gaussian_beams.py 11.2 KB
Newer Older
1
import pykat.exceptions as pkex
2
import numpy as np
3
import math
4
import copy
5
6
7
import warnings
import cmath
from scipy.special import hermite
8
from pykat.SIfloat import SIfloat
9

10
    
11
12
class gauss_param(object):
    """
13
    Use beam_param instead, will be the future name of this object.
14
    
15
16
    Gaussian beam complex parameter
    
Daniel Brown's avatar
Daniel Brown committed
17
    beam_param is effectively a complex number with extra
18
19
    functionality to determine beam parameters.
    
Daniel Brown's avatar
Daniel Brown committed
20
    Defaults to 1064e-9m for wavelength and refractive index 1
21
22
23
    usage:
        q = gauss_param(w0=w0, z=z)
        q = gauss_param(z=z, zr=zr)
24
        q = gauss_param(w=w, rc=rc)
25
        q = gauss_param(q=a) # where a is a complex number
26
27
28
29
30
31
32
        
        or change default wavelength and refractive index with:
        
        q = gauss_param(wavelength, nr, w0=w0, zr=zr)
    """
    
    def __init__(self, wavelength=1064e-9, nr=1, *args, **kwargs):
33
34
35
        if self.__class__ != beam_param:
            warnings.warn("Name changed. Use beam_param instead of gauss_param.")
            
36
        self.__q = None
37
38
        self.__lambda = SIfloat(wavelength)
        self.__nr = SIfloat(nr)
39
40
        
        if len(args) == 1:
Daniel Brown's avatar
Daniel Brown committed
41
            self.__q = complex(args[0])
42
43
44
45
46
        
        elif len(kwargs) == 1:
            if "q" in kwargs:
                self.__q = complex(kwargs["q"])        
            else:
47
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
48
                
49
50
51
        elif len(kwargs) == 2:        
            
            if "w0" in kwargs and "z" in kwargs:
52
                q = SIfloat(kwargs["z"]) + 1j * math.pi*SIfloat(kwargs["w0"])**2/(self.__lambda/self.__nr)
53
            elif "z" in kwargs and "zr" in kwargs:
54
                q = SIfloat(kwargs["z"]) + 1j * SIfloat(kwargs["zr"]) 
55
            elif "rc" in kwargs and "w" in kwargs:
56
                one_q = 1 / SIfloat(kwargs["rc"]) - 1j * self.__lamda / (math.pi * self.__nr * SIfloat(kwargs["w"])**2)
57
58
                q = 1/one_q
            else:
59
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
60
61
62
63
64
65
66
                
            self.__q = q
        else:
            raise pkex.BasePyKatException("Incorrect usage for gauss_param constructor")
    
    @property
    def wavelength(self): return self.__lambda
67
68
    @wavelength.setter
    def wavelength(self,value): self.__lambda = SIfloat(value)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    
    @property
    def nr(self): return self.__nr
    
    @property
    def q(self): return self.__q
    
    @property
    def z(self): return self.__q.real
    
    @property
    def zr(self): return self.__q.imag
    
    @property
83
    def w(self):
84
        return np.abs(self.__q)* np.sqrt(self.__lambda / (self.__nr * math.pi * self.__q.imag))
85
    
86
    def beamsize(self, z=None, wavelength=None, nr=None, w0=None):
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.abs(q)*np.sqrt(wavelength / (nr * math.pi * q.imag))
    
    def gouy(self, z=None, wavelength=None, nr=None, w0=None):
        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.arctan2(q.real, q.imag)
        
137
138
    @property
    def w0(self):
139
        return np.sqrt(self.__q.imag * self.__lambda / (self.__nr * math.pi))    
140
141
142

