maps.py 36.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
------------------------------------------------------
Utility functions for handling mirror surface
maps. Some functions based on earlier version
in Matlab (http://www.gwoptics.org/simtools/)
Work in progress, currently these functions are
untested!

http://www.gwoptics.org/pykat/
------------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

16
from pykat.optics.romhom import makeWeightsNew
17
18
19
from scipy.interpolate import interp2d, interp1d
from pykat.maths.zernike import *        

Daniel Brown's avatar
Daniel Brown committed
20
import numpy as np
21
import math
22
import pickle
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

class MirrorROQWeights:
    
    def __init__(self, rFront, rBack, tFront, tBack):
        self.rFront = rFront
        self.rBack = rBack
        self.tFront = tFront
        self.tBack = tBack
    
    def writeToFile(self, romfilename):
        with open(romfilename + ".rom", "w+") as f:
            if self.rFront is not None: self.rFront.writeToFile(f=f)
            if self.rBack  is not None: self.rBack.writeToFile(f=f)
            if self.tFront is not None: self.tFront.writeToFile(f=f)
            if self.tBack  is not None: self.tBack.writeToFile(f=f)
                    
Daniel Brown's avatar
Daniel Brown committed
39
class surfacemap(object):
40
41
42
43
44
45
46
    def __init__(self, name, maptype, size, center, step_size, scaling, data=None):
        
        self.name = name
        self.type = maptype
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
47
48
        self.__interp = None
        
49
        if data is None:
Daniel Brown's avatar
Daniel Brown committed
50
51
52
53
            self.data = np.zeros(size)
        else:
            self.data = data

54
        self._rom_weights = None
55
56
57
58
59
60
61
        
    def write_map(self, filename):
        with open(filename,'w') as mapfile:
            
            mapfile.write("% Surface map\n")
            mapfile.write("% Name: {0}\n".format(self.name))
            mapfile.write("% Type: {0}\n".format(self.type))
62
            mapfile.write("% Size: {0} {1}\n".format(self.data.shape[0], self.data.shape[1]))
63
64
65
66
67
68
69
70
71
72
            mapfile.write("% Optical center (x,y): {0} {1}\n".format(self.center[0], self.center[1]))
            mapfile.write("% Step size (x,y): {0} {1}\n".format(self.step_size[0], self.step_size[1]))
            mapfile.write("% Scaling: {0}\n".format(float(self.scaling)))
            mapfile.write("\n\n")
            
            for i in range(0, self.data.shape[0]):
                for j in range(0, self.data.shape[1]):
                    mapfile.write("%.15g " % self.data[i,j])
                mapfile.write("\n")
    
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    @property
    def data(self):
        return self.__data
    
    @data.setter
    def data(self, value):
        self.__data = value
        self.__interp = None
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None

Daniel Brown's avatar
Daniel Brown committed
109
110
    @property
    def x(self):
Daniel Brown's avatar
Daniel Brown committed
111
        return self.step_size[0] * (np.array(range(1, self.data.shape[0]+1)) - self.center[0])
Daniel Brown's avatar
Daniel Brown committed
112
113
114
        
    @property
    def y(self):
Daniel Brown's avatar
Daniel Brown committed
115
        return self.step_size[1] * (np.array(range(1, self.data.shape[1]+1))- self.center[1])
116
117
118
119
120

    @property
    def size(self):
        return self.data.shape
            
121
122
    @property
    def offset(self):
Daniel Brown's avatar
Daniel Brown committed
123
        return np.array(self.step_size)*(np.array(self.center) - 1/2. - np.array(self.size)/2.0)
124
125
126
127
    
    @property
    def ROMWeights(self):
        return self._rom_weights
128
    
129
    def z_xy(self, x=None, y=None, wavelength=1064e-9, direction="reflection_front", nr1=1.0, nr2=1.0):
130
131
132
133
134
135
136
        """
        For this given map the field perturbation is computed. This data
        is used in computing the coupling coefficient. It returns a grid
        of complex values representing the change in amplitude or phase
        of the field.
        
