maps.py 32.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
------------------------------------------------------
Utility functions for handling mirror surface
maps. Some functions based on earlier version
in Matlab (http://www.gwoptics.org/simtools/)
Work in progress, currently these functions are
untested!

http://www.gwoptics.org/pykat/
------------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

16
from pykat.optics.romhom import makeWeightsNew
17
18
from scipy.interpolate import interp2d, interp1d
from pykat.maths.zernike import *        
19
from pykat.exceptions import BasePyKatException
20

Daniel Brown's avatar
Daniel Brown committed
21
import numpy as np
22
import math
23
import pickle
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

class MirrorROQWeights:
    
    def __init__(self, rFront, rBack, tFront, tBack):
        self.rFront = rFront
        self.rBack = rBack
        self.tFront = tFront
        self.tBack = tBack
    
    def writeToFile(self, romfilename):
        with open(romfilename + ".rom", "w+") as f:
            if self.rFront is not None: self.rFront.writeToFile(f=f)
            if self.rBack  is not None: self.rBack.writeToFile(f=f)
            if self.tFront is not None: self.tFront.writeToFile(f=f)
            if self.tBack  is not None: self.tBack.writeToFile(f=f)
                    
Daniel Brown's avatar
Daniel Brown committed
40
class surfacemap(object):
41
42
43
44
45
46
47
    def __init__(self, name, maptype, size, center, step_size, scaling, data=None):
        
        self.name = name
        self.type = maptype
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
48
49
        self.__interp = None
        
50
        if data is None:
Daniel Brown's avatar
Daniel Brown committed
51
52
53
54
            self.data = np.zeros(size)
        else:
            self.data = data

55
        self._rom_weights = None
56
57
58
59
60
61
62
        
    def write_map(self, filename):
        with open(filename,'w') as mapfile:
            
            mapfile.write("% Surface map\n")
            mapfile.write("% Name: {0}\n".format(self.name))
            mapfile.write("% Type: {0}\n".format(self.type))
63
            mapfile.write("% Size: {0} {1}\n".format(self.data.shape[0], self.data.shape[1]))
64
65
66
67
68
69
70
71
72
73
            mapfile.write("% Optical center (x,y): {0} {1}\n".format(self.center[0], self.center[1]))
            mapfile.write("% Step size (x,y): {0} {1}\n".format(self.step_size[0], self.step_size[1]))
            mapfile.write("% Scaling: {0}\n".format(float(self.scaling)))
            mapfile.write("\n\n")
            
            for i in range(0, self.data.shape[0]):
                for j in range(0, self.data.shape[1]):
                    mapfile.write("%.15g " % self.data[i,j])
                mapfile.write("\n")
    
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    @property
    def data(self):
        return self.__data
    
    @data.setter
    def data(self, value):
        self.__data = value
        self.__interp = None
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None

Daniel Brown's avatar
Daniel Brown committed
110
111
    @property
    def x(self):
112
        return self.step_size[0] * (np.array(range(0, self.data.shape[0])) - self.center[0])
Daniel Brown's avatar
Daniel Brown committed
113
114
115
        
    @property
    def y(self):
116
        return self.step_size[1] * (np.array(range(0, self.data.shape[1]))- self.center[1])
117
118
119
120
121

    @property
    def size(self):
        return self.data.shape
            
122
123
    @property
    def offset(self):
124
        return np.array(self.step_size)*(np.array(self.center) - (np.array(self.size)-1)/2.0)
125
126
127
128
    
    @property
    def ROMWeights(self):
        return self._rom_weights
129
    
130
    def z_xy(self, x=None, y=None, wavelength=1064e-9, direction="reflection_front", nr1=1.0, nr2=1.0):
131
132
133
134
135
136
137
        """
        For this given map the field perturbation is computed. This data
        is used in computing the coupling coefficient. It returns a grid
        of complex values representing the change in amplitude or phase
        of the field.
        
