diff --git a/pyfstat/grid_based_searches.py b/pyfstat/grid_based_searches.py index 95e092e5b4289d501c9fc0f73a7ff80f5c1ca9c7..023d2eec3dddf6809df3ab8d9e2cc3834cc5f27d 100644 --- a/pyfstat/grid_based_searches.py +++ b/pyfstat/grid_based_searches.py @@ -797,14 +797,14 @@ class FrequencySlidingWindow(GridSearch): For all other parameters, see `pyfstat.ComputeFStat` for details """ - self.transientWindowType = None + self.transientWindowType = 'rect' + self.nsegs = 1 self.t0Band = None self.tauBand = None if os.path.isdir(outdir) is False: os.mkdir(outdir) self.set_out_file() - self.nsegs = 1 self.F1s = [F1] self.F2s = [F2] self.Alphas = [Alpha] @@ -825,24 +825,24 @@ class FrequencySlidingWindow(GridSearch): self.search.get_fullycoherent_twoF) def get_input_data_array(self): - arrays = [] + coord_arrays = [] tstarts = [self.minStartTime] while tstarts[-1] + self.window_size < self.maxStartTime: tstarts.append(tstarts[-1]+self.window_delta) - arrays = [tstarts] + coord_arrays = [tstarts] for tup in (self.F0s, self.F1s, self.F2s, self.Alphas, self.Deltas): - arrays.append(self.get_array_from_tuple(tup)) + coord_arrays.append(self.get_array_from_tuple(tup)) input_data = [] - for vals in itertools.product(*arrays): + for vals in itertools.product(*coord_arrays): input_data.append(vals) input_data = np.array(input_data) input_data = np.insert( input_data, 1, input_data[:, 0] + self.window_size, axis=1) - self.arrays = arrays + self.coord_arrays = coord_arrays self.input_data = np.array(input_data) def plot_sliding_window(self, F0=None, ax=None, savefig=True,