diff --git a/References/0805.1726.pdf b/References/0805.1726.pdf new file mode 100644 index 0000000000000000000000000000000000000000..bf51a117c8691765f90340727040e37b28a64977 Binary files /dev/null and b/References/0805.1726.pdf differ diff --git a/References/PhysRevD.85.064041.pdf b/References/PhysRevD.85.064041.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2d4d7235adf90820226bc9832923caf0c6ccda0a Binary files /dev/null and b/References/PhysRevD.85.064041.pdf differ diff --git a/code/BBHReduce.m b/code/BBHReduce.m new file mode 100644 index 0000000000000000000000000000000000000000..e5562b62de13f29daf180ae0b669dd39de0d7ee9 --- /dev/null +++ b/code/BBHReduce.m @@ -0,0 +1,3658 @@ +(* ::Package:: *) + +(************************************************************************) +(* This file was generated automatically by the Mathematica front end. *) +(* It contains Initialization cells from a Notebook file, which *) +(* typically will have the same name as this file except ending in *) +(* ".nb" instead of ".m". *) +(* *) +(* This file is intended to be loaded into the Mathematica kernel using *) +(* the package loading commands Get or Needs. Doing so is equivalent *) +(* to using the Evaluate Initialization Cells menu command in the front *) +(* end. *) +(* *) +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) +(* automatically each time the parent Notebook file is saved in the *) +(* Mathematica front end. Any changes you make to this file will be *) +(* overwritten. *) +(************************************************************************) + + + +BeginPackage["BBHReduce`",{"NRLists`","NRFiles`","NRStrings`","NRWaves`","NinjaBase`","SXSFormat`","NRTimeSeries`"}]; + + +ValPrint::usage="ValPrint[x_?StringQ]"; + + +RunsFromRunsFile::usage="RunsFromRunsFile[file_?StringQ]"; +ContainsRun::usage="ContainsRun[directory_, runIdentifierStrings_]"; +IsBAMObsoleteDirectory::usage="IsBAMObsoleteDirectory[dirname_?StringQ]"; +IsBAMEvolutionParfile::usage="IsBAMEvolutionParfile[ filecontent_]"; +IsBAMInitialDataParfile::usage="IsBAMInitialDataParfile[ filecontent_]"; +IsBAMEvolutionDirectory::usage="IsBAMEvolutionDirectory[dirname_?StringQ]"; +ParfileInDirectory::usage="ParfileInDirectory[dirname_?StringQ]"; +levelFun::usage="levelFun[str_]"; +HasModesDirectory::usage="HasModesDirectory[dirname_?StringQ]"; +HasModesFiles::usage="HasModesFiles[dirname_?StringQ,pattern_?StringQ], pattern can e.g. be \"hmod*\""; +ModesDirectory::usage="ModesDirectory[dirname_?StringQ]"; + +BAMDataDirectories::usage="BAMEvolutionDataDirectories[runName_?StringQ, + OptionsPattern[{ +\"RunsRoot\" \[Rule] HomeDirectory, +\"ReducedRoot\" \[Rule] HomeDirectory , +\"TraverseLevels\" \[Rule] 4}]] searches for the evolution and reduced-data directories for a specific run"; + + +LocateInitialDataDirectory::usage="LocateInitialDataDirectory[rootDir_, psidfile_]"; +InitialDataParameters::usage="InitialDataParameters[idDir_, psidfile_]"; + +ParfileToRules::usage="ParfileToRules[filename_String] converts a parameter file to a list of rules."; +BAMParfileToRules::usage="BAMParfileToRules[filename_String] coverts a initial data parameter file to a list of rules."; +SXSMetaFilesToRules::usage="SXSMetaFilesToRules[filename_String] converts a SXS metadata.txt file to a list