            x, y      : Points to interpolate at, 'None' for no interpolation.
137
            
138
            wavelength: Wavelength of light in vacuum [m]
139
140
141
142
143
144
145
146
147
            
            direction : Sets which distortion to return, as beams travelling
                        in different directions will see different distortions.
                        Options are:
                                "reflection_front"
                                "transmission_front" (front to back)
                                "transmission_back" (back to front)
                                "reflection_back"
                                
148
            nr1       : refractive index on front side
149
            
150
            nr2       : refractive index on back side
151
            
152
153
154
155
        """
        
        assert(nr1 >= 1)
        assert(nr2 >= 1)
156
        
157
        if x is None and y is None:
158
159
            data = self.scaling * self.data
        else:
160
            if self.__interp is None:
161
162
163
                self.__interp = interp2d(self.x, self.y, self.data * self.scaling)
                
            data = self.__interp(x, y)
164
165
        
        if direction == "reflection_front" or direction == "reflection_back":
166
            if "phase" in self.type:
167
                k = math.pi * 2 / wavelength
168
                
169
170
                if direction == "reflection_front":
                    return np.exp(-2j * nr1 * k * data)
171
                else:
172
                    return np.exp(2j * nr2 * k * data[:,::-1])
173
                
174
            elif "absorption" in self.type:
175
                if direction == "reflection_front":
176
177
178
                    return np.sqrt(1.0 - data)
                else:
                    return np.sqrt(1.0 - data[:, ::-1])
179
180
            else:
                raise BasePyKatException("Map type needs handling")
181
                
182
        elif direction == "transmission_front" or direction == "transmission_back":
183
184
            if "phase" in self.type:
                k = math.pi * 2 / wavelength
185
                
186
187
                if direction == "transmission_front":
                    return np.exp((nr1-nr2) * k * data)
188
                else:
189
                    return np.exp((nr2-nr1) * k * data[:, ::-1])
190
                
191
            elif "absorption" in self.type:
192
                if direction == "transmission_front":
193
194
195
                    return np.sqrt(1.0 - data)
                else:
                    return np.sqrt(1.0 - data[:, ::-1])
196
197
            else:
                raise BasePyKatException("Map type needs handling")
198
                
199
        else:
200
            raise ValueError("Direction not valid")
201
        
Daniel Brown's avatar
Daniel Brown committed
202

203
    
204
205
    def generateROMWeights(self, EIxFilename, EIyFilename=None, nr1=1.0, nr2=1.0, verbose=False, interpolate=False, newtonCotesOrder=8):
        
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        if interpolate == True:
            # Use EI nodes to interpolate if we
            with open(EIxFilename, 'rb') as f:
                EIx = pickle.load(f)

            if EIyFilename is None:
                EIy = EIx
            else:
                with open(EIyFilename, 'rb') as f:
                    EIy = pickle.load(f)

            x = EIx.x
            x.sort()
            nx = np.unique(np.hstack((x, -x[::-1])))
        
            y = EIy.x
            y.sort()
            ny = np.unique(np.hstack((y, -y[::-1])))
            
            self.interpolate(nx, ny)
        
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        w_refl_front, w_refl_back, w_tran_front, w_tran_back = (None, None, None, None)
        
        if "reflection" in self.type or "both" in self.type:
            w_refl_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_front")
            
            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
            
            w_refl_back = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        if "transmission" in self.type or "both" in self.type:                                      
            w_tran_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_front")

            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
                                            
            w_tran_back  = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
            
        self._rom_weights = MirrorROQWeights(w_refl_front, w_refl_back, w_tran_front, w_tran_back)
        
        return self._rom_weights
            
263
264
265
    def interpolate(self, nx, ny, **kwargs):
        """
        Interpolates the map for some new x and y values.
266
        
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        Uses scipy.interpolate.interp2d and any keywords arguments are
        passed on to it, thus settings like interpolation type and
        fill values can be set.
        
