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1 Introduction

The follow-up MCMC code is mainly intended for parameter estimation at the
end of a detection pipeline, but it is also able to simulate data (generate noise
and inject signals), e.g. for parameter estimation studies. It is supposed to
be easily usable via its command-line options, and also easily extensible by its
modular code structure. By now there are several waveform templates avail-
able, non-spinning inspiral waveforms as well as sine-Gaussian burst waveforms.
The code should then be extensible to other waveform families with identical or
different parametrisations. The code can then run MCMCs for parameter esti-
mation in a Bayesian framework, using data read from files, or using simulated
noise and injected signals.

There are two versions of the follow-up MCMC code, with “followupMcmc”
implementing a “plain” Metropolis-sampler and “followupMcmcPT” implement-
ing a parallel tempering MCMC using the “message passing interface” (MPI).

2 Usage

2.1 What the code does

Data is either read from files, or noise may be simulated based on specific noise
curve settings and a signal may be injected. The noise’s power spectral density
is estimated from additional data that does not overlap with the considered data
set, and which is supposed to consist of noise only. Data is processed completely
in the Fourier-domain, i.e., the analysis is based on Fourier-transformed data,
the (estimated) noise power spectrum, and Fourier-domain signal templates. In
order to reduce leakage effects, the data, any time-domain templates, and the
data used for spectrum estimation are windowed. In order to ensure that leakage
affects the spectrum estimate and template in the same way as the actual data,
the same sample size and window function is used for data, spectrum estimation
and FFTing of time-domain signal templates. The power spectral density is
estimated basically using Welch’s method (Welch, 1967), but without overlap of
segments. Data (usually sampled at 16 384 or 20 000 Hz) is by default low-pass
filtered and downsampled by a factor of 4 (Crochiere, 1979).

The data is eventually analysed assuming the noise to be Gaussian with
a known spectral density; the (approximate) so-called “Whittle likelihood”
function is given e.g. in Finn (1992); Rover et al. (2010). The a priori in-
formation needs to be specified in terms of the joint prior distribution for the
parameters of the signal in question. The parameters in general include the
location/orientation parameters (declination, right ascension and polarisation,
(Rover, 2007, ch. 4)). Other signal-specific parameters might be for example
chirp mass, mass ratio, phase, coalescence time, inclination angle, etc. in case
of binary inspiral signals.

The aim is to compute integrals (moments, quantiles, marginal densities,...)
of the joint posterior probability distribution of the signal parameters, i.e. to
extract information about parameters conditional on the data at hand. The
posterior distribution is proportional to the product of prior density and likeli-
hood function. Integrals are computed using Monte Carlo integration. The code
implements a Markov chain Monte Carlo (MCMC) algorithm, and it returns a



text file of simulated random draws from the posterior distribution in order to
be used for Monte Carlo integration (Rover, 2007, ch. 3).

The difference between the two code versions is that one implements a (sim-
pler) Metropolis sampler, while the other implements a (more complex) paral-
lel tempering algorithm in a parallel way using the message passing interface
(MPI) (Rover, 2007). The usage is similar, the MPI version is slightly trickier
(see Sec. 2.5).

2.2 Command line options: general

Most command-line options are set by passing a command of the form “~--option
value” to the program, where “~-option” is the name of the command line
argument, and “value” is its value, which may be a number or a character
string. Some options require vectors as arguments, which are set by a call
like “--option [namel=valuel,name2=value2,name3=value3]”. Note that
the option parsing function cannot handle extra white space within the square
brackets. In some cases, the names of the vector elements do not need to be
given; one example is the -~-randomseed option, where a specification of (e.g.)
--randomseed [12345,67890] (without any name specification) is sufficient.

In the following, the different command line options are explained in more
detail, a summarizing table and subsequent examples hopefully help clarifying
more. Running the followup code without any options (or the --help option)
specified will also display a brief summary of available options.