of rules."; +SXSParClassification::usage="SXSParClassification[sxsdir_,ClassStr_]. Given a list of SXS NR. data folders 'sxsdir', it returns all the cases that match a certain criterion 'ClassStr' (MassRatio range, Precessing or not, Initial Distance, Orbits Number)taking as reference the SXS metadata.txt files. If it is used iteratively, one could do different classifications "; +BAMMetaFilesToRules::usage="BAMMetaFilesToRules[filename_String] converts a BAM .bbh file to a list of rules." +RITMetaFilesToRules::usage="RITMetaFilesToRules[filename_String] converts a RIT Metadata file to a list of rules."; +RITParClassification::usage="RITParClassification[ritdir_,ClassStr_]. Given a list of RIT NR. data folders 'ritdir', it returns all the cases that match a certain criterion 'ClassStr' (MassRatio range, Precessing or not, Initial Distance, Orbits Number)taking as reference the RIT metadata.txt files. If it is used iteratively, one could do different classifications "; + + +BAMStringParameter::usage="BAMStringParameter[directory_, parametername_]"; +BAMNumberParameter::usage="BAMNumberParameter[directory_, parametername_]"; +BAMNumberParameterInFile::usage="BAMNumberParameterInFile[file_, parametername_]"; +BAMNumberParametersInFile::usage="BAMNumberParametersInFile[file_, parametername_]"; +BAMNumberParameters::usage="BAMNumberParameters[directory_, parametername_]"; +PSIDHashedNumberParameter::usage="PSIDHashedNumberParameter[file_, parametername_]"; +PSIDNumberParameter::usage="PSIDNumberParameter[file_, parametername_]"; +PSIDReadHeader::usage="PSIDReadHeader[file_]"; +PSIDReadData::usage="PSIDReadData[file_] reads initial data for function \!\(\*FormBox[\(\(\*SubscriptBox[\(U\), \(ijk\)] = \\\ \(TraditionalForm\`\(\(U\)\((\)\*SubscriptBox[\(A\), \(i\)]\)\), \(TraditionalForm\`\*SubscriptBox[\(B\), \(j\)]\), \(TraditionalForm\`\*SubscriptBox[\(\[CurlyPhi]\), \(k\)]\)\) +StyleBox[\")\",\nFontSize->10]\), +TraditionalForm]\). The function which appears in the conformal factor is u = (A-1)U"; + +PSID2Rules::usage="PSID2Rules[filename_?StringQ] converts a BAM PSID file to a list of rules."; + +NMovingLevels::usage="NMovingLevels[parRules_] computes the number of moving levels in a BAM parameter file from a list of rules parRules, which corresponds to the content of the parameter file."; + + +CreateDataReduceDirectory::usage="CreateDataReduceDirectory[dirname_], + CreateDataReduceDirectory[reduceroot_, dirname_]"; +LocateMode::usage="LocateMode[modeDir_, lmode_, mmode_]"; +LocateModes::usage="LocateModes[modeDir_, lmode_, mmode_]"; +CopyL2mode::usage="CopyL2mode[configStr_, modesdir_, reducedir_]"; +CopyL2modes::usage="CopyL2modes[configStr_, modesdir_, reducedir_]"; +CopyModes::usage="CopyModes[configStr_, modesdir_, reducedir_, Lmode_, Mmode_] "; +CopyFiles::usage="CopyFiles[configStr_, modesdir_, reducedir_, patterns_]"; + + +FormatPunctureData::usage="FormatPunctureData[mp_,string_,M_]."; +SafeFormatPunctureData2::usage="SafeFormatPunctureData2[mp1_,mp2_,string_,m1_,m2_]."; +SafeFormatPunctureDataCactus::usage="SafeFormatPunctureDataCactus[mp_,string_,m1_,m2_]."; + +BAMModesFilesTo3Col::usage="BAMModesFilesTo3Col[modesFile_] reads BAM style {r,i}psi4modes_* files and saves the content in 3-colums +format as {time,Re@values,Im@values};" + +BAMHorizonFilesToNRARFiles::usage="BAMHorizonFilesToNRARFiles[File_,OptionsPattern[{\"DeleteSourceFiles\" \[Rule] False}]] + converts a BAM-style horizon file to NRAR-style horizon mass, spin, and horizon trajectory files."; + +BAMTrajectoryFileTo4Col::usage="BAMTrajectoryFileTo4Col[File_,OptionsPattern[{\"DeleteSourceFiles\" \[Rule] False}]] +converts a BAM-style puncture trajectory file to NRAR-style trajectory file."; + + +BAMExtractionRadii::usage="BAMExtractionRadii[modesdir_] lists all BAM extraction radii for psi4."; + +SymmetriesFromParfile::usage="SymmetriesFromParfile[parfile_]."; + +WriteModeDecompConfigFile::usage="WriteModeDecompConfigFile[DirectoryRules_?ListQ]"; + +WaveExtractionRadii::usage="WaveExtractionRadii[rootDir_, modesDir_]"; +ADMReduce::usage="ADMReduce[rootDir_, reduceDir_]"; +BBHDataReduce::usage="BBHDataReduce[modesdir_, IDroot_, ReduceRoot_]"; + +CurateBBHData::usage="CurateBBHData[modesdir_, IDroot_, ReduceRoot_] is a new development version of BBHDataReduce."; + +NRARPsi4ToStrain::usage="NRARPsi4ToStrain[metaFile_,LMAX_,\[Omega]GWStart_] reads a NRAR-style metadata file and converts +psi4 modes to strain using the FFI algorithm, exporting the results to a directory FFIStrainModes."; + + +CactusThornsAvailable::usage="CactusThornsAvailable[cactusdir_] list available Cactus thorns."; +NormalizeCactusParfile::usage="NormalizeCactusParfile[parfile_,cactusDir_,OptionsPattern[ +{\"ThornListOutputFile\"\[Rule] \"\",\"ParameterOutputFile\"\[Rule] \"\"}]] normalizes a Cactus parfile for easier comparison or parsing."; + +CompleteCactusParfile::usage="CompleteCactusParfile[parfile_,cactusDir_,OptionsPattern[ +{\"ThornListOutputFile\"\[Rule] \"\",\"ParameterOutputFile\"\[Rule] \"\"}]]"; + +SetParfileEntryValue::usage="SetParfileEntryValue[text_,key_,value_]"; +SetParfileValue::usage="SetParfileValue[text_,key_,value_]"; +SetParfileVectorValue::usage="SetParfileVectorValue[text_,key_,component_,value_]"; + + +SXSLuminosityFromMetaFiles::usage="SXSLuminosityFromMetaFiles:[metaFile_,modes_]; Computes Luminosity from the SXS metadata given a list of modes"; + + +AHBAMsmall::usage="AHBAMsmall[q,s]. Computes the aparent horizon (horizon radius) for the smallest black hole in the BAM coordinates. See notebook /BBHReduce/AparentHorizonFit.nb" +AHBAMbig::usage="AHBAMbig[q,s]. Computes the aparent horizon (horizon radius) for the biggest black hole in the BAM coordinates. See notebook /BBHReduce/AparentHorizonFit.nb" +AHBAMsmall2017::usage="AHBAMsmall2017[q,s]. Computes the aparent horizon (horizon radius) for the smallest black hole in the BAM coordinates. See notebook /BBHReduce/AparentHorizonFit.nb" +AHBAMbig2017::usage="AHBAMbig2017[q,s]. Computes the aparent horizon (horizon radius) for the biggest black hole in the BAM coordinates. See notebook /BBHReduce/AparentHorizonFit.nb" + + +Begin["`Private`"]; + + +ValPrint[x_?StringQ]:=Print[First@StringSplit[x,"$"]<>" = ",ToExpression@x] + + +RunsFromRunsFile[file_?StringQ]:=Module[{content,runs}, +content = StringSplit[Import[file,"String"],EndOfLine]; + +runs=Flatten@Map[StringCases[#,"*"~~x:Except[WhitespaceCharacter]...