gaussian_beams.py 10.9 KB
Newer Older
1
import pykat.exceptions as pkex
2
import numpy as np
3
import math
4
import copy
5
6
7
import warnings
import cmath
from scipy.special import hermite
8
from pykat.SIfloat import SIfloat
9
10
11

class gauss_param(object):
    """
Daniel Brown's avatar
Daniel Brown committed
12
    Use beam_param instead, will be future name of this object.
13
    
14
15
    Gaussian beam complex parameter
    
Daniel Brown's avatar
Daniel Brown committed
16
    beam_param is effectively a complex number with extra
17
18
    functionality to determine beam parameters.
    
Daniel Brown's avatar
Daniel Brown committed
19
    Defaults to 1064e-9m for wavelength and refractive index 1
20
21
22
    usage:
        q = gauss_param(w0=w0, z=z)
        q = gauss_param(z=z, zr=zr)
23
        q = gauss_param(w=w, rc=rc)
24
        q = gauss_param(q=a) # where a is a complex number
25
26
27
28
29
30
31
        
        or change default wavelength and refractive index with:
        
        q = gauss_param(wavelength, nr, w0=w0, zr=zr)
    """
    
    def __init__(self, wavelength=1064e-9, nr=1, *args, **kwargs):
32
33
34
        if self.__class__ != beam_param:
            warnings.warn("Name changed. Use beam_param instead of gauss_param.")
            
35
        self.__q = None
36
37
        self.__lambda = SIfloat(wavelength)
        self.__nr = SIfloat(nr)
38
39
        
        if len(args) == 1:
Daniel Brown's avatar
Daniel Brown committed
40
            self.__q = complex(args[0])
41
42
43
44
45
        
        elif len(kwargs) == 1:
            if "q" in kwargs:
                self.__q = complex(kwargs["q"])        
            else:
46
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
47
                
48
49
50
        elif len(kwargs) == 2:        
            
            if "w0" in kwargs and "z" in kwargs:
51
                q = SIfloat(kwargs["z"]) + 1j *float(math.pi*SIfloat(kwargs["w0"])**2/(self.__lambda/self.__nr) )
52
            elif "z" in kwargs and "zr" in kwargs:
53
                q = SIfloat(kwargs["z"]) + 1j *SIfloat(kwargs["zr"]) 
54
            elif "rc" in kwargs and "w" in kwargs:
55
                one_q = 1 / SIfloat(kwargs["rc"]) - 1j * self.__lamda / (math.pi * self.__nr * SIfloat(kwargs["w"])**2)
56
57
                q = 1/one_q
            else:
58
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and w or q, to define the beam parameter")
59
60
61
62
63
64
65
                
            self.__q = q
        else:
            raise pkex.BasePyKatException("Incorrect usage for gauss_param constructor")
    
    @property
    def wavelength(self): return self.__lambda
66
67
    @wavelength.setter
    def wavelength(self,value): self.__lambda = SIfloat(value)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    
    @property
    def nr(self): return self.__nr
    
    @property
    def q(self): return self.__q
    
    @property
    def z(self): return self.__q.real
    
    @property
    def zr(self): return self.__q.imag
    
    @property
82
    def w(self):
83
        return abs(self.__q)*math.sqrt(self.__lambda / (self.__nr * math.pi * self.__q.imag))
84
    
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    def w(self, z=None, wavelength=None, nr=None, w0=None):

        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.abs(q)*np.sqrt(wavelength / (nr * math.pi * q.imag))
    
    def gouy(self, z=None, wavelength=None, nr=None, w0=None):
        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return np.arctan2(q.real, q.imag)
        
136
137
138
139
140
141
142
143
144
145
146
    @property
    def w0(self):
        return math.sqrt(self.__q.imag * self.__lambda / (self.__nr * math.pi))    

    @property
    def Rc(self):
        if self.__q.real != 0:
            return abs(self.__q) / self.__q.real
        else:
            return float("inf")
    
