gaussian_beams.py 11 KB
Newer Older
1
import pykat.exceptions as pkex
2
import numpy as np
3
import math
4
import copy
5
6
7
import warnings
import cmath
from scipy.special import hermite
8
from pykat.SIfloat import SIfloat
9
10
11

class gauss_param(object):
    """
Daniel Brown's avatar
Daniel Brown committed
12
    Use beam_param instead, will be future name of this object.
13
    
14
15
    Gaussian beam complex parameter
    
Daniel Brown's avatar
Daniel Brown committed
16
    beam_param is effectively a complex number with extra
17
18
    functionality to determine beam parameters.
    
Daniel Brown's avatar
Daniel Brown committed
19
    Defaults to 1064e-9m for wavelength and refractive index 1
20
21
22
    usage:
        q = gauss_param(w0=w0, z=z)
        q = gauss_param(z=z, zr=zr)
23
        q = gauss_param(w=w, rc=rc)
24
        q = gauss_param(q=a) # where a is a complex number
25
26
27
28
29
30
31
        
        or change default wavelength and refractive index with:
        
        q = gauss_param(wavelength, nr, w0=w0, zr=zr)
    """
    
    def __init__(self, wavelength=1064e-9, nr=1, *args, **kwargs):
32
33
34
        if self.__class__ != beam_param:
            warnings.warn("Name changed. Use beam_param instead of gauss_param.")
            
35
        self.__q = None
36
37
        self.__lambda = SIfloat(wavelength)
        self.__nr = SIfloat(nr)
38
39
        
        if len(args) == 1:
Daniel Brown's avatar
Daniel Brown committed
40
            self.__q = complex(args[0])
41
42
43
44
45
        
        elif len(kwargs) == 1:
            if "q" in kwargs:
                self.__q = complex(kwargs["q"])        
            else:
46
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
47
                
48
49
50
        elif len(kwargs) == 2:        
            
            if "w0" in kwargs and "z" in kwargs:
51
                q = SIfloat(kwargs["z"]) + 1j * math.pi*SIfloat(kwargs["w0"])**2/(self.__lambda/self.__nr)
52
            elif "z" in kwargs and "zr" in kwargs:
53
                q = SIfloat(kwargs["z"]) + 1j * SIfloat(kwargs["zr"]) 
54
            elif "rc" in kwargs and "w" in kwargs:
55
                one_q = 1 / SIfloat(kwargs["rc"]) - 1j * self.__lamda / (math.pi * self.__nr * SIfloat(kwargs["w"])**2)
56
57
                q = 1/one_q
            else:
58
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
59
60
61
62
63
64
65
                
            self.__q = q
        else:
            raise pkex.BasePyKatException("Incorrect usage for gauss_param constructor")
    
    @property
    def wavelength(self): return self.__lambda
66
67
    @wavelength.setter
    def wavelength(self,value): self.__lambda = SIfloat(value)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    
    @property
    def nr(self): return self.__nr
    
    @property
    def q(self): return self.__q
    
    @property
    def z(self): return self.__q.real
    
    @property
    def zr(self): return self.__q.imag
    
    @property
82
    def w(self):
83
        return np.abs(self.__q)* np.sqrt(self.__lambda / (self.__nr * math.pi * self.__q.imag))
84
    
85
    def beamsize(self, z=None, wavelength=None, nr=None, w0=None):
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.abs(q)*np.sqrt(wavelength / (nr * math.pi * q.imag))
    
    def gouy(self, z=None, wavelength=None, nr=None, w0=None):
        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.arctan2(q.real, q.imag)
        
136
137
    @property
    def w0(self):
138
        return np.sqrt(self.__q.imag * self.__lambda / (self.__nr * math.pi))    
139
140
141

    @property
    def Rc(self):
142
143
144
145
146
147
148
149
150
        def __rc(z, zr):
            if z != 0:
                return z * (1 + (zr/z)**2)
            else:
                return float("inf")
                
        v = np.vectorize(__rc)
        
        return v(self.z, self.zr)
151
    
152
    def curvature(self, z=None, wavelength=None, nr=None, w0=None):
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return q.real * (1+ (q.imag/q.real)**2)
        
177
    def conjugate(self):
Daniel Brown's avatar
Daniel Brown committed
178
        return beam_param(self.__lambda, self.__nr, self.__q.conjugate())
179
180
181
182
183
184
185
186
    
    def __complex__(self):
        return self.__q
    
    def __str__(self):
        return str(self.__q)
    
    def __mul__(self, a):
Daniel Brown's avatar
Daniel Brown committed
187
        return beam_param(self.__lambda, self.__nr, self.__q * complex(a))
188
189
    
    def __imul__(self, a):
190
        self.__q *= complex(a)
191
192
193
194
195
        return self
        
    __rmul__ = __mul__
    
    def __add__(self, a):
Daniel Brown's avatar
Daniel Brown committed
196
        return beam_param(self.__lambda, self.__nr, self.__q + complex(a))
197
198
199
200
201
202
203
204
    
    def __iadd__(self, a):
        self.__q += complex(a)
        return self
        
    __radd__ = __add__
    
    def __sub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
205
        return beam_param(self.__lambda, self.__nr, self.__q - complex(a))
206
207
208
209
210
    
    def __isub__(self, a):
        self.__q -= complex(a)
        return self
        
211
    def __rsub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
212
        return beam_param(self.__lambda, self.__nr, complex(a) - self.__q)
213
214
    
    def __div__(self, a):
Daniel Brown's avatar
Daniel Brown committed
215
        return beam_param(self.__lambda, self.__nr, self.__q / complex(a))
216
217
218
219
220
221
    
    def __idiv__(self, a):
        self.__q /= complex(a)
        return self
    
    def __pow__(self, q):
Daniel Brown's avatar
Daniel Brown committed
222
        return beam_param(self.__lambda, self.__nr, self.__q**q)
223
224

    def __neg__(self, q):
Daniel Brown's avatar
Daniel Brown committed
225
        return beam_param(self.__lambda, self.__nr, -self.__q)
226
227
        
    def __eq__(self, q):
228
229
230
        if q == None:
            return False
            
231
232
233
234
235
236
237
238
239
240
        return complex(q) == self.__q
        
    @property
    def real(self): return self.__q.real
    @real.setter
    def real(self, value): self.__q.real = SIfloat(value)
    
