maps.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
------------------------------------------------------
Utility functions for handling mirror surface
maps. Some functions based on earlier version
in Matlab (http://www.gwoptics.org/simtools/)
Work in progress, currently these functions are
untested!

http://www.gwoptics.org/pykat/
------------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

16
from pykat.optics.romhom import makeReducedBasis, makeEmpiricalInterpolant, makeWeights
17
from scipy.interpolate import interp2d
Daniel Brown's avatar
Daniel Brown committed
18
import numpy as np
19
import math
20
from pykat.math.zernike import *        
Daniel Brown's avatar
Daniel Brown committed
21
		   
Daniel Brown's avatar
Daniel Brown committed
22
class surfacemap(object):
23
24
25
26
27
28
29
    def __init__(self, name, maptype, size, center, step_size, scaling, data=None):
        
        self.name = name
        self.type = maptype
        self.center = center
        self.step_size = step_size
        self.scaling = scaling
30
31
        self.__interp = None
        
Daniel Brown's avatar
Daniel Brown committed
32
33
34
35
36
        if data == None:
            self.data = np.zeros(size)
        else:
            self.data = data

37
        self._rom_weights = None
38
39
40
41
42
43
44
        
    def write_map(self, filename):
        with open(filename,'w') as mapfile:
            
            mapfile.write("% Surface map\n")
            mapfile.write("% Name: {0}\n".format(self.name))
            mapfile.write("% Type: {0}\n".format(self.type))
45
            mapfile.write("% Size: {0} {1}\n".format(self.data.shape[0], self.data.shape[1]))
46
47
48
49
50
51
52
53
54
55
            mapfile.write("% Optical center (x,y): {0} {1}\n".format(self.center[0], self.center[1]))
            mapfile.write("% Step size (x,y): {0} {1}\n".format(self.step_size[0], self.step_size[1]))
            mapfile.write("% Scaling: {0}\n".format(float(self.scaling)))
            mapfile.write("\n\n")
            
            for i in range(0, self.data.shape[0]):
                for j in range(0, self.data.shape[1]):
                    mapfile.write("%.15g " % self.data[i,j])
                mapfile.write("\n")
    
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    @property
    def data(self):
        return self.__data
    
    @data.setter
    def data(self, value):
        self.__data = value
        self.__interp = None
    
    @property
    def center(self):
        return self.__center
    
    @center.setter
    def center(self, value):
        self.__center = value
        self.__interp = None
    
    @property
    def step_size(self):
        return self.__step_size
    
    @step_size.setter
    def step_size(self, value):
        self.__step_size = value
        self.__interp = None

    @property
    def scaling(self):
        return self.__scaling
    
    @scaling.setter
    def scaling(self, value):
        self.__scaling = value
        self.__interp = None

Daniel Brown's avatar
Daniel Brown committed
92
93
    @property
    def x(self):
Daniel Brown's avatar
Daniel Brown committed
94
        return self.step_size[0] * (np.array(range(1, self.data.shape[0]+1)) - self.center[0])
Daniel Brown's avatar
Daniel Brown committed
95
96
97
        
    @property
    def y(self):
Daniel Brown's avatar
Daniel Brown committed
98
        return self.step_size[1] * (np.array(range(1, self.data.shape[1]+1))- self.center[1])
99
100
101
102
103

    @property
    def size(self):
        return self.data.shape
            
104
105
    @property
    def offset(self):
Daniel Brown's avatar
Daniel Brown committed
106
        return np.array(self.step_size)*(np.array(self.center) - 1/2. - np.array(self.size)/2.0)
107
108
109
110
    
    @property
    def ROMWeights(self):
        return self._rom_weights
111
    
112
    def z_xy(self, x=None, y=None, wavelength=1064e-9, direction="reflection", nr1=1.0, nr2=1.0):
113
        
114
115
116
117
118
119
120
121
        if x == None and y == None:
            data = self.scaling * self.data
        else:
            if self.__interp == None:
                self.__interp = interp2d(self.x, self.y, self.data * self.scaling)
                
            data = self.__interp(x, y)
            
122
123
124
        if direction == "reflection":
            if "phase" in self.type:
                k = math.pi * 2 / wavelength
125
126
                return np.exp(2j * k * data)
                
127
            elif "absorption" in self.type:
128
129
                return np.sqrt(1.0 - data)
                
