function batch_processor_partitioned(Mday,FolderName,lmaxcs,mKBR,field,data_plm,GM,ae,lmaxf,state,timeKBR,observation,x0x) % BATCH_PROCESSOR_PARTITIONED provides a batch processing algorithm for GRACE % range-rate observations. % % Separation between local and global parameters, which are estimated for % different arcs. E.g. Initial states daily and spherical harmonics % coefficients for the whole time. Using Partitioned Normal Equations based on: % - Gunter's MSc(2000)thesis, page 27 % - Statistical Orbit Determination (Tapley et al., 2004), page 196-197 % % Input: Mday = current arc number/index % FolderName = folder/path where intermediate results are saved % lmaxcs = order of spherical harmonic coefficients to be estimated % mKBR = number of observations in each arc % field = gravity field % data_plm = Legendre polynomial, see initplm % GM = GM of gravity field % ae = Earth radius of gravity field % lmaxf = parameters of background gravity field % state = initial states for arc [12x1] % timeKBR = times of observations % observation = vector of observations (eg. range rates) % x0x = state deviation [12x1] % % Output: function has no output, output is saved in file for easy % parallelization % % Example: see gfr_parallel.m % % Main functions % - deriv: calculates all partials % - hmat: makes observation-state mapping matrices Hxtilde and HcTilde % Other functions % - vec2cs: reformatting spherical harmonics coefficients % - cs2sc: reformatting spherical harmonics coefficients % - initplm: initializes Legendre polynomial calculation % % Written by Neda Darbeheshti, AEI Hannover, 2018-07 % Last updated by Florian Wöske, ZARM Uni Bremen,2018-07 %% set some initial parameters % Minimum degree and order of coefficients to be estimated lmincs=2; noc=lmaxcs^2-lmincs^2+2*lmaxcs+1;%total number of coefficients to be estimated % Load P0:A priori state variance???covariance matrix P0x=eye(12); P0c=eye(noc); x0c = zeros(noc,1); % states, rho and rhodot states = zeros(mKBR,12); GiR_save = zeros(mKBR,2); rhodot_deviation = zeros(mKBR,1); Hx_save = zeros(mKBR,12); Hc_save = zeros(mKBR,noc); % All parameters needed in derivs function are put in a struct, making it % easy to change or add the parameters of derivs deriv_params.field = field; deriv_params.data_plm = data_plm; deriv_params.GM = GM; deriv_params.ae = ae; deriv_params.lmaxf = lmaxf; deriv_params.lmaxcs = lmaxcs; deriv_params.noc = noc; %% set integration parameters % integration method (1: Runge-Kutta 4, 2: RK DP8, 3: ABM) RK4 needs 4 calls of % deriv function, medium integration accuracy, DP8 needs 13 calls of deriv, % high accuracy also with bigger step size. ABM needs to be initialized with a % single step integration method like RK or DP, as for all multistep % integrators. After initialization it needs just 2 calls of DERIV and has a % high accuracy. Multistep methods with high orders tend to get unstable when % not decreasing step sizes. int_meth = 3; % id ABM integrator, order of ABM scheme (implemented: 1 to 12) abm_order = 8; lengthX0=12*(12+noc)+12; % Define the state transition matrix: phibuff = eye(12+noc); % a replacement for phi as a square matrix phi = reshape(phibuff(1:12,1:end),12,(12+noc)); %phi not to be a square matrix to save some space % Form the extended state vector: X0 = [state;reshape(phi,numel(phi),1)]; % new X = X0; %L = eye(12+noc) / P0; %N = P0 \ x0; %Eqs. (6.3.22), (6.3.23), and (6.3.25)from Tapley's book Mxx=eye(12) / P0x; Mxc=zeros(12,noc); Mcc=eye(noc) / P0c; Nx =P0x \ x0x; Nc =P0c \ x0c; % alloc. vars. i_call = 0; dXdt=zeros(abm_order, lengthX0); % Run through each observation: for ii = 1:mKBR % Read observation: Y = observation(ii,:)'; if ii > 1 i_call = i_call+1; % count number of odeint evaluations [X, dXdt] = odeint(@deriv, X, dXdt, timeKBR(ii-1), 5, i_call, int_meth, abm_order, deriv_params); end % save the states states(ii,:) = X(1:12)'; % Extract the state transition matrix: phi = reshape(X(12+1:end), 12, 12+noc); [a,b] = size(phi); phibuff(1:a,1:b) = phi; % Get the Htilde Matrix: [Htilde,Y_star]= hmat(X,noc); % save rho and rhodot GiR_save(ii,:) = Y_star; % Time update: H = Htilde*phibuff; Hx = H(1:12); Hc = H(13:end); % Calculate the observation deviation: y = Y - Y_star(2,:); % accumulate Lambda: % L = L + H'*WMAT*H; Mxx=Mxx + Hx'*Hx; Mxc=Mxc + Hx'*Hc; Mcc=Mcc + Hc'*Hc; % accumulate N: % N = N + H'*WMAT*y; Nx = Nx + Hx'*y; Nc = Nc + Hc'*y; % Store data: rhodot_deviation(ii) = y; Hx_save(ii,:)=Hx; Hc_save(ii,:)=Hc; end invMxx=Mxx\eye(size(Mxx)); %% save in a file FileName= ['arcmatrix',num2str(Mday,'%.2d'),'.mat']; File= fullfile(FolderName,'results/OutputArcParall', FileName); % save(File,'Mxc','Nx','Mcc','Nc','iL','iN','invMxx','rhodot_deviation','Hx_save','Hc_save'); save(File,'invMxx','Mxc','Mcc','Nx','Nc','rhodot_deviation','Hx_save','Hc_save', 'states', 'GiR_save');