        The range of nx and ny must contain the value zero so that the
        center point of the map can be set.
        """

        D = interp2d(self.x, self.y, self.data, **kwargs)
        
        data = D(nx-self.offset[0], ny-self.offset[0])
        
        Dx = interp1d(nx, np.arange(1,len(nx)+1))
        Dy = interp1d(ny, np.arange(1,len(ny)+1))
        
        self.center = (Dx(0), Dy(0))
        self.step_size = (nx[1]-nx[0], ny[1]-ny[0])
        self.data = data

286
    # xlim and ylim given in centimeters
287
    def plot(self, show=True, clabel=None, xlim=None, ylim=None):
288
289
        import pylab
        
290
        if xlim is not None:
291
            # Sorts out the x-values within xlim
292
293
294
295
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
296
            # Uses the whole available x-range
297
298
299
300
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
301
        if ylim is not None:
302
            # Sorts out the y-values within ylim
303
304
305
306
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
307
            # Uses the whole available y-range
308
309
310
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]
311
312
            
        # min and max of z-values
313
314
315
        zmin = self.data[xmin:xmax,ymin:ymax].min()
        zmax = self.data[xmin:xmax,ymin:ymax].max()

316
        # 100 factor for scaling to cm
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        xRange = 100*self.x
        yRange = 100*self.y
        
        # This line is added by DT to be able to plot
        # rectangular matrices. Effectively, I swapped the
        # x/y-axes. Preferrably, this should be corrected above
        # instead, but since I'm not completely sure of how the
        # coordinate system of these maps look I'll wait with
        # that. Here, I assume that row 0 of the matrix should
        # be plotted with y = Y[0], and that column 0 should be
        # plotted with x = X[0]. To be fully correct, I should
        # add one column and one row so that each matrix value
        # is plotted within the correct rectangle. 
        # ------------------------------------------------------
        xRange, yRange = np.meshgrid(yRange,xRange)
        # ------------------------------------------------------
        
334
        fig = pylab.figure()
335
336
337
        axes = pylab.pcolormesh(xRange, yRange, self.data,
                                vmin=zmin, vmax=zmax)
        
338
339
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')
340

341
342
        if xlim is not None: pylab.xlim(xlim)
        if ylim is not None: pylab.ylim(ylim)
343

344
        pylab.title('Surface map {0}, type {1}'.format(self.name, self.type))
345

346
        cbar = fig.colorbar(axes)
347
        cbar.set_clim(zmin, zmax)
348
        
349
        if clabel is not None:
350
            cbar.set_label(clabel)
351
    
352
353
        if show:
            pylab.show()
354
        
355
        return fig
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

class mergedmap:
    """
    A merged map combines multiple surfaces map to form one. Such a map can be used
    for computations of coupling coefficients but it cannot be written to a file to 
    be used with Finesse. For this you must output each map separately.
    
    """
    
    def __init__(self, name, size, center, step_size, scaling):
        
        self.name = name
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
        self.__interp = None
        self._rom_weights = None
        self.__maps = []
374
375
        self.weighting = None
        
376
377
378
379
380
381
382
383
384
385
386
387
    def addMap(self, m):
        self.__maps.append(m)
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    @property
    def type(self):
        hasR = False
        hasT = False
        
        _type = ""
        
        for m in self.__maps:
            if "reflection" in m.type: hasR = True
            
            if "transmission" in m.type: hasT = True
            
            if "both" in m.type:
                hasR = True
                hasT = True
        
        if hasR and not hasT: _type += "reflection "
        elif hasR and not hasT: _type += "transmission "
        elif hasR and hasT: _type += "both "
        
        return _type
        
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None
    
    @property
    def x(self):
        return self.step_size[0] * (np.array(range(1, self.size[0]+1)) - self.center[0])
        
    @property
    def y(self):
        return self.step_size[1] * (np.array(range(1, self.size[1]+1))- self.center[1])