130
131
132
133
134
            else:
                raise BasePyKatException("Map type needs handling")
        elif direction == "transmission":
            if "phase" in self.type:
                k = math.pi * 2 / wavelength
135
136
                return np.exp((nr1-nr2)*k * data)
                
137
            elif "absorption" in self.type:
138
139
                return np.sqrt(1.0 - data)
                
140
141
            else:
                raise BasePyKatException("Map type needs handling")
142
143
144
        else:
            raise BasePyKatException("Map type needs handling")
        
Daniel Brown's avatar
Daniel Brown committed
145

146
    def generateROMWeights(self, isModeMatched=True, verbose=False, interpolate=False, tolerance = 1e-12, sigma = 1, sort=False, greedyfile=None):
Daniel Brown's avatar
Daniel Brown committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        
        if interpolate:
            from scipy.interpolate import interp2d
            import numpy as np

            D = interp2d(self.x, self.y, self.data, fill_value=0)

            # only want even number of data points spread equally
            # about the axes
            if self.size[0] % 2 == 0:
                Nx = self.size[0]
            else:
                Nx = self.size[0]-1

            if self.size[1] % 2 == 0:
                Ny = self.size[1]
            else:
                Ny = self.size[1]-1
            
            nx = np.linspace(min(self.x), max(self.x), Nx) 
            ny = np.linspace(min(self.y), max(self.y), Ny)
            
            data = D(nx-self.offset[0], ny-self.offset[0])
            
            self.name += " [ROMHOM interpolated]"
            
            self.center = (np.array(data.shape)+1)/2.0
            
            self.data = data
        
Daniel Brown's avatar
Daniel Brown committed
177
178
179
        xm = self.x[self.x<0]
        ym = self.y[self.y<0]
        
Daniel Brown's avatar
Daniel Brown committed
180
181
182
183
184
        symm = False
        
        if min(xm) == min(ym) and max(xm) == max(ym) and len(xm) == len(ym):
            symm = True
        
Daniel Brown's avatar
Daniel Brown committed
185
186
        EI = {}
        
187
        EI["xm"] = makeEmpiricalInterpolant(makeReducedBasis(xm, isModeMatched=isModeMatched, tolerance = tolerance, sigma = sigma, greedyfile=greedyfile), sort=sort)
Daniel Brown's avatar
Daniel Brown committed
188
189
190
191
        
        if symm:
            EI["ym"] = EI["xm"]
        else:
192
            EI["ym"] = makeEmpiricalInterpolant(makeReducedBasis(ym, isModeMatched=isModeMatched, tolerance = tolerance, sigma = sigma, greedyfile=greedyfile), sort=sort)
Daniel Brown's avatar
Daniel Brown committed
193
194
195
        
        EI["limits"] = EI["xm"].limits
        
196
        self._rom_weights = makeWeights(self, EI, verbose=verbose)
197
        
198
        return self.ROMWeights, EI
199
        
200
    def plot(self, show=True, clabel=None, xlim=None, ylim=None):
201
202
203
        
        import pylab
        
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        if xlim != None:
            _x = np.logical_and(self.x<=max(xlim)/100.0, self.x>=min(xlim)/100.0)
            xmin = np.min(np.where(_x == True))
            xmax = np.max(np.where(_x == True))
        else:
            xmin = 0
            xmax = len(self.x)-1
            xlim = [self.x.min()*100, self.x.max()*100]
    
        if ylim != None:
            _y = np.logical_and(self.y<=max(ylim)/100.0, self.y>=min(ylim)/100.0)
            ymin = np.min(np.where(_y == True))
            ymax = np.max(np.where(_y == True))
        else:
            ymin = 0
            ymax = len(self.y)-1
            ylim = [self.y.min()*100, self.y.max()*100]
        
        zmin = self.data[xmin:xmax,ymin:ymax].min()
        zmax = self.data[xmin:xmax,ymin:ymax].max()

225
        # 100 factor for scaling to cm
Daniel Brown's avatar
Daniel Brown committed
226
227
        xrange = 100*self.x
        yrange = 100*self.y
228

229
        fig = pylab.figure()
230
        axes = pylab.pcolormesh(xrange, yrange, self.data, vmin=zmin, vmax=zmax)
231
232
        pylab.xlabel('x [cm]')
        pylab.ylabel('y [cm]')
233

