maps.py 22.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
------------------------------------------------------
Utility functions for handling mirror surface
maps. Some functions based on earlier version
in Matlab (http://www.gwoptics.org/simtools/)
Work in progress, currently these functions are
untested!

http://www.gwoptics.org/pykat/
------------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

16
from pykat.optics.romhom import makeWeightsNew
17
18
19
from scipy.interpolate import interp2d, interp1d
from pykat.maths.zernike import *        

Daniel Brown's avatar
Daniel Brown committed
20
import numpy as np
21
import math
22
import pickle
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

class MirrorROQWeights:
    
    def __init__(self, rFront, rBack, tFront, tBack):
        self.rFront = rFront
        self.rBack = rBack
        self.tFront = tFront
        self.tBack = tBack
    
    def writeToFile(self, romfilename):
        with open(romfilename + ".rom", "w+") as f:
            if self.rFront is not None: self.rFront.writeToFile(f=f)
            if self.rBack  is not None: self.rBack.writeToFile(f=f)
            if self.tFront is not None: self.tFront.writeToFile(f=f)
            if self.tBack  is not None: self.tBack.writeToFile(f=f)
                    
Daniel Brown's avatar
Daniel Brown committed
39
class surfacemap(object):
40
41
42
43
44
45
46
    def __init__(self, name, maptype, size, center, step_size, scaling, data=None):
        
        self.name = name
        self.type = maptype
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
47
48
        self.__interp = None
        
49
        if data is None:
Daniel Brown's avatar
Daniel Brown committed
50
51
52
53
            self.data = np.zeros(size)
        else:
            self.data = data

54
        self._rom_weights = None
55
56
57
58
59
60
61
        
    def write_map(self, filename):
        with open(filename,'w') as mapfile:
            
            mapfile.write("% Surface map\n")
            mapfile.write("% Name: {0}\n".format(self.name))
            mapfile.write("% Type: {0}\n".format(self.type))
62
            mapfile.write("% Size: {0} {1}\n".format(self.data.shape[0], self.data.shape[1]))
63
64
65
66
67
68
69
70
71
72
            mapfile.write("% Optical center (x,y): {0} {1}\n".format(self.center[0], self.center[1]))
            mapfile.write("% Step size (x,y): {0} {1}\n".format(self.step_size[0], self.step_size[1]))
            mapfile.write("% Scaling: {0}\n".format(float(self.scaling)))
            mapfile.write("\n\n")
            
            for i in range(0, self.data.shape[0]):
                for j in range(0, self.data.shape[1]):
                    mapfile.write("%.15g " % self.data[i,j])
                mapfile.write("\n")
    
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    @property
    def data(self):
        return self.__data
    
    @data.setter
    def data(self, value):
        self.__data = value
        self.__interp = None
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None

Daniel Brown's avatar
Daniel Brown committed
109
110
    @property
    def x(self):
Daniel Brown's avatar
Daniel Brown committed
111
        return self.step_size[0] * (np.array(range(1, self.data.shape[0]+1)) - self.center[0])
Daniel Brown's avatar
Daniel Brown committed
112
113
114
        
    @property
    def y(self):
Daniel Brown's avatar
Daniel Brown committed
115
        return self.step_size[1] * (np.array(range(1, self.data.shape[1]+1))- self.center[1])
116
117
118
119
120

    @property
    def size(self):
        return self.data.shape
            
121
122
    @property
    def offset(self):
Daniel Brown's avatar
Daniel Brown committed
123
        return np.array(self.step_size)*(np.array(self.center) - 1/2. - np.array(self.size)/2.0)
124
125
126
127
    
    @property
    def ROMWeights(self):
        return self._rom_weights
128
    
129
    def z_xy(self, x=None, y=None, wavelength=1064e-9, direction="reflection_front", nr1=1.0, nr2=1.0):
130
131
132
133
134
135
136
        """
        For this given map the field perturbation is computed. This data
        is used in computing the coupling coefficient. It returns a grid
        of complex values representing the change in amplitude or phase
        of the field.
        