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def Rc(self, z=None, wavelength=None, nr=None, w0=None):
        if z == None:
            z = self.z
        else:
            z = np.array(z)
                
        if wavelength == None:
            wavelength = self.wavelength
        else:
            wavelength = np.array(wavelength)
            
        if nr == None:
            nr = self.nr
        else:
            nr = np.array(nr)
            
        if w0 == None:
            w0 = self.w0
        else:
            w0 = np.array(w0)
        
        q = z + 1j * math.pi * w0 **2 / wavelength
        
        return q.real * (1+ (q.imag/q.real)**2)
        
172
    def conjugate(self):
Daniel Brown's avatar
Daniel Brown committed
173
        return beam_param(self.__lambda, self.__nr, self.__q.conjugate())
174
175
176
177
178
179
180
181
    
    def __complex__(self):
        return self.__q
    
    def __str__(self):
        return str(self.__q)
    
    def __mul__(self, a):
Daniel Brown's avatar
Daniel Brown committed
182
        return beam_param(self.__lambda, self.__nr, self.__q * complex(a))
183
184
    
    def __imul__(self, a):
185
        self.__q *= complex(a)
186
187
188
189
190
        return self
        
    __rmul__ = __mul__
    
    def __add__(self, a):
Daniel Brown's avatar
Daniel Brown committed
191
        return beam_param(self.__lambda, self.__nr, self.__q + complex(a))
192
193
194
195
196
197
198
199
    
    def __iadd__(self, a):
        self.__q += complex(a)
        return self
        
    __radd__ = __add__
    
    def __sub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
200
        return beam_param(self.__lambda, self.__nr, self.__q - complex(a))
201
202
203
204
205
    
    def __isub__(self, a):
        self.__q -= complex(a)
        return self
        
206
    def __rsub__(self, a):
Daniel Brown's avatar
Daniel Brown committed
207
        return beam_param(self.__lambda, self.__nr, complex(a) - self.__q)
208
209
    
    def __div__(self, a):
Daniel Brown's avatar
Daniel Brown committed
210
        return beam_param(self.__lambda, self.__nr, self.__q / complex(a))
211
212
213
214
215
216
    
    def __idiv__(self, a):
        self.__q /= complex(a)
        return self
    
    def __pow__(self, q):
Daniel Brown's avatar
Daniel Brown committed
217
        return beam_param(self.__lambda, self.__nr, self.__q**q)
218
219

    def __neg__(self, q):
Daniel Brown's avatar
Daniel Brown committed
220
        return beam_param(self.__lambda, self.__nr, -self.__q)
221
222
        
    def __eq__(self, q):
223
224
225
        if q == None:
            return False
            
226
227
228
229
230
231
232
233
234
235
        return complex(q) == self.__q
        
    @property
    def real(self): return self.__q.real
    @real.setter
    def real(self, value): self.__q.real = SIfloat(value)
    
    @property
    def imag(self): return self.__q.imag
    @imag.setter
236
    def imag(self, value): self.__q.imag = SIfloat(value)
237
238
239
240

    # reverse beam direction 
    def reverse(self):
        self.__q = -1.0 * self.__q.real + 1j * self.__q.imag
241
242
243

class beam_param(gauss_param):
    pass
244
    
245
class HG_beam(object):
246
247
248
249
250
    
    def __init__(self, qx, qy=None, n=0, m=0):
        self._qx = copy.deepcopy(qx)
        self._2pi_qrt = math.pow(2.0/math.pi, 0.25)
        
251
        if qy == None:
252
            self._qy = copy.deepcopy(qx)
253
        else:
254
            self._qy = copy.deepcopy(qy)
255
    
256
257
258
259
        self._n = int(n)
        self._m = int(m)
        self._hn = hermite(self._n)
        self._hm = hermite(self._m)
260
261
262
263
264
265
        self._calc_constants()
        
    @property
    def n(self): return self._n
    @n.setter
    def n(self,value): 
266
        self._n = int(value)
267
        self._calc_constants()
268
        self._hn = hermite(self._n)
269
270
271
272
273

