diff --git a/README.md b/README.md
index abd92f7aa67fe13308ddf16d86441e4364e0fef7..957db98db7b95df9a2af44801f807f3fcd4c419b 100644
--- a/README.md
+++ b/README.md
@@ -1,27 +1,9 @@
 # PyFstat
 
 This is a python package providing an interface to perform F-statistic based
-continuous gravitational wave (CW) searches. At its core, this is a simple
-wrapper of selected tools in
-['lalpulsar'](http://software.ligo.org/docs/lalsuite/lalpulsar/). The general
-idea is to allow easy scripting of new search pipelines, we focus
-primarily on interfacing the CW routines with
-[emcee](http://dan.iel.fm/emcee/current/) a python MCMC sampler.
+continuous gravitational wave (CW) searches.
 
-
-## Examples
-
-We include a variety of example search scripts [here](examples), for each
-example there is also a more descriptive write-up containing examples of the
-output which we list below. Before running any of the search examples, be sure
-to have run the [script to generate fake data](examples/make_fake_data.py).
-
-* [Making fake data with and without glitches](docs/make_fake_data.md)
-* [Fully-coherent MCMC search](docs/fully_coherent_search_using_MCMC.md)
-* [Fully-coherent MCMC search on data containing a single glitch](docs/fully_coherent_search_using_MCMC_on_glitching_data.md)
-* [Semi-coherent MCMC glitch-search on data containing a single glitch](docs/semi_coherent_glitch_search_using_MCMC_on_glitching_data.md)
-* [Semi-coherent MCMC glitch-search on data containing two glitches](docs/semi_coherent_glitch_search_with_two_glitches_using_MCMC_on_glitching_data.md)
-* [Semi-coherent Follow-Up MCMC search (dynamically changing the coherence time)](docs/follow_up.md)
+For documentation, please use the [wiki](https://gitlab.aei.uni-hannover.de/GregAshton/PyFstat/wikis/home).
 
 ## Installation
 
@@ -35,8 +17,27 @@ the stripped down [miniconda](http://conda.pydata.org/miniconda.html)
 installation, or the full-featured
 [anaconda](https://www.continuum.io/downloads) (these are essentially the
 same, but the `anaconda` version installs a variety of useful packages such as
-`numpy` and `scipy` by default). Instructions to install miniconda/anaconda
-are provided in the links.
+`numpy` and `scipy` by default).
+
+The fastest/easiest method is to follow your OS instructions
+[here](https://conda.io/docs/install/quick.html) which will install Miniconda.
+
+For the rest of this tutorial, we will make use of `pip` to install modules (
+not all packages can be installed with `conda` and for those using alternatives
+to `conda`, `pip` is more universal).
+
+This can be installed with
+```
+$ conda install pip
+```
+
+### Clone the repository
+
+In a terminal, to clone the directory:
+
+```
+$ git clone git@gitlab.aei.uni-hannover.de:GregAshton/PyFstat.git
+```
 
 ### Dependencies
 
@@ -57,8 +58,6 @@ For an introduction to installing modules see
 ```
 $ pip install -r /PATH/TO/THIS/DIRECTORY/requirements.txt
 ```
-If you have installed python from conda then `pip` itself can be installed via
-`conda install pip`.
 
 In addition to these modules, you also need a working **swig-enabled**
 [`lalapps`](http://software.ligo.org/docs/lalsuite/lalsuite/) with
@@ -72,7 +71,7 @@ $ ./configure --prefix=${HOME}/lalsuite-install --disable-all-lal --enable-lalpu
 
 ### `pyfstat` installation
 
-The script can be installed system wide, assuming you are in this directory, via
+The script can be installed system wide, assuming you are in the source directory, via
 ```
 $ python setup.py install
 ```
diff --git a/docs/file_formats_used_by_pyfstat.md b/docs/file_formats_used_by_pyfstat.md
deleted file mode 100644
index 991a6d728d437de13038b6ecd08cda3a5168f75c..0000000000000000000000000000000000000000
--- a/docs/file_formats_used_by_pyfstat.md
+++ /dev/null
@@ -1,59 +0,0 @@
-# File formats used by PyFstat
-
-This page documents the various file formats and how they are used.
-
-## MCMC Searches:
-
-### Data output
-* `outdir/label.log`: On importing `pyfstat`, two logging streams are setup:
-  one stream which is written to the terminal, and a second which is saved to a
-file `outdir/label.log` where the `outdir` and `label` are given when
-initialising the search. While the terminal output can be suppressed with the
-`-q` flag, the file is always written with a log-level set to `INFO`. This file
-is never overwritten, so can be used to search for changes in the setup or old
-results.