            x, y      : Points to interpolate at, 'None' for no interpolation.
137
            
138
            wavelength: Wavelength of light in vacuum [m]
139
140
141
142
143
144
145
146
147
            
            direction : Sets which distortion to return, as beams travelling
                        in different directions will see different distortions.
                        Options are:
                                "reflection_front"
                                "transmission_front" (front to back)
                                "transmission_back" (back to front)
                                "reflection_back"
                                
148
            nr1       : refractive index on front side
149
            
150
            nr2       : refractive index on back side
151
            
152
153
154
155
        """
        
        assert(nr1 >= 1)
        assert(nr2 >= 1)
156
        
157
        if x is None and y is None:
158
159
            data = self.scaling * self.data
        else:
160
            if self.__interp is None:
161
162
163
                self.__interp = interp2d(self.x, self.y, self.data * self.scaling)
                
            data = self.__interp(x, y)
164
165
        
        if direction == "reflection_front" or direction == "reflection_back":
166
            if "phase" in self.type:
167
                k = math.pi * 2 / wavelength
168
                
169
170
                if direction == "reflection_front":
                    return np.exp(-2j * nr1 * k * data)
171
                else:
172
                    return np.exp(2j * nr2 * k * data[:,::-1])
173
                
174
            elif "absorption" in self.type:
175
                if direction == "reflection_front":
176
177
178
                    return np.sqrt(1.0 - data)
                else:
                    return np.sqrt(1.0 - data[:, ::-1])
179
180
            else:
                raise BasePyKatException("Map type needs handling")
181
                
182
        elif direction == "transmission_front" or direction == "transmission_back":
183
184
            if "phase" in self.type:
                k = math.pi * 2 / wavelength
185
                
186
187
                if direction == "transmission_front":
                    return np.exp((nr1-nr2) * k * data)
188
                else:
189
                    return np.exp((nr2-nr1) * k * data[:, ::-1])
190
                
191
            elif "absorption" in self.type:
192
                if direction == "transmission_front":
193
194
195
                    return np.sqrt(1.0 - data)
                else:
                    return np.sqrt(1.0 - data[:, ::-1])
196
197
            else:
                raise BasePyKatException("Map type needs handling")
198
                
199
        else:
200
            raise ValueError("Direction not valid")
201
        
Daniel Brown's avatar
Daniel Brown committed
202

203
    
204
205
    def generateROMWeights(self, EIxFilename, EIyFilename=None, nr1=1.0, nr2=1.0, verbose=False, interpolate=False, newtonCotesOrder=8):
        
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        if interpolate == True:
            # Use EI nodes to interpolate if we
            with open(EIxFilename, 'rb') as f:
                EIx = pickle.load(f)

            if EIyFilename is None:
                EIy = EIx
            else:
                with open(EIyFilename, 'rb') as f:
                    EIy = pickle.load(f)

            x = EIx.x
            x.sort()
            nx = np.unique(np.hstack((x, -x[::-1])))
        
            y = EIy.x
            y.sort()
            ny = np.unique(np.hstack((y, -y[::-1])))
            
            self.interpolate(nx, ny)
        
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        w_refl_front, w_refl_back, w_tran_front, w_tran_back = (None, None, None, None)
        
        if "reflection" in self.type or "both" in self.type:
            w_refl_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_front")
            
            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
            
            w_refl_back = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        if "transmission" in self.type or "both" in self.type:                                      
            w_tran_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_front")

            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
                                            
            w_tran_back  = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
            
        self._rom_weights = MirrorROQWeights(w_refl_front, w_refl_back, w_tran_front, w_tran_back)
        
        return self._rom_weights
            
263
264
265
    def interpolate(self, nx, ny, **kwargs):
        """
        Interpolates the map for some new x and y values.
266
        
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        Uses scipy.interpolate.interp2d and any keywords arguments are
        passed on to it, thus settings like interpolation type and
        fill values can be set.
        
