTAG is the user tag specfied on the command line, and GPSSTART and DURATION describes
the GPS time interval that the file covers. If a --user-tag is not specified on the command line, the
USERTAG part of the filename will be omitted.

28

sim burst injections can be performed into non-zero-lag data. The vector of time offsets to be applied
to the instruments is stored in a time slide table, and each sim burst injection carries a time slide id to
indicate the appropriate vector. Note that the actual time of the injection in each instrument is obtained
by subtracting the offsets from the times recorded in the sim burst table. This convention is used for
consistency with the interpretation of use of vectors for burst¡–¿burst coincidences: if the offsets are
subtracted from the injection times to obtain the actual times in the instruments, then when the same
offset vector is added to the times of the triggers that result from the injection (as will be done by the
coincidence code) they will re-align and form a coincidence.

Options

--gps-end-time seconds
Set the end time of the injection population in GPS seconds. The injection list in the output file
will contain injections that span only the times between --gps-start-time and --gps-end-time.

--gps-start-time seconds
Set the start time of the injection population in GPS seconds. The injection list in the output file
will contain injections that span only the times between --gps-start-time and --gps-end-time.

--help

Print a usage message.

--max-amplitude value
Set the upper bound of the range of injection amplitudes. This only affects string cusp injections.

--min-amplitude value
Set the lower bound of the range of injection amplitudes. This only affects string cusp injections.

--max-bandwidth Hertz
Set the upper bound of the range of injection bandwidths. This only affects band- and time-limited
white-noies burst injections.

--min-bandwidth Hertz
Set the lower bound of the range of injection bandwidths. This only affects time- and band-limited
white-noise burst injections.

--max-duration seconds
Set the upper bound of the range of injection durations. This only affects time- and band-limited
white-noise burst injections.

--min-duration seconds
Set the lower bound of the range of injection durations. This only affects time- and band-limited
white-noise burst injections.

--max-e-over-r2 M�/pc2

Set the upper bound of the range of injection energies. This only affects time- and band-limited
white-noise burst injections. The energy of the injection is the equivalent isotropic radiated energy
at the source, and since the strain at Earth depends not only on total energy radiated but also the
distance to the source the value given here on the command line is the energy divided by the distance
squared. Furthermore, since the energy radiated is proportional to the square of the derivative of
the strain, higher frequency injections are harder to detect (the higher frequency means that the
same energy is achieved with a smaller total strain, additionally interferometer detectors experience
greater shot noise at high frequency). Therefore, so that the injections are appoximately equally

29

detectable across the band, the energy range set on the command line is scaled by (f/100 Hz)3 (the
range given on the command line is exactly the range of energies at 100 Hz; the exponent is found
impirically).

--min-e-over-r2 M�/pc2

Set the lower bound of the range of injection energies. This only affects time- and band-limited
white-noise burst injections. See --max-e-over-r2 for more information.

--max-hrss value
Set the upper bound of the range of injection hrss values. This only affects sine-Gaussian injections.
Infact, this argument sets the product of the injection’s hrss and its duration — shorter injections
will be assigned higher hrss values. This improves the match of the injection amplitudes to the
pipeline’s sensitivity curve. The “duration” of a sine-Gaussian is interpreted to be Q/(

√
2πf).

--min-hrss value
Set the lower bound of the range of injection hrss values. This only affects sine-Gaussian injections.
See --max-hrss for more information.

--output filename
Set the name of the output file. The default complies with the file naming convention described
in LIGO-T010150-00-E. Try for yourself to see what it does. If the filename ends in .gz it will be
gzip compressed.

--population name
Select the injection population. The allowed names are targeted, string cusp, all sky sinegaussian.

--q value
Set the Q of the injections. This only affects sine-Gaussian injections.

--ra-dec radians,radians
Set the right-ascension and declination of the sky location from which injections should originate
when generating a targeted population. Co-ordinates are in radians.

--seed value
Set the seed for the random number generator. This allows an injection population to be recon-
structed identically, or to ensure that two different files do not contain the same injections.

--time-step value
Set the time interval between injections in seconds.

--time-slide-file filename
Set the name of the LIGO Light-Weight XML file from which to load the time slide table. The
document must contain exactly 1 time slide vector, and only the contents of the process, pro-
cess params, search summary (optional), sim burst (optional), and time slide tables will be copied
into lalapps binj’s output.