-
-* `outdir/label.par`: A parameter file containing the maximum detection stat.
-value, and estimates of the best-fit parameters. This can be read in with
-`read_par()` and written with `write_par()`.
-
-* `outdir/label_saved_data.p`: Upon succesful completion of an MCMC search, the
-results will be saved to a `python` `pickle` file. This pickle file can
-subsequently be read back and contains many useful outputs such as the
-`sampler` object, the `lnprobs` and `lnlikes` from the run, and of course the
-`chains` themselves. Rerunning a script with different parameters, the pickle
-is overwritten once the simulation completes, however, a backup is saved with
-an appended `.old` label.
-
-### Image output
-
-* `outdir/label_walkers.png`: The position of all temperature 0 walkers
-  during the burn-in + production stage. In addition, the final panel plots a
-  histogram of the detection statistic from all temperature 0 walkers; if
-  a burn-in period is defined this is computed separately and colored red.
-
-* `outdir/label_init_i_walkers.png`: The same as the `walkers`, but for the
-  `ith` initialisation stage.
-
-* `outdir/label_corner.png`: A corner plot of the production samples using
-  the [corner](https://github.com/dfm/corner.py) package. This file is
-  generated by `plot_corner()`.
-
-* `outdir/label_prior_posterior.png`: A plot showing the prior and a KDE of
-  the posterior, generated by `plot_prior_posterior()`
-
-## Grid searches
-
-### Data output
-* `outdir/label_grid_FS.txt`: Upon succesful completion of a grid search, the
-grid points are saved in plain text format. The order is set by
-`get_input_data_array` with an additional column being the output detection
-statistic.
-
-### Image output
-
-* `outdir/label_1D.png`
-
-* `outdir/label_2D.png`: A 2D contour plot of the detection statitistic over
-the range of parameters; options exist to flatten higher dimension
-searches. Generated using `plot_2D()`.
diff --git a/docs/follow_up.md b/docs/follow_up.md
deleted file mode 100644
index fbdfb421423ef16142106d1f3c85de9e6e69033c..0000000000000000000000000000000000000000
--- a/docs/follow_up.md
+++ /dev/null
@@ -1,85 +0,0 @@
-# Semi-coherent Follow-Up MCMC search (dynamically changing the coherence time)
-
-Here, we will show the set-up for using the `MCMCFollowUp` class. The basic
-idea is to start the MCMC chains searching on a likelihood with a short coherence
-time; once the MCMC chains converge to the solution, the coherence time is
-extended effectively narrowing the peak, afterwhich the chains again converge
-to this narrower peak. The advantages of such a method are:
-
-1. Dynamically shows the evolution
-2. Able to handle multiple peaks and hence can result in a multi-modal posterior
- 
-The plots here are produced by [follow_up.py](../example/follow_up.py).  We
-will run the search on the `basic` data generated in the
-[make_fake_data](make_fake_data.md) example. The basic script is here:
-
-```python
-import pyfstat
-
-F0 = 30.0
-F1 = -1e-10
-F2 = 0
-Alpha = 5e-3
-Delta = 6e-2
-tref = 362750407.0
-
-tstart = 1000000000
-duration = 100*86400
-tend = tstart + duration
-
-theta_prior = {'F0': {'type': 'unif', 'lower': F0*(1-1e-6), 'upper': F0*(1+1e-5)},
-               'F1': {'type': 'unif', 'lower': F1*(1+1e-2), 'upper': F1*(1-1e-2)},
-               'F2': F2,
-               'Alpha': Alpha,
-               'Delta': Delta
-               }
-
-ntemps = 1
-log10temperature_min = -1
-nwalkers = 100
-run_setup = [(1000, 50), (1000, 25), (1000, 1, False), 
-             ((500, 500), 1, True)]
-
-mcmc = pyfstat.MCMCFollowUpSearch(
-    label='follow_up', outdir='data',
-    sftfilepath='data/*basic*sft', theta_prior=theta_prior, tref=tref,
-    minStartTime=tstart, maxStartTime=tend, nwalkers=nwalkers,
-    ntemps=ntemps, log10temperature_min=log10temperature_min)
-mcmc.run(run_setup)
-mcmc.plot_corner(add_prior=True)
-mcmc.print_summary()
-```
-
-Note that, We use the `MCMCFOllowUpSearch class. Rather than using the `nsteps`
-parameter to define how long the chains are run for, this class uses
-`run_setup`. This is an `nstage` length list (or array) which determines the
-number of steps, how many steps should be considered burn-in, the number of
-segments to use, and whether to re-initialise the walkers. Each element of the
-list is a 3-tuple of the form `((nburn, nprod), nsegs, resetp0)`. However, each
-element can be given as a short form: either ommiting the `nsteps as `(nburn,
-nsegs, resetp0)` or omiting the `resetp0` as `((nburn, nsteps), nsegs)`, or
-a combination of the two. For example, above we used
-
-```python
-run_setup = [(1000, 50), (1000, 25), (1000, 1, False), 
-             ((500, 500), 1, True)]
-```
-Here we run the first two steps with 1000 burn-in steps (such that they will
-be discarded) and changing the number of segments, then one 1000 burn-in
-steps fully coherently and finally a run with 500 burn-in and 500 production
-samples and a reset of the parameters at the begining. The output is
-demonstrated here:
-
-![](img/follow_up_walkers.png)
-
-Some things to note:
-* The `resetp0` is useful to clean-up straggling walkers, but will remove all
-multimodality potentially loosing information.