            x, y      : Points to interpolate at, 'None' for no interpolation.
138
            
139
            wavelength: Wavelength of light in vacuum [m]
140
141
142
143
144
145
146
147
148
            
            direction : Sets which distortion to return, as beams travelling
                        in different directions will see different distortions.
                        Options are:
                                "reflection_front"
                                "transmission_front" (front to back)
                                "transmission_back" (back to front)
                                "reflection_back"
                                
149
            nr1       : refractive index on front side
150
            
151
            nr2       : refractive index on back side
152
            
153
154
155
156
        """
        
        assert(nr1 >= 1)
        assert(nr2 >= 1)
157
        
158
        if x is None and y is None:
159
160
            data = self.scaling * self.data
        else:
161
            if self.__interp is None:
162
163
164
                self.__interp = interp2d(self.x, self.y, self.data * self.scaling)
                
            data = self.__interp(x, y)
165
166
        
        if direction == "reflection_front" or direction == "reflection_back":
167
            if "phase" in self.type:
168
                k = math.pi * 2 / wavelength
169
                
170
171
                if direction == "reflection_front":
                    return np.exp(-2j * nr1 * k * data)
172
                else:
173
                    return np.exp(2j * nr2 * k * data[:,::-1])
174
                
175
            elif "absorption" in self.type:
176
                if direction == "reflection_front":
177
178
179
                    return np.sqrt(1.0 - data)
                else:
                    return np.sqrt(1.0 - data[:, ::-1])
180
181
182
183
184
            elif "surface_motion" in self.type:
                if direction == "reflection_front":
                    return data
                else:
                    return data[:, ::-1]
185
186
            else:
                raise BasePyKatException("Map type needs handling")
187
                
188
        elif direction == "transmission_front" or direction == "transmission_back":
189
190
            if "phase" in self.type:
                k = math.pi * 2 / wavelength
191
                
192
193
                if direction == "transmission_front":
                    return np.exp((nr1-nr2) * k * data)
194
                else:
195
                    return np.exp((nr2-nr1) * k * data[:, ::-1])
196
                
197
            elif "absorption" in self.type:
198
                if direction == "transmission_front":
199
200
201
                    return np.sqrt(1.0 - data)
                else:
                    return np.sqrt(1.0 - data[:, ::-1])
202
203
204
                    
            elif "surface_motion" in self.type:
                return np.ones(data.shape)
205
206
            else:
                raise BasePyKatException("Map type needs handling")
207
                
208
        else:
209
            raise ValueError("Direction not valid")
210
        
Daniel Brown's avatar
Daniel Brown committed
211

212
    
213
214
    def generateROMWeights(self, EIxFilename, EIyFilename=None, nr1=1.0, nr2=1.0, verbose=False, interpolate=False, newtonCotesOrder=8):
        
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        if interpolate == True:
            # Use EI nodes to interpolate if we
            with open(EIxFilename, 'rb') as f:
                EIx = pickle.load(f)

            if EIyFilename is None:
                EIy = EIx
            else:
                with open(EIyFilename, 'rb') as f:
                    EIy = pickle.load(f)

            x = EIx.x
            x.sort()
            nx = np.unique(np.hstack((x, -x[::-1])))
        
            y = EIy.x
            y.sort()
            ny = np.unique(np.hstack((y, -y[::-1])))
            
            self.interpolate(nx, ny)
        
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        w_refl_front, w_refl_back, w_tran_front, w_tran_back = (None, None, None, None)
        
        if "reflection" in self.type or "both" in self.type:
            w_refl_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_front")
            
            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
            
            w_refl_back = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
252

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        if "transmission" in self.type or "both" in self.type:                                      
            w_tran_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_front")

            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
                                            
            w_tran_back  = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
            
        self._rom_weights = MirrorROQWeights(w_refl_front, w_refl_back, w_tran_front, w_tran_back)
        
        return self._rom_weights
            
272
273
274
    def interpolate(self, nx, ny, **kwargs):
        """
        Interpolates the map for some new x and y values.
275
        
276
277
278
279
280
281
282
283
284
285
        Uses scipy.interpolate.interp2d and any keywords arguments are
        passed on to it, thus settings like interpolation type and
        fill values can be set.
        