    @property
    def imag(self): return self.__q.imag
    @imag.setter
241
    def imag(self, value): self.__q.imag = SIfloat(value)
242
243
244
245

    # reverse beam direction 
    def reverse(self):
        self.__q = -1.0 * self.__q.real + 1j * self.__q.imag
246
247
248

class beam_param(gauss_param):
    pass
249
    
250
class HG_beam(object):
251
252
253
254
255
    
    def __init__(self, qx, qy=None, n=0, m=0):
        self._qx = copy.deepcopy(qx)
        self._2pi_qrt = math.pow(2.0/math.pi, 0.25)
        
256
        if qy == None:
257
            self._qy = copy.deepcopy(qx)
258
        else:
259
            self._qy = copy.deepcopy(qy)
260
    
261
262
263
264
        self._n = int(n)
        self._m = int(m)
        self._hn = hermite(self._n)
        self._hm = hermite(self._m)
265
266
267
268
269
270
        self._calc_constants()
        
    @property
    def n(self): return self._n
    @n.setter
    def n(self,value): 
271
        self._n = int(value)
272
        self._calc_constants()
273
        self._hn = hermite(self._n)
274
275
276
277
278

    @property
    def m(self): return self._m
    @m.setter
    def m(self,value): 
279
        self._m = int(value)
280
        self._calc_constants()
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        self._hm = hermite(self._m)
            
    @property
    def q(self):
        if self._qx.q == self._qy.q:
            return self._qx.q
        else:
            return (self._qx.q, self._qy.q)
    @q.setter
    def q(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
            self._qy = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
            self._qy = beam_param(q=complex(value))
    
    @property
    def qx(self):
        return self._qx.q
        
    @qx.setter
    def qx(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
    
    @property
    def qy(self):
        return self._qy.q
312
        
313
314
315
316
317
318
319
    @qy.setter
    def qy(self, value):
        if value.__class__ == beam_param:
            self._qy = copy.deepcopy(value)
        else:
            self._qy = beam_param(q=complex(value))
            
320
321
    def _calc_constants(self):
        self.__xpre_const = math.pow(2.0/math.pi, 0.25)
322
        self.__xpre_const *= np.sqrt(1.0/(self._qx.w0 * 2**(self._n) * np.math.factorial(self._n)))
323
        self.__xpre_const *= np.sqrt(1j*self._qx.imag / self._qx.q)
324
        self.__xpre_const *= ((1j*self._qx.imag * self._qx.q.conjugate())/(-1j*self._qx.imag * self._qx.q)) ** ( self._n/2.0)
325
326
        
        self.__ypre_const = math.pow(2.0/math.pi, 0.25)
327
        self.__ypre_const *= np.sqrt(1.0/(self._qy.w0 * 2**(self._m) * np.math.factorial(self._m)))
328
        self.__ypre_const *= np.sqrt(1j*self._qy.imag / self._qy.q)
Daniel Brown's avatar
Daniel Brown committed
329
        self.__ypre_const *= ((1j*self._qy.imag * self._qy.q.conjugate())/(-1j*self._qy.imag * self._qy.q)) **(self._m/2.0)
330
331
332
333
334
335
336
337
338
339
    
        self.__sqrt2_wxz = math.sqrt(2) / self._qx.w
        self.__sqrt2_wyz = math.sqrt(2) / self._qy.w
        
        self.__kx =  2*math.pi / self._qx.wavelength
        self.__ky =  2*math.pi / self._qy.wavelength
        
        self.__invqx = 1/ self._qx.q
        self.__invqy = 1/ self._qy.q
        
Daniel Brown's avatar
Daniel Brown committed
340
    def Un(self, x):
341
342
        return self.__xpre_const * self._hn(self.__sqrt2_wxz * x) * np.exp(-0.5j * self.__kx * x*x * self.__invqx)
    
Daniel Brown's avatar
Daniel Brown committed
343
344
    def Um(self, y):
        return self.__ypre_const * self._hm(self.__sqrt2_wyz * y) * np.exp(-0.5j * self.__ky * y*y * self.__invqy)
345
        
346
347
348
349
    def Unm(self, x, y):
        _un = self.Un(x)  
        _um = self.Um(y)
        return np.outer(_un, _um)
350
351
352
353
354
355
356
357
358
359
        
    def plot(self, ndx=100, ndy=100, xscale=4, yscale=4):
        import pylab
        
        xrange = xscale * np.linspace(-self._qx.w, self._qx.w, ndx)
        yrange = yscale * np.linspace(-self._qy.w, self._qy.w, ndy)

        dx = xrange[1]-xrange[0]
        dy = yrange[1]-yrange[0]

360
        data = self.Unm(xrange,yrange)
361
362
363
364
365
366
367

        fig = pylab.figure()
        axes = pylab.imshow(np.abs(data), aspect=dx/dy, extent=[min(xrange),max(xrange),min(yrange),max(yrange)])
        pylab.xlabel('x [m]')
        pylab.ylabel('y [m]')
        cbar = fig.colorbar(axes)
        pylab.show()
368
        
369