gaussian_beams.py 13.5 KB
Newer Older
1
2
3
4
5
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

6
import pykat.exceptions as pkex
7
import numpy as np
8
import math
9
import copy
10
11
import warnings
import cmath
12
13
from math import factorial
from scipy.special import hermite, jacobi
14
from pykat.SIfloat import SIfloat
15
16
17

class gauss_param(object):
    """
18
    Use beam_param instead, will be the future name of this object.
19
    
20
21
    Gaussian beam complex parameter
    
Daniel Brown's avatar
Daniel Brown committed
22
    beam_param is effectively a complex number with extra
23
24
    functionality to determine beam parameters.
    
Daniel Brown's avatar
Daniel Brown committed
25
    Defaults to 1064e-9m for wavelength and refractive index 1
26
27
28
    usage:
        q = gauss_param(w0=w0, z=z)
        q = gauss_param(z=z, zr=zr)
29
        q = gauss_param(w=w, rc=rc)
30
        q = gauss_param(q=a) # where a is a complex number
31
32
33
34
35
36
37
        
        or change default wavelength and refractive index with:
        
        q = gauss_param(wavelength, nr, w0=w0, zr=zr)
    """
    
    def __init__(self, wavelength=1064e-9, nr=1, *args, **kwargs):
38
39
40
        if self.__class__ != beam_param:
            warnings.warn("Name changed. Use beam_param instead of gauss_param.")
            
41
        self.__q = None
42
43
        self.__lambda = SIfloat(wavelength)
        self.__nr = SIfloat(nr)
44
45
        
        if len(args) == 1:
Daniel Brown's avatar
Daniel Brown committed
46
            self.__q = complex(args[0])
47
48
49
50
51
        
        elif len(kwargs) == 1:
            if "q" in kwargs:
                self.__q = complex(kwargs["q"])        
            else:
52
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
53
                
54
55
56
        elif len(kwargs) == 2:        
            
            if "w0" in kwargs and "z" in kwargs:
57
                q = SIfloat(kwargs["z"]) + 1j * math.pi*SIfloat(kwargs["w0"])**2/(self.__lambda/self.__nr)
58
            elif "z" in kwargs and "zr" in kwargs:
59
                q = SIfloat(kwargs["z"]) + 1j * SIfloat(kwargs["zr"]) 
60
            elif "rc" in kwargs and "w" in kwargs:
61
                one_q = 1 / SIfloat(kwargs["rc"]) - 1j * SIfloat(wavelength) / (math.pi * SIfloat(nr) * SIfloat(kwargs["w"])**2)
62
63
                q = 1/one_q
            else:
64
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
65
66
67
68
69
70
71
                
            self.__q = q
        else:
            raise pkex.BasePyKatException("Incorrect usage for gauss_param constructor")
    
    @property
    def wavelength(self): return self.__lambda
72
73
    @wavelength.setter
    def wavelength(self,value): self.__lambda = SIfloat(value)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    
    @property
    def nr(self): return self.__nr
    
    @property
    def q(self): return self.__q
    
    @property
    def z(self): return self.__q.real
    
    @property
    def zr(self): return self.__q.imag
    
    @property
88
    def w(self):
89
        return np.abs(self.__q)* np.sqrt(self.__lambda / (self.__nr * math.pi * self.__q.imag))
90
    
91
    def beamsize(self, z=None, wavelength=None, nr=None, w0=None):
92

93
        if z is None:
94
95
96
97
            z = self.z
        else:
            z = np.array(z)
                
98
        if wavelength is None:
99
100
101
102
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
103
        if nr is None:
104
105
106
107
            nr = self.nr
        else:
            nr = np.array(nr)
            
108
        if w0 is None:
109
110
111
112
113
114
115
116
117
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.abs(q)*np.sqrt(wavelength / (nr * math.pi * q.imag))
    
    def gouy(self, z=None, wavelength=None, nr=None, w0=None):
118
        if z is None:
119
120
121
122
            z = self.z
        else:
            z = np.array(z)
                
123
        if wavelength is None:
124
125
126
127
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
128
        if nr is None:
129
130
131
132
            nr = self.nr
        else:
            nr = np.array(nr)
            
133
        if w0 is None:
134
135
136
137
138
139
140
141
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.arctan2(q.real, q.imag)
        
142
143
    @property
    def w0(self):
144
        return np.sqrt(self.__q.imag * self.__lambda / (self.__nr * math.pi))    
145
146
147

    @property
    def Rc(self):
148
149
150
151
152
153
154
155
156
        def __rc(z, zr):
            if z != 0:
                return z * (1 + (zr/z)**2)
            else:
                return float("inf")
                
        v = np.vectorize(__rc)
        
        return v(self.z, self.zr)
157
    
158
    def curvature(self, z=None, wavelength=None, nr=None, w0=None):
159
        if z is None:
160
161
162
163
            z = self.z
        else:
            z = np.array(z)
                
164
        if wavelength is None:
165
166
167
168
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
169
        if nr is None:
170
171
172
173
            nr = self.nr
        else:
            nr = np.array(nr)
            
174
        if w0 is None:
175
176
177
178
179
180
181
182
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return q.real * (1+ (q.imag/q.real)**2)
        
183
184
185
186
187
188
189
190
191
192
193
194
195
    @staticmethod
    def overlap(q1, q2):
        """
        Computes the projection from one beam parameter to another to give a measure of the
        overlap between the two beam parameters.
        
