diff --git a/src/new/IFOs/FT_FP_sidebands.m b/src/new/IFOs/FT_FP_sidebands.m
new file mode 100644
index 0000000000000000000000000000000000000000..0304a17d5b8895dee9e1a91bf7fb3422c4c63534
--- /dev/null
+++ b/src/new/IFOs/FT_FP_sidebands.m
@@ -0,0 +1,65 @@
+%--------------------------------------------------------------------------
+% [a_FP] = FT_FP_sidebands(fsig,a0,lambda,L,R1,T1,R2,sb_sign)
+%
+% A function for Matlab which calculates the amplitude and phase of the
+% sidebands created and reflected from a Fabry-Perot cavity where the 
+% cavity space is modulated by a gravitational wave (with h=1).  The 
+% calculation is carried out for a linear cavity on resonance.
+%
+% fsig:     Gravitational wave frequency [Hz]
+% a0:       Complex number representing the amplitude and phase of the beam
+%           injected into the cavity [sqrt(W)].  
+% lambda:   Laser wavelength [m]
+% L:        Cavity length [m]
+% R1:       ITM reflection coefficient (power)
+% T1:       ITM transmission coefficient (power) 
+%           R1 and T1 should satisfy R1+T1<=1
+% R2:       ETM reflection coefficient (power).  R2 must satisfy R2<=1.
+% sb_sign:  Sign of the sideband to calculate the amplitude and phase of.
+%           1:  upper sideband
+%           -1: lower sideband
+%           The amplitudes of the upper and lower sidebands are the same,
+%           the phases depend on the sign.
+%
+% a_FP:     Returned complex coefficient describing the amplitude and phase
+%           of the reflected sideband [sqrt(W)].
+%
+% Charlotte Bond    28.01.2013
+%--------------------------------------------------------------------------
+%
+
+function [a_FP] = FT_FP_sidebands(fsig,a0,lambda,L,R1,T1,R2,sb_sign)
+
+    % Light/cavity parameters
+    c=299792458;
+    ksig = 2*pi*fsig/c;
+    n = 1;
+    
+    % Make the cavity space resonanat
+    L = round(L/lambda)*lambda;    
+    
+    % Reflection amplitude coefficients
+    r1 = sqrt(R1);
+    r2 = sqrt(R2);
+    
+    % Gravitational wave amplitude = 1
+    h0 = 1;
+    
+    % Amplitude of sidebands created when a beam travels through a space
+    % modulated by a GW
+    asb = FT_GW_sidebands(lambda,h0,fsig,L,n,sb_sign);
+    
+    % Sideband amplitude from round-trip of the space
+    a_arm = r2*asb.*(1+exp(-1i*sb_sign*ksig*L)); 
+    
+    % Amplitude of sidebands reflected from the cavity
+    a_FP = a0 * (-T1/(1-r1*r2)) * (a_arm./(1-r1*r2*exp(-1i*2*sb_sign*ksig*L)));
+    
+    % If T1=1 (i.e. not ITM) the equation above adds an extra 180 deg 
+    % phase, which needs to be corrected via an extra - 
+    if T1==1
+        a_FP = -a_FP;
+    end
+    
+end
+
diff --git a/src/new/IFOs/FT_MICH_sidebands.m b/src/new/IFOs/FT_MICH_sidebands.m
new file mode 100644
index 0000000000000000000000000000000000000000..a0a013749fe69a14cead5eef6c85401778b1b31a
--- /dev/null
+++ b/src/new/IFOs/FT_MICH_sidebands.m
@@ -0,0 +1,59 @@
+%--------------------------------------------------------------------------
+% function [a_MICH] =
+% FT_MICH_sidebands(fsig,a0,lambda,L,Rbs,Tbs,R1,T1,R2,sb_sign)
+%
+% A function for Matlab which calculates the sidebands created at the 
+% output (dark) port of a Michleson interferometer when a gravitational 
+% wave modulates the length of the arms.  The Michelson is on the dark 
+% fringe with lx 0.25*lambda longer than ly and the arm cavities are on 
+% resonance.  The gravitational wave is in the optimal polarisation, 
+% modulating the y arm 180 degrees out of phase with the x arm. 
+%
+% fsig:     Frequency of the gravitational wave [Hz]
+% a0:       Complex number describing the amplitude and phase of the
+%           input light beam [sqrt(W)].
+% lambda:   Laser wavelength [m]
+% L:        Length of arm cavities [m]
+% Rbs:      Beam-splitter reflection coefficient (power)
+% Tbs:      Beam-splitter reflection coefficient (power)
+% R1:       ITM reflection coefficient (power)
+% T1:       ITM transmission coefficient (power)
+%           For the case of no arm cavities (just a single end mirror) use
+%           T1 = 1, R1 = 0.