~~ WhitespaceCharacter... -> x]&, content]; +StringTrim[#,RegularExpression["/$"]]&/@runs +]; + + +ContainsRun[directory_,runIdentifierStrings_]:=Length@Intersection[{LastInPath@directory},runIdentifierStrings]>0 + + +IsBAMObsoleteDirectory[dirname_?StringQ]:=StringMatchQ[dirname, "*_old"]||StringMatchQ[dirname, "*_previous"] + + +IsBAMEvolutionParfile[fileORfilecontent_]:=Module[{joined}, + +If[ListQ@fileORfilecontent, +joined=StringJoin@fileORfilecontent;, + +If[FileType@fileORfilecontent == File, + joined = StringJoin@Import[fileORfilecontent,"String"]; +]; +]; + +StringMatchQ[joined,"*bampi_*"]&& +StringMatchQ[joined,"*amr*"]&&StringMatchQ[joined,"*physics*"] +]; + + +IsBAMInitialDataParfile[ fileORfilecontent_]:=Module[{joined}, + +If[FileType@fileORfilecontent == File, +joined = StringJoin@Import[fileORfilecontent,"String"]; +]; + +If[ListQ@fileORfilecontent, +joined=StringJoin@fileORfilecontent; +]; + + StringMatchQ[joined,"*nx*"]&& +StringMatchQ[joined,"*iterate*"]&&StringMatchQ[joined,"*physics*"] +]; + + +IsBAMEvolutionDirectory[dirname_?StringQ]:=Module[{parfiles,content,i}, + +parfiles=Join[ +FileNames["*.par",dirname], +FileNames["*.par.gz",dirname], +FileNames["*.par.bz2",dirname]]; + +content=Table[Import[parfiles[[i]],"String"],{i,1,Length@parfiles}]; + +IsBAMEvolutionParfile@content +] + + +ParfileInDirectory[dirname_?StringQ,OptionsPattern[{"Style"-> "BAM"}]]:=Module[{guess,parfiles,sel,style}, + +style = OptionValue["Style"]; + +guess=dirname<>"/"<>LastInPath@dirname<>".par"; +If[FileType@guess == File, + + sel = guess, + + parfiles=Join[ + FileNames["*.par",dirname], + FileNames["*.par.gz",dirname], + FileNames["*.par.bz2",dirname] + ]; + +Print[parfiles]; + +sel=Switch[style, +"BAM",First@Select[parfiles, IsBAMEvolutionParfile@# || IsBAMInitialDataParfile@# &], +"Cactus",First@parfiles, +_,First@parfiles +]; +]; + +Print["ParfileInDirectory identifies parameter file ", sel]; + +sel +]; + + +levelFun[str_]:=ToExpression@First@StringCases[str,"hmod.r"~~r:NumberString..~~".l"~~l:NumberString-> {r,l}]; + + +HasModesDirectory[dirname_?StringQ]:= +safeDirectoryQ[StringReplace[dirname<>"/Modes","//"->"/"]]|| +safeDirectoryQ[StringReplace[dirname<>"/Analysis","//"->"/"]]|| +safeDirectoryQ[StringReplace[dirname<>"/analysis","//"->"/"]]|| +safeDirectoryQ[StringReplace[dirname<>"/Psi4ModeDecomp","//"->"/"]]|| +safeDirectoryQ[StringReplace[dirname<>"/NinjaCleanPsi","//"->"/"]] + + +HasModesFiles[dirname_?StringQ,pattern_?StringQ]:=Length@FileNames[pattern,dirname,2]>0 + + +ModesDirectory[dirname_?StringQ,pattern_?StringQ]:=Module[{sel}, + +sel = Select[FileNames["*",dirname],FileType@# == Directory&]; +sel = Select[sel,HasModesFiles[#,pattern]&]; + +If[Length@sel > 0, First@sel,""] +]; + + +BAMDataDirectories[runName_?StringQ, + OptionsPattern[{ +"RunsRoot" -> HomeDirectory, +"ReducedRoot" -> Global`BBHDataDir, +"InitialDataRoot" -> HomeDirectory, +"TraverseLevels" -> 4}] +]:=Module[{RunsRoot,ReducedRoot,TraverseLevels,runsFound, +RunsDirectories,obsolete,reducedFound,ReducedDirectories,evolDirHasModes,reducedDirHasModes, +evolutionModesDir,reducedModesDir,psidfile,InitialDataRoot,IDDir}, + +RunsRoot = OptionValue["RunsRoot"]; +ReducedRoot = OptionValue["ReducedRoot"]; +InitialDataRoot = OptionValue["InitialDataRoot"]; +TraverseLevels = OptionValue["TraverseLevels"]; + +(* directory with the original run *) +runsFound = FileNames[runName,RunsRoot,TraverseLevels]; +Print["Found