import pyfstat
import numpy as np
# Properties of the GW data
sqrtSX = 1e-23
tstart = 1000000000
duration = 100 * 86400
tend = tstart + duration
# Properties of the signal
F0 = 30.0
F1 = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = 0.5 * (tstart + tend)
depth = 100
h0 = sqrtSX / depth
data_label = "twoF_cumulative"
data = pyfstat.Writer(
label=data_label,
outdir="data",
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
detectors="H1,L1",
)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print("Predicted twoF value: {}\n".format(twoF))
DeltaF0 = 1e-7
DeltaF1 = 1e-13
VF0 = (np.pi * duration * DeltaF0) ** 2 / 3.0
VF1 = (np.pi * duration ** 2 * DeltaF1) ** 2 * 4 / 45.0
print("\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n".format(VF0 * VF1, VF0, VF1))
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 1
log10beta_min = -1
nwalkers = 100
nsteps = [50, 50]
mcmc = pyfstat.MCMCSearch(
label="twoF_cumulative",
outdir="data",
sftfilepattern="data/*" + data_label + "*sft",
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
mcmc.run()
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()
mcmc.generate_loudest()
mcmc.plot_cumulative_max(add_pfs=True)