-* On the first axis the coherence time is displayed for each section
-* In this example the signal is quite strong and in Gaussian noise
-* The `twoF` distribution plotted at the bottom is taken only from the production
-run
-* This plot is generated after each stage of the run - this can be useful to
-check it is converging before continuing the simulation
-
-
diff --git a/docs/fully_coherent_search_using_MCMC.md b/docs/fully_coherent_search_using_MCMC.md
deleted file mode 100644
index 755b2c6800d4eb24520df56dd598be51b1845a28..0000000000000000000000000000000000000000
--- a/docs/fully_coherent_search_using_MCMC.md
+++ /dev/null
@@ -1,122 +0,0 @@
-# Fully coherent search using MCMC
-
-In this example, we will show the basics of setting up and running a
-fully-coherent MCMC search. This is based on the example
-[fully_coherent_search_using_MCMC.py](../example/fully_coherent_search_using_MCMC.py).
-We will run the search on the `basic` data generated in the
-[make_fake_data](make_fake_data.md) example.
-
-First, we need to import the search tool, in this example we will use the
-`MCMCSearch`, but one could equally use `MCMCGlitchSearch` with `nglitch=0`.
-To import this,
-
-```python
-from pyfstat import MCMCSearch
-```
-
-Next, we define some variables defining the exact parameters of the signal
-in the data, and the start and end times:
-
-```python
-F0 = 30.0
-F1 = -1e-10
-F2 = 0
-Alpha = np.radians(83.6292)
-Delta = np.radians(22.0144)
-tref = 362750407.0
-
-tstart = 1000000000
-duration = 100*86400
-tend = tstart = duration
-```
-
-Now, we need to specify our prior. This is a dictionary containing keys for
-each variable (in the `MCMCSearch` these are `F0`, `F1`, `F2`, `Alpha`, and
-`Delta`). In this example, we choose a uniform box in `F0` and `F1`:
-
-```python
-theta_prior = {'F0': {'type': 'unif', 'lower': F0*(1-1e-6), 'upper': F0*(1+1e-6)},
-               'F1': {'type': 'unif', 'lower': F1*(1+1e-2), 'upper': F1*(1-1e-2)},
-               'F2': F2,
-               'Alpha': Alpha,
-               'Delta': Delta
-               }
-```
-Each key and value of the `theta_prior` contains an instruction to the MCMC
-search. If the value is a scalar, the MCMC search holds these fixed (as is the
-case for `F2`, `Alpha`, and `Delta` here). If instead the value is a dictionary
-describing a distribution, this is taken as the prior and the variable is
-simulated in the MCMC search (as is the case for `F0` and `F1`). Note that
-for `MCMCSearch`, `theta_prior` must contain at least all of the variables
-given here (even if they are zero), and if `binary=True`, it must also contain
-the binary parameters.
-
-Next, we define the parameters of the MCMC search:
-
-```python
-ntemps = 4
-log10temperature_min = -1
-nwalkers = 100
-nsteps = [1000, 1000]
-```
-
-These can be considered the *tuning parameters* of the search. A complete
-discussion of these can be found [here](tuning_parameters.md).