        The range of nx and ny must contain the value zero so that the
        center point of the map can be set.
        """

        D = interp2d(self.x, self.y, self.data, **kwargs)
        
286
        data = D(nx-self.offset[0], ny-self.offset[1])
287
        
288
289
        Dx = interp1d(nx, np.arange(0,len(nx)))
        Dy = interp1d(ny, np.arange(0,len(ny)))
290
291
292
293
294
        
        self.center = (Dx(0), Dy(0))
        self.step_size = (nx[1]-nx[0], ny[1]-ny[0])
        self.data = data

295
    # xlim and ylim given in centimeters
296
    def plot(self, show=True, clabel=None, xlim=None, ylim=None):
297
298
        import pylab
        
299
        if xlim is not None:
300
            # Sorts out the x-values within xlim
301
302
303
304
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
305
            # Uses the whole available x-range
306
307
308
309
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
310
        if ylim is not None:
311
            # Sorts out the y-values within ylim
312
313
314
315
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
316
            # Uses the whole available y-range
317
318
319
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]
320
            
321
322
323
324
        # ALSO (SEE LONG TEXT BELOW) ADDED BY DT TO FIX LIMITS
        # ------------------------------------------------------
        xlim,ylim = ylim,xlim
        # ------------------------------------------------------
325
        
326
        # min and max of z-values
327
328
329
        zmin = self.data[xmin:xmax,ymin:ymax].min()
        zmax = self.data[xmin:xmax,ymin:ymax].max()

330
        # 100 factor for scaling to cm
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        xRange = 100*self.x
        yRange = 100*self.y
        
        # This line is added by DT to be able to plot
        # rectangular matrices. Effectively, I swapped the
        # x/y-axes. Preferrably, this should be corrected above
        # instead, but since I'm not completely sure of how the
        # coordinate system of these maps look I'll wait with
        # that. Here, I assume that row 0 of the matrix should
        # be plotted with y = Y[0], and that column 0 should be
        # plotted with x = X[0]. To be fully correct, I should
        # add one column and one row so that each matrix value
        # is plotted within the correct rectangle. 
        # ------------------------------------------------------
        xRange, yRange = np.meshgrid(yRange,xRange)
        # ------------------------------------------------------
        
348
        fig = pylab.figure()
349
        
Daniel Brown's avatar
updates    
Daniel Brown committed
350
        pcm = pylab.pcolormesh(xRange, yRange, self.data)
351
        pcm.set_rasterized(True)
352
        
353
354
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')
355

356
357
        if xlim is not None: pylab.xlim(xlim)
        if ylim is not None: pylab.ylim(ylim)
358
            
359
        pylab.title('Surface map {0}, type {1}'.format(self.name, self.type))
360

Daniel Brown's avatar
updates    
Daniel Brown committed
361
362
        cbar = pylab.colorbar()
        #cbar.set_clim(zmin, zmax)
363
        
364
        if clabel is not None:
365
            cbar.set_label(clabel)
366
    
367
368
        if show:
            pylab.show()
369
        
370
        return fig
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

class mergedmap:
    """
    A merged map combines multiple surfaces map to form one. Such a map can be used
    for computations of coupling coefficients but it cannot be written to a file to 
    be used with Finesse. For this you must output each map separately.
    
    """
    
    def __init__(self, name, size, center, step_size, scaling):
        
        self.name = name
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
        self.__interp = None
        self._rom_weights = None
        self.__maps = []
389
390
        self.weighting = None
        
391
392
393
394
395
396
397
398
399
400
401
402
    def addMap(self, m):
        self.__maps.append(m)
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    @property
    def type(self):
        hasR = False
        hasT = False
        