        The range of nx and ny must contain the value zero so that the
        center point of the map can be set.
        """

        D = interp2d(self.x, self.y, self.data, **kwargs)
        
        data = D(nx-self.offset[0], ny-self.offset[0])
        
        Dx = interp1d(nx, np.arange(1,len(nx)+1))
        Dy = interp1d(ny, np.arange(1,len(ny)+1))
        
        self.center = (Dx(0), Dy(0))
        self.step_size = (nx[1]-nx[0], ny[1]-ny[0])
        self.data = data

286
    def plot(self, show=True, clabel=None, xlim=None, ylim=None):
287
288
289
        
        import pylab
        
290
        if xlim is not None:
291
292
293
294
295
296
297
298
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
299
        if ylim is not None:
300
301
302
303
304
305
306
307
308
309
310
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]
        
        zmin = self.data[xmin:xmax,ymin:ymax].min()
        zmax = self.data[xmin:xmax,ymin:ymax].max()

311
        # 100 factor for scaling to cm
Daniel Brown's avatar
Daniel Brown committed
312
313
        xrange = 100*self.x
        yrange = 100*self.y
314

315
        fig = pylab.figure()
316
        axes = pylab.pcolormesh(xrange, yrange, self.data, vmin=zmin, vmax=zmax)
317
318
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')
319

320
321
        if xlim is not None: pylab.xlim(xlim)
        if ylim is not None: pylab.ylim(ylim)
322

323
        pylab.title('Surface map {0}, type {1}'.format(self.name, self.type))
324

325
        cbar = fig.colorbar(axes)
326
        cbar.set_clim(zmin, zmax)
327
        
328
        if clabel is not None:
329
            cbar.set_label(clabel)
330
    
331
332
        if show:
            pylab.show()
333
        
334
        return fig
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

class mergedmap:
    """
    A merged map combines multiple surfaces map to form one. Such a map can be used
    for computations of coupling coefficients but it cannot be written to a file to 
    be used with Finesse. For this you must output each map separately.
    
    """
    
    def __init__(self, name, size, center, step_size, scaling):
        
        self.name = name
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
        self.__interp = None
        self._rom_weights = None
        self.__maps = []
353
354
        self.weighting = None
        
355
356
357
358
359
360
361
362
363
364
365
366
    def addMap(self, m):
        self.__maps.append(m)
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    @property
    def type(self):
        hasR = False
        hasT = False
        
        _type = ""
        
        for m in self.__maps:
            if "reflection" in m.type: hasR = True
            
            if "transmission" in m.type: hasT = True
            
            if "both" in m.type:
                hasR = True
                hasT = True
        
        if hasR and not hasT: _type += "reflection "
        elif hasR and not hasT: _type += "transmission "
        elif hasR and hasT: _type += "both "
        
        return _type
        
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None
    
    @property
    def x(self):
        return self.step_size[0] * (np.array(range(1, self.size[0]+1)) - self.center[0])
        
    @property
    def y(self):
        return self.step_size[1] * (np.array(range(1, self.size[1]+1))- self.center[1])

    @property
    def size(self):
        return self.__maps[0].data.shape
            
    @property
    def offset(self):
        return np.array(self.step_size)*(np.array(self.center) - 1/2. - np.array(self.size)/2.0)
    
    @property
    def ROMWeights(self):
        return self._rom_weights
    
427
    def z_xy(self, wavelength=1064e-9, direction="reflection_front", nr1=1.0, nr2=1.0):
428
429
430
431
432
433
        
        z_xy = np.ones(self.size, dtype=np.complex128)
        
        for m in self.__maps:
            z_xy *= m.z_xy(wavelength=wavelength, direction=direction, nr1=nr1, nr2=nr2)
            
434
435
436
437
        if self.weighting is None:
            return z_xy
        else:
            return z_xy * self.weighting
438
        
