fft_setup.cpp 10.1 KB
Newer Older
Gaurav Khanna's avatar
Gaurav Khanna committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#include "fft_internal.h" 
#include "fft_base_kernels.h" 
#include <stdlib.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <iostream> 
#include <string> 
#include <sstream> 
  
using namespace std; 
  
extern void getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems); 
  
static void  
getBlockConfigAndKernelString(cl_fft_plan *plan) 
{ 
    plan->temp_buffer_needed = 0; 
    *plan->kernel_string += baseKernels; 
     
    if(plan->format == clFFT_SplitComplexFormat) 
        *plan->kernel_string += twistKernelPlannar; 
    else 
        *plan->kernel_string += twistKernelInterleaved; 
     
    switch(plan->dim)  
    { 
        case clFFT_1D: 
            FFT1D(plan, cl_fft_kernel_x); 
            break; 
             
        case clFFT_2D: 
            FFT1D(plan, cl_fft_kernel_x);  
            FFT1D(plan, cl_fft_kernel_y);   
            break; 
             
        case clFFT_3D: 
            FFT1D(plan, cl_fft_kernel_x);  
            FFT1D(plan, cl_fft_kernel_y);  
            FFT1D(plan, cl_fft_kernel_z);  
            break; 
             
        default: 
            return; 
    } 
     
    plan->temp_buffer_needed = 0; 
    cl_fft_kernel_info *kInfo = plan->kernel_info; 
    while(kInfo) 
    { 
        plan->temp_buffer_needed |= !kInfo->in_place_possible; 
        kInfo = kInfo->next; 
    } 
} 
  
  
static void 
deleteKernelInfo(cl_fft_kernel_info *kInfo) 
{ 
    if(kInfo) 
    { 
        if(kInfo->kernel_name) 
            free(kInfo->kernel_name); 
        if(kInfo->kernel) 
            clReleaseKernel(kInfo->kernel); 
        free(kInfo); 
    }    
} 
  
static void 
destroy_plan(cl_fft_plan *Plan) 
{ 
    cl_fft_kernel_info *kernel_info = Plan->kernel_info; 
  
    while(kernel_info) 
    { 
        cl_fft_kernel_info *tmp = kernel_info->next; 
        deleteKernelInfo(kernel_info); 
        kernel_info = tmp; 
    } 
     
    Plan->kernel_info = NULL; 
         
    if(Plan->kernel_string) 
    { 
        delete Plan->kernel_string; 
        Plan->kernel_string = NULL; 
    }            
    if(Plan->twist_kernel) 
    { 
        clReleaseKernel(Plan->twist_kernel); 
        Plan->twist_kernel = NULL; 
    } 
    if(Plan->program) 
    { 
        clReleaseProgram(Plan->program); 
        Plan->program = NULL; 
    } 
    if(Plan->tempmemobj)  
    { 
        clReleaseMemObject(Plan->tempmemobj); 
        Plan->tempmemobj = NULL; 
    } 
    if(Plan->tempmemobj_real) 
    { 
        clReleaseMemObject(Plan->tempmemobj_real); 
        Plan->tempmemobj_real = NULL; 
    } 
    if(Plan->tempmemobj_imag) 
    { 
        clReleaseMemObject(Plan->tempmemobj_imag); 
        Plan->tempmemobj_imag = NULL; 
    } 
} 
  
static int 
createKernelList(cl_fft_plan *plan)  
{ 
    cl_program program = plan->program; 
    cl_fft_kernel_info *kernel_info = plan->kernel_info; 
     
    cl_int err; 
    while(kernel_info) 
    { 
        kernel_info->kernel = clCreateKernel(program, kernel_info->kernel_name, &err); 
        if(!kernel_info->kernel || err != CL_SUCCESS) 
            return err; 
        kernel_info = kernel_info->next;         
    } 
     
    if(plan->format == clFFT_SplitComplexFormat) 
        plan->twist_kernel = clCreateKernel(program, "clFFT_1DTwistSplit", &err); 
    else 
        plan->twist_kernel = clCreateKernel(program, "clFFT_1DTwistInterleaved", &err); 
     
