Commit c30fb57a authored by Xisco Jimenez Forteza's avatar Xisco Jimenez Forteza
Browse files

evaluation of weff

parent db80c085
......@@ -56,6 +56,7 @@ TeffST::usage="TeffST[coords_,g_,{V\[CurlyPhi],\[CurlyPhi]}]. Compute ST-EF/JF T
FRTOV::usage="FRTOV[coords_,g_,fR_,vars_]. Compute fR TOV eqs such Gab=8\[Pi]/f'[R](Tab + Teff) following the convention of Misner et al., that is, [S2] = 1, [S3] = 1";
STTOV::usage="STTOV[coords_,g_,{V\[CurlyPhi]_,var\[CurlyPhi]_},vars_]. Compute ST-EF/JF TOV eqs such Gab=8\[Pi](Tab + Teff) following the convention of Misner et al., that is, [S2] = 1, [S3] = 1";
fR2Pot::usage="fR2UJF[fR_]. From fR model to the ST potential U(\[Phi])-V(\[Phi])";
fR2\[Phi]::usage="fR2\[Phi][fR_]. From fR model to the ST potential";
CurlCurvilinear::usage"CurlCurvilinear[xx,g,vec]. It computes the curl tensor in curvilinear coordinates";
ElectricTensor3p1Dev::usage="ElectricTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]";
MagneticTensor3p1Dev::usage="MagneticTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]"
......@@ -77,6 +78,9 @@ EoSPol\[Epsilon]::usage="EoSPol\[Epsilon][model_]. NS EOS for a non-relativistic
From\[Rho]To\[Epsilon]Fits::usage"From\[Rho]To\[Epsilon]Fits[eos_]. NS EOS of JRead(arxiv:0812.2163) for the energy density.";
\[Omega]eff::usage="\[Omega]eff[fR_,OptionsPattern]. It computes the effective equation of state given the fR model. It also provides the same for scalar tensor theory in the JF.";
ShootingNStars::usage="ShootingNStars[eqs_,eqsRg_,rvar_,vars_,shtdInd_,varshtdRg_]. Shooting function of the index var shtdInd for a set of eqs integrated in eqsRg on the variables vars ;";
BracketingSTNStars::usage="BracketingSTNStars[eqs_,eqsRg_,rvar_,vars_,shtdInd_,varshtdRg_]. Shooting function of the index var shtdInd for a set of eqs integrated in eqsRg on the variables vars ;";
......@@ -534,6 +538,33 @@ res=Table[If[NumericQ[pert],riemann[[i,k,l,m]]+1/(n-2)(ricciT[[i,m]]g[[k,l]]-ric
simpl@res];
Options[\[Omega]eff]={"ST"->False,"SimplifyFunction"->Identity};
\[Omega]eff[fR_,OptionsPattern[]]:=Block[{dR,dR2,expr,Global`x,f,fRterm1,fRc,fRterm2,dalem,dfRc,dfRc2,dfRc3,Global`H,Hc,Global`R,Rc,Rc\[Phi],res,riscal,riscalvars,simpl,st,Global`t,tc,Global`\[Phi],\[Phi]c},
st=OptionValue["ST"];
simpl=OptionValue["SimplifyFunction"];
Rc=Global`R;
tc=Global`t;
Hc=Global`H;
\[Phi]c=Global`\[Phi];
If[st,Rc\[Phi]=fR2\[Phi][fR]/.\[Phi]c->\[Phi]c[t]];
dR=D[Rc[tc],tc];
dR2=D[Rc[tc],{tc,2}];
fRc=fR/.Global`R->Rc[tc];
dfRc=D[fRc,Rc[tc]];
dfRc2=D[fRc,{Rc[tc],2}];
dfRc3=D[fRc,{Rc[tc],3}];
If[fRc==Rc[tc],Return[-1]];
res=(dR^2 dfRc3 + 2Hc[tc]dfRc2 dR + dR2 dfRc2 + 1/2(fRc-Rc[tc]dfRc))/((Rc[tc]dfRc-fRc)/2-3Hc[tc]dR dfRc2);
If[st,res=Block[{R},Rc[t_]:=Evaluate@Rc\[Phi];res]];
simpl@res
];
Options[EinsteinfR]={{"Metric"->True},Join[Options[ChristoffelSymbol]]};
EinsteinfR[xx_,g_,fR_,OptionsPattern[]]:=Block[{res,fRterm1,fRterm2,dalem,Global`R,riscal,riscalvars,simpl,Rc,fRc,dfRc,covterm1,covterm2,metric},
......@@ -778,6 +809,19 @@ fun
];
fR2\[Phi][fR_,\[Phi]\[CurlyPhi]_:1]:=Block[{dfRc,fRc,fun,Rc,uc,Global`R,Global`\[Phi],\[Phi]c,Rc\[Phi]},
Rc=Global`R;
\[Phi]c=Global`\[Phi];
fRc=fR/.Global`R->Rc;
dfRc=D[fRc,Rc];
Rc\[Phi]=(Rc/.Solve[\[Phi]c==dfRc,Rc]);
$Assumptions = _ \[Element] Reals;
Rc\[Phi][[1]]
];
Pot2fR[V\[CurlyPhi]_,\[Phi]\[CurlyPhi]_]:=Block[{dfRc,fRc,fun,Rc,uc,Global`R,Global`\[Phi],Global`\[CurlyPhi],\[Phi]c,Rc\[Phi],\[CurlyPhi]c},
......
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment