core.py 48.6 KB
Newer Older
Gregory Ashton's avatar
Gregory Ashton committed
1
""" The core tools used in pyfstat """
2
3
from __future__ import division, absolute_import, print_function

Gregory Ashton's avatar
Gregory Ashton committed
4
5
6
7
import os
import logging
import copy

8
import glob
Gregory Ashton's avatar
Gregory Ashton committed
9
import numpy as np
10
11
12
13
14
import scipy.special
import scipy.optimize

import lal
import lalpulsar
15
import pyfstat.helper_functions as helper_functions
16
import pyfstat.tcw_fstat_map_funcs as tcw
17
18

# workaround for matplotlib on X-less remote logins
19
if 'DISPLAY' in os.environ:
20
21
    import matplotlib.pyplot as plt
else:
22
23
    logging.info('No $DISPLAY environment variable found, so importing \
                  matplotlib.pyplot with non-interactive "Agg" backend.')
24
25
26
27
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

Gregory Ashton's avatar
Gregory Ashton committed
28
helper_functions.set_up_matplotlib_defaults()
29
args, tqdm = helper_functions.set_up_command_line_arguments()
30
detector_colors = {'h1': 'C0', 'l1': 'C1'}
Gregory Ashton's avatar
Gregory Ashton committed
31
32


Gregory Ashton's avatar
Gregory Ashton committed
33
class Bunch(object):
34
35
    """ Turns dictionary into object with attribute-style access

36
37
    Parameters
    ----------
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    dict
        Input dictionary

    Examples
    --------
    >>> data = Bunch(dict(x=1, y=[1, 2, 3], z=True))
    >>> print(data.x)
    1
    >>> print(data.y)
    [1, 2, 3]
    >>> print(data.z)
    True

    """
Gregory Ashton's avatar
Gregory Ashton committed
52
53
54
55
56
    def __init__(self, dictionary):
        self.__dict__.update(dictionary)


def read_par(filename=None, label=None, outdir=None, suffix='par',
57
58
             return_type='dict', comments=['%', '#'], raise_error=False):
    """ Read in a .par or .loudest file, returns a dict or Bunch of the data
59

Gregory Ashton's avatar
Gregory Ashton committed
60
61
    Parameters
    ----------
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    filename : str
        Filename (path) containing rows of `key=val` data to read in.
    label, outdir, suffix : str, optional
        If filename is None, form the file to read as `outdir/label.suffix`.
    return_type : {'dict', 'bunch'}, optional
        If `dict`, return a dictionary, if 'bunch' return a Bunch
    comments : str or list of strings, optional
        Characters denoting that a row is a comment.
    raise_error : bool, optional
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Notes
    -----
    This can also be used to read in .loudest files, or any file which has
    rows of `key=val` data (in which the val can be understood using eval(val)
Gregory Ashton's avatar
Gregory Ashton committed
78
79
80
81
82

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type
83

84
85
86
87
    """
    if filename is None:
        filename = '{}/{}.{}'.format(outdir, label, suffix)
    if os.path.isfile(filename) is False:
88
        raise ValueError("No file {} found".format(filename))
Gregory Ashton's avatar
Gregory Ashton committed
89
90
    d = {}
    with open(filename, 'r') as f:
91
        d = _get_dictionary_from_lines(f, comments, raise_error)
Gregory Ashton's avatar
Gregory Ashton committed
92
93
94
95
96
97
    if return_type in ['bunch', 'Bunch']:
        return Bunch(d)
    elif return_type in ['dict', 'dictionary']:
        return d
    else:
        raise ValueError('return_type {} not understood'.format(return_type))
Gregory Ashton's avatar
Gregory Ashton committed
98
99


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def _get_dictionary_from_lines(lines, comments, raise_error):
    """ Return dictionary of key=val pairs for each line in lines

    Parameters
    ----------
    comments : str or list of strings
        Characters denoting that a row is a comment.
    raise_error : bool
        If True, raise an error for lines which are not comments, but cannot
        be read.

    Returns
    -------
    d: Bunch or dict
        The par values as either a `Bunch` or dict type

    """
117
118
    d = {}
    for line in lines:
119
        if line[0] not in comments and len(line.split('=')) == 2:
120
121
122
            try:
                key, val = line.rstrip('\n').split('=')
                key = key.strip()
123
124
125
126
127
128
129
130
                val = val.strip()
                if (val[0] in ["'", '"']) and (val[-1] in ["'", '"']):
                    d[key] = val.lstrip('"').lstrip("'").rstrip('"').rstrip("'")
                else:
                    try:
                        d[key] = np.float64(eval(val.rstrip('; ')))
                    except NameError:
                        d[key] = val.rstrip('; ')
131
            except SyntaxError:
132
133
                if raise_error:
                    raise IOError('Line {} not understood'.format(line))
134
135
136
137
138
                pass
    return d


def predict_fstat(h0, cosi, psi, Alpha, Delta, Freq, sftfilepattern,
139
                  minStartTime, maxStartTime, IFOs=None, assumeSqrtSX=None,
140
                  tempory_filename='fs.tmp', **kwargs):
141
142
143
144
145
146
147
148
149
    """ Wrapper to lalapps_PredictFstat

    Parameters
    ----------
    h0, cosi, psi, Alpha, Delta, Freq : float
        Signal properties, see `lalapps_PredictFstat --help` for more info.
    sftfilepattern : str
        Pattern matching the sftfiles to use.
    minStartTime, maxStartTime : int
150
    IFOs : str
151
152
153
154
155
156
157
158
159
160
        See `lalapps_PredictFstat --help`
    assumeSqrtSX : float or None
        See `lalapps_PredictFstat --help`, if None this option is not used

    Returns
    -------
    twoF_expected, twoF_sigma : float
        The expectation and standard deviation of 2F

    """
161

162
163
164
165
166
167
168
169
170
171
    cl_pfs = []
    cl_pfs.append("lalapps_PredictFstat")
    cl_pfs.append("--h0={}".format(h0))
    cl_pfs.append("--cosi={}".format(cosi))
    cl_pfs.append("--psi={}".format(psi))
    cl_pfs.append("--Alpha={}".format(Alpha))
    cl_pfs.append("--Delta={}".format(Delta))
    cl_pfs.append("--Freq={}".format(Freq))

    cl_pfs.append("--DataFiles='{}'".format(sftfilepattern))
172
    if assumeSqrtSX:
173
        cl_pfs.append("--assumeSqrtSX={}".format(assumeSqrtSX))
174
175
    #if IFOs:
    #    cl_pfs.append("--IFOs={}".format(IFOs))
176

177
178
    cl_pfs.append("--minStartTime={}".format(int(minStartTime)))
    cl_pfs.append("--maxStartTime={}".format(int(maxStartTime)))
179
    cl_pfs.append("--outputFstat={}".format(tempory_filename))
180

181
182
    cl_pfs = " ".join(cl_pfs)
    helper_functions.run_commandline(cl_pfs)
183
184
    d = read_par(filename=tempory_filename)
    os.remove(tempory_filename)
185
186
187
    return float(d['twoF_expected']), float(d['twoF_sigma'])