        _type = ""
        
        for m in self.__maps:
            if "reflection" in m.type: hasR = True
            
            if "transmission" in m.type: hasT = True
            
            if "both" in m.type:
                hasR = True
                hasT = True
        
        if hasR and not hasT: _type += "reflection "
        elif hasR and not hasT: _type += "transmission "
        elif hasR and hasT: _type += "both "
        
        return _type
        
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None
    
    @property
    def x(self):
445
        return self.step_size[0] * (np.array(range(0, self.size[0])) - self.center[0])
446
447
448
        
    @property
    def y(self):
449
        return self.step_size[1] * (np.array(range(0, self.size[1])) - self.center[1])
450
451
452
453
454
455
456

    @property
    def size(self):
        return self.__maps[0].data.shape
            
    @property
    def offset(self):
457
        return np.array(self.step_size)*(np.array(self.center) - (np.array(self.size)-1)/2.0)
458
459
460
461
462
    
    @property
    def ROMWeights(self):
        return self._rom_weights
    
463
    def z_xy(self, wavelength=1064e-9, direction="reflection_front", nr1=1.0, nr2=1.0):
464
465
466
467
468
469
        
        z_xy = np.ones(self.size, dtype=np.complex128)
        
        for m in self.__maps:
            z_xy *= m.z_xy(wavelength=wavelength, direction=direction, nr1=nr1, nr2=nr2)
            
470
471
472
473
        if self.weighting is None:
            return z_xy
        else:
            return z_xy * self.weighting
474
        
475
    def generateROMWeights(self, EIxFilename, EIyFilename=None, verbose=False, interpolate=False, newtonCotesOrder=8, nr1=1, nr2=1):
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        if interpolate == True:
            # Use EI nodes to interpolate if we
            with open(EIxFilename, 'rb') as f:
                EIx = pickle.load(f)

            if EIyFilename is None:
                EIy = EIx
            else:
                with open(EIyFilename, 'rb') as f:
                    EIy = pickle.load(f)

            x = EIx.x
            x.sort()
            nx = np.unique(np.hstack((x, -x[::-1])))
        
            y = EIy.x
            y.sort()
            ny = np.unique(np.hstack((y, -y[::-1])))
            
            self.interpolate(nx, ny)
        
497
        w_refl_front, w_refl_back, w_tran_front, w_tran_back = (None, None, None, None)
498
        
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        if "reflection" in self.type or "both" in self.type:
            w_refl_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_front")
            
            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
            
            w_refl_back = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="reflection_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2

        if "transmission" in self.type or "both" in self.type:                                      
            w_tran_front = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_front")

            w_refl_front.nr1 = nr1
            w_refl_front.nr2 = nr2
                                            
            w_tran_back  = makeWeightsNew(self, EIxFilename, EIyFilename,
                                      verbose=verbose, newtonCotesOrderMapWeight=newtonCotesOrder,
                                      direction="transmission_back")
            
            w_refl_back.nr1 = nr1
            w_refl_back.nr2 = nr2
            
        self._rom_weights = MirrorROQWeights(w_refl_front, w_refl_back, w_tran_front, w_tran_back)
        
        return self._rom_weights
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

    def interpolate(self, nx, ny, **kwargs):
        """
        Interpolates all the maps that are used to fc
        
        Uses scipy.interpolate.interp2d and any keywords arguments are
        passed on to it, thus settings like interpolation type and
        fill values can be set.
        
        The range of nx and ny must contain the value zero so that the
        center point of the map can be set.
        """

        for m in self.__maps:
            m.interpolate(nx, ny)

    def plot(self, mode="absorption", show=True, clabel=None, xlim=None, ylim=None, wavelength=1064e-9):
        
        import pylab
        
        if xlim is not None:
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
        if ylim is not None:
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]

        if mode == "absorption":
            # plots how much of field is absorbed
            data = 1-np.abs(self.z_xy())
        elif mode == "meter":
            # plot the phase in terms of meters of displacement
            k = 2*np.pi/wavelength
            data = np.angle(self.z_xy()) / (2*k)
            
        zmin = data[xmin:xmax,ymin:ymax].min()
        zmax = data[xmin:xmax,ymin:ymax].max()

        # 100 factor for scaling to cm
        xrange = 100*self.x
        yrange = 100*self.y

        fig = pylab.figure()
        axes = pylab.pcolormesh(xrange, yrange, data, vmin=zmin, vmax=zmax)
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')

        if xlim is not None: pylab.xlim(xlim)
        if ylim is not None: pylab.ylim(ylim)

        pylab.title('Merged map {0}, mode {1}'.format(self.name, mode))

        cbar = fig.colorbar(axes)
        cbar.set_clim(zmin, zmax)
597
        
598
599
600
601
602
603
604
605
        if clabel is not None:
            cbar.set_label(clabel)
    
        if show:
            pylab.show()
        
        return fig

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
class aperturemap(surfacemap):
    
    def __init__(self, name, size, step_size, R):
        surfacemap.__init__(self, name, "absorption both", size, (np.array(size)+1)/2.0, step_size, 1)
        self.R = R
        
    @property
    def R(self):
        return self.__R
    
    @R.setter
    def R(self, value):
        self.__R = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        radius = np.sqrt(xx**2 + yy**2)
        
        self.data = np.zeros(self.size)
        self.data[radius > self.R] = 1.0
        
        
class curvedmap(surfacemap):
    
    def __init__(self, name, size, step_size, Rc):
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-6)
        self.Rc = Rc
        
    @property
    def Rc(self):
        return self.__Rc
    
    @Rc.setter
    def Rc(self, value):
        self.__Rc = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        Rsq = xx**2 + yy**2
        self.data = (self.Rc - math.copysign(1.0, self.Rc) * np.sqrt(self.Rc**2 - Rsq))/ self.scaling
Daniel Brown's avatar
Daniel Brown committed
646
647

class tiltmap(surfacemap):
648
649
650
651
652
653
654
655
656
657
658
659
    """
    To create a tiltmap, plot it and write it to a file to use with Finesse:
        
        tilts = (1e-6, 1e-8) # tilt in (x, y) radians\
        dx = 1e-4
        L = 0.2
        N = L/dx
        
        tmap = tiltmap("tilt", (N, N), (dx,dx), tilts)
        tmap.plot()
        tmap.write_map("mytilt.map")
    """
Daniel Brown's avatar
Daniel Brown committed
660
661
    
    def __init__(self, name, size, step_size, tilt):
Daniel Brown's avatar
Daniel Brown committed
662
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-9)
Daniel Brown's avatar
Daniel Brown committed
663
664
665
666
667
668
669
670
671
672
673
674
        self.tilt = tilt
        
    @property
    def tilt(self):
        return self.__tilt
    
    @tilt.setter
    def tilt(self, value):
        self.__tilt = value
        
        xx, yy = np.meshgrid(self.x, self.y)
        
675
        self.data = (yy * self.tilt[1] + xx * self.tilt[0])/self.scaling
Daniel Brown's avatar
Daniel Brown committed
676
        
Daniel Brown's avatar
Daniel Brown committed
677
678
679

class zernikemap(surfacemap):
	def __init__(self, name, size, step_size, radius, scaling=1e-9):
Daniel Brown's avatar
Daniel Brown committed
680
		surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, scaling)
Daniel Brown's avatar
Daniel Brown committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
		self.__zernikes = {}
		self.radius = radius
		
	@property
	def radius(self): return self.__radius

	@radius.setter
	def radius(self, value, update=True):
		self.__radius = float(value)
		if update: self.update_data()

	def setZernike(self, m, n, amplitude, update=True):
		self.__zernikes["%i%i" % (m, n)] = (m,n,amplitude)
		if update: self.update_data()

	def update_data(self):
		X,Y = np.meshgrid(self.x, self.y)
		R = np.sqrt(X**2 + Y**2)
		PHI = np.arctan2(Y, X)

		data = np.zeros(np.shape(R))

		for i in self.__zernikes.items():
			data += i[1][2] * zernike(i[1][0], i[1][1], R/self.radius, PHI)

		self.data = data
	
			
	