2.3 Command line options: details

The --template option allows to specify the signal template to be used for
likelihood computations within the MCMC. Currently the following options are
available: “20SP” (2.0 PN stationary-phase inpiral template), “25SP” (2.5 PN
stationary-phase inpiral template), “2025” (2.0 PN amplitude / 2.5 PN phase
inpiral template), “25635” (2.5 PN amplitude / 3.5 PN phase inpiral template),
“LALTaylorT2PN00O”, “LALTaylorT2PN10”, “LALTaylorT2PN15”, “LALTaylorT2PN20",
“LALTaylorT3PNOO”, “LALTaylorT3PN10”, “LALTaylorT3PN15”, “LALTaylorT3PN20"
(LAL ‘TaylorT2’ and ‘TaylorT3’ templates from Newtonian up to 2.0 PN order),
“LALIMRPhenomA” (LAL phenomenological inspiral-merger-ringdown (IMR) tem-
plates), “LALPPN20” (LAL parameterized post-Newtonian (PPN) templates),

and “SineGaussian” (Sine-Gaussian burst template). More details about the
different templates are given in section 3.3 below.

The --outfilename option is used for specifying the file paths and names
to be used for storing MCMC output and other information. The argument
is of the format “/home/user/example” (without a file name extension), and
then two files, “.../example.log” and “.../example.csv’, are going to be
generated. The former (.1log) file is used for logging general information about
the run, like command line arguments, date and time, etc. The latter (.csv)
file then contains the actual MCMC output. Both files are in comma-seperated-
values (CSV) format, the very first line being a header line (Shafranovich, 2005).
Currently every 100th MCMC iteration is logged. The --iterations option
is used to specify the number of MCMC iterations to be simulated, and the
--randomseed option needs to be specified in order to initialise the random
number generator. One or two arguments (integers, passed in an un-named



Table 1: Brief description of command-line arguments and their effects. For
more details see the main text.

options/effect /purpose
--help display help message

command default

--template specify signal template
--outfilename output (text) file name
--iterations 1000 000 number of MCMC iterations
--randomseed 1 or 2 integers for initialisation
--tcenter ‘center’ of data to be analysed
--tbefore 30 margin before...

--tafter 1 ...and after above ‘center’ (s)
--tukey 0.1 parameter for Tukey window
--downsample 4 downsampling factor

--cachefile cache file(s) for data to be analysed
—--network interferometer sites

—--filechannel channel(s) for frame (x.gwf) files
--specdens initiallLigo spectral density(-ies) to be used
--fixspecdens fix PSD (instead of estimating)
--psdestimatestart starting time(s) for PSD estimation
--psdestimateend end time(s) for PSD estimation
--psdestimaten 100 number(s) of segments to average over
--freqlower 40 lowest frequency considered (Hz)
--frequpper 2 X fuyquist greatest frequency considered (Hz)
--fixed vector of fixed parameters

--start vector of starting values

--guess vector of parameter guesses
--inject vector of injection parameters
--injecttemplate --template template to use for injection
--importanceresample number of starting value draws
--priorparameters vector of prior parameters

--quiet supress screen output

—-—dumponly no MCMC, output templates & PSD
(--temperature 2.0 temperatures for parallel tempering)

vector) may be specified for the --randomseed option. If one is specified, a re-
peated run with the same arguments will yield exactly the same output. Speci-
fying two arguments only makes sense when simulating data (instead of reading
from files). If two are specified, then the first one will be used for simulation
of data and PSD estimation, while the second one will be used for initialisation
of the importance sampling and MCMC stage. This way one can do several
runs on identical simulated data (and spectrum estimate), but with indepen-
dent MCMCs. In order to achieve that, the first seed is specified the same, while
second one is specified differently for each individual run.

The time frame of the data to be analysed is specified through the --tcenter,
--tbefore and --tafter options. ——tcenter provides the pivotal point of the
resulting time window; in the case of an inspiral signal, this is usually a prior
guess of the coalescence time (in GPS seconds). --tbefore and --tafter de-
note how many seconds of data are to be read before and after that point in
time. The data is Tukey-windowed (Rover, 2007) before Fourier-tranformation,



and it is ensured that the time span [tcenter — tbefore,tcenter + tafter]
falls within the flat region of the Tukey-window, and so the resulting amount of
data actually being read is greater than just (tbefore+tafter) seconds. The
Tukey-window’s parameter (denoting the fraction in which it is flat; 0 < o < 1)
is set via the —-—tukey option; the default value is &« = 0.1. For little/short data
(e.g. for analysing burst signals), larger values for o may be appropriate (due
to the differing ratio of sample size relative to the period of the low-frequency
noise). Due to the way the data range eventually processed is selected (so that
it falls within the Tukey window’s flat region), it should be @ < 1, so that there
actually is a flat region. The --~downsample option is used to set the downsam-
pling factor(s) for the data. Allowed values are 1, 2, 4 and 8, where 1 stands
for no downsampling, and the default is 4.