Gregory Ashton's avatar
Gregory Ashton committed
188
class BaseSearchClass(object):
189
    """ The base search class providing parent methods to other searches """
Gregory Ashton's avatar
Gregory Ashton committed
190

191
    def _add_log_file(self):
Gregory Ashton's avatar
Gregory Ashton committed
192
193
194
195
196
197
198
199
200
        """ Log output to a file, requires class to have outdir and label """
        logfilename = '{}/{}.log'.format(self.outdir, self.label)
        fh = logging.FileHandler(logfilename)
        fh.setLevel(logging.INFO)
        fh.setFormatter(logging.Formatter(
            '%(asctime)s %(levelname)-8s: %(message)s',
            datefmt='%y-%m-%d %H:%M'))
        logging.getLogger().addHandler(fh)

201
    def _shift_matrix(self, n, dT):
Gregory Ashton's avatar
Gregory Ashton committed
202
203
204
205
        """ Generate the shift matrix

        Parameters
        ----------
206
        n : int
Gregory Ashton's avatar
Gregory Ashton committed
207
            The dimension of the shift-matrix to generate
208
        dT : float
Gregory Ashton's avatar
Gregory Ashton committed
209
210
211
212
            The time delta of the shift matrix

        Returns
        -------
213
214
        m : ndarray, shape (n,)
            The shift matrix.
Gregory Ashton's avatar
Gregory Ashton committed
215

216
        """
Gregory Ashton's avatar
Gregory Ashton committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        m = np.zeros((n, n))
        factorial = np.math.factorial
        for i in range(n):
            for j in range(n):
                if i == j:
                    m[i, j] = 1.0
                elif i > j:
                    m[i, j] = 0.0
                else:
                    if i == 0:
                        m[i, j] = 2*np.pi*float(dT)**(j-i) / factorial(j-i)
                    else:
                        m[i, j] = float(dT)**(j-i) / factorial(j-i)
        return m

232
    def _shift_coefficients(self, theta, dT):
Gregory Ashton's avatar
Gregory Ashton committed
233
234
235
236
        """ Shift a set of coefficients by dT

        Parameters
        ----------
237
238
        theta : array-like, shape (n,)
            Vector of the expansion coefficients to transform starting from the
Gregory Ashton's avatar
Gregory Ashton committed
239
            lowest degree e.g [phi, F0, F1,...].
240
241
        dT : float
            Difference between the two reference times as tref_new - tref_old.
Gregory Ashton's avatar
Gregory Ashton committed
242
243
244

        Returns
        -------
245
246
        theta_new : ndarray, shape (n,)
            Vector of the coefficients as evaluated as the new reference time.
Gregory Ashton's avatar
Gregory Ashton committed
247
248
        """
        n = len(theta)
249
        m = self._shift_matrix(n, dT)
Gregory Ashton's avatar
Gregory Ashton committed
250
251
        return np.dot(m, theta)

252
    def _calculate_thetas(self, theta, delta_thetas, tbounds, theta0_idx=0):
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        """ Calculates the set of thetas given delta_thetas, the jumps

        This is used when generating data containing glitches or timing noise.
        Specifically, the source parameters of the signal are not constant in
        time, but jump by `delta_theta` at `tbounds`.

        Parameters
        ----------
        theta : array_like
            The source parameters of size (n,).
        delta_thetas : array_like
            The jumps in the source parameters of size (m, n) where m is the
            number of jumps.
        tbounds : array_like
            Time boundaries of the jumps of size (m+2,).
        theta0_idx : int
            Index of the segment for which the theta are defined.

        Returns
        -------
        ndarray
            The set of thetas, shape (m+1, n).

        """
Gregory Ashton's avatar
Gregory Ashton committed
277
278
279
        thetas = [theta]
        for i, dt in enumerate(delta_thetas):
            if i < theta0_idx:
280
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
281
282
                    thetas[0], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch - dt
283
                thetas.insert(0, self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
284
285
286
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))

            elif i >= theta0_idx:
287
                pre_theta_at_ith_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
288
289
                    thetas[i], tbounds[i+1] - self.tref)
                post_theta_at_ith_glitch = pre_theta_at_ith_glitch + dt
290
                thetas.append(self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
291
                    post_theta_at_ith_glitch, self.tref - tbounds[i+1]))
292
        self.thetas_at_tref = thetas
Gregory Ashton's avatar
Gregory Ashton committed
293
294
        return thetas

295
    def _get_list_of_matching_sfts(self):
296
        """ Returns a list of sfts matching the attribute sftfilepattern """
297
298
        sftfilepatternlist = np.atleast_1d(self.sftfilepattern.split(';'))
        matches = [glob.glob(p) for p in sftfilepatternlist]
299
        matches = [item for sublist in matches for item in sublist]
300
301
302
303
        if len(matches) > 0:
            return matches
        else:
            raise IOError('No sfts found matching {}'.format(
304
                self.sftfilepattern))
305

306
307
    def set_ephemeris_files(self, earth_ephem=None, sun_ephem=None):
        """ Set the ephemeris files to use for the Earth and Sun
Gregory Ashton's avatar
Gregory Ashton committed
308

309
310
311
312
313
        Parameters
        ----------
        earth_ephem, sun_ephem: str
            Paths of the two files containing positions of Earth and Sun,
            respectively at evenly spaced times, as passed to CreateFstatInput
Gregory Ashton's avatar
Gregory Ashton committed
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        Note: If not manually set, default values in ~/.pyfstat are used

        """

        earth_ephem_default, sun_ephem_default = (
                helper_functions.get_ephemeris_files())

        if earth_ephem is None:
            self.earth_ephem = earth_ephem_default
        if sun_ephem is None:
            self.sun_ephem = sun_ephem_default


class ComputeFstat(BaseSearchClass):
    """ Base class providing interface to `lalpulsar.ComputeFstat` """
Gregory Ashton's avatar
Gregory Ashton committed
330
331