-
-Passing all this to the MCMC search, we also need to give it a label, a
-directory to save the data, and provide `sftfilepath`, a string matching
-the data to use in the search
-
-```python
-mcmc = MCMCSearch(label='fully_coherent_search_using_MCMC', outdir='data', 
-                  sftfilepath='data/*basic*sft', theta_prior=theta_prior,
-                  tref=tref, tstart=tstart, tend=tend, nsteps=nsteps,
-                  nwalkers=nwalkers, ntemps=ntemps,
-                  log10temperature_min=log10temperature_min)
-```
-
-To run the simulation, we call
-
-```python
-mcmc.run()
-```
-
-This produces two `.png` images. The first is the position of the *walkers*
-during the simulation:
-![](img/fully_coherent_search_using_MCMC_walkers.png)
-This shows (in red) the position of the walkers during the burn-in stage. They
-are initially defuse (they start from positions randomly picked from the prior),
-but eventually converge to a single stable solution. The black is the production
-period from which posterior estimates are made. The bottom panel is a histogram
-of `twoF`, split for the production period. Note that, early on there are
-multiple modes corresponding to other peaks, by using the parallel tempering,
-we allow the walkers to explore all of these peaks and opt for the strong
-central candidate.
-
-To get posteriors, we call
-
-```python
-mcmc.plot_corner()
-```
-which produces a corner plot
-![](img/fully_coherent_search_using_MCMC_corner.png)
-illustrating the tightly constrained posteriors on `F0` and `F1` and their
-covariance. Furthermore, one may wish to get a summary which can be printed
-to the terminal via
-
-```python
-mcmc.print_summary()
-```
-which gives the maximum twoF value, median and standard-deviation, in this case
-this is
-```
-Summary:
-theta0 index: 0
-Max twoF: 1771.50622559 with parameters:
-  F0         = 2.999999874e+01
-  F1         = -9.999802960e-11
-
-Median +/- std for production values
-  F0         = 2.999999873e+01 +/- 6.004803009e-07
-  F1         = -9.999801583e-11 +/- 9.359959909e-16
-```
diff --git a/docs/fully_coherent_search_using_MCMC_on_glitching_data.md b/docs/fully_coherent_search_using_MCMC_on_glitching_data.md
deleted file mode 100644
index 4360d4f5fb3c3bf77d5e47dc02e06cd2867ea232..0000000000000000000000000000000000000000
--- a/docs/fully_coherent_search_using_MCMC_on_glitching_data.md
+++ /dev/null
@@ -1,79 +0,0 @@
-# Fully coherent search on glitching data using MCMC
-
-This example applies the basic [fully coherent
-search using MCMC](fully_coherent_search_using_MCMC.md), to the glitching signal data set created in
-[make fake data](make_fake_data.md]). The aim here is to illustrate the effect
-such a signal can have on a fully-coherent search. The complete script for this
-example canbe found
-[here](../example/fully_coherent_search_using_MCMC_on_glitching_data.py).
-
-
-After importing `pyfstat`, We setup a flat prior on `F0` and `F1`, based on the
-values used to generate the signal:
-
-```
-from pyfstat import MCMCSearch
-
-F0 = 30.0
-F1 = -1e-10
-F2 = 0
-Alpha = 5e-3
-Delta = 6e-2
-tref = 362750407.0
-
-tstart = 1000000000
-duration = 100*86400
-tend = tstart + duration
-
-theta_prior = {'F0': {'type': 'unif', 'lower': F0-1e-4, 'upper': F0+1e-4},
-               'F1': {'type': 'unif', 'lower': F1*(1+1e-3), 'upper': F1*(1-1e-3)},
-               'F2': F2,
-               'Alpha': Alpha,
-               'Delta': Delta
-               }
-```
-
-In this search, we will use paralllel tempering (to help the walkers move
-between the different peaks in the posterior).