    if(!plan->twist_kernel || err) 
        return err; 
  
    return CL_SUCCESS; 
} 
  
int getMaxKernelWorkGroupSize(cl_fft_plan *plan, unsigned int *max_wg_size, unsigned int num_devices, cl_device_id *devices) 
{    
    int reg_needed = 0; 
    //*max_wg_size = INT_MAX; 
    *max_wg_size = 0x7fffffff; 
    int err; 
    size_t wg_size; 
     
    unsigned int i; 
    for(i = 0; i < num_devices; i++) 
    { 
        cl_fft_kernel_info *kInfo = plan->kernel_info; 
        while(kInfo) 
        { 
            err = clGetKernelWorkGroupInfo(kInfo->kernel, devices[i], CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &wg_size, NULL); 
            if(err != CL_SUCCESS) 
                return -1; 
                 
            if(wg_size < kInfo->num_workitems_per_workgroup) 
                reg_needed |= 1; 
             
            if(*max_wg_size > wg_size) 
                *max_wg_size = wg_size; 
                 
            kInfo = kInfo->next; 
        } 
    } 
     
    return reg_needed; 
}    
  
#define ERR_MACRO(err) { \
                         if( err != CL_SUCCESS) \
                         { \
                           if(error_code) \
                               *error_code = err; \
                           clFFT_DestroyPlan((clFFT_Plan) plan); \
                           return (clFFT_Plan) NULL; \
                         } \
                       } 
  
clFFT_Plan 
clFFT_CreatePlan(cl_context context, clFFT_Dim3 n, clFFT_Dimension dim, clFFT_DataFormat dataFormat, cl_int *error_code ) 
{ 
    int i; 
    cl_int err; 
    int isPow2 = 1; 
    cl_fft_plan *plan = NULL; 
    ostringstream kString; 
    int num_devices; 
    int gpu_found = 0; 
    cl_device_id devices[16]; 
    size_t ret_size; 
    cl_device_type device_type; 
     
    if(!context) 
        ERR_MACRO(CL_INVALID_VALUE); 
     
    isPow2 |= n.x && !( (n.x - 1) & n.x ); 
    isPow2 |= n.y && !( (n.y - 1) & n.y ); 
    isPow2 |= n.z && !( (n.z - 1) & n.z ); 
     
    if(!isPow2) 
        ERR_MACRO(CL_INVALID_VALUE); 
     
    if( (dim == clFFT_1D && (n.y != 1 || n.z != 1)) || (dim == clFFT_2D && n.z != 1) ) 
        ERR_MACRO(CL_INVALID_VALUE); 
  
    plan = (cl_fft_plan *) malloc(sizeof(cl_fft_plan)); 
    if(!plan) 
        ERR_MACRO(CL_OUT_OF_RESOURCES); 
     
    plan->context = context; 
    clRetainContext(context); 
    plan->n = n; 
    plan->dim = dim; 
    plan->format = dataFormat; 
    plan->kernel_info = 0; 
    plan->num_kernels = 0; 
    plan->twist_kernel = 0; 
    plan->program = 0; 
    plan->temp_buffer_needed = 0; 
    plan->last_batch_size = 0; 
    plan->tempmemobj = 0; 
    plan->tempmemobj_real = 0; 
    plan->tempmemobj_imag = 0; 
    plan->max_localmem_fft_size = 2048; 
    plan->max_work_item_per_workgroup = 256; 
    plan->max_radix = 16; 
    plan->min_mem_coalesce_width = 16; 
    plan->num_local_mem_banks = 16;  
patch_kernel_source: 
  
    plan->kernel_string = new string(""); 
    if(!plan->kernel_string) 
        ERR_MACRO(CL_OUT_OF_RESOURCES); 
  
    getBlockConfigAndKernelString(plan); 
     
    const char *source_str = plan->kernel_string->c_str(); 
    plan->program = clCreateProgramWithSource(context, 1, (const char**) &source_str, NULL, &err); 
    ERR_MACRO(err); 
  
