Commit 09324172 authored by Andreas Freise's avatar Andreas Freise
Browse files

swithcing from gauss* to gauss (more intuitive), also

added proper formatting to the gauss parameters i.e.
{.15g}, probably need to do that for many other params as well.
parent aac21778
from pykat import finesse
from pykat.commands import *
from pykat.utilities.optics.gaussian_beams import gauss_param
import pylab as pl
import scipy
from scipy.optimize import minimize_scalar
import numpy as np
import shelve
import copy
import sys
def main():
print """
--------------------------------------------------------------
Example file for using PyKat to automate Finesse simulations
Finesse: http://www.gwoptics.org/finesse
PyKat: https://pypi.python.org/pypi/PyKat/
The file runs through the various pykat files which are used
to generate the Finesse results reported in the document:
`Comparing Finesse simulations, analytical solutions and OSCAR
simulations of Fabry-Perot alignment signals', LIGO-T1300345
This file is part of a collection. Run this after master2.py
Andreas Freise 06.12.2013
--------------------------------------------------------------
"""
# shall we clear the workspace?
# %reset -f
# making these global during testing and debugging
global kat
global out
kat = finesse.kat(tempdir=".",tempname="test")
kat.verbose = False
tmpresultfile = 'myshelf2.dat'
# loading data saved by master.py
kat.loadKatFile('asc_base3.kat')
try:
tmpfile = shelve.open(tmpresultfile)
result=tmpfile['result']
tmpfile.close()
except: raise Exception("Could not open temprary results file {0}".format(tmpresultfile))
# overwriting some variables
kat.maxtem=3
Lambda=1064.0e-9
# this does not work yet due to the scale command
kat.PDrefl_p.enabled = False
kat.PDrefl_q.enabled = False
kat.WFS1_I.enabled = False
kat.WFS1_Q.enabled = False
kat.WFS2_I.enabled = False
kat.WFS2_Q.enabled = False
kat.ETM.phi=result['phi_tuned']
(beam1, beam2, beam3) = get_qs(kat)
print " Measured beam parameter:"
print " - At front of ITM (no thermal lens) q={0}".format(beam1.q)
print " (eqals w0={0}, z={1})".format(beam1.w0, beam1.z)
print " - At pick of mirror 'po' (50k lens) q={0}".format(beam2.q)
print " (eqals w0={0}, z={1})".format(beam2.w0, beam2.z)
print " - At pick of mirror 'po' (5k lens) q={0}".format(beam3.q)
print " (eqals w0={0}, z={1})".format(beam3.w0, beam3.z)
#print " Setting these now view Gauss command and adding thermal lens"
kat.ITM.nITM1.node.setGauss(kat.ITM,beam1)
print "--------------------------------------------------------"
print " 11. computing beam sizes with thermal lens"
beam_size(kat, beam2, beam3)
kat.ITM_TL.f=50e3
kat.maxtem = 8
print "--------------------------------------------------------"
print " 11. computing beam tilt with thermal lens (f={0}, maxtem={1})".format(kat.ITM_TL.f, kat.maxtem)
#gravity_tilt(kat)
kat.ITM_TL.f=5e3
kat.maxtem = 23
print "--------------------------------------------------------"
print " 12. computing beam tilt with thermal lens (f={0}, maxtem={1})".format(kat.ITM_TL.f, kat.maxtem)
#gravity_tilt(kat)
print "--------------------------------------------------------"
print " 12. compute beam center with thermal lens"
print "--------------------------------------------------------"
print " Saving results in temp. files to be read by master6.py"
tmpkatfile = "asc_base4.kat"
tmpresultfile = "myshelf3.dat"
print " kat object saved in: {0}".format(tmpkatfile)
print " current results saved in: {0}".format(tmpresultfile)
# first the current kat file
kat.saveScript(tmpkatfile)
# now the result variables:
tmpfile = shelve.open(tmpresultfile)
tmpfile['result']=result
tmpfile.close()
#-----------------------------------------------------------------------------------
def get_qs(tmpkat):
kat = copy.deepcopy(tmpkat)
nodename0="npsl"
nodename1="nITM1"
nodename2="nWFS1"
nodename3="nWFS2"