+% R2:       ETM reflection coefficient (power)
+% sb_sign:  Sign of the sideband amplitude to calculate.
+%           1:  Upper sideband
+%           -1: Lower sideband
+%
+% a_MICH:   Returned complex sideband amplitude, including the amplitude 
+%           and phase, at the dark port of the Michleson interferometer
+%           [sqrt(W)].
+%
+% Charlotte Bond    26.02.2013
+%--------------------------------------------------------------------------
+%
+
+function [a_MICH] = FT_MICH_sidebands(fsig,a0,lambda,L,Rbs,Tbs,R1,T1,R2,sb_sign)
+
+    % Carrier and sideband parameters
+    c=299792458;
+    k0 = 2*pi/lambda;
+    ksig = 2*pi*fsig/c;
+    
+    % BS parameters
+    rbs = sqrt(Rbs);
+    tbs = sqrt(Tbs);
+    
+    % Calculate the amplitude of the sidebands reflected from the arms
+    a_FP = FT_FP_sidebands(fsig,a0,lambda,L,R1,T1,R2,sb_sign);
+    
+    % Put the Michelson on the dark fringe
+    lx = 0.25*lambda;
+    ly = 0;
+    
+    % Calculate the amplitude of the sidebands sent to the dark port
+    a_MICH = 1i * tbs * rbs * a0 * a_FP .* (exp(-1i*(2*k0+sb_sign*ksig)*lx)-exp(-1i*(2*k0+sb_sign*ksig)*ly));
+    
+    
+end
+
diff --git a/src/new/IFOs/FT_SAG_sidebands.m b/src/new/IFOs/FT_SAG_sidebands.m
new file mode 100644
index 0000000000000000000000000000000000000000..2b43b8910e7b3b3aa0ca05c307d546c51e9ff5f9
--- /dev/null
+++ b/src/new/IFOs/FT_SAG_sidebands.m
@@ -0,0 +1,57 @@
+%--------------------------------------------------------------------------
+% function [a_SAG] =
+% FT_SAG_sidebands(fsig,a0,lambda,L,Rbs,Tbs,R1,T1,R2,sb_sign)
+% 
+% A function for Matlab which calculates the amplitude of sidebands created
+% in a Sagnac interferometer at the output (dark) port when a gravitational
+% wave modulates the length of the arms.  The arm cavities are on resonance
+% and the gravitational wave is in the optimal polarisation, modulating the
+% y arm 180 degrees out of phase to the x arm.
+%
+% fsig:     Frequency of the gravitational wave [Hz]
+% a0:       Complex number describing the amplitude and phase of the input
+%           light beam [sqrt(W)].
+% lambda:   Laser wavelength [m]
+% L:        Length of the arms/ cavities [m]
+% Rbs:      Beam-splitter reflection coefficient (power)
+% Tbs:      Beam-splitter transmission coefficient (power)
+% R1:       ITM reflection coefficient (power)
+% T1:       ITM transmission coefficient (power)
+%           For no arm cavities (just a single end mirror in the arms) use
+%           R1 = 0, T1 = 1. 
+% R2:       ETM reflection coefficient (power)
+% sb_sign:  Sign of the sidebands to calculate.
+%           1:  upper sideband
+%           -1: lower sideband
+%
+% a_SAG:    Complex number describing the amplitude and phase of the
+%           sideband at the output of the Sagnac interferometer [sqrt(W)].
+%
+% Charlotte Bond    26.02.2013
+%--------------------------------------------------------------------------
+%
+
+function [a_SAG] = FT_SAG_sidebands(fsig,a0,lambda,L,Rbs,Tbs,R1,T1,R2,sb_sign)
+
+    % Light parameters
+    c=299792458;
+    k0 = 2*pi/lambda;
+    ksig = 2*pi*fsig/c;
+    
+    % Put the arm cavities on resonance
+    L = round(L/lambda)*lambda;
+    
+    % Calculate the amplitude of the sidebands reflected from the arms
+    a_FP = FT_FP_sidebands(fsig,a0,lambda,L,R1,T1,R2,sb_sign);
+
+    % Reflection coefficients for the FP cavities for the carrier and
+    % sideband frequency.
+    rcav_k0 = FT_FP_refl(k0,L,R1,T1,R2);
+    rcav_ksig = FT_FP_refl(k0+sb_sign*ksig,L,R1,T1,R2);
+    
+    % Final amplitude of the sidebands at the output port of the Sagnac
+    % interferometer
+    a_SAG = a0 * a_FP .* (rcav_k0 - rcav_ksig) * (Rbs+Tbs);
+
+end
+