    @property
    def size(self):
        return self.__maps[0].data.shape
            
    @property
    def offset(self):
        return np.array(self.step_size)*(np.array(self.center) - 1/2. - np.array(self.size)/2.0)
    
    @property
    def ROMWeights(self):
        return self._rom_weights
    
448
    def z_xy(self, wavelength=1064e-9, direction="reflection_front", nr1=1.0, nr2=1.0):
449
450
451
452
453
454
        
        z_xy = np.ones(self.size, dtype=np.complex128)
        
        for m in self.__maps:
            z_xy *= m.z_xy(wavelength=wavelength, direction=direction, nr1=nr1, nr2=nr2)
            
455
456
457
458
        if self.weighting is None:
            return z_xy
        else:
            return z_xy * self.weighting
459
        
460
    def generateROMWeights(self, EIxFilename, EIyFilename=None, verbose=False, interpolate=False, newtonCotesOrder=8, nr1=1, nr2=1):
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        if interpolate == True:
            # Use EI nodes to interpolate if we
            with open(EIxFilename, 'rb') as f:
                EIx = pickle.load(f)

            if EIyFilename is None:
                EIy = EIx
            else:
                with open(EIyFilename, 'rb') as f:
                    EIy = pickle.load(f)

            x = EIx.x
            x.sort()
            nx = np.unique(np.hstack((x, -x[::-1])))
        
            y = EIy.x
            y.sort()
            ny = np.unique(np.hstack((y, -y[::-1])))
            
            self.interpolate(nx, ny)
        
482
        w_refl_front, w_refl_back, w_tran_front, w_tran_back = (None, None, None, None)
483
        
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        if "reflection" in self.type or "both" in self.type:
            w_refl_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_front")
            
            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
            
            w_refl_back = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2

        if "transmission" in self.type or "both" in self.type:                                      
            w_tran_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_front")

            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
                                            
            w_tran_back  = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
            
        self._rom_weights = MirrorROQWeights(w_refl_front, w_refl_back, w_tran_front, w_tran_back)
        
        return self._rom_weights
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

    def interpolate(self, nx, ny, **kwargs):
        """
        Interpolates all the maps that are used to fc
        
        Uses scipy.interpolate.interp2d and any keywords arguments are
        passed on to it, thus settings like interpolation type and
        fill values can be set.
        
        The range of nx and ny must contain the value zero so that the
        center point of the map can be set.
        """

        for m in self.__maps:
            m.interpolate(nx, ny)

    def plot(self, mode="absorption", show=True, clabel=None, xlim=None, ylim=None, wavelength=1064e-9):
        
        import pylab
        
        if xlim is not None:
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
        if ylim is not None:
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]

        if mode == "absorption":
            # plots how much of field is absorbed
            data = 1-np.abs(self.z_xy())
        elif mode == "meter":
            # plot the phase in terms of meters of displacement
            k = 2*np.pi/wavelength
            data = np.angle(self.z_xy()) / (2*k)
            
        zmin = data[xmin:xmax,ymin:ymax].min()
        zmax = data[xmin:xmax,ymin:ymax].max()

        # 100 factor for scaling to cm
        xrange = 100*self.x
        yrange = 100*self.y

        fig = pylab.figure()
        axes = pylab.pcolormesh(xrange, yrange, data, vmin=zmin, vmax=zmax)
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')

        if xlim is not None: pylab.xlim(xlim)
        if ylim is not None: pylab.ylim(ylim)

        pylab.title('Merged map {0}, mode {1}'.format(self.name, mode))

        cbar = fig.colorbar(axes)
        cbar.set_clim(zmin, zmax)
582
        
583
584
585
586
587
588
589
590
        if clabel is not None:
            cbar.set_label(clabel)
    
        if show:
            pylab.show()
        
        return fig

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
class aperturemap(surfacemap):
    
    def __init__(self, name, size, step_size, R):
        surfacemap.__init__(self, name, "absorption both", size, (np.array(size)+1)/2.0, step_size, 1)
        self.R = R
        
    @property
    def R(self):
        return self.__R
    
    @R.setter
    def R(self, value):
        self.__R = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        radius = np.sqrt(xx**2 + yy**2)
        
        self.data = np.zeros(self.size)
        self.data[radius > self.R] = 1.0
        
        
class curvedmap(surfacemap):
    
    def __init__(self, name, size, step_size, Rc):
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-6)
        self.Rc = Rc
        
    @property
    def Rc(self):
        return self.__Rc
    
    @Rc.setter
    def Rc(self, value):
        self.__Rc = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        Rsq = xx**2 + yy**2
        self.data = (self.Rc - math.copysign(1.0, self.Rc) * np.sqrt(self.Rc**2 - Rsq))/ self.scaling
Daniel Brown's avatar
Daniel Brown committed
631
632

class tiltmap(surfacemap):
633
634
635
636
637
638
639
640
641
642
643
644
    """
    To create a tiltmap, plot it and write it to a file to use with Finesse:
        
        tilts = (1e-6, 1e-8) # tilt in (x, y) radians\
        dx = 1e-4
        L = 0.2
        N = L/dx
        
        tmap = tiltmap("tilt", (N, N), (dx,dx), tilts)
        tmap.plot()
        tmap.write_map("mytilt.map")
    """
Daniel Brown's avatar
Daniel Brown committed
645
646
    
    def __init__(self, name, size, step_size, tilt):
Daniel Brown's avatar
Daniel Brown committed
647
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-9)
Daniel Brown's avatar
Daniel Brown committed
648
649
650
651
652
653
654
655
656
657
658
659
        self.tilt = tilt
        
    @property
    def tilt(self):
        return self.__tilt
    
    @tilt.setter
    def tilt(self, value):
        self.__tilt = value
        
        xx, yy = np.meshgrid(self.x, self.y)
        
660
        self.data = (yy * self.tilt[1] + xx * self.tilt[0])/self.scaling
Daniel Brown's avatar
Daniel Brown committed
661
        
Daniel Brown's avatar
Daniel Brown committed
662
663
664

class zernikemap(surfacemap):
	def __init__(self, name, size, step_size, radius, scaling=1e-9):
Daniel Brown's avatar
Daniel Brown committed
665
		surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, scaling)
Daniel Brown's avatar
Daniel Brown committed
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
		self.__zernikes = {}
		self.radius = radius
		
	@property
	def radius(self): return self.__radius

	@radius.setter
	def radius(self, value, update=True):
		self.__radius = float(value)
		if update: self.update_data()

	def setZernike(self, m, n, amplitude, update=True):
		self.__zernikes["%i%i" % (m, n)] = (m,n,amplitude)
		if update: self.update_data()

	def update_data(self):
		X,Y = np.meshgrid(self.x, self.y)
		R = np.sqrt(X**2 + Y**2)
		PHI = np.arctan2(Y, X)

		data = np.zeros(np.shape(R))

		for i in self.__zernikes.items():
			data += i[1][2] * zernike(i[1][0], i[1][1], R/self.radius, PHI)

		self.data = data
	
			
	
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
def read_map(filename, mapFormat='finesse'):
    # Function turning input x into float.
    g = lambda x: float(x)
    if mapFormat == 'finesse':
        
        with open(filename, 'r') as f:
        
            f.readline()
            name = f.readline().split(':')[1].strip()
            maptype = f.readline().split(':')[1].strip()
            size = tuple(map(g, f.readline().split(':')[1].strip().split()))
            center = tuple(map(g, f.readline().split(':')[1].strip().split()))
            step = tuple(map(g, f.readline().split(':')[1].strip().split()))
            scaling = float(f.readline().split(':')[1].strip())
        
        
        
        data = np.loadtxt(filename, dtype=np.float64,ndmin=2,comments='%')    

    # Converts raw ligo mirror map to the finesse format. Based
    # on translation of the matlab script 'FT_read_ligo_map.m'.
716
717
    elif mapFormat == 'ligohej':
        