439
    def generateROMWeights(self, EIxFilename, EIyFilename=None, verbose=False, interpolate=False, newtonCotesOrder=8, nr1=1, nr2=1):
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        if interpolate == True:
            # Use EI nodes to interpolate if we
            with open(EIxFilename, 'rb') as f:
                EIx = pickle.load(f)

            if EIyFilename is None:
                EIy = EIx
            else:
                with open(EIyFilename, 'rb') as f:
                    EIy = pickle.load(f)

            x = EIx.x
            x.sort()
            nx = np.unique(np.hstack((x, -x[::-1])))
        
            y = EIy.x
            y.sort()
            ny = np.unique(np.hstack((y, -y[::-1])))
            
            self.interpolate(nx, ny)
        
461
        w_refl_front, w_refl_back, w_tran_front, w_tran_back = (None, None, None, None)
462
        
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        if "reflection" in self.type or "both" in self.type:
            w_refl_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_front")
            
            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
            
            w_refl_back = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2

        if "transmission" in self.type or "both" in self.type:                                      
            w_tran_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_front")

            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
                                            
            w_tran_back  = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
            
        self._rom_weights = MirrorROQWeights(w_refl_front, w_refl_back, w_tran_front, w_tran_back)
        
        return self._rom_weights
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

    def interpolate(self, nx, ny, **kwargs):
        """
        Interpolates all the maps that are used to fc
        
        Uses scipy.interpolate.interp2d and any keywords arguments are
        passed on to it, thus settings like interpolation type and
        fill values can be set.
        
        The range of nx and ny must contain the value zero so that the
        center point of the map can be set.
        """

        for m in self.__maps:
            m.interpolate(nx, ny)

    def plot(self, mode="absorption", show=True, clabel=None, xlim=None, ylim=None, wavelength=1064e-9):
        
        import pylab
        
        if xlim is not None:
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
        if ylim is not None:
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]

        if mode == "absorption":
            # plots how much of field is absorbed
            data = 1-np.abs(self.z_xy())
        elif mode == "meter":
            # plot the phase in terms of meters of displacement
            k = 2*np.pi/wavelength
            data = np.angle(self.z_xy()) / (2*k)
            
        zmin = data[xmin:xmax,ymin:ymax].min()
        zmax = data[xmin:xmax,ymin:ymax].max()

        # 100 factor for scaling to cm
        xrange = 100*self.x
        yrange = 100*self.y

        fig = pylab.figure()
        axes = pylab.pcolormesh(xrange, yrange, data, vmin=zmin, vmax=zmax)
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')

        if xlim is not None: pylab.xlim(xlim)
        if ylim is not None: pylab.ylim(ylim)

        pylab.title('Merged map {0}, mode {1}'.format(self.name, mode))

        cbar = fig.colorbar(axes)
        cbar.set_clim(zmin, zmax)
561
        
562
563
564
565
566
567
568
569
        if clabel is not None:
            cbar.set_label(clabel)
    
        if show:
            pylab.show()
        
        return fig

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
class aperturemap(surfacemap):
    
    def __init__(self, name, size, step_size, R):
        surfacemap.__init__(self, name, "absorption both", size, (np.array(size)+1)/2.0, step_size, 1)
        self.R = R
        
    @property
    def R(self):
        return self.__R
    
    @R.setter
    def R(self, value):
        self.__R = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        radius = np.sqrt(xx**2 + yy**2)
        
        self.data = np.zeros(self.size)
        self.data[radius > self.R] = 1.0
        
        
class curvedmap(surfacemap):
    
    def __init__(self, name, size, step_size, Rc):
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-6)
        self.Rc = Rc
        
