master.py 5.55 KB
Newer Older
1
2
from pykat import finesse
from pykat.commands import *
3
import copy
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import shelve
import sys
import scipy.optimize


def main():

    print """
    --------------------------------------------------------------
    Example file for using PyKat to automate Finesse simulations
    Finesse: http://www.gwoptics.org/finesse
    PyKat:   https://pypi.python.org/pypi/PyKat/
    
    The file runs through the various pykat files which are used
    to generate the Finesse results reported in the document:
    `Comparing Finesse simulations, analytical solutions and OSCAR 
    simulations of Fabry-Perot alignment signals', LIGO-T1300345
    
    This file is part of a collection.
    
    Andreas Freise 06.12.2013
    --------------------------------------------------------------
Andreas Freise's avatar
Andreas Freise committed
26
    """    
27
    
Andreas Freise's avatar
Andreas Freise committed
28
29
    # for debugging we might need to see the temporay file:
    kat = finesse.kat(tempdir=".",tempname="test")
30
31
32
33
34
    kat.verbose = False
    kat.loadKatFile('asc_base.kat')
    kat.maxtem=3
    Lambda=1064.0e-9
    result = {}
Andreas Freise's avatar
Andreas Freise committed
35
36
37
38
39

    # defining variables as global for debugging
    #global kat
    #global out
    #global result
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    
    print "--------------------------------------------------------"
    print " 1. tunes ETM position to find resonance"
    kat.ETM.phi=resonance(kat)
    
    print "--------------------------------------------------------"
    print " 2. print sideband and carrier powers/amplitudes"
    powers(kat)
    
    print "--------------------------------------------------------"
    print " 3. determine the optimal phase for the PDH signal"
    (result['p_phase'], result['q_phase']) = pd_phase(kat)
    
    # setting demodulation phase
    code_det = """
    pd1 PDrefl_p 9M 0 nWFS1
    scale 2 PDrefl_p
    pd1 PDrefl_q 9M 90 nWFS1
    scale 2 PDrefl_q
    """
    kat.parseKatCode(code_det)
    kat.PDrefl_p.phi[0]=result['p_phase']
    kat.PDrefl_q.phi[0]=result['q_phase']
    
    print "--------------------------------------------------------"
    print " 4. adding a 0.1nm offset to ETM and compute PDH signal"
    result['phi_tuned']=float(kat.ETM.phi)
    result['phi_detuned'] = result['phi_tuned'] + 0.1/1064.0*360
    
    kat.ETM.phi=result['phi_detuned']
    print " new ETM phi tuning = %g " % kat.ETM.phi

    (result['pd_p'], result['pd_q']) = pd_signal(kat)
    print " PDH inphase     = %e " % result['pd_p']
    print " PDH quadrtature = %e " % result['pd_q']
    
    print "--------------------------------------------------------"
    print " Saving results in temp. files to be read by master2.py"
    tmpkatfile = "asc_base2.kat"
    tmpresultfile = "myshelf1.dat"
    print " kat object saved in: {0}".format(tmpkatfile)
    print " current results saved in: {0}".format(tmpresultfile)
    # first the current kat file
    kat.saveScript(tmpkatfile)
    # now the result variables:
    tmpfile = shelve.open(tmpresultfile)
    tmpfile['result']=result
    tmpfile.close()
    
89
#---------------------------------------------------------------------------
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

def pd_signal(tmpkat):

    kat = copy.deepcopy(tmpkat)

    code1="yaxis abs"
    kat.parseKatCode(code1)
    kat.noxaxis = True
    
    out = kat.run(printout=0,printerr=0)
    return (out.y[0], out.y[1])
    
def pd_phase(tmpkat):

    kat = copy.deepcopy(tmpkat)
    
    code_det = """
    pd1 PDrefl_q 9M 90 nWFS1
    """
    
    kat.parseKatCode(code_det)
    kat.noxaxis= True

    # function for root finding
    def PD_q_test(x):
        kat.PDrefl_q.phi[0]=x
        out = kat.run(printout=0,printerr=0)
        print '\r root finding: function value %g                    ' % out.y,
        sys.stdout.flush()
        return out.y

    # do root finding
    xtol=1e-8
    (result, info)=scipy.optimize.bisect(PD_q_test,80.0,100.0, xtol=xtol, maxiter=500, full_output=True)

    print ""
    if info.converged:
        p_phase=result-90.0
        q_phase=result
        print " Root has been found:"
        print " p_phase %8f" % (p_phase)
        print " q_phase %8f" % (q_phase)
        print " (%d iterations, %g tolerance)" % (info.iterations, xtol)
        return (p_phase, q_phase)
    else:
        raise Exception("Root has not been found")
        

def powers(tmpkat):

    kat = copy.deepcopy(tmpkat)
    
    code1 = """
    ad EOM_up 9M nEOM1
    ad EOM_low -9M nEOM1
    pd cav_pow nITM2
    ad cav_c 0 nITM2
    ad WFS1_u  9M nWFS1
    ad WFS1_l -9M nWFS1
    ad WFS1_c  0  nWFS1
    ad WFS2_u  9M nWFS2
    ad WFS2_l -9M nWFS2
    ad WFS2_c   0 nWFS2
    noxaxis
    """

    kat.parseKatCode(code1)

    out = kat.run(printout=0,printerr=0)

    code1 = code1.split("\n")
    for i in range(len(out.y)):
        print " %8s: %.4e" % (out.ylabels[i], out.y[i])
 

def resonance(tmpkat):
    kat = copy.deepcopy(tmpkat)
    
    code1 = """
    ad carr2 0 nITM1*
    ad carr3 0 nITM2
    yaxis deg
    """
    kat.parseKatCode(code1)
    kat.noxaxis = True
    
    # function for root finding
    def carrier_resonance(x):
        kat.ETM.phi=x
        out = kat.run(printout=0,printerr=0)
        phase = (out.y[0]-out.y[1]-90)%360-180
        print '\r root finding: function value %g                    ' % phase ,
        sys.stdout.flush()
        return phase
    
    # do root finding
    xtol=1e-8
    (result, info)=scipy.optimize.bisect(carrier_resonance,0.0,40.0, xtol=xtol, maxiter=500, full_output=True)
    
    print ""
    if info.converged:
        print " Root has been found:"
        print " ETM phi %8f" % (result)
        print " (%d iterations, %g tolerance)" % (info.iterations, xtol)
        return result
    else:
        raise Exception(" Root has not been found")
        

if __name__ == '__main__':
    main()
201