-```
-ntemps = 2
-log10temperature_min = -0.01
-nwalkers = 100
-nsteps = [500, 500]
-
-mcmc = MCMCSearch('fully_coherent_search_using_MCMC_on_glitching_data', 'data',
-                  sftfilepath='data/*_glitch*.sft',
-                  theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend,
-                  nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
-                  log10temperature_min=log10temperature_min)
-mcmc.run()
-mcmc.plot_corner(add_prior=True)
-```
-
-Running this example, we obtain traces of the walkers like this:
-![](img/fully_coherent_search_using_MCMC_on_glitching_data_walkers.png)
-
-Although it is not obvious at first, the large widths of these traces in fact
-show that the walkers are jumping between multiple peaks (for both `F0` and
-`F1): this is possible, due to the tuning of the parallel tempering. To see this
-clearly, we also plot the corner plot:
-![](img/fully_coherent_search_using_MCMC_on_glitching_data_corner.png)
-
-From this corner plot, we that unlike the in the [single glitch fully-coherent
-search](full_coherent_search_using_MCMC.md), the posterior, even after a large
-number of steps, is multimodal. However, these two peaks do **not** correspond
-exactly to the two frequencies before and after the glitch, which would be
-`30` and `30+4e5` (to see this, see how the data is
-[generated](../examples/make_dake_data.py)). This is partly due to the noise
-and partly due to the fact that the maximum detection statistic in the case
-of glitches can occur at point *in between* the two frequencies. Moreover, we
-see bimodality in `F1`, which did does not change during the glitch.
-
-```
->>> mcmc.print_summary()
-Max twoF: 422.97
-```
-That is, compared to the basic search (on a smooth signal) which had a twoF of
-`~1764` (in agreement with the predicted twoF), we have lost a large
-fraction of the SNR due to the glitch.
-
diff --git a/docs/img/follow_up_walkers.png b/docs/img/follow_up_walkers.png
deleted file mode 100644
index a70f881af4d62d7996a678137373c489db150473..0000000000000000000000000000000000000000
Binary files a/docs/img/follow_up_walkers.png and /dev/null differ
diff --git a/docs/img/fully_coherent_search_using_MCMC_corner.png b/docs/img/fully_coherent_search_using_MCMC_corner.png
deleted file mode 100644
index 140195eb38f0921a4419eb78e976ee7b4447c9f9..0000000000000000000000000000000000000000
Binary files a/docs/img/fully_coherent_search_using_MCMC_corner.png and /dev/null differ
diff --git a/docs/img/fully_coherent_search_using_MCMC_on_glitching_data_corner.png b/docs/img/fully_coherent_search_using_MCMC_on_glitching_data_corner.png
deleted file mode 100644
index d5956109ad50e01f98cc941cbd0a280ff9faa898..0000000000000000000000000000000000000000
Binary files a/docs/img/fully_coherent_search_using_MCMC_on_glitching_data_corner.png and /dev/null differ
diff --git a/docs/img/fully_coherent_search_using_MCMC_on_glitching_data_walkers.png b/docs/img/fully_coherent_search_using_MCMC_on_glitching_data_walkers.png
deleted file mode 100644
index c5f3da6c366a796ae9ac54801448d0cd3bb169d5..0000000000000000000000000000000000000000
Binary files a/docs/img/fully_coherent_search_using_MCMC_on_glitching_data_walkers.png and /dev/null differ
diff --git a/docs/img/fully_coherent_search_using_MCMC_walkers.png b/docs/img/fully_coherent_search_using_MCMC_walkers.png
deleted file mode 100644
index aed498584cf8492b930492798e54aa0c3a688b0d..0000000000000000000000000000000000000000
Binary files a/docs/img/fully_coherent_search_using_MCMC_walkers.png and /dev/null differ
diff --git a/docs/img/semi_coherent_glitch_search_using_MCMC_corner.png b/docs/img/semi_coherent_glitch_search_using_MCMC_corner.png
deleted file mode 100644
index 51628bf3ccf38323c2126f735f086c3571e96075..0000000000000000000000000000000000000000
Binary files a/docs/img/semi_coherent_glitch_search_using_MCMC_corner.png and /dev/null differ
diff --git a/docs/img/semi_coherent_glitch_search_using_MCMC_init_0_walkers.png b/docs/img/semi_coherent_glitch_search_using_MCMC_init_0_walkers.png
