diff --git a/pyfstat/mcmc_based_searches.py b/pyfstat/mcmc_based_searches.py index bd7685935d2d4c8d6ea9c2f1c8ae61253d861e89..f170714e42d6e80b1d2595c9a1a7428a6cd3ba4f 100644 --- a/pyfstat/mcmc_based_searches.py +++ b/pyfstat/mcmc_based_searches.py @@ -358,6 +358,7 @@ class MCMCSearch(core.BaseSearchClass): self.samples = d['samples'] self.lnprobs = d['lnprobs'] self.lnlikes = d['lnlikes'] + self.all_lnlikelihood = d['all_lnlikelihood'] return self._initiate_search_object() @@ -418,7 +419,7 @@ class MCMCSearch(core.BaseSearchClass): samples = sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim)) lnprobs = sampler.lnprobability[0, :, nburn:].reshape((-1)) lnlikes = sampler.lnlikelihood[0, :, nburn:].reshape((-1)) - all_lnlikelihood = sampler.lnlikelihood + all_lnlikelihood = sampler.lnlikelihood[:, :, nburn:] self.samples = samples self.lnprobs = lnprobs self.lnlikes = lnlikes @@ -1064,6 +1065,7 @@ class MCMCSearch(core.BaseSearchClass): old_d.pop('samples') old_d.pop('lnprobs') old_d.pop('lnlikes') + old_d.pop('all_lnlikelihood') mod_keys = [] for key in new_d.keys(): @@ -1321,11 +1323,12 @@ class MCMCSearch(core.BaseSearchClass): betas[::-1][::2][::-1]) log10evidence_err = np.abs(z1 - z2) / np.log(10) + print("log10 evidence for {} = {} +/- {}".format( + self.label, log10evidence, log10evidence_err)) + ax1.semilogx(betas, mean_lnlikes, "-o") ax1.set_xlabel(r"$\beta$") ax1.set_ylabel(r"$\langle \log(\mathcal{L}) \rangle$") - print("log10 evidence for {} = {} +/- {}".format( - self.label, log10evidence, log10evidence_err)) min_betas = [] evidence = [] for i in range(len(betas)/2): @@ -1919,6 +1922,7 @@ class MCMCFollowUpSearch(MCMCSemiCoherentSearch): self.samples = d['samples'] self.lnprobs = d['lnprobs'] self.lnlikes = d['lnlikes'] + self.all_lnlikelihood = d['all_lnlikelihood'] self.nsegs = run_setup[-1][1] return