Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
finesse
pykat
Commits
7196bc17
Commit
7196bc17
authored
Jul 23, 2015
by
Daniel Toyra
Browse files
Updated and commented methods in pykat.optics.maps, mainly surfacemap.remove_curvature().
parent
98f37ee8
Changes
1
Hide whitespace changes
Inline
Side-by-side
pykat/optics/maps.py
View file @
7196bc17
...
...
@@ -328,7 +328,7 @@ class surfacemap(object):
ymax
=
len
(
self
.
y
)
-
1
ylim
=
[
self
.
y
.
min
()
*
100
,
self
.
y
.
max
()
*
100
]
# ALSO (SEE LONG TEXT BELOW)
ADDED
BY DT TO FIX LIMITS
# ALSO
ADDED
(SEE LONG TEXT BELOW) BY DT TO FIX LIMITS
# ------------------------------------------------------
xlim
,
ylim
=
ylim
,
xlim
# ------------------------------------------------------
...
...
@@ -381,54 +381,116 @@ class surfacemap(object):
def
remove_curvature
(
self
,
Rc0
,
w
=
0
,
display
=
'off'
):
# Removes curvature from mirror map by fitting a sphere to
# mirror surface. Based on the file
# 'FT_remove_curvature_from_mirror_map.m'.
# Rc0 - Initial guess of the radius of curvature
# w - Beam radius on mirror [m], used for weighting. w=0
# switches off weighting.
# display - Display mode of the fitting routine. Can be 'off',
# 'iter', 'notify', or 'final'.
# z-value at centre of the mirror.
zOffset
=
self
.
data
[
round
(
self
.
center
[
1
]),
round
(
self
.
center
[
0
])]
def
remove_curvature
(
self
,
Rc0
,
w
=
None
,
zOffset
=
None
,
isCenter
=
[
False
,
False
],
display
=
'off'
):
'''
Removes curvature from mirror map by fitting a sphere to
mirror surface. Based on the file 'FT_remove_curvature_from_mirror_map.m'.
Rc0 - Initial guess of the radius of curvature [m]
w - Beam radius on mirror [m], used for weighting.
zOffset - Initial guess of the z-offset [surfacemap.scaling]. Generally not needed.
isCenter - 2D-list with booleans. isCenter[0] Determines if the center of the
sphere is fitted (True) or not (False, recommended). If the center is
fitted, then isCenter[1] determines if the weights are centered around
the fitted center (True) or centered around the center of the data-grid
(False, highly recommended).
display - Display mode of the fitting routine. Can be 'off',
'iter', 'notify', or 'final'.
'''
# z-value at centre of the data-grid. Serves as initial guess for deviation
# from z=0, if no other first guess is given.
if
zOffset
is
None
:
zOffset
=
self
.
data
[
round
(
self
.
center
[
1
]),
round
(
self
.
center
[
0
])]
# If fitting center of the sphere, four variables are fitted. Initial guess
# of deviation from notNan-data-grid-center: (x0,y0) = (0,0).
if
isCenter
[
0
]:
params
=
[
Rc0
,
zOffset
,
0.0
,
0.0
]
# Otherwise two.
else
:
params
=
[
Rc0
,
zOffset
]
# Grid with X,Y and r2 = (X^2+Y^2) values. X and Y crosses zero in the center
# of the xy-plane.
X
,
Y
,
r2
=
self
.
createGrid
()
# Cost-function to minimize.
def
costFunc
(
params
):
n
=
len
(
params
)
if
n
==
2
:
# If the center of the mirror is fitted, four variables are fitted.
if
isCenter
[
0
]
:
Rc
=
params
[
0
]
zOffset
=
params
[
1
]
x0
=
0
y0
=
0
x0
=
params
[
2
]
y0
=
params
[
3
]
# Otherwise 2 variables.
else
:
Rc
=
params
[
0
]
zOffset
=
params
[
1
]
x0
=
params
[
2
]
y0
=
params
[
3
]
x0
=
0
y0
=
0
Z
=
self
.
createSphere
(
Rc
,
X
,
Y
,
zOffset
,
x0
,
y0
)
if
w
==
0
:
if
w
is
None
:
# Mean squared difference between map and the created sphere.
res
=
math
.
sqrt
(
((
self
.
data
[
self
.
notNan
]
-
Z
[
self
.
notNan
])
**
2
).
sum
()
)
/
self
.
notNan
.
sum
()
else
:
weight
=
2
/
(
math
.
pi
*
w
**
2
)
*
np
.
exp
(
-
2
*
r2
/
w
**
2
)
if
isCenter
[
0
]
and
isCenter
[
1
]:
# Weights centered around fitting spehere center. May give weird
# results if the mirror deviates much from a sphere.
weight
=
(
2
/
(
math
.
pi
*
w
**
2
))
*
np
.
exp
(
-
2
*
(
(
X
-
x0
)
**
2
+
(
Y
-
y0
)
**
2
)
/
w
**
2
)
else
:
# Weights centered around the center of the mirror xy-plane.
weight
=
(
2
/
(
math
.