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
        # Remove '_asc.dat' for output name
        name = filename.split('_')
        name = '_'.join(name[:-1])

        # Unknowns (why are these values hard coded here?)
        # ------------------------------------------------------
        # Standard maps have type 'phase' (they store surface
        # heights)
        maptype = 0
        # Both (reflected and transmitted) light fields are
        # affected
        field = 0
        # Measurements in nanometers
        scaling = 1.0e-9
        # ------------------------------------------------------

        # Reading header of LIGO-map (Zygo file? Says Zygo in
        # header...)
        # ------------------------------------------------------
        with open(filename, 'r') as f:
            # Skip first three lines
            for k in range(3):
                f.readline()
            line = f.readline().split()

            # Unknown
            # ----------------------------------------------
            y0 = float(line[0])
            x0 = float(line[1])
            rows = float(line[2])
            cols = float(line[3])
            # ----------------------------------------------

            # Skipping three lines
            for k in range(3):
                f.readline()
            line = f.readline().split()

            # Unknown (Scaling factors)
            # ----------------------------------------------
            # Interfeometric scaling factor (?)
            S = float(line[1])
            # wavelength (of what?)
            lam = float(line[2])
            # Obliquity factor (?)
            O = float(line[4])
            # Guessing physical step size
            xstep = float(line[6])
            ystep = float(line[6])
            # ----------------------------------------------

            # Skipping two lines
            for k in range(2):
                f.readline()
            line = f.readline().split()

            # Unknown
            # Resolution of phase data points, 1 or 0.
            phaseRes = float(line[0])
            if phaseRes == 0:
                R = 4096
            elif phaseRes == 1:
                R = 32768
            else:
                print('Error, invalid phaseRes')

            # Unknown
            hScale = S*O*lam/R

            # Skipping four lines
            for k in range(4):
                f.readline()
            # Skipping lines until '#' is found.
            while f.readline()[0] != '#':
                pass

            # Reading the data
            # ----------------------------------------------
            # Function converting string to float
            g = lambda x: float(x)
            # Array with the data
            data = np.array([])
            # Reading data until next '#' is reached.
            line = f.readline().split()
            while line[0] != '#':
                data = np.append(data, map(g,line))
                line = f.readline().split()
            # ----------------------------------------------

        # Setting all the points outside of the mirror
        # surface to NaN. These are given a large number
        # in the file.
810
        print(data[0])
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
        data[data == data[0]] = np.nan
        # Reshaping into rows and columns
        data = data.reshape(cols,rows).transpose()
        # Pretty sure that the lines below can be done
        # more efficient, but it's quick as it is.
        # ----------------------------------------------
        # Flipping right and left
        data = np.fliplr(data)
        # Rotating 90 degrees clockwise 
        data = np.rot90(data,-1)
        # Flipping right and left
        data = np.fliplr(data)
        # ----------------------------------------------

        # Scaling to nanometer (change this to a user
        # defined value?) Still don't know where
        # 'hScale' really comes from.
        data = (hScale/scaling)*data
        size = data.shape

        if maptype == 0:
            mType = 'phase'
        else:
            mType = 'Unknown'
        if field == 0:
            fType = 'both'
        else:
            fType = 'unknown'

        maptype = ' '.join([mType, fType])

        # Wrong! fix by creating recenter method.
        center = tuple([x0,y0])
        step = tuple([xstep,ystep])

        # Simple re-centering of mirror, translated from
        # 'FT_recenter_mirror_map.m'
        # -------------------------------------------------
        # Matrix with ones where data element is not NaN.
        isNan = np.isnan(data)
        notNan = isNan==False
        # Row and column indices with non-NaN elements
        rIndx, cIndx = notNan.nonzero()
        # Finding centres
        x0 = float(cIndx.sum())/len(cIndx)
        y0 = float(rIndx.sum())/len(rIndx)
        center = tuple([x0,y0])
        # -------------------------------------------------
859
        
860
861
862
        # Changing NaN to zeros. Just to be able to plot the
        # map with surfacemap.plot().
        data[isNan] = 0 
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    # Converts raw zygo mirror maps to the finesse format. Based
    # on translation of the matlab script 'FT_read_zygo_map.m'.
    elif mapFormat == 'ligo' or mapFormat == 'zygo':
        if mapFormat == 'ligo':
            isLigo = True
            # Remove '_asc.dat' for output name
            name = filename.split('_')
            name = '_'.join(name[:-1])
        else:
            isLigo = False
            tmp = filename.split('.')
            fileFormat = tmp[-1].strip()
            name = '.'.join(tmp[:-1])
            if fileFormat == 'asc':
                isAscii = True
            else:
                isAscii = False
                
        # Unknowns (why are these values hard coded here?)
        # ------------------------------------------------------
        # Standard maps have type 'phase' (they store surface
        # heights)
        maptype = 0
        # Both (reflected and transmitted) light fields are
        # affected
        field = 0
        # Measurements in nanometers
        scaling = 1.0e-9
        # ------------------------------------------------------

        # Reading header of LIGO-map (Zygo file? Says Zygo in
        # header...)
        # ------------------------------------------------------
        with open(filename, 'r') as f:
            # Skip first two lines
            for k in range(2):
                f.readline()
            # If zygo-file, and ascii format, there is intensity
            # data. Though, the Ligo files I have seen are also
            # zygo-files, so maybe we should extract this data
            # from these too?
            line = f.readline()
            if not isLigo and isAscii:
                iCols = float(line.split()[2])
                iRows = float(line.split()[3])
                
            line = f.readline().split()
            # Unknown
            # ----------------------------------------------
            if isLigo:
                y0 = float(line[0])
                x0 = float(line[1])
                rows = float(line[2])
                cols = float(line[3])
            else:
                y0 = float(line[1])
                x0 = float(line[0])
                rows = float(line[3])
                cols = float(line[2])
            # ----------------------------------------------

            # Skipping three lines
            for k in range(3):
                f.readline()
            line = f.readline().split()

            # Unknown (Scaling factors)
            # ----------------------------------------------
            # Interfeometric scaling factor (?)
            S = float(line[1])
            # wavelength (of what?)
            lam = float(line[2])
            # Obliquity factor (?)
            O = float(line[4])
            # ----------------------------------------------
            # Physical step size in metres
            if line[6] != 0:
                xstep = float(line[6])
                ystep = float(line[6])
            else:
                xstep = 1.0
                ystep = 1.0
                
            # Skipping two lines
            for k in range(2):
                f.readline()
            line = f.readline().split()

            # Unknown
            # Resolution of phase data points, 1 or 0.
            phaseRes = float(line[0])
            if phaseRes == 0:
                R = 4096
            elif phaseRes == 1:
                R = 32768
            else:
                print('Error, invalid phaseRes')

            if not isLigo and not isAscii:
                # zygo .xyz files give phase data in microns.
                hScale = 1.0e-6
            else:
                # zygo .asc and ligo-files give phase data in
                # internal units. To convert to m use hScale
                # factor.
                hScale = S*O*lam/R
                
            if not isLigo and not isAscii:
                print('Not implemented yet, need a .xyz-file ' +
                      'to do this.')
                return 0
                
            # Skipping four lines
            for k in range(4):
                f.readline()
            if not isLigo and isAscii:
                # Reading intensity data
                iData = np.array([])
                line = f.readline().split()
                while line[0] != '#':
                    iData = np.append(iData, map(g,line))
                    line = f.readline().split()
                # Reshaping intensity data
                iData = iData.reshape(iRows, iCols).transpose()
                iData = np.rot90(iData)
            else:
                # Skipping lines until '#' is found.
                while f.readline()[0] != '#':
                    pass
                
            # Reading phase data
            # ----------------------------------------------
            # Array with the data
            data = np.array([])
            # Reading data until next '#' is reached.
            line = f.readline().split()
            while line[0] != '#':
For faster browsing, not all history is shown. View entire blame