gaussian_beams.py 12.2 KB
Newer Older
1
2
3
4
5
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

6
import pykat.exceptions as pkex
7
import numpy as np
8
import math
9
import copy
10
11
12
import warnings
import cmath
from scipy.special import hermite
13
from pykat.SIfloat import SIfloat
14
15
16

class gauss_param(object):
    """
17
    Use beam_param instead, will be the future name of this object.
18
    
19
20
    Gaussian beam complex parameter
    
Daniel Brown's avatar
Daniel Brown committed
21
    beam_param is effectively a complex number with extra
22
23
    functionality to determine beam parameters.
    
Daniel Brown's avatar
Daniel Brown committed
24
    Defaults to 1064e-9m for wavelength and refractive index 1
25
26
27
    usage:
        q = gauss_param(w0=w0, z=z)
        q = gauss_param(z=z, zr=zr)
28
        q = gauss_param(w=w, rc=rc)
29
        q = gauss_param(q=a) # where a is a complex number
30
31
32
33
34
35
36
        
        or change default wavelength and refractive index with:
        
        q = gauss_param(wavelength, nr, w0=w0, zr=zr)
    """
    
    def __init__(self, wavelength=1064e-9, nr=1, *args, **kwargs):
37
38
39
        if self.__class__ != beam_param:
            warnings.warn("Name changed. Use beam_param instead of gauss_param.")
            
40
        self.__q = None
41
42
        self.__lambda = SIfloat(wavelength)
        self.__nr = SIfloat(nr)
43
44
        
        if len(args) == 1:
Daniel Brown's avatar
Daniel Brown committed
45
            self.__q = complex(args[0])
46
47
48
49
50
        
        elif len(kwargs) == 1:
            if "q" in kwargs:
                self.__q = complex(kwargs["q"])        
            else:
51
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
52
                
53
54
55
        elif len(kwargs) == 2:        
            
            if "w0" in kwargs and "z" in kwargs:
56
                q = SIfloat(kwargs["z"]) + 1j * math.pi*SIfloat(kwargs["w0"])**2/(self.__lambda/self.__nr)
57
            elif "z" in kwargs and "zr" in kwargs:
58
                q = SIfloat(kwargs["z"]) + 1j * SIfloat(kwargs["zr"]) 
59
            elif "rc" in kwargs and "w" in kwargs:
60
                one_q = 1 / SIfloat(kwargs["rc"]) - 1j * SIfloat(wavelength) / (math.pi * SIfloat(nr) * SIfloat(kwargs["w"])**2)
61
62
                q = 1/one_q
            else:
63
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
64
65
66
67
68
69
70
                
            self.__q = q
        else:
            raise pkex.BasePyKatException("Incorrect usage for gauss_param constructor")
    
    @property
    def wavelength(self): return self.__lambda
71
72
    @wavelength.setter
    def wavelength(self,value): self.__lambda = SIfloat(value)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    
    @property
    def nr(self): return self.__nr
    
    @property
    def q(self): return self.__q
    
    @property
    def z(self): return self.__q.real
    
    @property
    def zr(self): return self.__q.imag
    
    @property
87
    def w(self):
88
        return np.abs(self.__q)* np.sqrt(self.__lambda / (self.__nr * math.pi * self.__q.imag))
89
    
90
    def beamsize(self, z=None, wavelength=None, nr=None, w0=None):
91

92
        if z is None:
93
94
95
96
            z = self.z
        else:
            z = np.array(z)
                
97
        if wavelength is None:
98
99
100
101
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
102
        if nr is None:
103
104
105
106
            nr = self.nr
        else:
            nr = np.array(nr)
            
107
        if w0 is None:
108
109
110
111
112
113
114
115
116
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.abs(q)*np.sqrt(wavelength / (nr * math.pi * q.imag))
    
    def gouy(self, z=None, wavelength=None, nr=None, w0=None):
117
        if z is None:
118
119
120
121
            z = self.z
        else:
            z = np.array(z)
                
122
        if wavelength is None:
123
124
125
126
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
127
        if nr is None:
128
129
130
131
            nr = self.nr
        else:
            nr = np.array(nr)
            
132
        if w0 is None:
133
134
135
136
137
138
139
140
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.arctan2(q.real, q.imag)
        
141
142
    @property
    def w0(self):
143
        return np.sqrt(self.__q.imag * self.__lambda / (self.__nr * math.pi))    
144
145
146