--user-tag string
Set the user tag appearing in the output filename, and in the metadata tables in the file.

Example
lalapps_binj \

--gps-start-time 794063160 \

--gps-end-time 794063610.5 \

--min-frequency 70.0 \

30

--max-frequency 2118.0 \

--min-hrss 3.0e-24 \

--max-hrss 1.0e-21 \

--population all_sky_sinegaussian \

--q 8.89 \

--seed 45 \

--time-step 63.661977236758133

Author
Jolien Creighton, Patrick Brady, Duncan Brown, Saikat Ray-Majumder, Kipp Cannon

4 Program ligolw bucluster

4.1 Overview

The program ligolw bucluster (“burst cluster”) applies a clustering alogrithm to the burst events stored
in the sngl burst tables of one or more LIGO light weight XML files. At this time only one clustering
algorithm is implemented, the clustering algorithm used by the excess power burst search pipeline. For more
information on running this program, consult its usage message.

4.2 Clustering Algorithm

The excess power search is a multi-resolution analysis of the time-frequency structure of the input time series.
A burst trigger is identified if the probability of obtaining the observed energy in the same time-frequency tile
in Gaussian noise is smaller than some threshold. A large burst in the data stream will result in many nearby
time-frequency tiles being identified as triggers, all with different sizes and aspect ratios, many overlapping
one another. The program ligolw bucluster replaces these moguls of triggers with single triggers intended
to summarize the event. The following clustering algorithms are avialable.

excesspower
Each event has a start time, an end time, a low frequency, and a high frequency, and these four things
together define a tile in the time-frequency plane. Each input event also has a peak time and peak
frequency, an SNR, an hrss, and a “confidence” (how much not like stationary Gaussian noise this event
is). Finally, each input event has a “most significant contributor” which is a second set of start and end
times, etc., which define the time-frequency tile of what is considered the most significant portion of the
event. Initially, before clustering has been performed, the boundaries of the most significant portion are
equal to the boundaries of the event itself.

The events in the input list are compared, pair-wise, and every pair of events whose time-frequency tiles
are not disjoint are replaced with a single event whose properties are as follows. The time-frequency
tile of the new event is the smallest tile that contains both of the constituent tiles. The peak time and
peak frequency of the new event are the SNR2-weighted averages of the peak times and peak frequencies
of the constituent events. The SNR of the new event is the square root of the sum of the squares of
the SNRs of the constituent events. The hrss and confidence of the new event are copied verbatim
from whichever of the two events has the highest confidence value. And the boundaries of the “most
significant contributor” are set equal to the SNR2-weighted averages of the respective boundaries of the
two constituent events (the new “most-significant” start time is the SNR2-weighted average of the two
“most-significant” start times, etc.).

This clustering transformation is applied iteratively until the list of events stops changing. Altogether,
this algorithm has the property that if three or more events ultimately combine together to form a
cluster, the order in which they are combined pair-wise is irrelevant. An example of the application of
this algorithm is shown in Figure 11.

31

Figure 11: Example of excess power time-frequency triggers before and after clustering. Both panels show
the trigger(s) resulting from a software injection of a Q = 8.89 sine-Gaussian, the horizontal axis is time
relative to the centre time of a software injection, and the vertical axis is the frequency relative to the
centre frequency of the injection. The top panel shows the many hundreds of triggers in the output of
lalapps power resulting from this one software injection, the bottom panel shows the single trigger in the
output of ligolw bucluster. The large rectangle marks the extent of the triggers that formed the cluster,
the small rectangle shows the “most significant portion” of the event, and the small “+” marker indicates
the time and frequency where it is estimated the burst event’s energy peaked (note its proximity to the true
centre time and frequency of the injection).

32

5 Program ligolw cafe

5.1 Overview

The program ligolw cafe (“coincidence analysis front end”) groups trigger files for analysis in the coinci-
dence stage of the pipeline. Normally gravitational wave antennas do not have 100% duty cycles, in particular
laser interferometers can frequently “loose lock” so that the time series data recorded from the antenna has
gaps in it. This has the side effect of providing natural boundaries in the data on which to divide analysis
tasks. For example, if one has a collection of trigger files gathered from two instruments and one wishes
to search for coincident events but there are gaps in the times spanned by the files, since events stored in
files before a gap cannot be coincident with events stored in files after the gap one can avoid performing
unnecessary comparisons in the coincidence analysis by collecting together for coincidence tests only events
from within the same continguous group of files. The program ligolw cafe is used to determine which files
need to be grouped together to perform a coincidence analysis among them.