deleted file mode 100644
index 13e8abb0f1e4ca7a56228d0bbf3d11fa87c9b00a..0000000000000000000000000000000000000000
Binary files a/docs/img/semi_coherent_glitch_search_using_MCMC_init_0_walkers.png and /dev/null differ
diff --git a/docs/img/semi_coherent_glitch_search_using_MCMC_walkers.png b/docs/img/semi_coherent_glitch_search_using_MCMC_walkers.png
deleted file mode 100644
index d9e791f51306ce5b5a74f8c533dbae46e57a779a..0000000000000000000000000000000000000000
Binary files a/docs/img/semi_coherent_glitch_search_using_MCMC_walkers.png and /dev/null differ
diff --git a/docs/img/semi_coherent_twoglitch_search_corner.png b/docs/img/semi_coherent_twoglitch_search_corner.png
deleted file mode 100644
index b744791f4ce5986fbbf29d67eee8d8ab27642f60..0000000000000000000000000000000000000000
Binary files a/docs/img/semi_coherent_twoglitch_search_corner.png and /dev/null differ
diff --git a/docs/img/semi_coherent_twoglitch_search_init_0_walkers.png b/docs/img/semi_coherent_twoglitch_search_init_0_walkers.png
deleted file mode 100644
index f66bc3e869bdaecc265b7545d056324009b5c633..0000000000000000000000000000000000000000
Binary files a/docs/img/semi_coherent_twoglitch_search_init_0_walkers.png and /dev/null differ
diff --git a/docs/img/semi_coherent_twoglitch_search_walkers.png b/docs/img/semi_coherent_twoglitch_search_walkers.png
deleted file mode 100644
index 219bd3f2cd0b5cbf18c022f6f24369b18db83922..0000000000000000000000000000000000000000
Binary files a/docs/img/semi_coherent_twoglitch_search_walkers.png and /dev/null differ
diff --git a/docs/make_fake_data.md b/docs/make_fake_data.md
deleted file mode 100644
index 8f896a0d0a5506224e7c4ea6ce603bb94f9de9d0..0000000000000000000000000000000000000000
--- a/docs/make_fake_data.md
+++ /dev/null
@@ -1,175 +0,0 @@
-# Making fake data
-
-Here, we describe the steps required to generate fake data which will be used
-throughout the other examples. We will generate data based on the properties of
-the Crab pulsar, first as a smooth CW signal, then as a CW signal which
-contains one glitch, and finally as a signal with two glitches. This document
-is based on the file [make_fake_data.py](../examples/make_fake_data.py).
-
-## Smooth signal
-
-In the following code segment, we import the `Writer` class used to generate
-fake data, define the Crab parameters and create an instant of the `Writer`
-called `data`
-
-```python
-import numpy as np
-from pyfstat import Writer
-
-# Define parameters of the Crab pulsar
-F0 = 30.0
-F1 = -1e-10
-F2 = 0
-Alpha = np.radians(83.6292)
-Delta = np.radians(22.0144)
-tref = 362750407.0
-
-# Signal strength
-h0 = 1e-23
-
-# Properties of the GW data
-sqrtSX = 1e-22
-tstart = 1000000000
-duration = 100*86400
-tend = tstart+duration
-
-data = Writer(
-    label='basic', outdir='data', tref=tref, tstart=tstart, F0=F0, F1=F1,
-    F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX)
-```
-
-We can now use the `data` object to create `.sft` files which contain a smooth
-signal in Gaussian noise. In detail, the process consists first in calling
-
-```python
-data.make_cff()
-```
-which generates a file `data/basic.cff` (notice the directory and file name
-are defined by the `outdir` and `label` arguments given to `Writer`). This
-file contains instructions which will be passed to `lalapps_MakeFakedata_v5`,
-namely
-
-```
-[TS0]
-Alpha = 5.000000000000000104e-03
-Delta = 5.999999999999999778e-02
-h0 = 9.999999999999999604e-24
-cosi = 0.000000000000000000e+00
-psi = 0.000000000000000000e+00
-phi0 = 0.000000000000000000e+00
-Freq = 3.000000000000000000e+01
-f1dot = -1.000000000000000036e-10
-f2dot = 0.000000000000000000e+00
-refTime = 362750407.000000
-transientWindowType=rect
-transientStartTime=1000000000.000
-transientTauDays=100.000
-```
-
-Finally, we generate the `.sft` files by calling
-
-```python
-data.run_makefakedata()
-```
-
-In fact, the previous two commands are wrapped together by a single call to
-`data.make_data()` which we will use from now on.