    @property
    def Rc(self):
147
148
149
150
151
152
153
154
155
        def __rc(z, zr):
            if z != 0:
                return z * (1 + (zr/z)**2)
            else:
                return float("inf")
                
        v = np.vectorize(__rc)
        
        return v(self.z, self.zr)
156
    
157
    def curvature(self, z=None, wavelength=None, nr=None, w0=None):
158
        if z is None:
159
160
161
162
            z = self.z
        else:
            z = np.array(z)
                
163
        if wavelength is None:
164
165
166
167
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
168
        if nr is None:
169
170
171
172
            nr = self.nr
        else:
            nr = np.array(nr)
            
173
        if w0 is None:
174
175
176
177
178
179
180
181
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return q.real * (1+ (q.imag/q.real)**2)
        
182
183
184
185
186
187
188
189
190
191
192
193
194
    @staticmethod
    def overlap(q1, q2):
        """
        Computes the projection from one beam parameter to another to give a measure of the
        overlap between the two beam parameters.
        
        This function was provided by Paul Fulda and Antonio Perreca, which came originally
        from Chris Mueller.
        
        Added on 20/4/2015
        """
        return abs(4*q1.imag * q2.imag)/abs(q1.conjugate()-q2)**2
        
195
    def conjugate(self):
Daniel Brown's avatar
Daniel Brown committed
196
        return beam_param(self.__lambda, self.__nr, self.__q.conjugate())
197
    
198
199
200
    def __abs__(self):
        return abs(complex(self.__q))
        
201
202
203
204
205
206
207
    def __complex__(self):
        return self.__q
    
    def __str__(self):
        return str(self.__q)
    
    def __mul__(self, a):
Daniel Brown's avatar
Daniel Brown committed
208
        return beam_param(self.__lambda, self.__nr, self.__q * complex(a))
209
210
    
    def __imul__(self, a):
211
        self.__q *= complex(a)
212
213
214
215
216
        return self
        
    __rmul__ = __mul__
    
    def __add__(self, a):
Daniel Brown's avatar
Daniel Brown committed
217
        return beam_param(self.__lambda, self.__nr, self.__q + complex(a))
218
219
220
221
222
223
224
225
    
    def __iadd__(self, a):
        self.__q += complex(a)
        return self
        
    __radd__ = __add__
    
    def __sub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
226
        return beam_param(self.__lambda, self.__nr, self.__q - complex(a))
227
228
229
230
231
    
    def __isub__(self, a):
        self.__q -= complex(a)
        return self
        
232
    def __rsub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
233
        return beam_param(self.__lambda, self.__nr, complex(a) - self.__q)
234
235
    
    def __div__(self, a):
Daniel Brown's avatar
Daniel Brown committed
236
        return beam_param(self.__lambda, self.__nr, self.__q / complex(a))
237
238
239
240
241
242
    
    def __idiv__(self, a):
        self.__q /= complex(a)
        return self
    
    def __pow__(self, q):
Daniel Brown's avatar
Daniel Brown committed
243
        return beam_param(self.__lambda, self.__nr, self.__q**q)
244
245

    def __neg__(self, q):
Daniel Brown's avatar
Daniel Brown committed
246
        return beam_param(self.__lambda, self.__nr, -self.__q)
247
248
        
    def __eq__(self, q):
249
        if q is None:
250
251
            return False
            
252
253
254
255
256
257
258
259
260
261
        return complex(q) == self.__q
        
    @property
    def real(self): return self.__q.real
    @real.setter
    def real(self, value): self.__q.real = SIfloat(value)
    
    @property
    def imag(self): return self.__q.imag
    @imag.setter
262
    def imag(self, value): self.__q.imag = SIfloat(value)
263
264
265
266

    # reverse beam direction 
    def reverse(self):
        self.__q = -1.0 * self.__q.real + 1j * self.__q.imag
267

268

269
270
class beam_param(gauss_param):
    pass
271
272

# Should be renamed to HG_mode?    
273
class HG_beam(object):
274
275
276
277
278
279
    """ Hermite-Gauss beam profile. Example usage:
    import pykat.optics.gaussian_beams as gb
    qx=gb.beam_param(w0=1e-3,z=0)
    beam=gb.HG_beam(qx,n=2,m=0)
    beam.plot()
    """    
280
281
282
283
    def __init__(self, qx, qy=None, n=0, m=0):
        self._qx = copy.deepcopy(qx)
        self._2pi_qrt = math.pow(2.0/math.pi, 0.25)
        
284
        if qy is None:
285
            self._qy = copy.deepcopy(qx)
286
        else:
287
            self._qy = copy.deepcopy(qy)
288
    