5.2 Operation

This program takes as input a LAL cache file describing a collection of files to be used in a coincidence
analysis. In particular, the instrument and segment columns in the cache file should correctly describe the
contents of each file. This program also uses for input a LIGO Light Weight XML file containing a time slide
table describing a list of instrument and time delay combinations to be used in the coincidence analysis. The
LAL cache files are named on the command line, or a cache file can be read from stdin. The time slide XML
file is specified with a command line option.

The program iteratively applies the time delays from the time slide table in the time slide XML file to
the segments of the files in the input cache. For each time delay and instrument combination, the files
whose segments intersect one another are identified and placed together in groups, where the files within a
group intersect one another and the files in different groups do not. As different time delay and instrument
combinations are considered, the file groups are allowed to coalesce as needed. The final result is a collection
of file groups, where no file from one group was ever identified as being coincident with a file from another
group in any of the instrument and delay combinations considered. Therefore, the triggers from the files
from one group need never be compared to the triggers from the files in another group as it is known in
advance that they cannot be coincident.

The output of the program is a collection of LAL cache files, one LAL cache for each coincident group of
files that was identified.

One should think of this program as a coincidence analysis applied at the level of entire files, whose role
is to reduce the total number of comparisons that need to be performed to complete the full coincidence
stage in a pipeline.

6 Program ligolw burca

6.1 Overview

The program ligolw burca actually performs two distinct functions. In the future, it is likely these functions
will be split into two applications. The first function performed by this program is an inter-instrument
coincidence comparison of the burst events stored in sngl burst tables in LIGO light-weight XML files. The
other function performed by this program is the ranking of n-tuples of mutually-coincident events according
to likelihood ratio data collected from time-slide and injection runs.

6.2 Coincidence Algorithm

The coincidence tests applied by this application are exclusively two-event tests: one event from one instru-
ment is compared to one event from another instrument, and the two are either coincident or not. Events

33

taken from more than two instruments constitute a coincident n-tuple when they are all pair-wise mutually
coincident. Establishing the coincidence of an n-tuple thus requires n-choose-2 tests, which scales as O(n2).
The total number of n-tuples that needs to be tested is, in principle, O(Nn) where N is the average num-
ber of events obtained from each instrument going into the coincidence analysis. A variety of optimization
techniques are employed to avoid unnecessary comparisons, but users should not be surprised to find that
this program can take a long time to run.

There are two coincidence tests to choose from. These are as follows.
excesspower

Two events are coincident if their time-frequency tiles are not disjoint after allowing for the light travel
time between the two instruments. There are no tunable parameters in this coincidence test, and the
light travel times are obtained from an internal look-up table of the locations of known instruments.

When this coincidence test is selected, the output file has a multi burst table added to it which is pop-
ulated with summary information about each coincident n-tuple identified by the coincidence analysis.
Each coincident n-tuple is assigned an SNR equal to the square root of the sum of the squares of the
SNRs of the events that participate. Each n-tuple is also assigned a bandwidth, duration, and peak fre-
quency which are the SNR2-weighted averages of the respective quantities from the constituent events.
Each n-tuple is assigned an hrss equal to the hrss of the most statistically confident of the constituent
events, and a confidence equal to the lowest confidence of the constituent events. At the present time,
of all of this information only the confidence assigned to the n-tuple is used elsewhere in the pipeline.

stringcusp
Two events are coincident if their peak times do not differ by more than ∆t as set by the matching
--threshold option from the command line. If the two events are taken from H1 and H2, then in
addition to the peak time comparison to be coincident they must also pass an amplitude comparison.
Each string cusp burst event has an amplitude A and an SNR ρ, and the amplitude consistency test
requires that

|A1 −A2| ≤ min {|A1| (κ/ρ1 + ε), |A2| (κ/ρ2 + ε)} , (84)

where κ and ε are parameters supplied on the command line.

The results of the coincident event search are recorded in coinc tables in the XML files, which are
overwritten.