234
235
236
        if xlim != None: pylab.xlim(xlim)
        if ylim != None: pylab.ylim(ylim)

237
        pylab.title('Surface map {0}, type {1}'.format(self.name, self.type))
238

239
        cbar = fig.colorbar(axes)
240
        cbar.set_clim(zmin, zmax)
241
242
243
        
        if clabel != None:
            cbar.set_label(clabel)
244
    
245
246
        if show:
            pylab.show()
247
        
248
        return fig
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        
class aperturemap(surfacemap):
    
    def __init__(self, name, size, step_size, R):
        surfacemap.__init__(self, name, "absorption both", size, (np.array(size)+1)/2.0, step_size, 1)
        self.R = R
        
    @property
    def R(self):
        return self.__R
    
    @R.setter
    def R(self, value):
        self.__R = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        radius = np.sqrt(xx**2 + yy**2)
        
        self.data = np.zeros(self.size)
        self.data[radius > self.R] = 1.0
        
        
class curvedmap(surfacemap):
    
    def __init__(self, name, size, step_size, Rc):
        surfacemap.__init__(self, name, "phase reflection", size, (np.array(size)+1)/2.0, step_size, 1e-6)
        self.Rc = Rc
        
    @property
    def Rc(self):
        return self.__Rc
    
    @Rc.setter
    def Rc(self, value):
        self.__Rc = value
    
        xx, yy = np.meshgrid(self.x, self.y)
        
        Rsq = xx**2 + yy**2
        self.data = (self.Rc - math.copysign(1.0, self.Rc) * np.sqrt(self.Rc**2 - Rsq))/ self.scaling
Daniel Brown's avatar
Daniel Brown committed
290
291
292
293

class tiltmap(surfacemap):
    
    def __init__(self, name, size, step_size, tilt):
294
        surfacemap.__init__(self, name, "phase", size, (np.array(size)+1)/2.0, step_size, 1e-9)
Daniel Brown's avatar
Daniel Brown committed
295
296
297
298
299
300
301
302
303
304
305
306
        self.tilt = tilt
        
    @property
    def tilt(self):
        return self.__tilt
    
    @tilt.setter
    def tilt(self, value):
        self.__tilt = value
        
        xx, yy = np.meshgrid(self.x, self.y)
        
307
        self.data = (xx * self.tilt[1] + yy * self.tilt[0])/self.scaling
Daniel Brown's avatar
Daniel Brown committed
308
        
Daniel Brown's avatar
Daniel Brown committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

class zernikemap(surfacemap):
	def __init__(self, name, size, step_size, radius, scaling=1e-9):
		surfacemap.__init__(self, name, "phase", size, (np.array(size)+1)/2.0, step_size, scaling)
		self.__zernikes = {}
		self.radius = radius
		
	@property
	def radius(self): return self.__radius

	@radius.setter
	def radius(self, value, update=True):
		self.__radius = float(value)
		if update: self.update_data()

	def setZernike(self, m, n, amplitude, update=True):
		self.__zernikes["%i%i" % (m, n)] = (m,n,amplitude)
		if update: self.update_data()

	def update_data(self):
		X,Y = np.meshgrid(self.x, self.y)
		R = np.sqrt(X**2 + Y**2)
		PHI = np.arctan2(Y, X)

		data = np.zeros(np.shape(R))

		for i in self.__zernikes.items():
			data += i[1][2] * zernike(i[1][0], i[1][1], R/self.radius, PHI)

		self.data = data
	
			
	
342
343
344
345
346
347
348
349
350
351
352
353
354
def read_map(filename):
    with open(filename, 'r') as f:
        
        f.readline()
        name = f.readline().split(':')[1].strip()
        maptype = f.readline().split(':')[1].strip()
        size = tuple(map(lambda x: int(x), f.readline().split(':')[1].strip().split()))
        center = tuple(map(lambda x: float(x), f.readline().split(':')[1].strip().split()))
        step = tuple(map(lambda x: float(x), f.readline().split(':')[1].strip().split()))
        scaling = float(f.readline().split(':')[1].strip())
        
        
        
Daniel Brown's avatar
Daniel Brown committed
355
    data = np.loadtxt(filename, dtype=np.float64,ndmin=2,comments='%')    
356
357
358
359
360
        
    return surfacemap(name,maptype,size,center,step,scaling,data)
    
    
        
361