Select Git revision

Daniel Brown authored
knm.py 21.24 KiB
from itertools import combinations_with_replacement as combinations
from pykat.optics.gaussian_beams import BeamParam, HG_mode
from pykat.exceptions import BasePyKatException
from pykat.optics.romhom import u_star_u
from pykat.external.progressbar import ProgressBar, ETA, Percentage, Bar
from scipy.interpolate import interp2d
from scipy.integrate import dblquad
from pykat.optics.romhom import ROMWeights
from math import factorial
from pykat.math.hermite import hermite
from scipy.misc import comb
from scipy.integrate import newton_cotes
from pykat.math import newton_weights
import time
import pykat.optics.maps
import os.path
import numpy as np
import pykat
import collections
import math
import cmath
def makeCouplingMatrix(max_order, Neven=True, Nodd=True, Meven=True, Modd=True):
max_order = int(max_order)
c = []
for n in range(0, max_order+1):
for m in range(0, max_order+1):
if n+m <= max_order:
c.append([n,m])
M = []
for i in c:
row = []
for j in c:
e = list(i)
e.extend(j)
if not Neven and (e[0]-e[2]) % 2 == 0: continue
if not Nodd and (e[0]-e[2]) % 2 == 1: continue
if not Meven and (e[1]-e[3]) % 2 == 0: continue
if not Modd and (e[1]-e[3]) % 2 == 1: continue
row.append(e)
M.append(np.array(row).squeeze())
return np.array(M)
def adaptive_knm(mode_in, mode_out, q1, q2, q1y=None, q2y=None, smap=None, delta=(0,0), params={}):
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
if "epsabs" not in params: params["epsabs"] = 1e-6
if "epsrel" not in params: params["epsrel"] = 1e-6
if "usepolar" not in params: params["usepolar"] = False
if len(mode_in) != 2 or len(mode_out) != 2:
raise BasePyKatException("Both mode in and out should be a container with modes [n m]")
Hg_in = HG_mode(qx=q1, qy=q1y, n=mode_in[0], m=mode_in[1])
Hg_out = HG_mode(qx=q2, qy=q2y, n=mode_out[0], m=mode_out[1])
Nfuncs = []
Nfuncs.append(0)
if smap is not None:
if not params["usepolar"]:
xlims = (min(smap.x), max(smap.x))
ylims = (min(smap.y), max(smap.y))
def Rfunc(y,x):
Nfuncs[-1] += len(x)
return (Hg_in.Unm(x+delta[0], y+delta[1]) * smap.z_xy(x=x,y=y) * Hg_out.Unm(x, y).conjugate()).real
def Ifunc(y,x):
Nfuncs[-1] += len(x)
return (Hg_in.Unm(x+delta[0], y+delta[1]) * smap.z_xy(x=x,y=y) * Hg_out.Unm(x, y).conjugate()).imag
else:
xlims = (0, 2*math.pi)
ylims = (0, params["aperture"])
def Rfunc(r, phi):
Nfuncs[-1] += len(x)
x = r*np.cos(phi)
y = r*np.sin(phi)
return (r * Hg_in.Unm(x, y) * smap.z_xy(x=x,y=y) * Hg_out.Unm(x, y).conjugate()).real
def Ifunc(r, phi):
Nfuncs[-1] += len(x)
x = r*np.cos(phi)
y = r*np.sin(phi)
return (r * Hg_in.Unm(x, y) * smap.z_xy(x=x,y=y) * Hg_out.Unm(x, y).conjugate()).imag
else:
if not params["usepolar"]:
_x = 4 * math.sqrt(1+max(mode_in[0],mode_in[1])) * q1.w
_y = 4 * math.sqrt(1+max(mode_in[0],mode_in[1])) * q1y.w
xlims = (-_x, _x)
ylims = (-_y, _y)
def Rfunc(y, x):
Nfuncs[-1] += len(r)
return (Hg_in.Unm(x+delta[0], y+delta[1]) * Hg_out.Unm(x, y).conjugate()).real
def Ifunc(y,x):
Nfuncs[-1] += len(r)
return (Hg_in.Unm(x+delta[0], y+delta[1]) * Hg_out.Unm(x, y).conjugate()).imag
else:
xlims = (0, 2*math.pi)
ylims = (0, params["aperture"])
def Rfunc(r, phi):
if hasattr(r, "__len__"):
Nfuncs[-1] += len(r)
else:
Nfuncs[-1] += 1
x = r*np.cos(phi)
y = r*np.sin(phi)
return (r * Hg_in.Unm(x, y) * Hg_out.Unm(x, y).conjugate()).real
def Ifunc(r, phi):
if hasattr(r, "__len__"):
Nfuncs[-1] += len(r)
else:
Nfuncs[-1] += 1
x = r*np.cos(phi)
y = r*np.sin(phi)
return (r * Hg_in.Unm(x, y) * Hg_out.Unm(x, y).conjugate()).imag
R, errR = dblquad(Rfunc, xlims[0], xlims[1], lambda y: ylims[0], lambda y: ylims[1], epsabs=params["epsabs"], epsrel=params["epsrel"])
I, errI = dblquad(Ifunc, xlims[0], xlims[1], lambda y: ylims[0], lambda y: ylims[1], epsabs=params["epsabs"], epsrel=params["epsrel"])
params["Nfuncs"] = Nfuncs[0]
params["errors"] = (errR, errI)
return R + 1j * I
def riemann_HG_knm(x, y, mode_in, mode_out, q1, q2, q1y=None, q2y=None,
Axy=None, cache=None, delta=(0,0), params={}, newtonCotesOrder=0):
if Axy is None:
Axy == np.ones((len(x), len(y)))
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
if len(mode_in) != 2 or len(mode_out) != 2:
raise BasePyKatException("Both mode in and out should be a container with modes [n m]")
dx = abs(x[1] - x[0])
dy = abs(y[1] - y[0])
if cache is None:
Hg_in = HG_mode(qx=q1, qy=q1y, n=mode_in[0], m=mode_in[1])
Hg_out = HG_mode(qx=q2, qy=q2y, n=mode_out[0], m=mode_out[1])
U1 = Hg_in.Unm(x+delta[0], y+delta[1])
U2 = Hg_out.Unm(x,y).conjugate()
if newtonCotesOrder > 0:
W = newton_cotes(newtonCotesOrder, 1)[0]
if newtonCotesOrder > 1:
if (len(x) - len(W)) % newtonCotesOrder != 0:
raise ValueError("To use Newton-Cotes order {0} the number of data points in x must ensure: (N_x - ({0}+1)) mod {0} == 0".format(newtonCotesOrder) )
if (len(y) - len(W)) % newtonCotesOrder != 0:
raise ValueError("To use Newton-Cotes order {0} the number of data points in y must ensure: (N_y - ({0}+1)) mod {0} == 0".format(newtonCotesOrder) )
wx = np.zeros(x.shape, dtype=np.float64)
wy = np.zeros(y.shape, dtype=np.float64)
N = len(W)
for i in range(0, (len(wx)-1)/newtonCotesOrder): wx[(i*(N-1)):(i*(N-1)+N)] += W
for i in range(0, (len(wy)-1)/newtonCotesOrder): wy[(i*(N-1)):(i*(N-1)+N)] += W
Wxy = np.outer(wx, wy)
if newtonCotesOrder == 0:
return dx * dy * np.einsum('ij,ij', Axy, U1*U2)
else:
return dx * dy * np.einsum('ij,ij', Axy, U1*U2*Wxy)
else:
strx = "u1[%i,%i]" % (mode_in[0], mode_out[0])
stry = "u2[%i,%i]" % (mode_in[1], mode_out[1])
return dx * dy * np.einsum('ij,ij', Axy, np.outer(cache[strx], cache[stry]))
def __gen_riemann_knm_cache(x, y, couplings, q1, q2, q1y=None, q2y=None, delta=(0,0), params={}):
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
#it = np.nditer(couplings, flags=['refs_ok','f_index'])
cache = {}
#while not it.finished:
# try:
# mode_in = [int(it.next()), int(it.next())]
# mode_out = [int(it.next()), int(it.next())]
couplings = couplings.copy()
couplings.resize(int(couplings.size/4), 4)
for _ in couplings:
mode_in = _[:2]
mode_out = _[2:]
strx = "u1[%i,%i]" % (mode_in[0], mode_out[0])
stry = "u2[%i,%i]" % (mode_in[1], mode_out[1])
#Hg_in = HG_beam(qx=q1, qy=q1y, n=mode_in[0], m=mode_in[1])
#Hg_out = HG_beam(qx=q2, qy=q2y, n=mode_out[0], m=mode_out[1])
if strx not in cache:
cache[strx] = u_star_u(q1.z, q2.z, q1.w0, q2.w0, mode_in[0], mode_out[0], x, x+delta[0])
#Hg_in.Un(x) * Hg_out.Un(x).conjugate()
if stry not in cache:
cache[stry] = u_star_u(q1y.z, q2y.z, q1y.w0, q2y.w0, mode_in[1], mode_out[1], y, y+delta[1])
#Hg_in.Um(y) * Hg_out.Um(y).conjugate()
# except StopIteration:
# break
return cache
def __gen_ROM_HG_knm_cache(weights, couplings, q1, q2, q1y=None, q2y=None):
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
cache = {}
cache["w_ij_Q1Q3"] = weights.w_ij_Q1 + weights.w_ij_Q3
cache["w_ij_Q2Q4"] = weights.w_ij_Q2 + weights.w_ij_Q4
cache["w_ij_Q1Q2"] = weights.w_ij_Q1 + weights.w_ij_Q2
cache["w_ij_Q1Q4"] = weights.w_ij_Q1 + weights.w_ij_Q4
cache["w_ij_Q2Q3"] = weights.w_ij_Q2 + weights.w_ij_Q3
cache["w_ij_Q3Q4"] = weights.w_ij_Q3 + weights.w_ij_Q4
cache["w_ij_Q1Q2Q3Q4"] = weights.w_ij_Q1 + weights.w_ij_Q3 + weights.w_ij_Q2 + weights.w_ij_Q4
couplings = couplings.copy()
couplings.resize(int(couplings.size/4), 4)
for _ in couplings:
mode_in = _[:2]
mode_out = _[2:]
strx = "x[%i,%i]" % (mode_in[0], mode_out[0])
stry = "y[%i,%i]" % (mode_in[1], mode_out[1])
if strx not in cache:
cache[strx] = u_star_u(q1.z, q2.z, q1.w0, q2.w0, mode_in[0], mode_out[0], weights.EI["xm"].nodes)
if stry not in cache:
cache[stry] = u_star_u(q1y.z, q2y.z, q1y.w0, q2y.w0, mode_in[1], mode_out[1], weights.EI["ym"].nodes)
# it = np.nditer(couplings, flags=['refs_ok','f_index'])
# while not it.finished:
# try:
# mode_in = [int(it.next()), int(it.next())]
# mode_out = [int(it.next()), int(it.next())]
#
# strx = "x[%i,%i]" % (mode_in[0], mode_out[0])
# stry = "y[%i,%i]" % (mode_in[1], mode_out[1])
#
# if strx not in cache:
# cache[strx] = u_star_u(q1.z, q2.z, q1.w0, q2.w0, mode_in[0], mode_out[0], weights.EI["xm"].nodes)
#
# if stry not in cache:
# cache[stry] = u_star_u(q1y.z, q2y.z, q1y.w0, q2y.w0, mode_in[1], mode_out[1], weights.EI["ym"].nodes)
#
# except StopIteration:
# break
return cache
def ROM_HG_knm(weights, mode_in, mode_out, q1, q2, q1y=None, q2y=None, cache=None):
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
# x modes
n = mode_in[0]
m = mode_out[0]
# y modes
npr = mode_in[1]
mpr = mode_out[1]
if isinstance(weights, ROMWeights):
if cache is None:
u_x_nodes = u_star_u(q1.z, q2.z, q1.w0, q2.w0, n, m, weights.EIx.nodes)
u_y_nodes = u_star_u(q1y.z, q2y.z, q1y.w0, q2y.w0, npr, mpr, weights.EIy.nodes)
w_ij_Q1Q3 = weights.w_ij_Q1 + weights.w_ij_Q3
w_ij_Q2Q4 = weights.w_ij_Q2 + weights.w_ij_Q4
w_ij_Q1Q2 = weights.w_ij_Q1 + weights.w_ij_Q2
w_ij_Q1Q4 = weights.w_ij_Q1 + weights.w_ij_Q4
w_ij_Q2Q3 = weights.w_ij_Q2 + weights.w_ij_Q3
w_ij_Q3Q4 = weights.w_ij_Q3 + weights.w_ij_Q4
w_ij_Q1Q2Q3Q4 = weights.w_ij_Q1 + weights.w_ij_Q2 + weights.w_ij_Q3 + weights.w_ij_Q4
else:
strx = "x[%i,%i]" % (mode_in[0], mode_out[0])
stry = "y[%i,%i]" % (mode_in[1], mode_out[1])
u_x_nodes = cache[strx]
u_y_nodes = cache[stry]
w_ij_Q1Q3 = cache["w_ij_Q1Q3"]
w_ij_Q2Q4 = cache["w_ij_Q2Q4"]
w_ij_Q1Q2 = cache["w_ij_Q1Q2"]
w_ij_Q1Q4 = cache["w_ij_Q1Q4"]
w_ij_Q2Q3 = cache["w_ij_Q2Q3"]
w_ij_Q3Q4 = cache["w_ij_Q3Q4"]
w_ij_Q1Q2Q3Q4 = cache["w_ij_Q1Q2Q3Q4"]
u_xy_nodes = np.outer(u_x_nodes, u_y_nodes)
n_mod_2 = n % 2
m_mod_2 = m % 2
npr_mod_2 = npr % 2
mpr_mod_2 = mpr % 2
if n_mod_2 == m_mod_2 and npr_mod_2 == mpr_mod_2:
k_ROQ = np.einsum('ij,ij', u_xy_nodes, w_ij_Q1Q2Q3Q4)
elif n_mod_2 != m_mod_2:
if npr_mod_2 == mpr_mod_2:
k_ROQ = np.einsum('ij,ij', u_xy_nodes, w_ij_Q1Q4) - np.einsum('ij,ij', u_xy_nodes, w_ij_Q2Q3)
else:
k_ROQ = np.einsum('ij,ij', u_xy_nodes, w_ij_Q2Q4) - np.einsum('ij,ij', u_xy_nodes, w_ij_Q1Q3)
elif npr_mod_2 != mpr_mod_2:
if n_mod_2 == m_mod_2:
k_ROQ = np.einsum('ij,ij', u_xy_nodes, w_ij_Q3Q4) - np.einsum('ij,ij', u_xy_nodes, w_ij_Q1Q2)
else:
k_ROQ = np.einsum('ij,ij', u_xy_nodes, w_ij_Q2Q4) - np.einsum('ij,ij', u_xy_nodes, w_ij_Q1Q3)
else:
if cache is None:
u_x_nodes = u_star_u(q1.z, q2.z, q1.w0, q2.w0, n, m, weights.EIx.nodes)
u_y_nodes = u_star_u(q1y.z, q2y.z, q1y.w0, q2y.w0, npr, mpr, weights.EIy.nodes)
w_ij = weights.w_ij
else:
strx = "x[%i,%i]" % (mode_in[0], mode_out[0])
stry = "y[%i,%i]" % (mode_in[1], mode_out[1])
u_x_nodes = cache[strx]
u_y_nodes = cache[stry]
u_xy_nodes = np.outer(u_x_nodes, u_y_nodes)
k_ROQ = np.einsum('ij,ij', u_xy_nodes, w_ij)
return k_ROQ
__fac_cache = []
def fac(n):
global __fac_cache
if len(__fac_cache) == 0:
return math.factorial(int(n))
else:
return __fac_cache[n]
def m_1_pow(n):
if n % 2 == 0:
return 1
else:
return -1
def __Ss(u, _u, F, _F, d=0):
r = 0
for s in range(0, min(u,_u)+1):
r += m_1_pow(s) * _F ** (u-s) * _F ** (_u-s) / (fac(2*s+d)*fac(u-s)*fac(_u-s))
return r
def __S(m, _m, X, _X, F, _F, d=0):
if m % 2 == 1:
lim1 = int((m-1)/2)
else:
lim1 = int(m/2 )
if _m % 2 == 1:
lim2 = int((_m-1)/2)
else:
lim2 = int(_m/2)
r = 0
for u in range(0, lim1+1):
for _u in range(0, lim2+1):
r += m_1_pow(u) * _X**(m-2*u) * X**(_m-2*_u) / ( fac(m-2*u)*fac(_m-2*_u) ) * __Ss(u, _u, F, _F, d=d)
return r
def __bayerhelms_kn(n, _n, q1, q2, gamma=0.0):
K0 = (q1.zr - q2.zr)/q2.zr
K2 = (q1.z - q2.z)/q2.zr
K = (K0 + 1j*K2)/2.0
Ktilde = abs(K / (1+K))
if gamma != 0:
a = q2.zr * math.sin(gamma) / (cmath.sqrt(1+K.conjugate()) * q2.w0)
_X = - a * (q2.z/q2.zr - 1j)
X = - a * (q2.z/q2.zr + 1j*(1+2*K.conjugate()))
Ex = cmath.exp(-_X*X / 2.0)
else:
_X = 0.0
X = 0.0
Ex = 1.0
_F = K / (2.0 * (1.0+K0))
F = K.conjugate() / 2.0
Sg = __S(n, _n, X, _X, F, _F)
if n > 0 and _n > 0:
Su = __S(n-1, _n-1, X, _X, F, _F, 1)
else:
Su = 0
b = m_1_pow(_n) * cmath.sqrt(fac(n) * fac(_n) * (1.0 + K.real)**(n+0.5) * (1.0 + K.conjugate()) ** (-(n+_n+1)))
return b * Ex * (Sg - Su)
def bayerhelms_HG_knm(mode_in, mode_out, q1, q2, q1y=None, q2y=None, gamma=(0,0)):
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
# x modes
n = mode_in[0]
_n = mode_out[0]
# y modes
m = mode_in[1]
_m = mode_out[1]
return __bayerhelms_kn(n,_n, q1, q2, 2*gamma[0]) * __bayerhelms_kn(m, _m, q1y, q2y, 2*gamma[1])
def __sqaure_knm_int(n, _n, R):
# This uses the H_n(x) * H_m(x) product identity to reduce the overlap into
# a sum of factorial and an integral of a single Hermite with a gaussian function
# thus making it easier to solve
expR = math.exp(-(R**2))
S = 0
for j in range(0, min(n, _n)+1):
_j1 = _n + n - 2*j - 1
if _j1+1 == 0:
# for the zeroth order we just have the gaussian integral to solve
L = math.sqrt(math.pi) * math.erf(R)
elif (_j1+1) % 2 == 1:
# if the Hermite is odd then the integral is always 0 as its anti-symmetric
L = 0
else:
L = 2 * hermite(_j1, 0) - expR * (hermite(_j1, R) - hermite(_j1, -R))
I = 2**j * factorial(j) * comb(n, j) * comb(_n, j)
S += I * L
return S
def square_aperture_HG_knm(mode_in, mode_out, q, R):
"""
Computes the coupling coefficients for a square aperture.