6.3 Likelihood Ratio Analysis

Setting the coincidence test to “excesspower2” switches to the likelihood ratio analysis mode. In this mode
of operation, ligolw burca assigns likelihood ratios to the coincident n-tuples it has previously identified
using parameter distribution density data collected from populations of time-slide (“noise”) and injection
(“gravitational wave”) n-tuples. The procedure goes as follows. First, ligolw burca is used to identify
coincident n-tuples in time-slide and injection trigger lists. Another program, ligolw burca tailor (see
Section 8), scans these n-tuples and collects summary statistics about their properties. Finally, ligolw burca

is used to reprocess the n-tuples using the parameter distributions measured by ligolw burca tailor to
assign likelihood ratio values to each n-tuple, thereby ranking the n-tuples from most to least injection-like.
Note that typically one will not want to use the same n-tuples to assign likelihood ratio values to themselves,
but this is an unimportant operational detail at this time. See Figure 12 for an example of the n-tuple
parameter distribution functions measured by ligolw burca tailor.

Note that in likelihood ratio analysis mode, ligolw burca processes triggers in SQLite3 database files.
Use the program ligolw sqlite to transform LIGO Light Weight XML files into SQLite3 database files
before processing.

34

7 Program ligolw binjfind

7.1 Overview

The program ligolw binjfind processes LIGO light weight XML files containing sim burst, sngl burst, and
optionally coinc event tables and identifies and records which burst events correspond to injections. There
are three kinds of burst/injection matches that are searched for and recorded:

• individual burst events in the sngl burst table that match injections in the sim burst table,

• coincident n-tuples of burst events that match “exactly” injections in the sim burst table,

• and coincident n-tuples of burst events that are “nearby” injections in the sim burst table.

Two burst/injection comparison tests are available, one for use with the excess power burst search pipeline
and one for use with the string cusp search pipeline. An “exact” n-tuple/injection match is one in which every
burst event in the coincident n-tuple is identified as matching the injection according to the burst/injection
comparison test. A “nearby” n-tuple/injection match is a coincident n-tuple of burst events that occurs
within 2 s of the injection (the injection does not precede the first of the events’ start times or lag the last
of their end times by more than 2 s).

The reason for the two distinct types of n-tuple/injection matches is that there are two reasons one wishes
to identify an injection in a list of burst events. On the one hand, one wishes to characterize the search code
in order to measure how well it does or does not recover the parameters of an injection and for this one does
not want to be distracted by accidental injection recoveries (when noise in the time series happens to occur
near an injection), and so one wishes to identify burst events that really are believed to be the direct result
of the software injection. On the other hand, one wishes to measure the detection efficiency of the pipeline
or the probability that the pipeline produces a detection candidate when a software injection is placed in
the time series. In this case it doesn’t matter if the injection is recovered well at all, only whether or not
something (anything) survives the pipeline when the injection is placed in the input.

The results of the injection identification tests are recorded in the coinc tables in the XML files, which
are overwritten.

8 Program ligolw burca tailor

8.1 Overview

The program ligolw burca tailor scans the coincident n-tuples of burst events recorded in LIGO Light
Weight XML files and collects statistics on their properties. The resulting parameter distribution densities
are written as Array data to LIGO Light Weight XML files which can be used by ligolw burca to assign
likelihood ratio values to coincident n-tuples.

Note that ligolw burca tailor operates on SQLite3 database files. Use the program ligolw sqlite to
transform LIGO Light Weight XML into SQLite3 database files before processing with ligolw burca tailor.

8.2 Operation

This program collects statistics specific to the excess power burst search pipeline. At present, the events in
an n-tuple are taken pair-wise and 5 parameters computed for each pair:

• (∆t1 − ∆t2)/ 〈∆t〉, the difference in the two events’ “most significant” durations as a fraction of the
average of the two durations,

• (∆f1−∆f2)/ 〈∆f〉, the difference in the two events’ “most significant” bandwidths as a fraction of the
average of the two bandwidths,

• (hrss1 − hrss2)/ 〈hrss〉, the difference of the two events’ hrsss as a fraction of the average of the two,

35

• (f1− f2)/ 〈f〉, the difference of the two events’ peak frequencies as a fraction of the average of the two,

• t1 − t2, the difference in the two events’ peak times.