        This function was provided by Paul Fulda and Antonio Perreca, which came originally
        from Chris Mueller.
        
        Added on 20/4/2015
        """
        return abs(4*q1.imag * q2.imag)/abs(q1.conjugate()-q2)**2
        
196
    def conjugate(self):
Daniel Brown's avatar
Daniel Brown committed
197
        return beam_param(self.__lambda, self.__nr, self.__q.conjugate())
198
    
199
200
201
    def __abs__(self):
        return abs(complex(self.__q))
        
202
203
204
205
206
207
208
    def __complex__(self):
        return self.__q
    
    def __str__(self):
        return str(self.__q)
    
    def __mul__(self, a):
Daniel Brown's avatar
Daniel Brown committed
209
        return beam_param(self.__lambda, self.__nr, self.__q * complex(a))
210
211
    
    def __imul__(self, a):
212
        self.__q *= complex(a)
213
214
215
216
217
        return self
        
    __rmul__ = __mul__
    
    def __add__(self, a):
Daniel Brown's avatar
Daniel Brown committed
218
        return beam_param(self.__lambda, self.__nr, self.__q + complex(a))
219
220
221
222
223
224
225
226
    
    def __iadd__(self, a):
        self.__q += complex(a)
        return self
        
    __radd__ = __add__
    
    def __sub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
227
        return beam_param(self.__lambda, self.__nr, self.__q - complex(a))
228
229
230
231
232
    
    def __isub__(self, a):
        self.__q -= complex(a)
        return self
        
233
    def __rsub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
234
        return beam_param(self.__lambda, self.__nr, complex(a) - self.__q)
235
236
    
    def __div__(self, a):
Daniel Brown's avatar
Daniel Brown committed
237
        return beam_param(self.__lambda, self.__nr, self.__q / complex(a))
238
239
240
241
242
243
    
    def __idiv__(self, a):
        self.__q /= complex(a)
        return self
    
    def __pow__(self, q):
Daniel Brown's avatar
Daniel Brown committed
244
        return beam_param(self.__lambda, self.__nr, self.__q**q)
245
246

    def __neg__(self, q):
Daniel Brown's avatar
Daniel Brown committed
247
        return beam_param(self.__lambda, self.__nr, -self.__q)
248
249
        
    def __eq__(self, q):
250
        if q is None:
251
252
            return False
            
253
254
255
256
257
258
259
260
261
262
        return complex(q) == self.__q
        
    @property
    def real(self): return self.__q.real
    @real.setter
    def real(self, value): self.__q.real = SIfloat(value)
    
    @property
    def imag(self): return self.__q.imag
    @imag.setter
263
    def imag(self, value): self.__q.imag = SIfloat(value)
264
265
266
267

    # reverse beam direction 
    def reverse(self):
        self.__q = -1.0 * self.__q.real + 1j * self.__q.imag
268

269

270
271
class beam_param(gauss_param):
    pass
272
273

# Should be renamed to HG_mode?    
274
class HG_beam(object):
275
276
277
278
279
280
    """ Hermite-Gauss beam profile. Example usage:
    import pykat.optics.gaussian_beams as gb
    qx=gb.beam_param(w0=1e-3,z=0)
    beam=gb.HG_beam(qx,n=2,m=0)
    beam.plot()
    """    
281
282
283
284
    def __init__(self, qx, qy=None, n=0, m=0):
        self._qx = copy.deepcopy(qx)
        self._2pi_qrt = math.pow(2.0/math.pi, 0.25)
        
285
        if qy is None:
286
            self._qy = copy.deepcopy(qx)
287
        else:
288
            self._qy = copy.deepcopy(qy)
289
    
290
291
292
293
        self._n = int(n)
        self._m = int(m)
        self._hn = hermite(self._n)
        self._hm = hermite(self._m)
294
295
296
297
298
299
        self._calc_constants()
        
    @property
    def n(self): return self._n
    @n.setter
    def n(self,value): 
300
        self._n = int(value)
301
        self._calc_constants()
302
        self._hn = hermite(self._n)
303
304
305
306
307

    @property
    def m(self): return self._m
    @m.setter
    def m(self,value): 
308
        self._m = int(value)
309
        self._calc_constants()
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        self._hm = hermite(self._m)
            
    @property
    def q(self):
        if self._qx.q == self._qy.q:
            return self._qx.q
        else:
            return (self._qx.q, self._qy.q)
    @q.setter
    def q(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
            self._qy = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
            self._qy = beam_param(q=complex(value))
    