"""
# x modes
n = mode_in[0]
_n = mode_out[0]
# y modes
m = mode_in[1]
_m = mode_out[1]
hg1 = HG_mode(q, n=n, m=m)
hg2 = HG_mode(q, n=_n, m=_m)
kx = hg1.constant_x * hg2.constant_x.conjugate()
ky = hg1.constant_y * hg2.constant_y.conjugate()
f = q.w / math.sqrt(2)
R = R / (q.w / math.sqrt(2))
kx *= f
kx *= __sqaure_knm_int(n, _n, R)
ky *= f
ky *= __sqaure_knm_int(m, _m, R)
return kx * ky
def knmHG(couplings, q1, q2, surface_map=None, q1y=None, q2y=None, method="riemann", verbose=False, profile=False, gamma=(0,0), delta=(0,0), params={}):
if q1y is None:
q1y = q1
if q2y is None:
q2y = q2
assert q1.wavelength == q2.wavelength and q1y.wavelength == q2y.wavelength and q1y.wavelength == q1.wavelength
couplings = np.array(couplings)
a = couplings.size / 4.0
if int(a) - a != 0:
raise BasePyKatException("Iterator should be product of 4, each element of coupling array should be [n,m,n',m']")
maxtem = 0
c = couplings.flatten()
for i in range(0, int(c.size/2)):
maxtem = max(sum(c[i*2:(i*2+2)]), maxtem)
global __fac_cache
for n in range(0, maxtem+1):
__fac_cache.append(math.factorial(n))
if surface_map is not None:
Axy = surface_map.z_xy(wavelength=q1.wavelength)
x = surface_map.x
y = surface_map.y
K = np.zeros((couplings.size/4,), dtype=np.complex128)
#it = np.nditer(couplings, flags=['refs_ok','f_index'])
i = 0
if profile:
t0 = time.time()
if method == "romhom":
if surface_map is None:
raise BasePyKatException("Using 'romhom' method requires a surface map to be specified")
weights = surface_map.ROMWeights
if weights is None:
raise BasePyKatException("The ROM weights need to be generated for this map before use.")
cache = __gen_ROM_HG_knm_cache(weights, couplings, q1=q1, q2=q2, q1y=q1y, q2y=q2y)
elif method == "riemann":
if surface_map is None:
raise BasePyKatException("Using 'riemann' method requires a surface map to be specified")
cache = __gen_riemann_knm_cache(x, y, couplings, q1, q2, q1y=None, q2y=None, delta=delta)
else:
cache = None
weights = None
if profile:
cache_time = time.time() - t0
Ktime = np.zeros((couplings.size/4,), dtype=np.float64)
if verbose:
p = ProgressBar(maxval=couplings.size, widgets=["Knm (%s): " % method, Percentage(), Bar(), ETA()])
_couplings = couplings.copy()
_couplings.resize(int(_couplings.size/4), 4)
for _ in _couplings:
mode_in = _[:2]
mode_out = _[2:]
if profile:
t0 = time.time()
if method == "riemann":
K[i] = riemann_HG_knm(x, y, mode_in, mode_out, q1=q1, q2=q2, q1y=q1y, q2y=q2y, Axy=Axy, cache=cache, delta=delta)
elif method == "romhom":
K[i] = ROM_HG_knm(weights, mode_in, mode_out, q1=q1, q2=q2, q1y=q1y, q2y=q2y, cache=cache)
elif method == "bayerhelms":
K[i] = bayerhelms_HG_knm(mode_in, mode_out, q1=q1, q2=q2, q1y=q1y, q2y=q2y, gamma=gamma)
elif method == "adaptive":
K[i] = adaptive_knm(mode_in, mode_out, q1=q1, q2=q2, q1y=q1y, q2y=q2y, smap=surface_map, delta=delta, params=params)
else:
raise BasePyKatException("method value '%s' not accepted" % method)
if profile:
Ktime[i] = time.time() - t0
i +=1
if verbose:
p.update(i*4)
if profile:
return K.reshape(couplings.shape[:-1]), Ktime.reshape(couplings.shape[:-1]), cache_time
else:
return K.reshape(couplings.shape[:-1])
def plot_knm_matrix(couplings, knm, cmap=None, show=True):
import pylab as plt
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.pcolormesh(abs(knm), cmap=cmap)
fig.colorbar(cax)
numrows, numcols = knm.shape
c = couplings[:, 0, :2]
c_ = []
for d in c:
c_.append("[%i,%i]"%(d[0], d[1]))
A = np.arange(1, len(c)+1)-0.5
ax.set_xticks(A)
ax.set_yticks(A)
ax.set_xticklabels(c_)
ax.set_yticklabels(c_)
ax.set_xlim(None, max(A)+0.5)
ax.set_ylim(None, max(A)+0.5)
def format_coord(x, y):
col = int(np.floor(x))
row = int(np.floor(y))
if col>=0 and col<numcols and row>=0 and row<numrows:
z = knm[row,col]
return 'x=%s, y=%s, z=%1.4f' % (c_[col], c_[row], z)
return None
ax.format_coord = format_coord
fig.tight_layout()
if show: plt.show()
return fig