    @property
    def Rc(self):
143
144
145
146
147
148
149
150
151
        def __rc(z, zr):
            if z != 0:
                return z * (1 + (zr/z)**2)
            else:
                return float("inf")
                
        v = np.vectorize(__rc)
        
        return v(self.z, self.zr)
152
    
153
    def curvature(self, z=None, wavelength=None, nr=None, w0=None):
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return q.real * (1+ (q.imag/q.real)**2)
        
178
    def conjugate(self):
Daniel Brown's avatar
Daniel Brown committed
179
        return beam_param(self.__lambda, self.__nr, self.__q.conjugate())
180
181
182
183
184
185
186
187
    
    def __complex__(self):
        return self.__q
    
    def __str__(self):
        return str(self.__q)
    
    def __mul__(self, a):
Daniel Brown's avatar
Daniel Brown committed
188
        return beam_param(self.__lambda, self.__nr, self.__q * complex(a))
189
190
    
    def __imul__(self, a):
191
        self.__q *= complex(a)
192
193
194
195
196
        return self
        
    __rmul__ = __mul__
    
    def __add__(self, a):
Daniel Brown's avatar
Daniel Brown committed
197
        return beam_param(self.__lambda, self.__nr, self.__q + complex(a))
198
199
200
201
202
203
204
205
    
    def __iadd__(self, a):
        self.__q += complex(a)
        return self
        
    __radd__ = __add__
    
    def __sub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
206
        return beam_param(self.__lambda, self.__nr, self.__q - complex(a))
207
208
209
210
211
    
    def __isub__(self, a):
        self.__q -= complex(a)
        return self
        
212
    def __rsub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
213
        return beam_param(self.__lambda, self.__nr, complex(a) - self.__q)
214
215
    
    def __div__(self, a):
Daniel Brown's avatar
Daniel Brown committed
216
        return beam_param(self.__lambda, self.__nr, self.__q / complex(a))
217
218
219
220
221
222
    
    def __idiv__(self, a):
        self.__q /= complex(a)
        return self
    
    def __pow__(self, q):
Daniel Brown's avatar
Daniel Brown committed
223
        return beam_param(self.__lambda, self.__nr, self.__q**q)
224
225

    def __neg__(self, q):
Daniel Brown's avatar
Daniel Brown committed
226
        return beam_param(self.__lambda, self.__nr, -self.__q)
227
228
        
    def __eq__(self, q):
229
230
231
        if q == None:
            return False
            
232
233
234
235
236
237
238
239
240
241
        return complex(q) == self.__q
        
    @property
    def real(self): return self.__q.real
    @real.setter
    def real(self, value): self.__q.real = SIfloat(value)
    
    @property
    def imag(self): return self.__q.imag
    @imag.setter
242
    def imag(self, value): self.__q.imag = SIfloat(value)
243
244
245
246

    # reverse beam direction 
    def reverse(self):
        self.__q = -1.0 * self.__q.real + 1j * self.__q.imag
247

248

249
250
class beam_param(gauss_param):
    pass
251
    
252
class HG_beam(object):
253
254
255
256
257
    
    def __init__(self, qx, qy=None, n=0, m=0):
        self._qx = copy.deepcopy(qx)
        self._2pi_qrt = math.pow(2.0/math.pi, 0.25)
        
258
        if qy == None:
259
            self._qy = copy.deepcopy(qx)
260
        else:
261
            self._qy = copy.deepcopy(qy)
262
    
263
264
265
266
        self._n = int(n)
        self._m = int(m)
        self._hn = hermite(self._n)
        self._hm = hermite(self._m)
267
268
269
270
271
272
        self._calc_constants()
        
    @property
    def n(self): return self._n
    @n.setter
    def n(self,value): 
273
        self._n = int(value)
274
        self._calc_constants()
275
        self._hn = hermite(self._n)
276
277
278
279
280

    @property
    def m(self): return self._m
    @m.setter
    def m(self,value): 
281
        self._m = int(value)
282
        self._calc_constants()
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        self._hm = hermite(self._m)
            