    err = clGetContextInfo(context, CL_CONTEXT_DEVICES, sizeof(devices), devices, &ret_size); 
    ERR_MACRO(err); 
     
    num_devices = ret_size / sizeof(cl_device_id); 
     
    for(i = 0; i < num_devices; i++) 
    { 
        err = clGetDeviceInfo(devices[i], CL_DEVICE_TYPE, sizeof(device_type), &device_type, NULL); 
        ERR_MACRO(err); 
         
        if(device_type == CL_DEVICE_TYPE_GPU) 
        {    
            gpu_found = 1; 
            err = clBuildProgram(plan->program, 1, &devices[i], "-cl-mad-enable", NULL, NULL); 
            if (err != CL_SUCCESS) 
            { 
                char *build_log;                 
                char devicename[200]; 
                size_t log_size; 
                 
                err = clGetProgramBuildInfo(plan->program, devices[i], CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); 
		printf ("E: %d\n", err);
                ERR_MACRO(err); 
                 
                build_log = (char *) malloc(log_size + 1); 
                 
                err = clGetProgramBuildInfo(plan->program, devices[i], CL_PROGRAM_BUILD_LOG, log_size, build_log, NULL); 
		printf ("E: %d\n", err);
                ERR_MACRO(err); 
                 
                err = clGetDeviceInfo(devices[i], CL_DEVICE_NAME, sizeof(devicename), devicename, NULL); 
		printf ("E: %d\n", err);
                ERR_MACRO(err); 
                 
                fprintf(stdout, "FFT program build log on device %s\n", devicename); 
                fprintf(stdout, "%s\n", build_log); 
                free(build_log); 
                 
                ERR_MACRO(err); 
            }    
        }    
    } 
     
    if(!gpu_found) 
        ERR_MACRO(CL_INVALID_CONTEXT); 
     
    err = createKernelList(plan);  
    ERR_MACRO(err); 
     
    // we created program and kernels based on "some max work group size (default 256)" ... this work group size 
    // may be larger than what kernel may execute with ... if thats the case we need to regenerate the kernel source  
    // setting this as limit i.e max group size and rebuild.  
    unsigned int max_kernel_wg_size;  
    int patching_req = getMaxKernelWorkGroupSize(plan, &max_kernel_wg_size, num_devices, devices); 
    if(patching_req == -1) 
    { 
        ERR_MACRO(err); 
    } 
     
    if(patching_req) 
    { 
        destroy_plan(plan); 
        plan->max_work_item_per_workgroup = max_kernel_wg_size; 
        goto patch_kernel_source; 
    } 
     
    cl_fft_kernel_info *kInfo = plan->kernel_info; 
    while(kInfo) 
    { 
        plan->num_kernels++; 
        kInfo = kInfo->next; 
    } 
     
    if(error_code) 
        *error_code = CL_SUCCESS; 
             
    return (clFFT_Plan) plan; 
} 
  
void          
clFFT_DestroyPlan(clFFT_Plan plan) 
{ 
    cl_fft_plan *Plan = (cl_fft_plan *) plan; 
    if(Plan)  
    {    
        destroy_plan(Plan);  
        clReleaseContext(Plan->context); 
        free(Plan); 
    }        
} 
  
void clFFT_DumpPlan( clFFT_Plan Plan, FILE *file) 
{ 
    size_t gDim, lDim; 
    FILE *out; 
    if(!file) 
        out = stdout; 
    else  
        out = file; 
     
    cl_fft_plan *plan = (cl_fft_plan *) Plan; 
    cl_fft_kernel_info *kInfo = plan->kernel_info; 
     
    while(kInfo) 
    { 
        cl_int s = 1; 
        getKernelWorkDimensions(plan, kInfo, &s, &gDim, &lDim); 
        fprintf(out, "Run kernel %s with global dim = {%zd*BatchSize}, local dim={%zd}\n", kInfo->kernel_name, gDim, lDim); 
        kInfo = kInfo->next; 
    } 
    fprintf(out, "%s\n", plan->kernel_string->c_str()); 
}