-
-
-## Glitching signal
-
-We now want to generate a set of data which contains a *glitching signal*. We
-start with a simple case in which the glitch occurs half way through the
-observation span. We define the properties of this signal, create
-another `Writer` instance called `glitch_data`, and then run `make_data()`
-
-```python
-dtglitch = duration/2.0
-delta_F0 = 0.4e-5
-delta_F1 = 0
-
-glitch_data = Writer(
-    label='glitch', outdir='data', tref=tref, tstart=tstart, F0=F0, F1=F1,
-    F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX,
-    dtglitch=dtglitch, delta_F0=delta_F0, delta_F1=delta_F1)
-glitch_data.make_data()
-```
-
-It is worth noting the difference between the config file for the non-glitching
-signal and this config file (`data/glitch.cff`) which reads
-
-```
-[TS0]
-Alpha = 5.000000000000000104e-03
-Delta = 5.999999999999999778e-02
-h0 = 9.999999999999999604e-24
-cosi = 0.000000000000000000e+00
-psi = 0.000000000000000000e+00
-phi0 = 0.000000000000000000e+00
-Freq = 3.000000000000000000e+01
-f1dot = -1.000000000000000036e-10
-f2dot = 0.000000000000000000e+00
-refTime = 362750407.000000
-transientWindowType=rect
-transientStartTime=1000000000.000
-transientTauDays=50.000
-[TS1]
-Alpha = 5.000000000000000104e-03
-Delta = 5.999999999999999778e-02
-h0 = 9.999999999999999604e-24
-cosi = 0.000000000000000000e+00
-psi = 0.000000000000000000e+00
-phi0 = -1.612440256772935390e+04
-Freq = 3.000000400000000056e+01
-f1dot = -1.000000000000000036e-10
-f2dot = 0.000000000000000000e+00
-refTime = 362750407.000000
-transientWindowType=rect
-transientStartTime=1004320000.000
-transientTauDays=50.000
-```
-
-The glitch config file uses transient windows to create two non-overlapping,
-but continuous signals.
-
-## Expected twoF
-
-Finally, the `Writer` class also provides a wrapper of `lalapps_PredictFstat`.
-So calling
-
-```python
->>> print data.predict_fstat()
-1721.1
-```
-
-Notice that the predicted value will be the same for both sets of data.
-
-## Making data with multiple glitches
-
-Finally, one can also use the `Writer` to generate data with multiple glitches.
-To do this, simply pass in `dtglitch`, `delta_phi`, `delta_F0`, `delta_F1`, and
-`delta_F2` as arrays  (with a length equal to the number of glitches). Note
-that all these must be of equal length. Moreover, the glitches are applied
-sequentially and additively as implemented
-`pyfstat.BaseSearchClass.calculate_thetas`. Here is an example with two
-glitches, one a quarter of the way through and the other a fifth from the end.
-
-```python
-dtglitch = [duration/4.0, 4*duration/5.0]
-delta_phi = [0, 0]
-delta_F0 = [0.4e-5, 0.3e-6]
-delta_F1 = [0, 0]
-delta_F2 = [0, 0]
-
-two_glitch_data = Writer(
-    label='two_glitch', outdir='data', tref=tref, tstart=tstart, F0=F0, F1=F1,
-    F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX,
-    dtglitch=dtglitch, delta_phi=delta_phi, delta_F0=delta_F0,
-    delta_F1=delta_F1, delta_F2=delta_F2)
-two_glitch_data.make_data()
-```
-
-So, having run `$ python make_fake_data.py` (from the `examples` directory), we
-will see that in the sub-directory `examples/data/` there are three `.sft`
-files.  These will be used throughout the other examples.
-
diff --git a/docs/semi_coherent_glitch_search_using_MCMC_on_glitching_data.md b/docs/semi_coherent_glitch_search_using_MCMC_on_glitching_data.md
deleted file mode 100644
index d0f50254b175c4895dac0dc0335b980c65dd6dce..0000000000000000000000000000000000000000
--- a/docs/semi_coherent_glitch_search_using_MCMC_on_glitching_data.md
+++ /dev/null
@@ -1,63 +0,0 @@
-# Semi-coherent glitch search on data with a single glitch using MCMC
-
-In this example, based on [this
-script](../examples/semi_coherent_glitch_search_using_MCMC.py), we show the
-basic setup for a single-glitch search. We begin, in the usual way, with
-defining some the prior
-
-```python
-import pyfstat
-
-F0 = 30.0
-F1 = -1e-10
-F2 = 0
-Alpha = 5e-3
-Delta = 6e-2
-tref = 362750407.0
-
-tstart = 1000000000
-duration = 100*86400
-tend = tstart + duration
-
-theta_prior = {'F0': {'type': 'norm', 'loc': F0, 'scale': abs(1e-6*F0)},
-               'F1': {'type': 'norm', 'loc': F1, 'scale': abs(1e-6*F1)},