    @helper_functions.initializer
332
    def __init__(self, tref, sftfilepattern=None, minStartTime=None,
David Keitel's avatar
David Keitel committed
333
334
                 maxStartTime=None, binary=False, BSGL=False,
                 transientWindowType=None, t0Band=None, tauBand=None,
335
                 tauMin=None,
336
                 dt0=None, dtau=None,
337
                 detectors=None, minCoverFreq=None, maxCoverFreq=None,
338
                 injectSources=None, injectSqrtSX=None, assumeSqrtSX=None,
339
                 SSBprec=None,
340
                 tCWFstatMapVersion='lal', cudaDeviceName=None):
Gregory Ashton's avatar
Gregory Ashton committed
341
342
343
        """
        Parameters
        ----------
344
        tref : int
Gregory Ashton's avatar
Gregory Ashton committed
345
            GPS seconds of the reference time.
346
        sftfilepattern : str
347
348
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
349
        minStartTime, maxStartTime : float GPStime
Gregory Ashton's avatar
Gregory Ashton committed
350
351
            Only use SFTs with timestemps starting from (including, excluding)
            this epoch
352
        binary : bool
Gregory Ashton's avatar
Gregory Ashton committed
353
            If true, search of binary parameters.
354
        BSGL : bool
Gregory Ashton's avatar
Gregory Ashton committed
355
            If true, compute the BSGL rather than the twoF value.
David Keitel's avatar
David Keitel committed
356
357
358
        transientWindowType: str
            If 'rect' or 'exp',
            allow for the Fstat to be computed over a transient range.
Gregory Ashton's avatar
Gregory Ashton committed
359
360
            ('none' instead of None explicitly calls the transient-window
            function, but with the full range, for debugging)
361
362
        t0Band, tauBand: int
            if >0, search t0 in (minStartTime,minStartTime+t0Band)
363
                   and tau in (tauMin,2*Tsft+tauBand).
364
365
            if =0, only compute CW Fstat with t0=minStartTime,
                   tau=maxStartTime-minStartTime.
366
367
        tauMin: int
            defaults to 2*Tsft
368
369
370
        dt0, dtau: int
            grid resolutions in transient start-time and duration,
            both default to Tsft
371
        detectors : str
Gregory Ashton's avatar
Gregory Ashton committed
372
            Two character reference to the data to use, specify None for no
373
            contraint. If multiple-separate by comma.
374
        minCoverFreq, maxCoverFreq : float
Gregory Ashton's avatar
Gregory Ashton committed
375
376
377
            The min and max cover frequency passed to CreateFstatInput, if
            either is None the range of frequencies in the SFT less 1Hz is
            used.
378
        injectSources : dict or str
379
380
            Either a dictionary of the values to inject, or a string pointing
            to the .cff file to inject
381
        injectSqrtSX :
382
            Not yet implemented
383
        assumeSqrtSX : float
384
385
386
            Don't estimate noise-floors but assume (stationary) per-IFO
            sqrt{SX} (if single value: use for all IFOs). If signal only,
            set sqrtSX=1
387
        SSBprec : int
388
389
            Flag to set the SSB calculation: 0=Newtonian, 1=relativistic,
            2=relativisitic optimised, 3=DMoff, 4=NO_SPIN
390
391
392
        tCWFstatMapVersion: str
            Choose between standard 'lal' implementation,
            'pycuda' for gpu, and some others for devel/debug.
393
394
        cudaDeviceName: str
            GPU name to be matched against drv.Device output.
Gregory Ashton's avatar
Gregory Ashton committed
395
396
397

        """

398
        self.set_ephemeris_files()
Gregory Ashton's avatar
Gregory Ashton committed
399
400
        self.init_computefstatistic_single_point()

401
402
403
404
405
406
407
408
409
410
411
    def _get_SFTCatalog(self):
        """ Load the SFTCatalog

        If sftfilepattern is specified, load the data. If not, attempt to
        create data on the fly.

        Returns
        -------
        SFTCatalog: lalpulsar.SFTCatalog

        """
Gregory Ashton's avatar
Gregory Ashton committed
412
413
        if hasattr(self, 'SFTCatalog'):
            return
414
        if self.sftfilepattern is None:
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
            for k in ['minStartTime', 'maxStartTime', 'detectors']:
                if getattr(self, k) is None:
                    raise ValueError('You must provide "{}" to injectSources'
                                     .format(k))
            C1 = getattr(self, 'injectSources', None) is None
            C2 = getattr(self, 'injectSqrtSX', None) is None
            if C1 and C2:
                raise ValueError('You must specify either one of injectSources'
                                 ' or injectSqrtSX')
            SFTCatalog = lalpulsar.SFTCatalog()
            Tsft = 1800
            Toverlap = 0
            Tspan = self.maxStartTime - self.minStartTime
            detNames = lal.CreateStringVector(
                *[d for d in self.detectors.split(',')])
            multiTimestamps = lalpulsar.MakeMultiTimestamps(
                self.minStartTime, Tspan, Tsft, Toverlap, detNames.length)
            SFTCatalog = lalpulsar.MultiAddToFakeSFTCatalog(
                SFTCatalog, detNames, multiTimestamps)
            return SFTCatalog

Gregory Ashton's avatar
Gregory Ashton committed
436
437
        logging.info('Initialising SFTCatalog')
        constraints = lalpulsar.SFTConstraints()
438
        if self.detectors:
439
            if ',' in self.detectors:
440
441
                logging.warning('Multiple detector selection not available,'
                                ' using all available data')
442
443
            else:
                constraints.detector = self.detectors
Gregory Ashton's avatar
Gregory Ashton committed
444
445
446
447
448
        if self.minStartTime:
            constraints.minStartTime = lal.LIGOTimeGPS(self.minStartTime)
        if self.maxStartTime:
            constraints.maxStartTime = lal.LIGOTimeGPS(self.maxStartTime)
        logging.info('Loading data matching pattern {}'.format(
449
450
                     self.sftfilepattern))
        SFTCatalog = lalpulsar.SFTdataFind(self.sftfilepattern, constraints)
451

Gregory Ashton's avatar
Gregory Ashton committed
452
        SFT_timestamps = [d.header.epoch for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
453
        self.SFT_timestamps = [float(s) for s in SFT_timestamps]
454
455
        if len(SFT_timestamps) == 0:
            raise ValueError('Failed to load any data')
Gregory Ashton's avatar
Gregory Ashton committed
456
457
458
459
460
        if args.quite is False and args.no_interactive is False:
            try:
                from bashplotlib.histogram import plot_hist
                print('Data timestamps histogram:')
                plot_hist(SFT_timestamps, height=5, bincount=50)
Gregory Ashton's avatar
Gregory Ashton committed
461
            except ImportError:
Gregory Ashton's avatar
Gregory Ashton committed
462
                pass
463

464
        cl_tconv1 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[0]))
465
466
        output = helper_functions.run_commandline(cl_tconv1,
                                                  log_level=logging.DEBUG)
467
468
        tconvert1 = output.rstrip('\n')
        cl_tconv2 = 'lalapps_tconvert {}'.format(int(SFT_timestamps[-1]))
469
470
        output = helper_functions.run_commandline(cl_tconv2,
                                                  log_level=logging.DEBUG)
471
        tconvert2 = output.rstrip('\n')
Gregory Ashton's avatar
Gregory Ashton committed
472
473
        logging.info('Data spans from {} ({}) to {} ({})'.format(
            int(SFT_timestamps[0]),
474
            tconvert1,
Gregory Ashton's avatar
Gregory Ashton committed
475
            int(SFT_timestamps[-1]),
476
            tconvert2))
477
478
479
480
481
482
483
484
485
486
487
488
489

        if self.minStartTime is None:
            self.minStartTime = int(SFT_timestamps[0])
        if self.maxStartTime is None:
            self.maxStartTime = int(SFT_timestamps[-1])

        detector_names = list(set([d.header.name for d in SFTCatalog.data]))
        self.detector_names = detector_names
        if len(detector_names) == 0:
            raise ValueError('No data loaded.')
        logging.info('Loaded {} data files from detectors {}'.format(
            len(SFT_timestamps), detector_names))

490
        return SFTCatalog
Gregory Ashton's avatar
Gregory Ashton committed
491
492
493
494

    def init_computefstatistic_single_point(self):
        """ Initilisation step of run_computefstatistic for a single point """