The first four quantities are dimensionless and algebraically confined to the interval [−2,+2]. The fifth
parameter is dimensionful and has no natural interval in which its values are confined. A three-event n-tuple
is characterized by a total of 15 parameters, one set of the five numbers above for each choice of two events
from the n-tuple.

The parameter distributions are tracked by constructing bins, and for each bin counting how many n-
tuples produce a parameter value in the range represented by that bin. When all the n-tuples have been
processed, the bin counts are stored as Array data in an output LIGO Light Weight XML file. For the
parameters confined to finite intervals, the distributions are measured using simple linearly-spaced bins. For
the t1−t2 parameters a non-linear binning is used in which the bins are uniform in tan−1[(t1−t2)/T], where T
is a parameter used to set the scale of the bins. This binning produces bins that are approximately uniformly
spaced for small (t1 − t2)/T , but transition to asymptotically diminishing density for large (t1 − t2)/T .

Figure 12 shows an example of the parameter distributions measured for time-slide and injection n-tuples
in stationary Gaussian noise.

8.3 Other Features

The program ligolw burca tailor can also merge LIGO Light Weight XML files containing distribution
data into single files. The collection of the statistics can be a time-consuming operation, and it can be
convenient to process files in parallel groups on a compute cluster. In this case, it’s necessary to be able to
merge the bin counts after each group of trigger files has been processed.

9 Program ligolw tisi

Blah blah blah.

10 Pipeline Construction

10.1 Overview

The “excess power pipeline” is the search pipeline that results from chaining the programs described above
together to perform a multi-instrument search for gravitational wave bursts. Typically the pipeline is ex-
ecuted on a Condor compute cluster (this is the only mode that has been tested). This is done using a
set of Condor job control files which instruct Condor as to the sequence of jobs to run and the command
line arguments to give each. The Condor control files are generated using a set of Python scripts described
below.

Refering to the pipeline schematic in Figure 1, there are two scripts for building the excess power pipeline.
The first script, lalapps power pipe, builds the “top half” of the pipeline, the part of the pipeline above the
dashed divider in the schematic. This part of the pipeline involves data discovery, optional software injec-
tions, trigger identification, clustering, coincidence analysis, and injection identification. The second script,
lalapps power likelihood pipe, builds the “bottom half” of the pipeline. In this part of the pipeline,
coincident n-tuple parameter distribution data is used to rank coincidences according to how injection-like
they appear.

In the top half of the pipeline, all programs manipulate data files in LIGO Light Weight XML format.
In the bottom half, all programs manipulate the data files in SQLite3 database format. The transition from
XML to SQLite3 occurs at the end of the top half of the pipeline, where the data processing sequence ends
with a set of ligolw sqlite jobs to convert the files.

The Condor control files for the top and bottom halves of the pipeline can reside in the same directory
(there are no name conflicts), so the entire pipeline can be constructed as a pair of DAGs in a single directory.

36

Figure 12: Example of the parameter distributions collected by ligolw burca tailor. The black curves
are the distributions observed in time-slide n-tuples (“noise”), and the red are the parameter distributions
observed in software injection n-tuples (“gravitational waves”).

37

FIXME

Figure 13: A graph showing the parent-child relationships among the jobs in the top half of the excess power
pipeline.

10.2 The Pipeline’s Top Half

The Condor control files for the pipeline’s top half are constructed using the program lalapps power pipe.
This program can generate three versions of the pipeline’s top half: a version containing the non-injection
portion of the pipeline only (the left part of Figure 1), a version containing the injection portion of the
pipeline only (the right part of Figure 1), or a version containing both injection and non-injection jobs.

To generate the Condor control files, the pipeline construction program lalapps power pipe requires
the following information as input.

• One or more LIGO Light Weight XML files containing one time slide table each (See ligolw tisi in
Section 9) describing the instrument and time delay combinations to use in the non-injection coincidence
stage of the pipeline. These files are not required if the injection-only version of the pipeline is being
constructed. Each time slide file results in a separate set of ligolw burca jobs being constructed. This
allows a large number of time slides to be analyzed, distributing them across multiple ligolw burca

jobs.

• One LIGO Light Weight XML file containing the time slide table identifiying the instrument and delay
combinations to be used in the injection coincidence stage of the pipeline. This file is not required if
the non-injection only version of the pipeline is being constructed. Note that at the present time, the
injection stage of the pipeline can only process injections at 0 offset so only all-zero time slides can be
given in this input file. However, the instrument combination appearing in the time slides are used to
determine which pairs of instruments to combine in the coincidence stage.