289
290
291
292
        self._n = int(n)
        self._m = int(m)
        self._hn = hermite(self._n)
        self._hm = hermite(self._m)
293
294
295
296
297
298
        self._calc_constants()
        
    @property
    def n(self): return self._n
    @n.setter
    def n(self,value): 
299
        self._n = int(value)
300
        self._calc_constants()
301
        self._hn = hermite(self._n)
302
303
304
305
306

    @property
    def m(self): return self._m
    @m.setter
    def m(self,value): 
307
        self._m = int(value)
308
        self._calc_constants()
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        self._hm = hermite(self._m)
            
    @property
    def q(self):
        if self._qx.q == self._qy.q:
            return self._qx.q
        else:
            return (self._qx.q, self._qy.q)
    @q.setter
    def q(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
            self._qy = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
            self._qy = beam_param(q=complex(value))
    
    @property
    def qx(self):
        return self._qx.q
        
    @qx.setter
    def qx(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
    
    @property
    def qy(self):
        return self._qy.q
340
        
341
342
343
344
345
346
    @qy.setter
    def qy(self, value):
        if value.__class__ == beam_param:
            self._qy = copy.deepcopy(value)
        else:
            self._qy = beam_param(q=complex(value))
347
348
349
350
351
352
353
354
355
    
    @property
    def constant_x(self):
        return self.__xpre_const
        
    @property
    def constant_y(self):
        return self.__ypre_const
        
356
357
    def _calc_constants(self):
        self.__xpre_const = math.pow(2.0/math.pi, 0.25)
358
        self.__xpre_const *= np.sqrt(1.0/(self._qx.w0 * 2**(self._n) * np.math.factorial(self._n)))
359
        self.__xpre_const *= np.sqrt(1j*self._qx.imag / self._qx.q)
360
        self.__xpre_const *= ((1j*self._qx.imag * self._qx.q.conjugate())/(-1j*self._qx.imag * self._qx.q)) ** ( self._n/2.0)
361
362
        
        self.__ypre_const = math.pow(2.0/math.pi, 0.25)
363
        self.__ypre_const *= np.sqrt(1.0/(self._qy.w0 * 2**(self._m) * np.math.factorial(self._m)))
364
        self.__ypre_const *= np.sqrt(1j*self._qy.imag / self._qy.q)
Daniel Brown's avatar
Daniel Brown committed
365
        self.__ypre_const *= ((1j*self._qy.imag * self._qy.q.conjugate())/(-1j*self._qy.imag * self._qy.q)) **(self._m/2.0)
366
367
368
369
370
371
372
373
374
    
        self.__sqrt2_wxz = math.sqrt(2) / self._qx.w
        self.__sqrt2_wyz = math.sqrt(2) / self._qy.w
        
        self.__kx =  2*math.pi / self._qx.wavelength
        self.__ky =  2*math.pi / self._qy.wavelength
        
        self.__invqx = 1/ self._qx.q
        self.__invqy = 1/ self._qy.q
375
    
Daniel Brown's avatar
Daniel Brown committed
376
    def Un(self, x):
377
378
        return self.__xpre_const * self._hn(self.__sqrt2_wxz * x) * np.exp(-0.5j * self.__kx * x*x * self.__invqx)
    
Daniel Brown's avatar
Daniel Brown committed
379
380
    def Um(self, y):
        return self.__ypre_const * self._hm(self.__sqrt2_wyz * y) * np.exp(-0.5j * self.__ky * y*y * self.__invqy)
381
        
382
383
384
385
    def Unm(self, x, y):
        _un = self.Un(x)  
        _um = self.Um(y)
        return np.outer(_un, _um)
386
387
        
    def plot(self, ndx=100, ndy=100, xscale=4, yscale=4):
388
389
390
        """ Make a simple plot the HG_beam """
        import pykat.plotting 
        import matplotlib.pyplot as plt
391
392
393
394
395
396
397
        
        xrange = xscale * np.linspace(-self._qx.w, self._qx.w, ndx)
        yrange = yscale * np.linspace(-self._qy.w, self._qy.w, ndy)

        dx = xrange[1]-xrange[0]
        dy = yrange[1]-yrange[0]

398
        data = self.Unm(xrange,yrange)
399

400
401
402
403
        fig = pykat.plotting.figure()
        axes = plt.imshow(np.abs(data.T), aspect=dx/dy, extent=[min(xrange),max(xrange),min(yrange),max(yrange)])
        plt.xlabel('x [m]')
        plt.ylabel('y [m]')
404
        cbar = fig.colorbar(axes)
405
        plt.show()
406
        
407