495
        SFTCatalog = self._get_SFTCatalog()
Gregory Ashton's avatar
Gregory Ashton committed
496
497
498
499
500
501

        logging.info('Initialising ephems')
        ephems = lalpulsar.InitBarycenter(self.earth_ephem, self.sun_ephem)

        logging.info('Initialising FstatInput')
        dFreq = 0
David Keitel's avatar
David Keitel committed
502
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
503
504
505
506
507
508
            self.whatToCompute = lalpulsar.FSTATQ_ATOMS_PER_DET
        else:
            self.whatToCompute = lalpulsar.FSTATQ_2F

        FstatOAs = lalpulsar.FstatOptionalArgs()
        FstatOAs.randSeed = lalpulsar.FstatOptionalArgsDefaults.randSeed
509
510
511
512
513
        if self.SSBprec:
            logging.info('Using SSBprec={}'.format(self.SSBprec))
            FstatOAs.SSBprec = self.SSBprec
        else:
            FstatOAs.SSBprec = lalpulsar.FstatOptionalArgsDefaults.SSBprec
Gregory Ashton's avatar
Gregory Ashton committed
514
515
516
        FstatOAs.Dterms = lalpulsar.FstatOptionalArgsDefaults.Dterms
        FstatOAs.runningMedianWindow = lalpulsar.FstatOptionalArgsDefaults.runningMedianWindow
        FstatOAs.FstatMethod = lalpulsar.FstatOptionalArgsDefaults.FstatMethod
517
518
519
520
521
522
523
524
        if self.assumeSqrtSX is None:
            FstatOAs.assumeSqrtSX = lalpulsar.FstatOptionalArgsDefaults.assumeSqrtSX
        else:
            mnf = lalpulsar.MultiNoiseFloor()
            assumeSqrtSX = np.atleast_1d(self.assumeSqrtSX)
            mnf.sqrtSn[:len(assumeSqrtSX)] = assumeSqrtSX
            mnf.length = len(assumeSqrtSX)
            FstatOAs.assumeSqrtSX = mnf
Gregory Ashton's avatar
Gregory Ashton committed
525
526
527
        FstatOAs.prevInput = lalpulsar.FstatOptionalArgsDefaults.prevInput
        FstatOAs.collectTiming = lalpulsar.FstatOptionalArgsDefaults.collectTiming

Gregory Ashton's avatar
Gregory Ashton committed
528
        if hasattr(self, 'injectSources') and type(self.injectSources) == dict:
Gregory Ashton's avatar
Gregory Ashton committed
529
530
531
532
533
534
535
536
537
538
            logging.info('Injecting source with params: {}'.format(
                self.injectSources))
            PPV = lalpulsar.CreatePulsarParamsVector(1)
            PP = PPV.data[0]
            PP.Amp.h0 = self.injectSources['h0']
            PP.Amp.cosi = self.injectSources['cosi']
            PP.Amp.phi0 = self.injectSources['phi0']
            PP.Amp.psi = self.injectSources['psi']
            PP.Doppler.Alpha = self.injectSources['Alpha']
            PP.Doppler.Delta = self.injectSources['Delta']
Gregory Ashton's avatar
Gregory Ashton committed
539
540
541
542
543
544
            if 'fkdot' in self.injectSources:
                PP.Doppler.fkdot = np.array(self.injectSources['fkdot'])
            else:
                PP.Doppler.fkdot = np.zeros(lalpulsar.PULSAR_MAX_SPINS)
                for i, key in enumerate(['F0', 'F1', 'F2']):
                    PP.Doppler.fkdot[i] = self.injectSources[key]
Gregory Ashton's avatar
Gregory Ashton committed
545
546
547
548
            PP.Doppler.refTime = self.tref
            if 't0' not in self.injectSources:
                PP.Transient.type = lalpulsar.TRANSIENT_NONE
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
549
        elif hasattr(self, 'injectSources') and type(self.injectSources) == str:
550
551
552
553
            logging.info('Injecting source from param file: {}'.format(
                self.injectSources))
            PPV = lalpulsar.PulsarParamsFromFile(self.injectSources, self.tref)
            FstatOAs.injectSources = PPV
Gregory Ashton's avatar
Gregory Ashton committed
554
555
        else:
            FstatOAs.injectSources = lalpulsar.FstatOptionalArgsDefaults.injectSources
556
557
558
559
        if hasattr(self, 'injectSqrtSX') and self.injectSqrtSX is not None:
            raise ValueError('injectSqrtSX not implemented')
        else:
            FstatOAs.InjectSqrtSX = lalpulsar.FstatOptionalArgsDefaults.injectSqrtSX
Gregory Ashton's avatar
Gregory Ashton committed
560
        if self.minCoverFreq is None or self.maxCoverFreq is None:
561
            fAs = [d.header.f0 for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
562
            fBs = [d.header.f0 + (d.numBins-1)*d.header.deltaF
563
                   for d in SFTCatalog.data]
Gregory Ashton's avatar
Gregory Ashton committed
564
565
566
567
568
569
            self.minCoverFreq = np.min(fAs) + 0.5
            self.maxCoverFreq = np.max(fBs) - 0.5
            logging.info('Min/max cover freqs not provided, using '
                         '{} and {}, est. from SFTs'.format(
                             self.minCoverFreq, self.maxCoverFreq))

570
        self.FstatInput = lalpulsar.CreateFstatInput(SFTCatalog,
Gregory Ashton's avatar
Gregory Ashton committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
                                                     self.minCoverFreq,
                                                     self.maxCoverFreq,
                                                     dFreq,
                                                     ephems,
                                                     FstatOAs
                                                     )

        logging.info('Initialising PulsarDoplerParams')
        PulsarDopplerParams = lalpulsar.PulsarDopplerParams()
        PulsarDopplerParams.refTime = self.tref
        PulsarDopplerParams.Alpha = 1
        PulsarDopplerParams.Delta = 1
        PulsarDopplerParams.fkdot = np.array([0, 0, 0, 0, 0, 0, 0])
        self.PulsarDopplerParams = PulsarDopplerParams

        logging.info('Initialising FstatResults')
        self.FstatResults = lalpulsar.FstatResults()

        if self.BSGL:
            if len(self.detector_names) < 2:
591
                raise ValueError("Can't use BSGL with single detectors data")
Gregory Ashton's avatar
Gregory Ashton committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
            else:
                logging.info('Initialising BSGL')

            # Tuning parameters - to be reviewed
            numDetectors = 2
            if hasattr(self, 'nsegs'):
                p_val_threshold = 1e-6
                Fstar0s = np.linspace(0, 1000, 10000)
                p_vals = scipy.special.gammaincc(2*self.nsegs, Fstar0s)
                Fstar0 = Fstar0s[np.argmin(np.abs(p_vals - p_val_threshold))]
                if Fstar0 == Fstar0s[-1]:
                    raise ValueError('Max Fstar0 exceeded')
            else:
                Fstar0 = 15.
            logging.info('Using Fstar0 of {:1.2f}'.format(Fstar0))
            oLGX = np.zeros(10)
            oLGX[:numDetectors] = 1./numDetectors
            self.BSGLSetup = lalpulsar.CreateBSGLSetup(numDetectors,
                                                       Fstar0,
                                                       oLGX,
                                                       True,
                                                       1)
            self.twoFX = np.zeros(10)
            self.whatToCompute = (self.whatToCompute +
                                  lalpulsar.FSTATQ_2F_PER_DET)

David Keitel's avatar
David Keitel committed
618
        if self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
619
620
            logging.info('Initialising transient parameters')
            self.windowRange = lalpulsar.transientWindowRange_t()
David Keitel's avatar
David Keitel committed
621
622
623
624
625
626
            transientWindowTypes = {'none': lalpulsar.TRANSIENT_NONE,
                                    'rect': lalpulsar.TRANSIENT_RECTANGULAR,
                                    'exp':  lalpulsar.TRANSIENT_EXPONENTIAL}
            if self.transientWindowType in transientWindowTypes:
                self.windowRange.type = transientWindowTypes[self.transientWindowType]
            else:
Gregory Ashton's avatar
Gregory Ashton committed
627
628
629
630
                raise ValueError(
                    'Unknown window-type ({}) passed as input, [{}] allows.'
                    .format(self.transientWindowType,
                            ', '.join(transientWindowTypes)))
David Keitel's avatar
David Keitel committed
631

632
            # default spacing
David Keitel's avatar
David Keitel committed
633
            self.Tsft = int(1.0/SFTCatalog.data[0].header.deltaF)
634
635
636
            self.windowRange.dt0 = self.Tsft
            self.windowRange.dtau = self.Tsft

David Keitel's avatar
David Keitel committed
637
638
            # special treatment of window_type = none
            # ==> replace by rectangular window spanning all the data
639
640
            if self.windowRange.type == lalpulsar.TRANSIENT_NONE:
                self.windowRange.t0 = int(self.minStartTime)
Gregory Ashton's avatar
Gregory Ashton committed
641
                self.windowRange.t0Band = 0
642
                self.windowRange.tau = int(self.maxStartTime-self.minStartTime)
David Keitel's avatar
David Keitel committed
643
                self.windowRange.tauBand = 0
Gregory Ashton's avatar
Gregory Ashton committed
644
            else:  # user-set bands and spacings
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
                if self.t0Band is None:
                    self.windowRange.t0Band = 0
                else:
                    if not isinstance(self.t0Band, int):
                        logging.warn('Casting non-integer t0Band={} to int...'
                                     .format(self.t0Band))
                        self.t0Band = int(self.t0Band)
                    self.windowRange.t0Band = self.t0Band
                    if self.dt0:
                        self.windowRange.dt0 = self.dt0
                if self.tauBand is None:
                    self.windowRange.tauBand = 0
                else:
                    if not isinstance(self.tauBand, int):
                        logging.warn('Casting non-integer tauBand={} to int...'
                                     .format(self.tauBand))
                        self.tauBand = int(self.tauBand)
                    self.windowRange.tauBand = self.tauBand
                    if self.dtau:
                        self.windowRange.dtau = self.dtau
665
666
667
668
669
670
671
672
                    if self.tauMin is None:
                        self.windowRange.tau = int(2*self.Tsft)
                    else:
                        if not isinstance(self.tauMin, int):
                            logging.warn('Casting non-integer tauMin={} to int...'
                                         .format(self.tauMin))
                            self.tauMin = int(self.tauMin)
                        self.windowRange.tau = self.tauMin
Gregory Ashton's avatar
Gregory Ashton committed
673

David Keitel's avatar
David Keitel committed
674
            logging.info('Initialising transient FstatMap features...')
Gregory Ashton's avatar
Gregory Ashton committed
675
676
677
            self.tCWFstatMapFeatures, self.gpu_context = (
                tcw.init_transient_fstat_map_features(
                    self.tCWFstatMapVersion == 'pycuda', self.cudaDeviceName))
678

679
680
681
    def get_fullycoherent_twoF(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                               asini=None, period=None, ecc=None, tp=None,
                               argp=None):
Gregory Ashton's avatar
Gregory Ashton committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
        """ Returns twoF or ln(BSGL) fully-coherently at a single point """
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
700
        if not self.transientWindowType:
Gregory Ashton's avatar
Gregory Ashton committed
701
702
703
704
705
706
707
708
709
710
711
            if self.BSGL is False:
                return self.FstatResults.twoF[0]

            twoF = np.float(self.FstatResults.twoF[0])
            self.twoFX[0] = self.FstatResults.twoFPerDet(0)
            self.twoFX[1] = self.FstatResults.twoFPerDet(1)
            log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
                                               self.BSGLSetup)
            return log10_BSGL/np.log10(np.exp(1))

        self.windowRange.t0 = int(tstart)  # TYPE UINT4
David Keitel's avatar
David Keitel committed
712
713
714
715
        if self.windowRange.tauBand == 0:
            # true single-template search also in transient params:
            # actual (t0,tau) window was set with tstart, tend before
            self.windowRange.tau = int(tend - tstart)  # TYPE UINT4
Gregory Ashton's avatar
Gregory Ashton committed
716

Gregory Ashton's avatar
Gregory Ashton committed
717
718
719
        self.FstatMap = tcw.call_compute_transient_fstat_map(
            self.tCWFstatMapVersion, self.tCWFstatMapFeatures,
            self.FstatResults.multiFatoms[0], self.windowRange)
720
721
722
723
        if self.tCWFstatMapVersion == 'lal':
            F_mn = self.FstatMap.F_mn.data
        else:
            F_mn = self.FstatMap.F_mn
Gregory Ashton's avatar
Gregory Ashton committed
724

725
        twoF = 2*np.max(F_mn)
Gregory Ashton's avatar
Gregory Ashton committed
726
        if self.BSGL is False:
727
728
729
730
            if np.isnan(twoF):
                return 0
            else:
                return twoF
Gregory Ashton's avatar
Gregory Ashton committed
731
732
733
734
735
736
737
738
739
740

        FstatResults_single = copy.copy(self.FstatResults)
        FstatResults_single.lenth = 1
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
        FS0 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)
        FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
        FS1 = lalpulsar.ComputeTransientFstatMap(
            FstatResults_single.multiFatoms[0], self.windowRange, False)

741
742
743
744
745
        # for now, use the Doppler parameter with
        # multi-detector F maximised over t0,tau
        # to return BSGL
        # FIXME: should we instead compute BSGL over the whole F_mn
        # and return the maximum of that?
746
        idx_maxTwoF = np.argmax(F_mn)
747
748
749

        self.twoFX[0] = 2*FS0.F_mn.data[idx_maxTwoF]
        self.twoFX[1] = 2*FS1.F_mn.data[idx_maxTwoF]
Gregory Ashton's avatar
Gregory Ashton committed
750
        log10_BSGL = lalpulsar.ComputeBSGL(
751
                twoF, self.twoFX, self.BSGLSetup)
Gregory Ashton's avatar
Gregory Ashton committed
752
753
754
755
756
757

        return log10_BSGL/np.log10(np.exp(1))

    def calculate_twoF_cumulative(self, F0, F1, F2, Alpha, Delta, asini=None,
                                  period=None, ecc=None, tp=None, argp=None,
                                  tstart=None, tend=None, npoints=1000,
758
759
                                  ):
        """ Calculate the cumulative twoF along the obseration span
760
761
762

        Parameters
        ----------
763
764
        F0, F1, F2, Alpha, Delta: float
            Parameters at which to compute the cumulative twoF
765
766
        asini, period, ecc, tp, argp: float, optional
            Binary parameters at which to compute the cumulative 2F
767
768
769
770
771
772
        tstart, tend: int
            GPS times to restrict the range of data used - automatically
            truncated to the span of data available
        npoints: int
            Number of points to compute twoF along the span

773
774
775
        Notes
        -----
        The minimum cumulatibe twoF is hard-coded to be computed over
776
777
778
779
780
781
        the first 6 hours from either the first timestampe in the data (if
        tstart is smaller than it) or tstart.

        """
        SFTminStartTime = self.SFT_timestamps[0]
        SFTmaxStartTime = self.SFT_timestamps[-1]
Gregory Ashton's avatar
Gregory Ashton committed
782
        tstart = np.max([SFTminStartTime, tstart])
783
784
785
        min_tau = np.max([SFTminStartTime - tstart, 0]) + 3600*6
        max_tau = SFTmaxStartTime - tstart
        taus = np.linspace(min_tau, max_tau, npoints)
Gregory Ashton's avatar
Gregory Ashton committed
786
        twoFs = []
David Keitel's avatar
David Keitel committed
787
788
789
        if not self.transientWindowType:
            # still call the transient-Fstat-map function, but using the full range
            self.transientWindowType = 'none'
Gregory Ashton's avatar
Gregory Ashton committed
790
791
            self.init_computefstatistic_single_point()
        for tau in taus:
792
            detstat = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
793
794
                tstart=tstart, tend=tstart+tau, F0=F0, F1=F1, F2=F2,
                Alpha=Alpha, Delta=Delta, asini=asini, period=period, ecc=ecc,
795
796
                tp=tp, argp=argp)
            twoFs.append(detstat)
Gregory Ashton's avatar
Gregory Ashton committed
797
798
799

        return taus, np.array(twoFs)

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
    def _calculate_predict_fstat_cumulative(self, N, label=None, outdir=None,
                                            IFO=None, pfs_input=None):
        """ Calculates the predicted 2F and standard deviation cumulatively

        Parameters
        ----------
        N : int
            Number of timesteps to use between minStartTime and maxStartTime.
        label, outdir : str, optional
            The label and directory to read in the .loudest file from
        IFO : str
        pfs_input : dict, optional
            Input kwargs to predict_fstat (alternative to giving label and
            outdir).

        Returns
        -------
        times, pfs, pfs_sigma : ndarray, size (N,)

        """
Gregory Ashton's avatar
Gregory Ashton committed
820
821
822
823
824

        if pfs_input is None:
            if os.path.isfile('{}/{}.loudest'.format(outdir, label)) is False:
                raise ValueError(
                    'Need a loudest file to add the predicted Fstat')
825
            loudest = read_par(label=label, outdir=outdir, suffix='loudest')
Gregory Ashton's avatar
Gregory Ashton committed
826
827
            pfs_input = {key: loudest[key] for key in
                         ['h0', 'cosi', 'psi', 'Alpha', 'Delta', 'Freq']}
828
829
830
        times = np.linspace(self.minStartTime, self.maxStartTime, N+1)[1:]
        times = np.insert(times, 0, self.minStartTime + 86400/2.)
        out = [predict_fstat(minStartTime=self.minStartTime, maxStartTime=t,
831
                             sftfilepattern=self.sftfilepattern, IFO=IFO,
832
833
834
835
                             **pfs_input) for t in times]
        pfs, pfs_sigma = np.array(out).T
        return times, pfs, pfs_sigma

836
837
    def plot_twoF_cumulative(self, label, outdir, add_pfs=False, N=15,
                             injectSources=None, ax=None, c='k', savefig=True,
838
                             title=None, plt_label=None, **kwargs):
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        """ Plot the twoF value cumulatively

        Parameters
        ----------
        label, outdir : str
        add_pfs : bool
            If true, plot the predicted 2F and standard deviation
        N : int
            Number of points to use
        injectSources : dict
            See `ComputeFstat`
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            Axis to add the plot to.
        c : str
            Colour
        savefig : bool
            If true, save the figure in outdir
856
857
        title, plt_label: str
            Figure title and label
858
859
860
861
862
863
864
865
866

        Returns
        -------
        tauS, tauF : ndarray shape (N,)
            If savefig, the times and twoF (cumulative) values
        ax : matplotlib.axes._subplots_AxesSubplot, optional
            If savefig is False

        """
Gregory Ashton's avatar
Gregory Ashton committed
867
868
        if ax is None:
            fig, ax = plt.subplots()
Gregory Ashton's avatar
Gregory Ashton committed
869
870
871
872
873
874
875
        if injectSources:
            pfs_input = dict(
                h0=injectSources['h0'], cosi=injectSources['cosi'],
                psi=injectSources['psi'], Alpha=injectSources['Alpha'],
                Delta=injectSources['Delta'], Freq=injectSources['fkdot'][0])
        else:
            pfs_input = None
876
877

        taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
878
        ax.plot(taus/86400., twoFs, label=plt_label, color=c)
879
        if len(self.detector_names) > 1:
880
881
            detector_names = self.detector_names
            detectors = self.detectors
882
883
884
885
            for d in self.detector_names:
                self.detectors = d
                self.init_computefstatistic_single_point()
                taus, twoFs = self.calculate_twoF_cumulative(**kwargs)
886
887
888
889
890
891
                ax.plot(taus/86400., twoFs, label='{}'.format(d),
                        color=detector_colors[d.lower()])
            self.detectors = detectors
            self.detector_names = detector_names

        if add_pfs:
892
893
            times, pfs, pfs_sigma = self._calculate_predict_fstat_cumulative(
                N=N, label=label, outdir=outdir, pfs_input=pfs_input)
894
895
            ax.fill_between(
                (times-self.minStartTime)/86400., pfs-pfs_sigma, pfs+pfs_sigma,
Gregory Ashton's avatar
Gregory Ashton committed
896
                color=c,
897
898
                label=(r'Predicted $\langle 2\mathcal{F} '
                       r'\rangle\pm $ 1-$\sigma$ band'),
899
900
901
                zorder=-10, alpha=0.2)
            if len(self.detector_names) > 1:
                for d in self.detector_names:
902
903
904
905
                    out = self._calculate_predict_fstat_cumulative(
                        N=N, label=label, outdir=outdir, IFO=d.upper(),
                        pfs_input=pfs_input)
                    times, pfs, pfs_sigma = out
906
907
908
909
910
911
912
913
                    ax.fill_between(
                        (times-self.minStartTime)/86400., pfs-pfs_sigma,
                        pfs+pfs_sigma, color=detector_colors[d.lower()],
                        alpha=0.5,
                        label=(
                            'Predicted $2\mathcal{{F}}$ 1-$\sigma$ band ({})'
                            .format(d.upper())),
                        zorder=-10)
914

Gregory Ashton's avatar
Gregory Ashton committed
915
916
917
918
919
920
921
        ax.set_xlabel(r'Days from $t_{{\rm start}}={:.0f}$'.format(
            kwargs['tstart']))
        if self.BSGL:
            ax.set_ylabel(r'$\log_{10}(\mathrm{BSGL})_{\rm cumulative}$')
        else:
            ax.set_ylabel(r'$\widetilde{2\mathcal{F}}_{\rm cumulative}$')
        ax.set_xlim(0, taus[-1]/86400)
922
923
        if plt_label:
            ax.legend(frameon=False, loc=2, fontsize=6)
Gregory Ashton's avatar
Gregory Ashton committed
924
925
926
927
928
929
930
931
932
        if title:
            ax.set_title(title)
        if savefig:
            plt.tight_layout()
            plt.savefig('{}/{}_twoFcumulative.png'.format(outdir, label))
            return taus, twoFs
        else:
            return ax

933
934
935
936
937
938
939
940
941
942
943
944
    def get_full_CFSv2_output(self, tstart, tend, F0, F1, F2, Alpha, Delta,
                              tref):
        """ Basic wrapper around CFSv2 to get the full (h0..) output """
        cl_CFSv2 = "lalapps_ComputeFstatistic_v2 --minStartTime={} --maxStartTime={} --Freq={} --f1dot={} --f2dot={} --Alpha={} --Delta={} --refTime={} --DataFiles='{}' --outputLoudest='{}' --ephemEarth={} --ephemSun={}"
        LoudestFile = "loudest.temp"
        helper_functions.run_commandline(cl_CFSv2.format(
            tstart, tend, F0, F1, F2, Alpha, Delta, tref, self.sftfilepattern,
            LoudestFile, self.earth_ephem, self.sun_ephem))
        loudest = read_par(LoudestFile, return_type='dict')
        os.remove(LoudestFile)
        return loudest

945
946
947
948
949
950
951
952
953
954
955
956
    def write_atoms_to_file(self, fnamebase=''):
        multiFatoms = getattr(self.FstatResults, 'multiFatoms', None)
        if multiFatoms and multiFatoms[0]:
            dopplerName = lalpulsar.PulsarDopplerParams2String ( self.PulsarDopplerParams )
            #fnameAtoms = os.path.join(self.outdir,'Fstatatoms_%s.dat' % dopplerName)
            fnameAtoms = fnamebase + '_Fstatatoms_%s.dat' % dopplerName
            fo = lal.FileOpen(fnameAtoms, 'w')
            lalpulsar.write_MultiFstatAtoms_to_fp ( fo, multiFatoms[0] )
            del fo # instead of lal.FileClose() which is not SWIG-exported
        else:
            raise RuntimeError('Cannot print atoms vector to file: no FstatResults.multiFatoms, or it is None!')

Gregory Ashton's avatar
Gregory Ashton committed
957

958
959
960
961
962
963
964
965
966
    def __del__(self):
        """
        In pyCuda case without autoinit,
        we need to make sure the context is removed at the end
        """
        if hasattr(self,'gpu_context') and self.gpu_context:
            self.gpu_context.detach()


967
class SemiCoherentSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
968
969
970
    """ A semi-coherent search """

    @helper_functions.initializer
971
    def __init__(self, label, outdir, tref, nsegs=None, sftfilepattern=None,
Gregory Ashton's avatar
Gregory Ashton committed
972
973
                 binary=False, BSGL=False, minStartTime=None,
                 maxStartTime=None, minCoverFreq=None, maxCoverFreq=None,
974
975
                 detectors=None, injectSources=None, assumeSqrtSX=None,
                 SSBprec=None):
Gregory Ashton's avatar
Gregory Ashton committed
976
977
978
979
980
981
982
983
984
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nsegs: int
            The (fixed) number of segments
985
986
987
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
988
989
990
991
992

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
993
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
994
995
996
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
997
        self.tCWFstatMapVersion = 'lal'
998
        self.cudaDeviceName = None
Gregory Ashton's avatar
Gregory Ashton committed
999
1000
1001
1002
1003
1004
1005
        self.init_computefstatistic_single_point()
        self.init_semicoherent_parameters()

    def init_semicoherent_parameters(self):
        logging.info(('Initialising semicoherent parameters from {} to {} in'
                      ' {} segments').format(
            self.minStartTime, self.maxStartTime, self.nsegs))
David Keitel's avatar
David Keitel committed
1006
        self.transientWindowType = 'rect'
Gregory Ashton's avatar
Gregory Ashton committed
1007
1008
1009
        self.whatToCompute = lalpulsar.FSTATQ_2F+lalpulsar.FSTATQ_ATOMS_PER_DET
        self.tboundaries = np.linspace(self.minStartTime, self.maxStartTime,
                                       self.nsegs+1)
1010
        self.Tcoh = self.tboundaries[1] - self.tboundaries[0]
Gregory Ashton's avatar
Gregory Ashton committed
1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
        if hasattr(self, 'SFT_timestamps'):
            if self.tboundaries[0] < self.SFT_timestamps[0]:
                logging.debug(
                    'Semi-coherent start time {} before first SFT timestamp {}'
                    .format(self.tboundaries[0], self.SFT_timestamps[0]))
            if self.tboundaries[-1] > self.SFT_timestamps[-1]:
                logging.debug(
                    'Semi-coherent end time {} after last SFT timestamp {}'
                    .format(self.tboundaries[-1], self.SFT_timestamps[-1]))
Gregory Ashton's avatar
Gregory Ashton committed
1021

1022
    def get_semicoherent_twoF(
1023
1024
1025
1026
1027
            self, F0, F1, F2, Alpha, Delta, asini=None,
            period=None, ecc=None, tp=None, argp=None,
            record_segments=False):
        """ Returns twoF or ln(BSGL) semi-coherently at a single point """

Gregory Ashton's avatar
Gregory Ashton committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        self.PulsarDopplerParams.fkdot = np.array([F0, F1, F2, 0, 0, 0, 0])
        self.PulsarDopplerParams.Alpha = Alpha
        self.PulsarDopplerParams.Delta = Delta
        if self.binary:
            self.PulsarDopplerParams.asini = asini
            self.PulsarDopplerParams.period = period
            self.PulsarDopplerParams.ecc = ecc
            self.PulsarDopplerParams.tp = tp
            self.PulsarDopplerParams.argp = argp

        lalpulsar.ComputeFstat(self.FstatResults,
                               self.FstatInput,
                               self.PulsarDopplerParams,
                               1,
                               self.whatToCompute
                               )

David Keitel's avatar
David Keitel committed
1045
        #if not self.transientWindowType:
1046
1047
1048
1049
1050
1051
1052
1053
        #    if self.BSGL is False:
        #        return self.FstatResults.twoF[0]
        #    twoF = np.float(self.FstatResults.twoF[0])
        #    self.twoFX[0] = self.FstatResults.twoFPerDet(0)
        #    self.twoFX[1] = self.FstatResults.twoFPerDet(1)
        #    log10_BSGL = lalpulsar.ComputeBSGL(twoF, self.twoFX,
        #                                       self.BSGLSetup)
        #    return log10_BSGL/np.log10(np.exp(1))
Gregory Ashton's avatar
Gregory Ashton committed
1054
1055

        detStat = 0
1056
1057
        if record_segments:
            self.detStat_per_segment = []
Gregory Ashton's avatar
Gregory Ashton committed
1058

1059
1060
1061
        self.windowRange.tau = int(self.Tcoh)  # TYPE UINT4
        for tstart in self.tboundaries[:-1]:
            d_detStat = self._get_per_segment_det_stat(tstart)
1062
1063
1064
            detStat += d_detStat
            if record_segments:
                self.detStat_per_segment.append(d_detStat)
Gregory Ashton's avatar
Gregory Ashton committed
1065
1066
1067

        return detStat

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    def _get_per_segment_det_stat(self, tstart):
        self.windowRange.t0 = int(tstart)  # TYPE UINT4

        FS = lalpulsar.ComputeTransientFstatMap(
            self.FstatResults.multiFatoms[0], self.windowRange, False)

        if self.BSGL is False:
            d_detStat = 2*FS.F_mn.data[0][0]
        else:
            FstatResults_single = copy.copy(self.FstatResults)
            FstatResults_single.lenth = 1
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[0]
            FS0 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)
            FstatResults_single.data = self.FstatResults.multiFatoms[0].data[1]
            FS1 = lalpulsar.ComputeTransientFstatMap(
                FstatResults_single.multiFatoms[0], self.windowRange, False)

            self.twoFX[0] = 2*FS0.F_mn.data[0][0]
            self.twoFX[1] = 2*FS1.F_mn.data[0][0]
            log10_BSGL = lalpulsar.ComputeBSGL(
                    2*FS.F_mn.data[0][0], self.twoFX, self.BSGLSetup)
            d_detStat = log10_BSGL/np.log10(np.exp(1))
        if np.isnan(d_detStat):
            logging.debug('NaNs in semi-coherent twoF treated as zero')
            d_detStat = 0

        return d_detStat

Gregory Ashton's avatar
Gregory Ashton committed
1097

1098
class SemiCoherentGlitchSearch(ComputeFstat):
Gregory Ashton's avatar
Gregory Ashton committed
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    """ A semi-coherent glitch search

    This implements a basic `semi-coherent glitch F-stat in which the data
    is divided into segments either side of the proposed glitches and the
    fully-coherent F-stat in each segment is summed to give the semi-coherent
    F-stat
    """

    @helper_functions.initializer
    def __init__(self, label, outdir, tref, minStartTime, maxStartTime,
1109
                 nglitch=1, sftfilepattern=None, theta0_idx=0, BSGL=False,
1110
                 minCoverFreq=None, maxCoverFreq=None, assumeSqrtSX=None,
1111
                 detectors=None, SSBprec=None, injectSources=None):
Gregory Ashton's avatar
Gregory Ashton committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
        """
        Parameters
        ----------
        label, outdir: str
            A label and directory to read/write data from/to.
        tref, minStartTime, maxStartTime: int
            GPS seconds of the reference time, and start and end of the data.
        nglitch: int
            The (fixed) number of glitches; this can zero, but occasionally
            this causes issue (in which case just use ComputeFstat).
1122
1123
1124
        sftfilepattern: str
            Pattern to match SFTs using wildcards (*?) and ranges [0-9];
            mutiple patterns can be given separated by colons.
Gregory Ashton's avatar
Gregory Ashton committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
        theta0_idx, int
            Index (zero-based) of which segment the theta refers to - uyseful
            if providing a tight prior on theta to allow the signal to jump
            too theta (and not just from)

        For all other parameters, see pyfstat.ComputeFStat.
        """

        self.fs_file_name = "{}/{}_FS.dat".format(self.outdir, self.label)
1134
        self.set_ephemeris_files()
David Keitel's avatar
David Keitel committed
1135
1136
1137
        self.transientWindowType = 'rect'
        self.t0Band  = None
        self.tauBand = None
1138
        self.tCWFstatMapVersion = 'lal'
1139
        self.cudaDeviceName = None
David Keitel's avatar
David Keitel committed
1140
        self.binary  = False
Gregory Ashton's avatar
Gregory Ashton committed
1141
1142
        self.init_computefstatistic_single_point()

1143
    def get_semicoherent_nglitch_twoF(self, F0, F1, F2, Alpha, Delta, *args):
Gregory Ashton's avatar
Gregory Ashton committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
        """ Returns the semi-coherent glitch summed twoF """

        args = list(args)
        tboundaries = ([self.minStartTime] + args[-self.nglitch:]
                       + [self.maxStartTime])
        delta_F0s = args[-3*self.nglitch:-2*self.nglitch]
        delta_F1s = args[-2*self.nglitch:-self.nglitch]
        delta_F2 = np.zeros(len(delta_F0s))
        delta_phi = np.zeros(len(delta_F0s))
        theta = [0, F0, F1, F2]
        delta_thetas = np.atleast_2d(
                np.array([delta_phi, delta_F0s, delta_F1s, delta_F2]).T)

1157
        thetas = self._calculate_thetas(theta, delta_thetas, tboundaries,
1158
                                        theta0_idx=self.theta0_idx)
Gregory Ashton's avatar
Gregory Ashton committed
1159
1160
1161
1162

        twoFSum = 0
        for i, theta_i_at_tref in enumerate(thetas):
            ts, te = tboundaries[i], tboundaries[i+1]
1163
            if te - ts > 1800:
1164
1165
1166
1167
                twoFVal = self.get_fullycoherent_twoF(
                    ts, te, theta_i_at_tref[1], theta_i_at_tref[2],
                    theta_i_at_tref[3], Alpha, Delta)
                twoFSum += twoFVal
Gregory Ashton's avatar
Gregory Ashton committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

        if np.isfinite(twoFSum):
            return twoFSum
        else:
            return -np.inf

    def compute_glitch_fstat_single(self, F0, F1, F2, Alpha, Delta, delta_F0,
                                    delta_F1, tglitch):
        """ Returns the semi-coherent glitch summed twoF for nglitch=1

        Note: OBSOLETE, used only for testing
        """

        theta = [F0, F1, F2]
        delta_theta = [delta_F0, delta_F1, 0]
        tref = self.tref

1185
        theta_at_glitch = self._shift_coefficients(theta, tglitch - tref)
Gregory Ashton's avatar
Gregory Ashton committed
1186
        theta_post_glitch_at_glitch = theta_at_glitch + delta_theta
1187
        theta_post_glitch = self._shift_coefficients(
Gregory Ashton's avatar
Gregory Ashton committed
1188
1189
            theta_post_glitch_at_glitch, tref - tglitch)

1190
        twoFsegA = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1191
1192
1193
1194
1195
1196
            self.minStartTime, tglitch, theta[0], theta[1], theta[2], Alpha,
            Delta)

        if tglitch == self.maxStartTime:
            return twoFsegA

1197
        twoFsegB = self.get_fullycoherent_twoF(
Gregory Ashton's avatar
Gregory Ashton committed
1198
1199
1200
1201
1202
            tglitch, self.maxStartTime, theta_post_glitch[0],
            theta_post_glitch[1], theta_post_glitch[2], Alpha,
            Delta)

        return twoFsegA + twoFsegB