• A set of files in segwizard format listing the segments to be analyzed. There must be exactly one
segment file for each instrument appearing in any of the time slides found in the time slide files.

• A .ini file providing miscellaneous configuration information for the pipeline construction script. In
particular, the command line options used used for each program are given in this file as well as the
names of the segment files and the executables to use.

The pipeline script analyzes the segments and the time slides and determines which time intervals can
be analyzed, and which time intervals will be combined together for the coincidence analyses. Instances of
lalapps power are used to generate triggers, and ligolw bucluster jobs are used to cluster the resulting
triggers. The program ligolw add is used to combine the appropriate trigger files together in preparation for
coincidence analysis. At this time, the time slides files generated by the user prior to pipeline construction
are also merged into the trigger files, and in the case of the injection branch of the pipeline the list of software
injections is also merged into the trigger file. The resulting merged data files are processed with ligolw burca

for coincidence identification, and in the case of the injection portion of the pipeline with ligolw bucut and
ligolw binjfind to trim the software injection list and identify software injections respectively. Finally, a
set of ligolw sqlite jobs convert the XML files to SQLite3 database files. A representative graph of the
parent-child relationships among the jobs is shown in Figure 13

11 Tuning the Excess Power Pipeline

The excess power search identifies time-frequency tiles as events when the probability of getting power in
the tile from Gaussian noise alone is below some particular threshold. The search assumes no particular
information about the gravitational wave signals other than the time frequency ranges to search for, so once

38

those ranges are chosen the main tool to tune the pipeline is by tweaking the threshold. The other parameter
to test in the tuning procedure is the coincidence window. Thus to summarize the parameters to tune in the
excess power search are:

• maximum duration(seconds) of the tiles

• maximum bandwidth of the tiles

• probability thresholds on the individual instruments

• the coincidence window

In the following sections we will go over the tuning of the different parameters in more details.

11.1 Tuning the size of the tiles

The size(duration and bandwidth) of the tiles are largely guided by the time-frequency content of the
gravitational waves one is searching for. Here, we describe the tuning procedure where we were concentrating
on the search of the merger phase preceded by an inspiral phase. As mentioned before the physical parameters
describing the merger phase of a binary black hole coalescence are very poorly understood till today. However
there are some rough estimates available in the literature which we will briefly describe here. These will
provide us a guideline in choosing the parameters of our search pipeline. [FH:Flannagan and Hughes]

The process of coalescence can be roughly divided into three phases:

• Inspiral phase

• Merger phase

• Ringdown phase

The inspiral phase can be modelled accurately enough to use the match filtering techniques to search for
the waveforms, however for massive black holes when there are not enough cycles left in the inspiral phase
we have to rely on the merger phase for the detection of the coalescence. According to the estimates of FH,
binary black hole systems with total mass M ≤ 30M� are best searched for via their inspiral waves while
systems with M > 30M� must be searched via their merger waves and/or their well understood ringdown
waves.

FH has estimated a conservative value for the merger frequency given by

fmerge =
0.02

M
= 205Hz(

20M�
M

) (85)

. This is conservative in the sense that one can reasonably be sure that numerically generated templates will
not be needed before f = fmerger. Now LIGO noise floor restricts the lowest frequency that can be searched
for and in S4 this is ≈ 50Hz. Using (85) we then get that a binary system of maximum mass ≈ 80M�
can be searched for in S4. However for a 80M� binary the number of cycles in the inspiral phase will be
very small and since we are interested in the coincidence of the mergers with the inspirals we would like to
restrict our search to a bit lower total mass. Thus the mass range of the binary black holes that we decide
to look at for the IB search is given by

30M� < M ≤ 70M�. (86)

Given this mass range let us now see what can we estimate about the expected frequency and duration of
the merger signals. From (85) we get the approximte range of the merger frequencies:

58Hz < fmerge ≤ 140Hz (87)

39

Now according to FH the high frequency shut off for the mergers are roughly given by

fqnr = 1320Hz(
20M�
M

) (88)

Thus if the assumed bandwidth of the merger signal is ∆f = fqnr − fmerge, then for our mass range of
interest we may expect the bandwidth to be of the order of few hundred Hertz.