710
711
712
713
def read_map(filename, mapFormat='finesse'):
    # Function turning input x into float.
    g = lambda x: float(x)
    if mapFormat == 'finesse':
714
        
715
        with open(filename, 'r') as f:
716
        
717
718
719
720
721
722
723
            f.readline()
            name = f.readline().split(':')[1].strip()
            maptype = f.readline().split(':')[1].strip()
            size = tuple(map(g, f.readline().split(':')[1].strip().split()))
            center = tuple(map(g, f.readline().split(':')[1].strip().split()))
            step = tuple(map(g, f.readline().split(':')[1].strip().split()))
            scaling = float(f.readline().split(':')[1].strip())
724
725
726
        
        
        
727
728
729
        data = np.loadtxt(filename, dtype=np.float64,ndmin=2,comments='%')    


730
731
732
    # Converts raw zygo and ligo mirror maps to the finesse
    # format. Based on translation of the matlab scripts
    # 'FT_read_zygo_map.m' and 'FT_read_ligo_map.m'
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    elif mapFormat == 'ligo' or mapFormat == 'zygo':
        if mapFormat == 'ligo':
            isLigo = True
            # Remove '_asc.dat' for output name
            name = filename.split('_')
            name = '_'.join(name[:-1])
        else:
            isLigo = False
            tmp = filename.split('.')
            fileFormat = tmp[-1].strip()
            name = '.'.join(tmp[:-1])
            if fileFormat == 'asc':
                isAscii = True
            else:
                isAscii = False
                
        # Unknowns (why are these values hard coded here?)
        # ------------------------------------------------------
        # Standard maps have type 'phase' (they store surface
        # heights)
        maptype = 0
        # Both (reflected and transmitted) light fields are
        # affected
        field = 0
        # Measurements in nanometers
        scaling = 1.0e-9
        # ------------------------------------------------------

        # Reading header of LIGO-map (Zygo file? Says Zygo in
        # header...)
        # ------------------------------------------------------
        with open(filename, 'r') as f:
            # Skip first two lines
            for k in range(2):
                f.readline()
            # If zygo-file, and ascii format, there is intensity
            # data. Though, the Ligo files I have seen are also
            # zygo-files, so maybe we should extract this data
            # from these too?
            line = f.readline()
            if not isLigo and isAscii:
                iCols = float(line.split()[2])
                iRows = float(line.split()[3])
                
            line = f.readline().split()
            # Unknown
            # ----------------------------------------------
            if isLigo:
                y0 = float(line[0])
                x0 = float(line[1])
                rows = float(line[2])
                cols = float(line[3])
            else:
                y0 = float(line[1])
                x0 = float(line[0])
                rows = float(line[3])
                cols = float(line[2])
            # ----------------------------------------------

            # Skipping three lines
            for k in range(3):
                f.readline()
            line = f.readline().split()

            # Unknown (Scaling factors)
            # ----------------------------------------------
            # Interfeometric scaling factor (?)
            S = float(line[1])
            # wavelength (of what?)
            lam = float(line[2])
            # Obliquity factor (?)
            O = float(line[4])
            # ----------------------------------------------
            # Physical step size in metres
            if line[6] != 0:
                xstep = float(line[6])
                ystep = float(line[6])
            else:
                xstep = 1.0
                ystep = 1.0
                
            # Skipping two lines
            for k in range(2):
                f.readline()
            line = f.readline().split()

            # Unknown
            # Resolution of phase data points, 1 or 0.
            phaseRes = float(line[0])
            if phaseRes == 0:
                R = 4096
            elif phaseRes == 1:
                R = 32768
            else:
                print('Error, invalid phaseRes')

            if not isLigo and not isAscii:
                # zygo .xyz files give phase data in microns.
                hScale = 1.0e-6
            else:
                # zygo .asc and ligo-files give phase data in
                # internal units. To convert to m use hScale
                # factor.
                hScale = S*O*lam/R
                
            if not isLigo and not isAscii:
                print('Not implemented yet, need a .xyz-file ' +
                      'to do this.')
                return 0
                