Data may be read from Frame format, which is handled internally via the

Frame library. The file names for data and noise (PSD estimation) are supplied
via a cache file. A cache file here looks like:

L L1_RDS_CO3_L2 847546596 128
file://localhost/data/L-L1_RDS_C03_L2-847546596-128.gwf
L L1_RDS_CO3_L2 847546724 128
file://localhost/data/L-L1_RDS_C03_L2-847546724-128.guf
L L1_RDS_CO3_L2 847546852 128
file://localhost/data/L-L1_RDS_C03_L2-847546852-128.gwf

i.e., it contains in particular GPS start time and duration, and the path and
file name for each GWF file. One can specify a single cache file (e.g. --cachefile
/home/data/H1.cache) or several cache files (-~-cachefile [/home/data/H1.cache,/home/data/L1.cache
/home/data/V1.cachel). Interferometer locations, file sizes etc. will be gath-
ered from the cache files. File channels need to be specified correspondingly for
each dataset, e.g. ——filechannel [H1:LSC-STRAIN,H2:LSC-STRAIN,L1:LSC-STRAIN].
Noise spectrum estimation is also done based on frame files listed in the cache
file(s).

If one wants to have data simulated instead of read from files, one needs to
specify the interferometer location(s) via the --network argument, for example
“—-network H” or “--network [H,H,L,V]”. Possible interferometer sites by
now are Hanford, Livingston, Pisa and Hannover (H, L, V and G, respectively).

For both fake data generation as well as the actual MCMC, the noise’s
power spectral density (PSD) needs to be known. For simulated noise, the
PSD is specified in terms of a character string, the options currently available
are “initialLigo”, “advancedLigo” “Virgo” and “Geo”. These functions are
basically the same as those provided in LAL (LALLIGOIPsd (), LALAdvLIGOPsd ()
and LALVIRGOPsd()) (Creighton et al., 2007; Damour et al., 2001), with the
difference that here these are bounded above at 2 x 10%° the value at their
respective ‘sweet spots’ (so they are defined at low frequencies as well). This
only makes a difference at rather low frequencies, kicking in at 21.9 Hz for initial
LIGO, 0.300 Hz for advanced LIGO, and 1.42 Hz for Virgo.

If data is read from files, the noise spectrum also needs to be estimated
from data, which is preferrably close in time and does not overlap with the data
actually analysed. For this purpose, a number of data stretches of the same
size as the actual data are read, windowed, their spectra are computed and
eventually averaged. The data range to be used for this purpose is defined by



--psdestimatestart and --psdestimateend, and --psdestimaten gives the
(maximum) number of segments to be used. Data are read and spectra averaged
until either the end of the range or the maximum number are reached. For
simulated data, one can also plug in the “known” power spectrum for use with
the following MCMC by setting the --fixspecdens flag, but the default (and
highly recommended) option is to also estimate the spectrum from a number of
random noise samples. The only figure to specify in this case is the number of
noise samples to be averaged over, -—psdestimaten.

The --freqlower and --frequpper options are used to specify the fre-
quency range to consider for likelihood computations. By default, this is set to
the interval from 40 Hz to % times the Nyquist frequency.

The --fixed option is used to specify the parameters that are supposed
to be fixed at certain values. For example, one may wish to fix the sky lo-
cation parameters to certain values, which would require a specification like
“--fixed [declination=0.51,rightascension=0.73]". The elements of the
passed vector need to be named correctly.

In order to “inject” a signal into the (real or simulated) data, you need to
specify the —-inject option. It needs to be followed by the complete (!) set of
parameters for the signal template in question. The elements of the passed vec-
tor need to be named properly (see e.g. examples below, or the template details
in section 3.3). The signal template is by default taken to be the same as the
one used for parameter estimation (which was specified through the --template
option), but a different one may be specified using the -—injecttemplate op-
tion.

The starting parameter values of the MCMC may be specified through the
--start option. If not (or only partly) specified, a random draw from the prior
distribution is used as a starting value(s) for unspecified parameters. Alterna-
tively, one can use importance resampling for generating a set of starting values
(see e.g. Rover (2007)). The number of initial samples needs to be specified via
the —-importanceresample option. With no other options given, importance
resampling is based on drawing a (large) sample of parameter values from the
prior distribution, out of which the starting value is resampled. The --guess
option may be used to provide rough estimates of some parameters, e.g. trigger
values from a detection pipeline. This option by now is only implemented for
“InspiralNoSpin” templates. For more details see section 3.3.1 below.

The tunable parameters of the prior distribution may be set using the
—-priorparameters argument, an un-named vector. For more details about
parameters of different priors see section 3.3 below.

The command line options --tbefore, --tafter, -—-filechannel, --specdens,
--psdestimatestart, --psdestimateend, —-psdestimaten, --freqlower and
--frequpper may be specified either with a single argument, implying that the
same setting applies for the whole network, or with a number of arguments
matching the number of data sets used. One might for example wish to use
settings like “~-freqlower [40,40,30] --frequpper 1500”.

The --fixed, --start and --inject parameter vectors may be provided in
terms of geographical ([...,latitude=1.23,longitude=2.34,...]) or celes-
tial coordinates ([...,declination=1.23,rightascension=2.34,...]). The
MCMC output will always be logged in terms of celestial coordinates, though.
The --quiet option finally may be used to supress any output of text to the
screen.



The --dumponly option is intended for diagnostic purposes, for example in
order to figure out what exactly the data, the estimated PSD, or the best-
matching template(s) look like. When invoking this option, the initialisation
part will be run “as usual”, but instead of then starting the MCMC algorithm,
the data, PSD estimate and template(s) (with parameters supplied through the
--start option) will be written to a CSV file. Make sure not to supply an
--importanceresample argument, as this would override the --start param-
eters and be unnecessarily time-consuming.

The code’s parallel tempering version in addition has a -——temperature op-
tion which may be used to specify the temperature ladder to be used. The tem-
perature levels may be given by either providing a single number (--temperature 2),
which will result in a geometric temperature sequence {1,2,4,...,28 1} where
k is the number of parallel chains. Alternatively, one may explicitly specify
the individual temperature levels in terms of a vector, like e.g. ——temperature
[1,2,4,7,10], where the number of temperatures must match the number of
parallel chains run.

2.4 Examples
Simulate data, inject a signal and recover it:

lalapps_followupMcmc --network [H,L,V] --randomseed [123,456] --tcenter 100 --ou
tfilen ame /home/user/data/example0l1 --template 25SP --specdens [initialligo,ini
tialLigo,Virgo] --freqlower [40,40,30] --tbefore [20.0,20.0,30.0] --inject [chir
pmass=2.0,massratio=0.24,inclination=1.0,time=100.0,logdistance=3.2,latitude=0.5
,longitude=-1.0,polarisation=1.0,phase=3.0] --guess [chirpmass=2.0,massratio=0.2
4,time=100,distance=25.0] --importanceresample 10000

Run MCMC on data read from files:

lalapps_followupMcmc --cachefile [/home/user/data/H1.cache,/home/user/data/H2.ca
che, /home/user/data/Ll.cache] --template 25SP --tcenter 873739911.131 --tbefore
20.0 --filechannel [H1:LSC-STRAIN,H2:LSC-STRAIN,L1:LSC-STRAIN] --psdestimatestar
t 873737200 --psdestimateend 873739500 --importanceresample 100000 --randomseed
123 --outfilename /home/user/data/example02 --iterations 10000000 --priorparamet
ers [0.75,7,873739911.081,873739911.181,40,80] --guess [2.0,0.13,873739911.131,4
0]

2.5 How to use the parallel tempering version
2.5.1 General

For more details on parallel tempering and Metropolis-coupled MCMCs see e.g.
Rover (2007). The parallel tempering MCMC here is basically implemented
as a parallellized Metropolis sampler, i.e., within each temperature level chains
evolve as in a Metropolis sampler. The parallel chains are not merely sampling
from “tempered” versions of the posterior distribution, but the different temper-
ature levels are manipulated such that higher-temperature chains increasingly
behave like stochastic template bank searches in order to minimize the chance
of missing a global optimum, as described in Réver (2010).