-               'F2': F2,
-               'Alpha': Alpha,
-               'Delta': Delta,
-               'delta_F0': {'type': 'halfnorm', 'loc': 0,
-                            'scale': 1e-5*F0},
-               'delta_F1': 0,
-               'tglitch': {'type': 'unif',
-                           'lower': tstart+0.1*duration,
-                           'upper': tstart+0.9*duration},
-               }
-```
-
-For simplicity, we have chosen a prior based on the known inputs. The important
-steps here are the definition of `delta_F0`, `delta_F1` and `tglitch`, the
-prior densities for the glitch-parameters. We then use a parallel-tempered
-set-up, in addition to an initialisation step and run the search:
-```python
-ntemps = 4
-log10temperature_min = -1
-nwalkers = 100
-nsteps = [5000, 1000, 1000]
-
-mcmc = pyfstat.MCMCGlitchSearch(
-    'semi_coherent_glitch_search_using_MCMC', 'data',
-    sftfilepath='data/*_glitch*sft', theta_prior=theta_prior, tref=tref,
-    tstart=tstart, tend=tend, nsteps=nsteps, nwalkers=nwalkers,
-    scatter_val=1e-10, nglitch=1, ntemps=ntemps,
-    log10temperature_min=log10temperature_min)
-
-mcmc.run()
-mcmc.plot_corner(add_prior=True)
-mcmc.print_summary()
-```
-
-The output png's for the initialisation and burnin/production steps:
-![](img/semi_coherent_glitch_search_using_MCMC_init_0_walkers.png)
-![](img/semi_coherent_glitch_search_using_MCMC_walkers.png)
-
-and the final posterior estimates:
-![](img/semi_coherent_glitch_search_using_MCMC_corner.png)
diff --git a/docs/semi_coherent_glitch_search_with_two_glitches_using_MCMC_on_glitching_data.md b/docs/semi_coherent_glitch_search_with_two_glitches_using_MCMC_on_glitching_data.md
deleted file mode 100644
index 878910d11202d6144c73fed61d45bcfa8f0e9f7a..0000000000000000000000000000000000000000
--- a/docs/semi_coherent_glitch_search_with_two_glitches_using_MCMC_on_glitching_data.md
+++ /dev/null
@@ -1,51 +0,0 @@
-# Semi-coherent glitch search on data with two-glitches using MCMC
-
-In this example, based on [this
-script](../examples/semi_coherent_twoglitch_search_using_MCMC.py), we show the
-basic setup for a two-glitch search. We begin by defining the prior:
-
-```python
-import pyfstat
-
-F0 = 30.0
-F1 = -1e-10
-F2 = 0
-Alpha = 5e-3
-Delta = 6e-2
-tref = 362750407.0
-
-tstart = 1000000000
-duration = 100*86400
-tend = tstart + duration
-
-theta_prior = {'F0': {'type': 'norm', 'loc': F0, 'scale': abs(1e-6*F0)},
-               'F1': {'type': 'norm', 'loc': F1, 'scale': abs(1e-6*F1)},
-               'F2': F2,
-               'Alpha': Alpha,
-               'Delta': Delta,
-               'delta_F0_0': {'type': 'halfnorm', 'loc': 0,
-                              'scale': 1e-7*F0},
-               'delta_F0_1': {'type': 'halfnorm', 'loc': 0,
-                              'scale': 1e-7*F0},
-               'delta_F1_0': 0,
-               'delta_F1_1': 0,
-               'tglitch_0': {'type': 'unif',
-                             'lower': tstart+0.01*duration,
-                             'upper': tstart+0.5*duration},
-               'tglitch_1': {'type': 'unif',
-                             'lower': tstart+0.5*duration,
-                             'upper': tstart+0.99*duration},
-               }
-
-```
-
-Note that, in this case, we define a prior for each of the two glitches.
-Alternatively, one can provide a prior (with no indexing) which is applied to
-all glitches. The sampler has a prior specification to sort the glitches such
-that `tglitch_0 < tglitch_1 < ...`.
-
-The outputs plots:
-
-![](img/semi_coherent_twoglitch_search_init_0_walkers.png)
-![](img/semi_coherent_twoglitch_search_walkers.png)
-![](img/semi_coherent_twoglitch_search_corner.png)
diff --git a/docs/tuning_parameters.md b/docs/tuning_parameters.md
deleted file mode 100644
index ed03cfa3d98a81611c1893e1ffc2cf3680f64795..0000000000000000000000000000000000000000
--- a/docs/tuning_parameters.md
+++ /dev/null
@@ -1,4 +0,0 @@
-# Tuning parameters
-
-This page needs to be completed with a description of the tuning parameters,
-how they should be set, and the diagnostic tools which can be used in doing so.