# measure beam parameter for the 'cold beam' i.e. the laser beam
# matched to the cavity without any thermal lens
code_bp = "bp w0 y q {0}\nbp w1 y q {1}\nbp w2 y q {2}\nbp w3 y q {3}".format(nodename0,nodename1,nodename2,nodename3)
kat.parseKatCode(code_bp)
kat.parseKatCode('yaxis re:im')
kat.noxaxis = True
kat.maxtem=0
def carrier_size(tmpkat, f):
kat = copy.deepcopy(tmpkat)
kat.ITM_TL.f=f
out = kat.run(printout=0,printerr=0)
raw_input("Press enter to continue")
# computing beam size at WFS1 and WFS2
q2 = complex(out['w2'][0],out['w2'][1])
beam1 = gauss_param(q=q2)
q3 = complex(out['w3'][0],out['w3'][1])
beam2 = gauss_param(q=q3)
print " Carrier (cavity eigenmode) beam size with thermal lens f={0}".format(f)
print " - WFS1 w={0}".format(beam1.w)
print " (q={0}, w0={1}, z={2})".format(beam1.q, beam1.w0, beam1.z)
print " - WFS2 w={0}".format(beam2.w)
print " (q={0}, w0={1}, z={2})".format(beam2.q, beam2.w0, beam2.z)
return(beam1, beam2)
def sideband_size(tmpkat, f):
kat = copy.deepcopy(tmpkat)
# 1. run finesse with input laser mode matched to cavity (no thermal lens)
out = kat.run(printout=0,printerr=0)
raw_input("Press enter to continue")
# beam at laser when matched to cold cavity
# (note the sign flip of the real part to change direction of gauss param)
q0 = complex(-1.0*out['w0'][0],out['w0'][1])
beam0 = gauss_param(q=q0)
kat.psl.npsl.node.setGauss(kat.psl, beam0)
kat.parseKatCode("startnode npsl")
# add thermal lens and propagate input beam to ITM
kat.ITM_TL.f=f
out = kat.run(printout=0,printerr=0)
raw_input("Press enter to continue")
# computing beam size at ITM an set it as new startnode
q1 = complex(out['w1'][0],out['w1'][1])
beam1 = gauss_param(q=q1)
kat.ITM.nITM1.node.setGauss(kat.ITM, beam1)
kat.removeLine("startnode")
kat.parseKatCode("startnode nITM1")
out = kat.run(printout=0,printerr=0)
# computing beam size at WFS1 and WFS2
q2 = complex(out['w2'][0],out['w2'][1])
beam2 = gauss_param(q=q2)
q3 = complex(out['w3'][0],out['w3'][1])
beam3 = gauss_param(q=q3)
print " Sideband (input mode) beam size with thermal lens f={0}".format(f)
print " - WFS1 w={0}".format(beam2.w)
print " (q={0}, w0={1}, z={2})".format(beam2.q, beam2.w0, beam2.z)
print " - WFS2 w={0}".format(beam2.w)
print " (q={0}, w0={1}, z={2})".format(beam3.q, beam3.w0, beam3.z)
return(beam1, beam2, beam3)
f=50e3
carrier_size(kat,f)
sideband_size(kat,f)
f=5e3
carrier_size(kat,f)
(beam1,beam2,beam3)=sideband_size(kat,f)
return (beam1, beam2,beam3)
def asc_signal(tmpkat):
kat = copy.deepcopy(tmpkat)
code_lock = """
set err PDrefl_p re
lock z $err 900 1p
put* ETM phi $z
noplot z
"""
kat.parseKatCode(code_lock)
kat.parseKatCode('yaxis abs')
kat.noxaxis = True
kat.maxtem=1
signal=np.zeros((2, 2))
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
out = kat.run(printout=0,printerr=0)
WFS1_idx=out.ylabels.index("WFS1_I")
WFS2_idx=out.ylabels.index("WFS2_I")
signal[0,0] = out.y[WFS1_idx]
signal[1,0] = out.y[WFS2_idx]
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
out = kat.run(printout=0,printerr=0)
signal[0,1] = out.y[WFS1_idx]
signal[1,1] = out.y[WFS2_idx]
signal = signal *1e10
sensors=('WFS1', 'WFS2')
mirrors=('ITM', 'ETM')
print " ASC Matrix:"
for i in range(2):
print " ", sensors[i], " ",
for j in range(2):
print "%12.10g" % signal[i,j],
print mirrors[i]
return signal
def asc_phases(tmpkat):
kat = copy.deepcopy(tmpkat)
kat.parseKatCode('yaxis abs')
kat.noxaxis = True
kat.maxtem=1
def demod_phase1(x):
kat.WFS1_I.phi[0]=x
out = kat.run(printout=0,printerr=0)
WFS1_idx=out.ylabels.index("WFS1_I")
signal = out.y[WFS1_idx]
print '\r minimising: function value %g ' % signal ,
sys.stdout.flush()
return -1*abs(signal)
def demod_phase2(x):
kat.WFS2_I.phi[0]=x
out = kat.run(printout=0,printerr=0)
WFS2_idx=out.ylabels.index("WFS2_I")
signal = out.y[WFS2_idx]
print '\r minimising: function value %g ' % signal ,
sys.stdout.flush()
return -1*abs(signal)
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