The implementation makes use of the message passing interface (MPI) (Gropp
et al., 1994). The following instructions assume that you have Open MPI in-
stalled. You may check your MPI version by typing “mpirun --version” on
your command line. Parallel chains are running as parallel processes, where MPI



provides the necessary communication between processes (swapping of temper-
atures, etc.). This way the code can efficiently make use of multiple hosts or
CPU cores. The code will still work efficiently when the nuber of parallel jobs
is greater than (and not an integer multiple of) the number of available cores.

2.5.2 ‘Stand-alone’ use

In order to run the parallel tempering code on a single machine, you need
to invoke OpenMPT’s mpirun function followed by the actual followupMcmcPT
command with its command line arguments. The only additional argument
required by MPI is the number of parallel processes that are supposed to be
started, which is done via the -np option. For example, in order to run 4
parallel chains, use

mpirun -np 4 followupMcmcPT |...]
If you intend to log off before the job is finished, you can also leave it running
in the background:

nohup mpirun -np 4 followupMcmcPT [...] &
You can also use additional mpirun arguments, in particular if you want to run
parallel jobs on several host machines, you can use the -machinefile argument
to do that. See also the mpirun help (“mpirun --help”, www.open-mpi.org,
Gropp et al. (1994)).

2.5.3 Running under Condor (on Atlas)

Condor (www.cs.wisc.edu/condor) provides a special environment and a script
in order to run parallel jobs. When starting an MPI job under Condor, the
scheduler will first attempt to free and block the requested number of slots, and
then provide a machine file and execute the actual mpirun instance. MPI jobs
need to be run in Condor’s “parallel” universe. The executable being run is the
script doing the assembly of nodes and execution of the MPI job. On Atlas, you
can (currently) find it in the file

/home/christian/atlas_openmpi_wrapper
In order to correctly source LAL library stuff, you alse need another little script
to do that; you can find it under

/home/christian/lalscript.sh
The Condor submit file will need to look something like:

universe = parallel

executable = /home/christian/atlas_openmpi_wrapper
machine_count =6

should_transfer_files = yes

when_to_transfer_output on_exit

transfer_input_files
+ParallelShutdownPolicy

/home/christian/followup/followupMcmcPT
"WAIT_FOR_ALL"

log /home/christian/mcmcoutput/example0iCondor-$ (NODE) . log
output = /home/christian/mcmcoutput/exampleO1Condor-$(NODE) .out
error = /home/christian/mcmcoutput/exampleO1Condor-$(NODE) .error
environment = "MPI_NRPROCS=6 JOB=1"

arguments = /home/christian/lalscript.sh /home/christian/followup/

followupMcmcPT --cachefile [/home/christian/example/H1.cache,/home/christian/exa
mple/L1.cache,/home/christian/example/V1.cache] --filechannel [H1:STRAIN,L1:STRA
IN,V1:STRAIN] --tbefore 20 --iterations 100000 --downsample 4 --importanceresam
ple 1000 --template 20SP --tcenter 894468729.000 --psdestimatestart 894466169.0

--psdestimateend 894468669.0 --priorparameters [0.95,16,894468728.900,894468729.
100,40,80] --randomseed 2763 --outfilename /home/christian/mcmcoutput/example01

--quiet

queue


www.open-mpi.org
www.cs.wisc.edu/condor

In this example, the compiled followupMcmcPT executable is to be found in
the directory “/home/christian/followup” (see the “transfer_input files”

and “arguments” lines). The number of parallel jobs was 6 (see the “machine_count”
and “environment” lines).

3 C code internals

3.1 Initialisation
3.1.1 The DataFramework structure

This structure contains all the information related to the data, like paths, file-
names, sampling rate, power spectral density, the data itself in time- and fourier-
domain, etc.; also includes the “fftw_plan” structure for transforming data or
corresponding templates.

