diff --git a/docs/fully_coherent_search_using_MCMC.md b/docs/fully_coherent_search_using_MCMC.md index 236b628de9286fbb689d94649d03d84208896d57..3e0de8cd9e4df903243c3017cddada426f419f91 100644 --- a/docs/fully_coherent_search_using_MCMC.md +++ b/docs/fully_coherent_search_using_MCMC.md @@ -2,8 +2,8 @@ In this example, we will show the basics of setting up and running a MCMC search for a fully-coherent search. This is based on the example -[fully_coherent_search.py](../example/fully_coherent_search.py). We will run -the search on the `basic` data generated in the +[fully_coherent_search_using_MCMC.py](../example/fully_coherent_search_using_MCMC.py). +We will run the search on the `basic` data generated in the [make_fake_data](make_fake_data.md) example. First, we need to import the search tool, in this example we will use the @@ -83,7 +83,7 @@ mcmc.run() This produces two `.png` images. The first is the position of the *walkers* during the simulation: - + This shows (in red) the position of the walkers during the burn-in stage. They are initially defuse (they start from positions randomly picked from the prior), but eventually converge to a single stable solution. The black is the production @@ -99,7 +99,7 @@ To get posteriors, we call mcmc.plot_corner() ``` which produces a corner plot - + illustrating the tightly constrained posteriors on `F0` and `F1` and their covariance. Furthermore, one may wish to get a summary which can be printed to the terminal via diff --git a/docs/fully_coherent_search_on_glitching_data.md b/docs/fully_coherent_search_using_MCMC_on_glitching_data.md similarity index 96% rename from docs/fully_coherent_search_on_glitching_data.md rename to docs/fully_coherent_search_using_MCMC_on_glitching_data.md index 4332aeb943082322ff823b5cab092df97add6a25..04ff8af78f0cbe7b25db64e0ced2296170f70277 100644 --- a/docs/fully_coherent_search_on_glitching_data.md +++ b/docs/fully_coherent_search_using_MCMC_on_glitching_data.md @@ -1,7 +1,7 @@ # Fully coherent search on glitching data using MCMC This example applies the basic [fully coherent -search](fully_coherent_search.md), to the glitching signal data set created in +search using MCMC](fully_coherent_search_using_MCMC.md), to the glitching signal data set created in [make fake data](make_fake_data.md]). The aim here is to illustrate the effect such a signal can have on a fully-coherent search. The complete script for this example canbe found diff --git a/docs/img/fully_coherent_on_glitching_data_corner.png b/docs/img/fully_coherent_on_glitching_data_corner.png deleted file mode 100644 index bfb47e5b294063edc8b3576ca7115495a053831d..0000000000000000000000000000000000000000 Binary files a/docs/img/fully_coherent_on_glitching_data_corner.png and /dev/null differ diff --git a/docs/img/semi_coherent_glitch_search_corner.png b/docs/img/semi_coherent_glitch_search_corner.png deleted file mode 100644 index 870925ceb1983be9010fdd6c6245ec6a5ae557b2..0000000000000000000000000000000000000000 Binary files a/docs/img/semi_coherent_glitch_search_corner.png and /dev/null differ diff --git a/docs/img/semi_coherent_two_glitch_search_corner.png b/docs/img/semi_coherent_two_glitch_search_corner.png deleted file mode 100644 index 2f03f7a926d0712d50ab7b7a8aaffb5f9e5938fb..0000000000000000000000000000000000000000 Binary files a/docs/img/semi_coherent_two_glitch_search_corner.png and /dev/null differ diff --git a/examples/fully_coherent_search_on_glitching_data.py b/examples/fully_coherent_search_using_MCMC_on_glitching_data.py similarity index 65% rename from examples/fully_coherent_search_on_glitching_data.py rename to examples/fully_coherent_search_using_MCMC_on_glitching_data.py index fbb8b349d66f5decac87e82034b0352ed1397aea..9e5992a01c759a8be0593a2b59459dbbaf774fdb 100644 --- a/examples/fully_coherent_search_on_glitching_data.py +++ b/examples/fully_coherent_search_using_MCMC_on_glitching_data.py @@ -1,5 +1,4 @@ from pyfstat import MCMCSearch -import numpy as np F0 = 30.0 F1 = -1e-10 @@ -12,9 +11,8 @@ tstart = 1000000000 duration = 100*86400 tend = tstart + duration -theta_prior = {'F0': {'type': 'unif', 'lower': F0-5e-5, - 'upper': F0+5e-5}, - 'F1': {'type': 'norm', 'loc': F1, 'scale': abs(1e-6*F1)}, +theta_prior = {'F0': {'type': 'unif', 'lower': F0-1e-4, 'upper': F0+1e-4}, + 'F1': {'type': 'unif', 'lower': F1*(1+1e-3), 'upper': F1*(1-1e-3)}, 'F2': F2, 'Alpha': Alpha, 'Delta': Delta @@ -25,11 +23,11 @@ log10temperature_min = -30 nwalkers = 500 nsteps = [100, 100, 100] -mcmc = MCMCSearch('fully_coherent_on_glitching_data', 'data', +mcmc = MCMCSearch('fully_coherent_search_using_MCMC_on_glitching_data', 'data', sftfilepath='data/*_glitch*.sft', theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps, - log10temperature_min=log10temperature_min, scatter_val=1e-6) + log10temperature_min=log10temperature_min) mcmc.run() mcmc.plot_corner(add_prior=True) mcmc.print_summary() diff --git a/examples/make_fake_data.py b/examples/make_fake_data.py index ede4cbe8006e256acdbe167f1e8cdece268be1a6..1cc195420991a170af1cce1c3e61c86eac09f5c6 100644 --- a/examples/make_fake_data.py +++ b/examples/make_fake_data.py @@ -27,7 +27,7 @@ data.make_data() # Next, taking the same signal parameters, we include a glitch half way through dtglitch = duration/2.0 -delta_F0 = 0.4e-5 +delta_F0 = 4e-5 delta_F1 = 0 glitch_data = Writer( @@ -45,7 +45,7 @@ print data.predict_fstat() dtglitch = [duration/4.0, 4*duration/5.0] delta_phi = [0, 0] -delta_F0 = [0.4e-5, 0.3e-6] +delta_F0 = [4e-6, 3e-7] delta_F1 = [0, 0] delta_F2 = [0, 0]