            # Skipping four lines
            for k in range(4):
                f.readline()
            if not isLigo and isAscii:
                # Reading intensity data
                iData = np.array([])
                line = f.readline().split()
                while line[0] != '#':
                    iData = np.append(iData, map(g,line))
                    line = f.readline().split()
                # Reshaping intensity data
                iData = iData.reshape(iRows, iCols).transpose()
                iData = np.rot90(iData)
            else:
                # Skipping lines until '#' is found.
                while f.readline()[0] != '#':
                    pass
                
            # Reading phase data
            # ----------------------------------------------
            # Array with the data
            data = np.array([])
            # Reading data until next '#' is reached.
            line = f.readline().split()
            while line[0] != '#':
                data = np.append(data, map(g,line))
                line = f.readline().split()
            # ----------------------------------------------

        
        if isLigo:
            # Setting all the points outside of the mirror
            # surface to NaN. These are given a large number
            # in the file. 
            data[data == data[0]] = np.nan
            
            # Reshaping into rows and columns
            data = data.reshape(cols,rows).transpose()
            # Pretty sure that the lines below can be done
            # more efficient, but it's quick as it is.
            # ----------------------------------------------
            # Flipping right and left
            data = np.fliplr(data)
            # Rotating 90 degrees clockwise 
            data = np.rot90(data,-1)
            # Flipping right and left
            data = np.fliplr(data)
            # ----------------------------------------------
        else:
            if isAscii:
                # Setting all the points outside of the mirror
                # surface to NaN. These are given a large number
                # in the file. 
                data[data >= 2147483640] = np.nan
            # Reshaping into rows and columns.
            data = data.reshape(rows,cols).transpose()
            # Rotating to make (0,0) be in bottom left
            # corner. 
            data = np.rot90(data)
            
        # Scaling to nanometer (change this to a user
        # defined value?) Still don't know where
        # 'hScale' really comes from.
        data = (hScale/scaling)*data
        size = data.shape

        if maptype == 0:
            mType = 'phase'
        else:
            mType = 'Unknown'
        if field == 0:
            fType = 'both'
        else:
            fType = 'unknown'

        maptype = ' '.join([mType, fType])

        # Wrong! fix by creating recenter method.
        center = tuple([x0,y0])
        step = tuple([xstep,ystep])

        # Simple re-centering of mirror, translated from
        # 'FT_recenter_mirror_map.m'
        # -------------------------------------------------
        # Matrix with ones where data element is not NaN.
        isNan = np.isnan(data)
        notNan = isNan==False
        # Row and column indices with non-NaN elements
        rIndx, cIndx = notNan.nonzero()
        # Finding centres
        x0 = float(cIndx.sum())/len(cIndx)
        y0 = float(rIndx.sum())/len(rIndx)
        center = tuple([x0,y0])
        # -------------------------------------------------
937
        
938
939
940
941
        # Changing NaN to zeros. Just to be able to plot the
        # map with surfacemap.plot().
        data[isNan] = 0 
    
942
        
943
944
945
    # TODO: Add options for reading .xyz-zygo and virgo maps.
    # The intensity data is not used to anything here. Remove
    # or add to pykat?
946
    
947
948
949

    return surfacemap(name, maptype, size, center, step,
                      scaling, data)
950
    
951
952


953
954
955
956
957
958
959
# TODO: Recreate functions from Simtools:, List taken from: ligo_maps/FT_convert_ligo_map_for_finesse.m
# map=FT_recenter_mirror_map(map);
# [map2,A2,Rc_out]=FT_remove_zernike_curvatures_from_map(map,Rc_in);
# [map2,Rc_out]=FT_remove_curvature_from_mirror_map(map,Rc_in,w, display_style);
# [map2,offset]=FT_remove_offset_from_mirror_map(map2,1e-2);
# [map3,x_tilt,y_tilt,offset2]=FT_remove_piston_from_mirror_map(map2,w, display_style);
# map3=FT_invert_mirror_map(map3, invert);
960
961
962

# Understand the internal coordinate system of the
# maps/matrices.