3.1.2 The McmcFramework structure

This structure contains all information relevant for the MCMC algorithm to be
run; in particular: parametrisation / templates to be used, names of param-
eters, values of possibly fixed parameters, starting values, details of proposal
distributions etc. etc.

The ‘.template’ contains the exact template to be used within the MCMC,
while the ‘.parameterset’ slot indicates the ‘family’ the template belongs to;
possible values are for example ‘20SP’ (2.0PN stationary phase), or ‘2535’
(2.5PN amplitude, 3.5PN phase) for the template, both of which belong to
the ‘family’ of templates with ‘InspiralNoSpin’ parameters.

The ‘. startvalue’slot in particular contains the starting parameter vector
for the MCMC algorithm. Length and names of this vector are frequently
checked, and so it is regarded as a “reference”, also e.g. for matching proposal
parameters with proposal covariance matrix entries.

3.1.3 The interferometer structure

Contains the relevant information about interferometers (location, orientation,
name). A list of all available interferometers is initialised (by the ifoInit()
function) and kept, and each DataFramework structure contains a pointer to
its corresponding interferometer in order to compute local parameters (altitude,
azimuth,...) from global parameters (latitude, longitude,...). Interferometers’
parameters are hard-coded in the ifoInit () function; this is also where addi-
tional interferometers would need to be added.

3.1.4 The init() function

This function does the initialisation of DataFramework and McmcFramework
structures, some of which is controlled via the provided command line options.
Includes command-line option parsing, default settings, settings of noise power
spectrum, readData(), filtering, downsampling, simulateData(), FT/window-
ing setup, prior setup, proposal covariance initialisation, signal injection, etc.



3.2 MCMC
3.2.1 The loglikelihood() function

Calls the signaltemplate () “wrapper” function, which in turn calls the appro-
priate (frequency-domain) signal template function based on the setting given
in the ‘.template’ slot of the McmcFramework structure. Takes (noise) power
spectral density from the DataFramework’s ‘.powspec’ slot. The (“Whittle”)
likelihood is computed as in (Finn, 1992; Rover et al., 2010). Note also the
closely related signaltonoiseratio() function.

3.2.2 The logprior() function

Returns the (un-normalised) log prior density function. This is a wrapper func-
tion depending on McmcFramework.template slot.

3.2.3 The priordraw() function

Generates samples from the prior distribution. See also the init () and importanceresample ()
functions.

3.2.4 The importanceresample() function

Generates starting values for the MCMC using importance resampling, and is
called within the init () function. Importance resampling is supposed to gen-
erate a draw that approximately follows a given distribution, which in this case
is the posterior distribution. It proceeds by generating a (large) sample from a
distribution similar to the desired one, and out of that draws (resamples) an-
other, smaller, sample with probabilities that are based on importance ratios.
For efficiency, implementation is done as outlined in (Rover, 2007).

By default the ‘approximate’ distribution is taken to be the prior distribu-
tion. If some rough estimates of some parameters are provided through the
‘~-guess’ command line option (e.g. from trigger values), then the approxi-
mative distribution is narrowed down to a neighbourhood of these provided
parameter guesses.

3.2.5 The metropolishastings() function

By now actually implements a Metropolis sampler (not a Metropolis- Hastings
sampler) although some of the infrastructure is already in place. Proposal dis-
tributions by now are hard-coded, depending on the McmcFramework.template
slot. Uses the logprior(), loglikelihood() and propose() wrapper func-
tions, and logs resulting MCMC samples to a text file using the logtofile ()
function.

3.3 Currently provided templates etc.
3.3.1 “InspiralNoSpin” templates

General: The non-spinning inspiral tempalates have 9 parameters: latitude
€ [-%, %], longitude € [0, 7], polarisation € [0, 7], time € [?,?], phase € [0, 27],
logdistance € [—o0, 00|, chirp mass € [?,7?], mass ratio € [0,0.25], inclination
€ [0,7].
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Prior: asin Rover (2007, page 78 sqq.). Detection probability generally seems
to decrease from ‘certain’ to ‘impossible’ for SNRs roughly between 9.0-9.5 and
5.0-8.0, see Umstétter and Tinto (2008). Conservative choice: set SNRggy 1=
8.0 and SNRgy := 4.0. For initial LIGO noise, a 2-+2Ms inspiral yields SNRs
8.0 and 4.0 at 40Mpc and 80Mpc respectively. Note also the related inspiral
range discussion in Finn and Chernoff (1993, Sec. V.B).