    @property
    def Rc(self):
        return self.__Rc
    
    @Rc.setter
    def Rc(self, value):
        self.__Rc = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        Rsq = xx**2 + yy**2
        self.data = (self.Rc - math.copysign(1.0, self.Rc) * np.sqrt(self.Rc**2 - Rsq))/ self.scaling
Daniel Brown's avatar
Daniel Brown committed
610
611

class tiltmap(surfacemap):
612
613
614
615
616
617
618
619
620
621
622
623
    """
    To create a tiltmap, plot it and write it to a file to use with Finesse:
        
        tilts = (1e-6, 1e-8) # tilt in (x, y) radians\
        dx = 1e-4
        L = 0.2
        N = L/dx
        
        tmap = tiltmap("tilt", (N, N), (dx,dx), tilts)
        tmap.plot()
        tmap.write_map("mytilt.map")
    """
Daniel Brown's avatar
Daniel Brown committed
624
625
    
    def __init__(self, name, size, step_size, tilt):
Daniel Brown's avatar
Daniel Brown committed
626
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-9)
Daniel Brown's avatar
Daniel Brown committed
627
628
629
630
631
632
633
634
635
636
637
638
        self.tilt = tilt
        
    @property
    def tilt(self):
        return self.__tilt
    
    @tilt.setter
    def tilt(self, value):
        self.__tilt = value
        
        xx, yy = np.meshgrid(self.x, self.y)
        
639
        self.data = (yy * self.tilt[1] + xx * self.tilt[0])/self.scaling
Daniel Brown's avatar
Daniel Brown committed
640
        
Daniel Brown's avatar
Daniel Brown committed
641
642
643

class zernikemap(surfacemap):
	def __init__(self, name, size, step_size, radius, scaling=1e-9):
Daniel Brown's avatar
Daniel Brown committed
644
		surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, scaling)
Daniel Brown's avatar
Daniel Brown committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
		self.__zernikes = {}
		self.radius = radius
		
	@property
	def radius(self): return self.__radius

	@radius.setter
	def radius(self, value, update=True):
		self.__radius = float(value)
		if update: self.update_data()

	def setZernike(self, m, n, amplitude, update=True):
		self.__zernikes["%i%i" % (m, n)] = (m,n,amplitude)
		if update: self.update_data()

	def update_data(self):
		X,Y = np.meshgrid(self.x, self.y)
		R = np.sqrt(X**2 + Y**2)
		PHI = np.arctan2(Y, X)

		data = np.zeros(np.shape(R))

		for i in self.__zernikes.items():
			data += i[1][2] * zernike(i[1][0], i[1][1], R/self.radius, PHI)

		self.data = data
	
			
	
674
675
676
677
678
679
def read_map(filename):
    with open(filename, 'r') as f:
        
        f.readline()
        name = f.readline().split(':')[1].strip()
        maptype = f.readline().split(':')[1].strip()
Daniel Brown's avatar
Daniel Brown committed
680
        size = tuple(map(lambda x: float(x), f.readline().split(':')[1].strip().split()))
681
682
683
684
685
686
        center = tuple(map(lambda x: float(x), f.readline().split(':')[1].strip().split()))
        step = tuple(map(lambda x: float(x), f.readline().split(':')[1].strip().split()))
        scaling = float(f.readline().split(':')[1].strip())
        
        
        
Daniel Brown's avatar
Daniel Brown committed
687
    data = np.loadtxt(filename, dtype=np.float64,ndmin=2,comments='%')    
688
689
690
691
        
    return surfacemap(name,maptype,size,center,step,scaling,data)
    
    
692
693
694
695
696
697
698
# TODO: Recreate functions from Simtools:, List taken from: ligo_maps/FT_convert_ligo_map_for_finesse.m
# map=FT_recenter_mirror_map(map);
# [map2,A2,Rc_out]=FT_remove_zernike_curvatures_from_map(map,Rc_in);
# [map2,Rc_out]=FT_remove_curvature_from_mirror_map(map,Rc_in,w, display_style);
# [map2,offset]=FT_remove_offset_from_mirror_map(map2,1e-2);
# [map3,x_tilt,y_tilt,offset2]=FT_remove_piston_from_mirror_map(map2,w, display_style);
# map3=FT_invert_mirror_map(map3, invert);