    @property
    def m(self): return self._m
    @m.setter
    def m(self,value): 
274
        self._m = int(value)
275
        self._calc_constants()
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        self._hm = hermite(self._m)
            
    @property
    def q(self):
        if self._qx.q == self._qy.q:
            return self._qx.q
        else:
            return (self._qx.q, self._qy.q)
    @q.setter
    def q(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
            self._qy = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
            self._qy = beam_param(q=complex(value))
    
    @property
    def qx(self):
        return self._qx.q
        
    @qx.setter
    def qx(self, value):
        if value.__class__ == beam_param:
            self._qx = copy.deepcopy(value)
        else:
            self._qx = beam_param(q=complex(value))
    
    @property
    def qy(self):
        return self._qy.q
307
        
308
309
310
311
312
313
314
    @qy.setter
    def qy(self, value):
        if value.__class__ == beam_param:
            self._qy = copy.deepcopy(value)
        else:
            self._qy = beam_param(q=complex(value))
            
315
316
    def _calc_constants(self):
        self.__xpre_const = math.pow(2.0/math.pi, 0.25)
317
        self.__xpre_const *= math.sqrt(1.0/(self._qx.w*2**self._n * math.factorial(self._n)))
318
319
        self.__xpre_const *= cmath.sqrt(1j*self._qx.imag / self._qx.q)
        self.__xpre_const *= ((1j*self._qx.imag * self._qx.q.conjugate())/(-1j*self._qx.imag * self._qx.q)) ** ( self._n/2.0)
320
321
        
        self.__ypre_const = math.pow(2.0/math.pi, 0.25)
322
        self.__ypre_const *= math.sqrt(1.0/(self._qy.w*2**self._m * math.factorial(self._m)))
323
        self.__ypre_const *= cmath.sqrt(1j*self._qy.imag / self._qy.q)
Daniel Brown's avatar
Daniel Brown committed
324
        self.__ypre_const *= ((1j*self._qy.imag * self._qy.q.conjugate())/(-1j*self._qy.imag * self._qy.q)) **(self._m/2.0)
325
326
327
328
329
330
331
332
333
334
    
        self.__sqrt2_wxz = math.sqrt(2) / self._qx.w
        self.__sqrt2_wyz = math.sqrt(2) / self._qy.w
        
        self.__kx =  2*math.pi / self._qx.wavelength
        self.__ky =  2*math.pi / self._qy.wavelength
        
        self.__invqx = 1/ self._qx.q
        self.__invqy = 1/ self._qy.q
        
Daniel Brown's avatar
Daniel Brown committed
335
    def Un(self, x):
336
337
        return self.__xpre_const * self._hn(self.__sqrt2_wxz * x) * np.exp(-0.5j * self.__kx * x*x * self.__invqx)
    
Daniel Brown's avatar
Daniel Brown committed
338
339
    def Um(self, y):
        return self.__ypre_const * self._hm(self.__sqrt2_wyz * y) * np.exp(-0.5j * self.__ky * y*y * self.__invqy)
340
        
341
342
343
344
    def Unm(self, x, y):
        _un = self.Un(x)  
        _um = self.Um(y)
        return np.outer(_un, _um)
345
346
347
348
349
350
351
352
353
354
        
    def plot(self, ndx=100, ndy=100, xscale=4, yscale=4):
        import pylab
        
        xrange = xscale * np.linspace(-self._qx.w, self._qx.w, ndx)
        yrange = yscale * np.linspace(-self._qy.w, self._qy.w, ndy)

        dx = xrange[1]-xrange[0]
        dy = yrange[1]-yrange[0]

355
        data = self.Unm(xrange,yrange)
356
357
358
359
360
361
362

        fig = pylab.figure()
        axes = pylab.imshow(np.abs(data), aspect=dx/dy, extent=[min(xrange),max(xrange),min(yrange),max(yrange)])
        pylab.xlabel('x [m]')
        pylab.ylabel('y [m]')
        cbar = fig.colorbar(axes)
        pylab.show()
363
        
364