The six parameters that may be set via the —-priorparameters command-
line argument are (in this order!):

lower mass bound (default: 1.0 M)
upper mass bound (default: 15.0 M)
lower coalescence time bound (default: tcenter—0.050s)

upper coalescence time bound (default: tcenter+0.050s)

AR e

distance at which an optimally oriented 242 M, inspiral has 90% detection
probability (default: 40.0 Mpc)

6. distance at which an optimally oriented 2+2 M, inspiral has 10% detection
probability (default: 80.0 Mpc)

Using the “--guess” option: The parameters that may be supplied are (in
this order):

1. chirp mass,

2. mass ratio,

3. coalescence time, and

4. luminosity distance.
Example: --guess [2.003,0.247,100.001,15]. With this option specified,
the initial parameter draws in the importance resampling stage are drawn from
near the provided values. “Near provided values” here means:

e log-Normal centered at chirp mass value, standard deviation 0.01 (~ 1%)

e Normal centered at mass ratio value, standard deviation 0.05

e Normal centered at trigger time, standard deviation 0.005s (5ms)

e log-Normal centered at luminosity distance, standard deviation 0.333 (=~
33%)
Available template implementations:
e 2.0PN & 2.5PN stationary phase: See Tanaka and Tagoshi (2000).

e 2.0PN amplitude / 2.5PN phase: See Blanchet (2001). The waveform is
terminated as soon as the frequency starts decreasing.

e 25PN amplitude / 3.5PN phase: See Blanchet et al. (2002, 2004); Arun
et al. (2004). Phase evolution termination as above.

e Restricted 2.0 PN: See Arnaud et al. (2007, Sec. 4.4). This template is by
now implemented without tapering.
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e LAL templates: These are templates generated through LAL functions
(Creighton et al., 2007). These are essentially implemented via LAL’s
“LALInspiralWave()” function, except for the PPN template, which is
generated via a call of the “LALGeneratePPNInspiral()” function. For
more details see the LAL manual (Creighton et al., 2007), or in partic-
ular for details on the phenomenological inspiral-merger-ringdown (IMR)
templates see Ajith et al. (2008). Note that the PPN template still seems
to exhibit some memory leak which will cause a crash when the function
is called many times. This template should not be used as a recovery
template in the MCMC, while using it for injections seems to be fine.

3.3.2 “BurstSineGaussian” templates

General: The sine-Gaussian burst template has 8 parameters: latitude €
[—5, 5], longitude € [0, 7], polarisation € [0, 7], time € [?,7?], phase € [0,27],
logamplitude € [—o0, 00|, logsigma € [—o0, 00|, frequency € [0, o0]

Prior: Uniform for longitude, sin(latitude), polarisation, time, phase and fre-
quency. (For now) Exponential distribution for amplitude and frequency, which
is the mazimum entropy distribution for a given prior expectation value.

The six parameters that may be set via the —-priorparameters command-
line argument are:
lower frequency (f) bound (default: 1Hz)
upper frequency (f) bound (default: 1500 Hz)
lower time (u) bound (default: tcenter—0.050s)
upper time (x) bound (default: tcenter+0.050s)

expected amplitude (default: 1.0 x 10720 Hz)

AN el o

expected sigma (default: 0.050s)

Template implementation: (time-domain) signal waveform:

s(t) = a eXp((tQ_U“Z)Z) sin(27f(z — p) + @)

where a is the amplitude, p is the time parameter, o is the width parameter, f
is the frequency and ¢ is the phase. Note also the key figure Q) := 27 fo relating
peak width o to frequency f (Weinstein, 2003).

3.4 How to add templates etc.

Specify which “family” (emum signal) the new template belongs to; add if
necessary. Specify new name (enum template) of new template. If family
is new, change the init() and vectorSetup() functions to do initialisation
for the new family... number of parameters, parameter names, default set-
tings etc. Also change the “wrapper” functions logprior (), priordraw() and
propose (). If template family is already present, you only need to change
the signaltemplate () function and provide a corresponding new alternative
(frequency-domain) template generating function.
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