    @property
    def qx(self):
        return self._qx.q
        
    @qx.setter
    def qx(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
    
    @property
    def qy(self):
        return self._qy.q
341
        
342
343
344
345
346
347
    @qy.setter
    def qy(self, value):
        if value.__class__ == beam_param:
            self._qy = copy.deepcopy(value)
        else:
            self._qy = beam_param(q=complex(value))
348
349
350
351
352
353
354
355
356
    
    @property
    def constant_x(self):
        return self.__xpre_const
        
    @property
    def constant_y(self):
        return self.__ypre_const
        
357
358
    def _calc_constants(self):
        self.__xpre_const = math.pow(2.0/math.pi, 0.25)
359
        self.__xpre_const *= np.sqrt(1.0/(self._qx.w0 * 2**(self._n) * np.math.factorial(self._n)))
360
        self.__xpre_const *= np.sqrt(1j*self._qx.imag / self._qx.q)
361
        self.__xpre_const *= ((1j*self._qx.imag * self._qx.q.conjugate())/(-1j*self._qx.imag * self._qx.q)) ** ( self._n/2.0)
362
363
        
        self.__ypre_const = math.pow(2.0/math.pi, 0.25)
364
        self.__ypre_const *= np.sqrt(1.0/(self._qy.w0 * 2**(self._m) * np.math.factorial(self._m)))
365
        self.__ypre_const *= np.sqrt(1j*self._qy.imag / self._qy.q)
Daniel Brown's avatar
Daniel Brown committed
366
        self.__ypre_const *= ((1j*self._qy.imag * self._qy.q.conjugate())/(-1j*self._qy.imag * self._qy.q)) **(self._m/2.0)
367
368
369
370
371
372
373
374
375
    
        self.__sqrt2_wxz = math.sqrt(2) / self._qx.w
        self.__sqrt2_wyz = math.sqrt(2) / self._qy.w
        
        self.__kx =  2*math.pi / self._qx.wavelength
        self.__ky =  2*math.pi / self._qy.wavelength
        
        self.__invqx = 1/ self._qx.q
        self.__invqy = 1/ self._qy.q
376
    
Daniel Brown's avatar
Daniel Brown committed
377
    def Un(self, x):
378
379
        return self.__xpre_const * self._hn(self.__sqrt2_wxz * x) * np.exp(-0.5j * self.__kx * x*x * self.__invqx)
    
Daniel Brown's avatar
Daniel Brown committed
380
381
    def Um(self, y):
        return self.__ypre_const * self._hm(self.__sqrt2_wyz * y) * np.exp(-0.5j * self.__ky * y*y * self.__invqy)
382
        
383
384
385
386
    def Unm(self, x, y):
        _un = self.Un(x)  
        _um = self.Um(y)
        return np.outer(_un, _um)
387
388
        
    def plot(self, ndx=100, ndy=100, xscale=4, yscale=4):
389
390
391
        """ Make a simple plot the HG_beam """
        import pykat.plotting 
        import matplotlib.pyplot as plt
392
393
394
395
396
397
398
        
        xrange = xscale * np.linspace(-self._qx.w, self._qx.w, ndx)
        yrange = yscale * np.linspace(-self._qy.w, self._qy.w, ndy)

        dx = xrange[1]-xrange[0]
        dy = yrange[1]-yrange[0]

399
        data = self.Unm(xrange,yrange)
400

401
402
403
404
        fig = pykat.plotting.figure()
        axes = plt.imshow(np.abs(data.T), aspect=dx/dy, extent=[min(xrange),max(xrange),min(yrange),max(yrange)])
        plt.xlabel('x [m]')
        plt.ylabel('y [m]')
405
        cbar = fig.colorbar(axes)
406
        plt.show()
407
        
408
        
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453


        

def hg2lg(n,m):
    """A function for Matlab which returns the coefficients and mode indices of
    the LG modes required to create a particular HG mode.
    Usage: coefficients,ps,ls = hg2lg(n,m)
    
    n,m:          Indces of the HG mode to re-create.
    coeffcients:  Complex coefficients for each order=n+m LG mode required to
                  re-create HG_n,m.
    ps,ls:        LG mode indices corresponding to coefficients.
    """
    # Mode order
    N = n+m;
    
    # Create empty vectors for LG coefficients/ indices
    coefficients = np.linspace(0,0,N+1,dtype=np.complex_)
    ps = np.linspace(0,0,N+1)
    ls = np.linspace(0,0,N+1)
    
    # Calculate coefficients
    for j in np.arange(0,N+1):
        
        # Indices for coefficients
        l = 2*j-N
        p = int((N-np.abs(l))/2)
        
        ps[j] = p
        ls[j] = l
        
        signl = np.sign(l)
        if (l==0):
            signl = 1.0

        # Coefficient
        c = (signl*1j)**m * np.sqrt(factorial(N-m)*factorial(m)/(2**N * factorial(np.abs(l)+p)*factorial(p)))
        c = c * (-1.0)**p * (-2.0)**m * scipy.special.eval_jacobi(m,np.abs(l)+p-m,p-m,0.0)

        coefficients[j] = c
        
    return coefficients, ps, ls