diff --git a/contrastBeforeAfterAmplitude.m b/contrastBeforeAfterAmplitude.m index 14aeb1b63621ac9bde8c79fced51390317814443..b260a1b6069206ba8bf7b9d44bb998df744d4e11 100644 --- a/contrastBeforeAfterAmplitude.m +++ b/contrastBeforeAfterAmplitude.m @@ -53,7 +53,6 @@ differenceClean = difference; differenceClean(isnan(difference)) = []; arithmean = mean(differenceClean)*ones(size(difference)); arithmeanString = horzcat('Arithmetic mean of difference: ', num2str(arithmean(1))); -length(difference) figure(2) plot(beforeL, difference, beforeL, arithmean) @@ -88,10 +87,38 @@ ylabel('Histogram count') legend('Before feedforward', 'After feedforward') title({'Hann windowed calibrated amplitude histogram';... harmmeanString;... - num2str(harmmeanBefore); - num2str(harmmeanAfter); + num2str(harmmeanBefore);... + num2str(harmmeanAfter);... num2str(harmmeanDifference)}) grid on print('-dpdf', 'HannHist.pdf') print('-dpng', 'HannHist.png') close(3) + +% Try cutting statistical outliers to see how that affects the distribution +beforeCut = before; +afterCut = after; +threshold = 7e-23; +beforeCut(beforeCut > threshold) = []; +afterCut(afterCut > threshold) = []; +beforeCutHist = hist(beforeCut, HoftHistVector); +afterCutHist = hist(afterCut, HoftHistVector); +harmmeanBeforeCut = harmmean(beforeCut); +harmmeanAfterCut = harmmean(afterCut); +harmmeanDifferenceCut = harmmeanBeforeCut - harmmeanAfterCut; +harmmeanStringCut = 'Harmonic mean, cut at 7e-23: before, after, difference'; + +figure(4) +plot(HoftHistVector, beforeCutHist, HoftHistVector, afterCutHist) +xlabel('Hoft') +ylabel('Histogram count') +legend('Before feedforward', 'After feedforward') +title({'Hann window calibrated amplitude histogram';... + harmmeanStringCut;... + num2str(harmmeanBeforeCut);... + num2str(harmmeanAfterCut);... + num2str(harmmeanDifferenceCut)}); +grid on +print('-dpdf', 'HannHistCut.pdf') +print('-dpng', 'HannHistCut.png') +close(4)