pi
*
w
**
2
))
*
np
.
exp
(
-
2
*
r2
/
w
**
2
)
# Weighted mean squared difference between map and the created sphere.
res
=
math
.
sqrt
(
(
weight
[
self
.
notNan
]
*
((
self
.
data
[
self
.
notNan
]
-
Z
[
self
.
notNan
])
**
2
)).
sum
()
)
/
self
.
notNan
.
sum
()
print
(
Rc
,
zOffset
,
res
)
Z
[
self
.
notNan
])
**
2
)).
sum
()
)
/
weight
[
self
.
notNan
].
sum
()
return
res
params
=
[
Rc0
,
zOffset
]
# Using the simplex Nelder-Mead method. This is the same or very
# similar to the method used in 'FT_remove_curvature_from_mirror_map.m',
# but there are probably better methods to use.
out
=
minimize
(
costFunc
,
params
,
method
=
'Nelder-Mead'
,
tol
=
1.0e-6
)
Rc
=
out
[
'x'
][
0
]
zOffset
=
out
[
'x'
][
1
]
Z
=
self
.
createSphere
(
Rc
,
X
,
Y
,
zOffset
)
self
.
data
[
self
.
notNan
]
=
self
.
data
[
self
.
notNan
]
-
Z
[
self
.
notNan
]
return
self
.
data
,
self
.
Rc
,
self
.
zOffset
# Assigning values to the instance variables
self
.
Rc
=
out
[
'x'
][
0
]
self
.
zOffset
=
out
[
'x'
][
1
]
# If center was fitted, assign new values to instance variable center, and
# subtract the fitted sphere from the mirror map.
if
isCenter
[
0
]:
x0
=
out
[
'x'
][
2
]
y0
=
out
[
'x'
][
3
]
# Converts the deviation into a new absolut center in data points.
self
.
center
=
(
self
.
center
[
0
]
+
x0
/
self
.
step_size
[
0
],
self
.
center
[
1
]
+
y0
/
self
.
step_size
[
1
])
# Creating fitted sphere
Z
=
self
.
createSphere
(
self
.
Rc
,
X
,
Y
,
self
.
zOffset
,
x0
,
y0
)
# Subtracting sphere from map
self
.
data
[
self
.
notNan
]
=
self
.
data
[
self
.
notNan
]
-
Z
[
self
.
notNan
]
return
self
.
Rc
,
self
.
zOffset
,
x0
,
y0
# Subtracting fitted sphere from mirror map.
else
:
# Creating fitted sphere
Z
=
self
.
createSphere
(
self
.
Rc
,
X
,
Y
,
self
.
zOffset
)
# Subtracting sphere from map
self
.
data
[
self
.
notNan
]
=
self
.
data
[
self
.
notNan
]
-
Z
[
self
.
notNan
]
return
self
.
Rc
,
self
.
zOffset
def
createSphere
(
self
,
Rc
,
X
,
Y
,
zOffset
=
0
,
x0
=
0
,
y0
=
0
,
xTilt
=
0
,
yTilt
=
0
,
isPlot
=
False
):
# Creating spherical surface. Based on 'FT_create_sphere_for_map.m'
'''
Creating spherical surface. Based on 'FT_create_sphere_for_map.m'
Rc - Radius of curvature, and center of sphere on z-axis in case zOffset=0 [m].
X, Y - Matrices of x,y-values generated by 'X,Y = numpy.meshgrid(xVec,yVec)'.
Preferrably created by method 'surfacemap.createGrid()' [m].
zOffset - Surface center offset from 0. Positive value gives the surface center
positive z-coordinate. [self.scaling]
x0,y0 - The center of the sphere in the xy-plane.
x/yTilt - Tilt of x/y-axis [rad].
isPlot - Plot or not [boolean]. Not recommended when used within optimization
algorithm.
'''
# Adjusting for tilts and offset
Z
=
zOffset
+
(
X
*
np
.
tan
(
xTilt
)
+
Y
*
np
.
tan
(
yTilt
))
/
self
.
scaling
...
...
@@ -442,15 +504,22 @@ class surfacemap(object):
axes
=
pylab
.
pcolormesh
(
X
,
Y
,
Z
)
#, vmin=zmin, vmax=zmax)
cbar
=
fig
.
colorbar
(
axes
)
cbar
.
set_clim
(
Z
.
min
(),
Z
.
max
())
pylab
.
title
(
'Z_min = '
+
str
(
Z
.
min
())
+
'
Z_max = '
+
str
(
Z
.
max
()))
pylab
.
title
(
'Z_min = '
+
str
(
Z
.
min
())
+
' Z_max = '
+
str
(
Z
.
max
()))
pylab
.
show
()
return
Z
def
createGrid
(
self
):
# Creating grid for the map. Based on 'FT_create_grid_for_map.m'
# and 'FT_init_grid.m'.
# ----------------------------------------------------------------
'''
Creating grid for fitting spherical surface to the map. Based on
'FT_create_grid_for_map.m' and 'FT_init_grid.m'. (x,y) = (0,0) is
placed at the centre of the mirror surface defined by the instance
variable surfacemap.center.