    @property
    def q(self):
        if self._qx.q == self._qy.q:
            return self._qx.q
        else:
            return (self._qx.q, self._qy.q)
    @q.setter
    def q(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
            self._qy = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
            self._qy = beam_param(q=complex(value))
    
    @property
    def qx(self):
        return self._qx.q
        
    @qx.setter
    def qx(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
    
    @property
    def qy(self):
        return self._qy.q
314
        
315
316
317
318
319
320
    @qy.setter
    def qy(self, value):
        if value.__class__ == beam_param:
            self._qy = copy.deepcopy(value)
        else:
            self._qy = beam_param(q=complex(value))
321
322
323
324
325
326
327
328
329
    
    @property
    def constant_x(self):
        return self.__xpre_const
        
    @property
    def constant_y(self):
        return self.__ypre_const
        
330
331
    def _calc_constants(self):
        self.__xpre_const = math.pow(2.0/math.pi, 0.25)
332
        self.__xpre_const *= np.sqrt(1.0/(self._qx.w0 * 2**(self._n) * np.math.factorial(self._n)))
333
        self.__xpre_const *= np.sqrt(1j*self._qx.imag / self._qx.q)
334
        self.__xpre_const *= ((1j*self._qx.imag * self._qx.q.conjugate())/(-1j*self._qx.imag * self._qx.q)) ** ( self._n/2.0)
335
336
        
        self.__ypre_const = math.pow(2.0/math.pi, 0.25)
337
        self.__ypre_const *= np.sqrt(1.0/(self._qy.w0 * 2**(self._m) * np.math.factorial(self._m)))
338
        self.__ypre_const *= np.sqrt(1j*self._qy.imag / self._qy.q)
Daniel Brown's avatar
Daniel Brown committed
339
        self.__ypre_const *= ((1j*self._qy.imag * self._qy.q.conjugate())/(-1j*self._qy.imag * self._qy.q)) **(self._m/2.0)
340
341
342
343
344
345
346
347
348
    
        self.__sqrt2_wxz = math.sqrt(2) / self._qx.w
        self.__sqrt2_wyz = math.sqrt(2) / self._qy.w
        
        self.__kx =  2*math.pi / self._qx.wavelength
        self.__ky =  2*math.pi / self._qy.wavelength
        
        self.__invqx = 1/ self._qx.q
        self.__invqy = 1/ self._qy.q
349
    
Daniel Brown's avatar
Daniel Brown committed
350
    def Un(self, x):
351
352
        return self.__xpre_const * self._hn(self.__sqrt2_wxz * x) * np.exp(-0.5j * self.__kx * x*x * self.__invqx)
    
Daniel Brown's avatar
Daniel Brown committed
353
354
    def Um(self, y):
        return self.__ypre_const * self._hm(self.__sqrt2_wyz * y) * np.exp(-0.5j * self.__ky * y*y * self.__invqy)
355
        
356
357
358
359
    def Unm(self, x, y):
        _un = self.Un(x)  
        _um = self.Um(y)
        return np.outer(_un, _um)
360
361
362
363
364
365
366
367
368
369
        
    def plot(self, ndx=100, ndy=100, xscale=4, yscale=4):
        import pylab
        
        xrange = xscale * np.linspace(-self._qx.w, self._qx.w, ndx)
        yrange = yscale * np.linspace(-self._qy.w, self._qy.w, ndy)

        dx = xrange[1]-xrange[0]
        dy = yrange[1]-yrange[0]

370
        data = self.Unm(xrange,yrange)
371
372
373
374
375
376
377

        fig = pylab.figure()
        axes = pylab.imshow(np.abs(data), aspect=dx/dy, extent=[min(xrange),max(xrange),min(yrange),max(yrange)])
        pylab.xlabel('x [m]')
        pylab.ylabel('y [m]')
        cbar = fig.colorbar(axes)
        pylab.show()
378
        
379