gaussian_beams.py 3.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pykat.exceptions as pkex
import numpy
import math

class gauss_param(object):
    """
    Gaussian beam complex parameter
    
    gauss_param is effectively a complex number with extra
    functionality to determine beam parameters.
    
    defaults to 1064e-9m for wavelength and refractive index 1
    usage:
        q = gauss_param(w0=w0, z=z)
        q = gauss_param(z=z, zr=zr)
        q = gauss_param(wz=wz, rc=rc)
        
        or change default wavelength and refractive index with:
        
        q = gauss_param(wavelength, nr, w0=w0, zr=zr)
    """
    
    def __init__(self, wavelength=1064e-9, nr=1, *args, **kwargs):
        self.__q = None
        self.__lambda = wavelength
        self.__nr = nr
        
        if len(args) == 1:
            self.__q = args[0]
        elif len(kwargs) == 2:        
            
            if "w0" in kwargs and "z" in kwargs:
                q = float(kwargs["z"]) + 1j *float(math.pi*kwargs["w0"]**2/(self.__lambda/self.__nr) )
            elif "z" in kwargs and "zr" in kwargs:
                q = float(kwargs["z"]) + 1j *float(kwargs["zr"]) 
            elif "rc" in kwargs and "wz" in kwargs:
                one_q = 1 / kwargs["rc"] - 1j * self.__lamda / (math.pi * self.__nr * kwargs["wz"]**2)
                q = 1/one_q
            else:
                raise pkex.BasePyKatException("Must specify: z and w0 or z and zr or rc and wz, to define the beam parameter")
                
            self.__q = q
        else:
            raise pkex.BasePyKatException("Incorrect usage for gauss_param constructor")
    
    @property
    def wavelength(self): return self.__lambda
    
    @property
    def nr(self): return self.__nr
    
    @property
    def q(self): return self.__q
    
    @property
    def z(self): return self.__q.real
    
    @property
    def zr(self): return self.__q.imag
    
    @property
    def wz(self):
        return math.sqrt(self.__lambda /(self.__nr * math.pi) * abs(self.__q) / self.__q.imag)
    
    @property
    def w0(self):
        return math.sqrt(self.__q.imag * self.__lambda / (self.__nr * math.pi))    

    @property
    def Rc(self):
        if self.__q.real != 0:
            return abs(self.__q) / self.__q.real
        else:
            return float("inf")
    
    def conjugate(self):
        return gauss_param(self.__lambda, self.__nr, self.__q.conjugate())
    
    def __complex__(self):
        return self.__q
    
    def __str__(self):
        return str(self.__q)
    
    def __mul__(self, a):
        return gauss_param(self.__lambda, self.__nr, self.__q * complex(a))
    
    def __imul__(self, a):
        self.__q += complex(a)
        return self
        
    __rmul__ = __mul__
    
    def __add__(self, a):
        return gauss_param(self.__lambda, self.__nr, self.__q + complex(a))
    
    def __iadd__(self, a):
        self.__q += complex(a)
        return self
        
    __radd__ = __add__
    
    def __sub__(self, a):
        return gauss_param(self.__lambda, self.__nr, self.__q - complex(a))
    
    def __isub__(self, a):
        self.__q -= complex(a)
        return self
        
    __rsub__ = __sub__
    
    def __div__(self, a):
        return gauss_param(self.__lambda, self.__nr, self.__q / complex(a))
    
    def __idiv__(self, a):
        self.__q /= complex(a)
        return self
    
    def __pow__(self, q):
        return gauss_param(self.__lambda, self.__nr, self.__q**q)

    def __neg__(self, q):
        return gauss_param(self.__lambda, self.__nr, -self.__q)
        
    def __eq__(self, q):
        return complex(q) == self.__q