Returns X,Y,r2
, where X,Y = numpy.meshgrid(x,y), and r2 = X^2 + Y^2.
'''
yPoints
,
xPoints
=
self
.
data
.
shape
# Difference between the data point centre, and the centre of
# the mirror surface.
...
...
@@ -461,22 +530,18 @@ class surfacemap(object):
x
=
np
.
array
([
n
for
n
in
range
(
xPoints
)])
y
=
np
.
array
([
n
for
n
in
range
(
yPoints
)])
#
Shouldn't the real physical size
be (points-1)*step_size?
#
Physical size. Shouldn't this
be (points-1)*step_size?
xSize
=
xPoints
*
self
.
step_size
[
0
]
ySize
=
yPoints
*
self
.
step_size
[
1
]
# ...corrected here by subracting one step. Isn't this unnecessary
# complicated btw?
xAxis
=
x
*
self
.
step_size
[
0
]
+
xOffset
-
(
xSize
-
self
.
step_size
[
0
])
/
2
yAxis
=
y
*
self
.
step_size
[
1
]
+
yOffset
-
(
ySize
-
self
.
step_size
[
1
])
/
2
#print(xAxis[round(self.center[0])-1:round(self.center[0])+2])
#print(yAxis[round(self.center[1])-1:round(self.center[1])+2])
X
,
Y
=
np
.
meshgrid
(
xAxis
,
yAxis
)
r
=
np
.
sqrt
(
X
**
2
+
Y
**
2
)
r2
=
X
**
2
+
Y
**
2
phi
=
np
.
arctan2
(
Y
,
X
)
print
(
X
.
min
(),
X
.
max
(),
Y
.
min
(),
Y
.
max
()
)
# r
= np.
sqrt(X**2 + Y**2
)
# phi = np.arctan2(Y,X
)
return
X
,
Y
,
r2
# ----------------------------------------------------------------
...
...
@@ -819,13 +884,20 @@ class zernikemap(surfacemap):
self
.
data
=
data
# Reads surface map files and return surfacemap-object.
# supported mapFormat: 'finesse', 'ligo', 'zygo'.
# All ascii formats.
def
read_map
(
filename
,
mapFormat
=
'finesse'
):
# Function turning input x into float.
g
=
lambda
x
:
float
(
x
)
def
read_map
(
filename
,
mapFormat
=
'finesse'
,
scaling
=
1.0e-9
):
'''
Reads surface map files and return a surfacemap-object xy-centered at the
center of the mirror surface.
filename - name of surface map file.
mapFormat - 'finesse', 'ligo', 'zygo'. Currently only for ascii formats.
scaling - scaling of surface height of the mirror map [m].
'''
# Function converting string number into float.
g
=
lambda
x
:
float
(
x
)
# Reads finesse mirror maps.
if
mapFormat
==
'finesse'
:
with
open
(
filename
,
'r'
)
as
f
:
...
...
@@ -838,13 +910,11 @@ def read_map(filename, mapFormat='finesse'):
step
=
tuple
(
map
(
g
,
f
.
readline
().
split
(
':'
)[
1
].
strip
().
split
()))
scaling
=
float
(
f
.
readline
().
split
(
':'
)[
1
].
strip
())
data
=
np
.
loadtxt
(
filename
,
dtype
=
np
.
float64
,
ndmin
=
2
,
comments
=
'%'
)
# Converts raw zygo and ligo mirror maps to the finesse
# format. Based on
translation of
the matlab scripts
#
'FT_read_zygo_map.m' and
'FT_read_ligo_map.m'
# format. Based on the matlab scripts
'FT_read_zygo_map.m' and
# 'FT_read_ligo_map.m'
.
elif
mapFormat
==
'ligo'
or
mapFormat
==
'zygo'
:
if
mapFormat
==
'ligo'
:
isLigo
=
True
...
...
@@ -861,7 +931,8 @@ def read_map(filename, mapFormat='finesse'):
else
:
isAscii
=
False
# Unknowns (why are these values hard coded here?)
# Unknowns (why are these values hard coded here?) Moving
# scaling to input. Fix the others later too.
# ------------------------------------------------------
# Standard maps have type 'phase' (they store surface
# heights)
...
...
@@ -870,7 +941,7 @@ def read_map(filename, mapFormat='finesse'):
# affected
field
=
0
# Measurements in nanometers
scaling
=
1.0e-9
#
scaling = 1.0e-9
# ------------------------------------------------------
# Reading header of LIGO-map (Zygo file? Says Zygo in
...
...
@@ -890,7 +961,7 @@ def read_map(filename, mapFormat='finesse'):
iRows
=
float
(
line
.
split
()[
3
])
line
=
f
.
readline
().
split
()
# Unknown
# Unknown
usage.
# ----------------------------------------------
if
isLigo
:
y0
=
float
(
line
[
0
])
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment