import pyfstat import numpy as np # Properties of the GW data sqrtSX = 1e-23 tstart = 1000000000 duration = 100*86400 tend = tstart + duration # Properties of the signal F0 = 30.0 F1 = -1e-10 F2 = 0 Alpha = np.radians(83.6292) Delta = np.radians(22.0144) tref = .5*(tstart+tend) depth = 10 h0 = sqrtSX / depth label = 'using_initialisation' outdir = 'data' data = pyfstat.Writer( label=label, outdir=outdir, tref=tref, tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX) data.make_data() # The predicted twoF, given by lalapps_predictFstat can be accessed by twoF = data.predict_fstat() print('Predicted twoF value: {}\n'.format(twoF)) DeltaF0 = 1e-7 DeltaF1 = 1e-13 VF0 = (np.pi * duration * DeltaF0)**2 / 3.0 VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45. print('\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1)) theta_prior = {'F0': {'type': 'unif', 'lower': F0-DeltaF0/2., 'upper': F0+DeltaF0/2.}, 'F1': {'type': 'unif', 'lower': F1-DeltaF1/2., 'upper': F1+DeltaF1/2.}, 'F2': F2, 'Alpha': Alpha, 'Delta': Delta } ntemps = 1 log10beta_min = -1 nwalkers = 100 nsteps = [100, 100] mcmc = pyfstat.MCMCSearch( label=label, outdir=outdir, sftfilepattern='{}/*{}*sft'.format(outdir, label), theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend, nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, log10beta_min=log10beta_min) mcmc.setup_initialisation(100, scatter_val=1e-10) mcmc.run() mcmc.plot_corner(add_prior=True) mcmc.print_summary()