The effective duration for the signals has also been roughly estimated by FH to be:

50M < T < 10M (89)

depending on the total spin of the binary system. If we consider a coalescence where both the inspiraling
black holes are nearly maximally spinning, with their spins and the orbital angular momentum nearly alligned
then the merger may be expected to be long, while for non-spinning black holes the merger will be rather
quick. Thus given our mass range of interest ((86)) the time duration of the expected signals whould be
somewhere in the range:

17.2ms < T < 1.5ms (90)

So given these estimates about the bandwidth and the duration of the signals of our main interest we
choose the following parameters in our search pipeline:

• Low frequency cutoff: 50Hz

• Bandwidth: 1024Hz

• Maximum duration of a tile: 125ms; we have set the duration a few times longer than the maximum
duration in (90) because of the uncertainty in the estimations related to the nature of the merger
signals.

• Maximum bandwidth of a tile: 128Hz; we have the bandwidth smaller than the estimated bandwidths
for the merger signals since because of the LIGO noise curve the prominent contribution to the power
from the merger phase will be for a few hundred Hertz.

The last two parameters set the maximum duration and bandwith of a single tile in the search, which does
not preclude us from searching for longer or broader signals since we can always sum up the power from
multiple tiles triggered by the particular signal.

11.2 Deciding on the probability thresholds

We saw in Sec 11.1 that the sizes of the tiles are mainly guided by the rough expectations about the signals
that we are interested in. However, the threshold on the probability of power in a tile is guided by the
optimisation between the false rate and efficiency to a set of Monte Carlo simulations. The idea we usually
follow is to choose a threshold which lowers the false rate maintaining the efficiency at an acceptable value.

To get a rough idea about the region where we start loosing significant amount of efficiency without an ap-
preciable effect in lowering the false rate we estimate the efficiencies and the false rates for a number of thresh-
olds. We have used Q9 Sine-Gaussian waveforms at 235Hz to perform the tuning and the confidence thresh-
olds are {−30.0,−35.0,−40.0,−45.0,−50.0,−55.0,−60.0,−65.0,−70.0,−80.0,−90.0,−100.0,−150.0,−200.0}.
How the efficiency and the false rate depend on the thresholds are shown in Fig 14: The circles on the curves
show the values corresponding to different thresholds. The maximum false rate and the best efficiency are
obtained for the lowest —threshold—(30.0), then as the —threshold— is increased the false rate decreases
while the efficiency gets worse. Around the —thresholds— of 50.0−60.0 one may notice that for a very small
decrease in false rate the efficiency gets a whole lot worse. This gives us a rough idea that we should choose
|threshold| < 60.0. However one should be aware of the fact that tuning must be specific to the pipeline
being run. In our pipeline we have a coincidence step which involves the burst triggers and the inspiral
triggers and we are not quite sure how many of the false triggers will survive that step. We also plan to

40

10
0

10
1

10
2

10
3

10
4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−21

false rate (mHz)

h rs
s [5

0%
]

H1

L1

Figure 14: Efficiency vs. False rate for different —thresholds—

41

use the Hanford 2Km instrument in a coherent follow up at the end of the pipeline which will also hopefully
get rid off many of the false triggers. However we would like to have a good estimate of the background
distribution of triggers and so have a few surviviors at the end of the pipeline. Keeping that in mind we
decided to choose a looser threshold on the confidence probabilities. The thresholds we chose are

• Threshold on H1: -38.0

• Threshold on L1: -38.0; The instrument in Livingstone was less sensitive than the one in Hanford for
the first half of the run but for the second half both the instruments had equal sensitivity. So we
decided to have the same thresholds on both the instruments.

These thresholds were so chosen so that the false rate after coincidence between H1 and L1 triggers is
≈ 2mHz while the hrss is ≈ 1.12e− 21.

References

[1] W. G. Anderson, P. R. Brady, J. D. E. Creighton, and Éanna É. Flanagan, “Excess power statistic for
detection of burst sources of gravitational radiation,” Physical Review D63 (February, 2001) 042003,
arXiv:gr-qc/0008066.

[2] R. A. Isaacson, “Gravitational radiation in the limit of high freqeuncy. II. nonlinear terms and the
effective stress tensor.,” Physical Review 166 (February, 1968) 1272–1280.

42