res = minimize_scalar(demod_phase1, method='brent')
WFS1_phase = res.x
print ""
print " WFS1 demod phase : %.10g deg" % WFS1_phase
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
res = minimize_scalar(demod_phase2, method='brent')
WFS2_phase = res.x
print ""
print " WFS2 demod phase : %.10g deg" % WFS2_phase
return(WFS1_phase, WFS2_phase)
def gravity_tilt(tmpkat):
kat = copy.deepcopy(tmpkat)
def compute_gravity_tilt(tmpkat):
kat = copy.deepcopy(tmpkat)
out = kat.run(printout=0,printerr=0)
y1 = out["b1"]
y2 = out["b1_1k"]
# shift of beam center on detector 1 (as m/w0y)
x1 = np.sum(out.x*y1)/np.sum(y1)
# shift of beam center on detector 2 (as m/w0y)
x2 = np.sum(out.x*y2)/np.sum(y2)
# calibrate this in meter by mutliplying with w0y
# and compute the angle geometrically
w0=out["w0y"][0]
detector_distance = 1000.0
tilt=w0*(x2-x1)/detector_distance
print " Wavefront tilt : %g nrad" % tilt
code_WFS1 = """
beam b1 nWFS1
beam b1_1k nL1_in
bp w0y y w0 nWFS1
"""
code_WFS2 = """
m md 0 1 0 nWFS2 nWFS2b
s sd 1k nWFS2b nWFS2c
beam b1 nWFS2*
beam b1_1k nWFS2c
bp w0y y w0 nWFS2
"""
code_xaxis= """
xaxis b1 y lin -40 40 800
put b1_1k y $x1
yaxis abs
"""
print " WFS1:"
print " ITM ybeta 0.1nm"
kat.parseKatCode(code_WFS1)
kat.parseKatCode(code_xaxis)
kat.spo1.L=1000.0
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
compute_gravity_tilt(kat)
print " ETM ybeta -0.1nm"
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
compute_gravity_tilt(kat)
print " WFS1:"
print " ITM ybeta 0.1nm"
kat = copy.deepcopy(tmpkat)
kat.parseKatCode(code_WFS2)
kat.parseKatCode(code_xaxis)
kat.spo1.L=1.0e-9
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
compute_gravity_tilt(kat)
print " ETM ybeta -0.1nm"
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
compute_gravity_tilt(kat)
def beam_size(tmpkat, beam2, beam3):
kat = copy.deepcopy(tmpkat)
global out
code_bps = """
bp wWFS1 y w nWFS1
bp wWFS2 y w nWFS2
"""
kat.parseKatCode(code_bps)
kat.maxtem = 0
kat.ITM.R=1.0
kat.ITM.T=0.0
kat.noxaxis = True
kat.ITM_TL.f=50e3
kat.po.nWFS1.node.setGauss(kat.po,beam2)
out = kat.run(printout=0,printerr=0)
WFS1_idx=out.ylabels.index("wWFS1")
WFS2_idx=out.ylabels.index("wWFS2")
y1 = out.y[WFS1_idx]
y2 = out.y[WFS2_idx]
print " Beam size with thermal lens f={0}".format(kat.ITM_TL.f)
print " WFS1: {0}cm".format(y1*100.0)
print " WFS2: {0}cm".format(y2*100.0)
kat.ITM_TL.f=5e3
kat.po.nWFS1.node.setGauss(kat.po,beam3)
out = kat.run(printout=0,printerr=0)
y1 = out.y[WFS1_idx]
y2 = out.y[WFS2_idx]
print " Beam size with thermal lens f={0}".format(kat.ITM_TL.f)
print " WFS1: {0}cm".format(y1*100.0)
print " WFS2: {0}cm".format(y2*100.0)
if __name__ == '__main__':
main()
......@@ -266,9 +266,11 @@ class Node(object):
rtn = []
if self.__q_x == self.__q_y:
rtn.append("gauss* g_{node} {comp} {node} {z} {zr}".format(node=self.name, comp=self.__q_comp.name, z=self.__q_x.real, zr=self.__q_x.imag))
rtn.append("gauss g_{node} {comp} {node} {w0:.15g} {z:.15g}".format(node=self.name, comp=self.__q_comp.name, w0=self.__q_x.w0, z=self.__q_x.z))
#rtn.append("gauss* g_{node} {comp} {node} {z} {zr}".format(node=self.name, comp=self.__q_comp.name, z=self.__q_x.real, zr=self.__q_x.imag))
else:
rtn.append("gauss* g_{node} {comp} {node} {zx} {zrx} {zy} {zry}".format(node=self.name, comp=self.__q_comp.name, zx=self.__q_x.real, zrx=self.__q_x.imag, zy=self.__q_y.real, zry=self.__q_y.imag))
rtn.append("gauss g_{node} {comp} {node} {w0x:.15g} {zx:.15g} {w0y:.15g} {zy:.15g}".format(node=self.name, comp=self.__q_comp.name, w0x=self.__q_x.w0, zx=self.__q_x.z, w0y=self.__q_y.w0, zy=self.__q_y.z))
#rtn.append("gauss* g_{node} {comp} {node} {zx} {zrx} {zy} {zry}".format(node=self.name, comp=self.__q_comp.name, zx=self.__q_x.real, zrx=self.__q_x.imag, zy=self.__q_y.real, zry=self.__q_y.imag))
return rtn
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment