diff --git a/prior_wrapper.py b/prior_wrapper.py index 6107d405e32443aa5f4eb6647235b311a2504f1f..41b0d6ce14605ed0f3f959ec2634dfebdc17f5a9 100644 --- a/prior_wrapper.py +++ b/prior_wrapper.py @@ -70,6 +70,7 @@ import scipy.linalg as sl import re from enterprise.signals.parameter import function import enterprise.constants as const +import enterprise.signals.gp_priors as gp_priors class kumaraswamy_distribution(sstats.rv_continuous): """Kumaraswamy distribution like for scipy""" @@ -211,9 +212,9 @@ def ptapar_mapping(pta): @function def powerlaw_flat_tail(f, log10_A=-16, gamma=5, log10_kappa=-7, components=2): df = np.diff(np.concatenate((np.array([0]), f[::components]))) - return ( - (10**log10_A) ** 2 / 12.0 / np.pi**2 * const.fyr ** (gamma - 3) * f ** (-gamma) * np.repeat(df, components) + 10 ** (2*log10_kappa) - ) + pl = (10**log10_A) ** 2 / 12.0 / np.pi**2 * const.fyr ** (gamma - 3) * f ** (-gamma) * np.repeat(df, components) + flat = 10 ** (2*log10_kappa) + return np.maximum(pl, flat) class BoundedMvNormalPlHierarchicalPrior(object): """Class to represent a Bounded MvNormal hierarchical prior for Enterprise Powerlaw Signals"""