runs directories: ", RunsDirectories = Select[runsFound,FileType@#==Directory&]]; +Print[" - evolution directories: ", RunsDirectories = Select[RunsDirectories,IsBAMEvolutionDirectory]]; +obsolete = Select[RunsDirectories,IsBAMObsoleteDirectory]; +Print[" - valid evolution directories: ", RunsDirectories = Complement[RunsDirectories,obsolete]]; + +If[Length@RunsDirectories == 1, + RunsDirectories = RunsDirectories[[1]]; + Print["Evolution directory has psi4 modes: ", evolDirHasModes = HasModesFiles[RunsDirectories,"psi3col*"]];, + Print["No unique runs directory found"]; + RunsDirectories = False; + evolDirHasModes = False; +]; + + +(* directory with reduced data *) +reducedFound = FileNames[RunDir,ReducedRoot,TraverseLevels]; +Print["Found reduced-data directories: ", ReducedDirectories=Select[reducedFound,FileType@#==Directory&]]; + +If[Length@ReducedDirectories == 1, + ReducedDirectories = ReducedDirectories[[1]]; + Print["Reduced directory has psi4 modes:", reducedDirHasModes = HasModesFiles[ReducedDirectories,"psi3col*"]];, + Print["No unique reduced-data directory found"]; + ReducedDirectories = False; + reducedDirHasModes = False; +]; + +If[evolDirHasModes, evolutionModesDir = ModesDirectory[ReducedDirectories,"psi3*"], evolutionModesDir = False]; +If[reducedDirHasModes, reducedModesDir = ModesDirectory[RunsDirectories, "psi3*"], reducedModesDir = False]; + + +If[StringQ@RunsDirectories, + psidfile = BAMStringParameter[RunsDirectories,"punctures_ps_file"]; + psidfile = Last@StringSplit[psidfile,"/"]; + psidfile = StringReplace[psidfile," "->""]; + Print["psid-file determined from evolution parameter file as: ", psidfile]; + IDDir = LocateInitialDataDirectory[InitialDataRoot,psidfile];, + IDDir = False; +]; + +{"EvolutionDirectory" -> RunsDirectories, "ReducedDirectory" -> ReducedDirectories, +"EvolutionDirectoryHasModes" -> evolDirHasModes,"ReducedDirectoryHasModes" -> reducedDirHasModes, +"EvolutionModesDir"-> evolutionModesDir, "ReducedModesDir"-> reducedModesDir, "InitialDataDir" -> IDDir, +"PSIDFile"-> IDDir<> "/"<> psidfile} +] + + +LocateInitialDataDirectory[rootDir_,psidfile_]:=Module[{file,psidFiles,levels=5,guess,result}, +file=StringReplace[psidfile," "->""]; +guess=rootDir<>"/"<>StringSplit[file,"."][[1]]<>"/"<>file; +Print["Making guess for psid file:", guess]; +If[FileType@guess==File, +Print["guessed id-file confirmed to be ",guess]; +result=rootDir<>"/"<>StringSplit[file,"."][[1]]; +Print["Taking as psid-result: ", result]; +Return[result] +]; + +Print["Looking for psid file: ",file," in directory ",rootDir]; +psidFiles=Union@FileNames[file,rootDir,levels]; +Print["Found matching psid-files:",psidFiles]; + +If[Length@psidFiles>1,Print["taking first psid-file"]; +]; + +If[psidFiles!={}, +result=DropLastDirectory[First@psidFiles];,Print["ERROR: LocateInitialDataDirectory could not locate ID-directory"]; +result=""; +]; + +ToString@result +]; + + +InitialDataParameters[psidfile_]:=Module[{file,m1,m2,madm,sep,abschi1,abschi2,s1x,s1y,s1z,s2x,s2y,s2z, +x1,y1,z1,x2,y2,z2,px1,py1,pz1,px2,py2,pz2}, + +file=psidfile; +Print["InitialDataParameters: Processing psidfile ", file]; +m1=PSIDHashedNumberParameter[file,"M1"]; +m2=PSIDHashedNumberParameter[file,"M2"]; +madm=PSIDHashedNumberParameter[file,"Madm"]; + +sep=PSIDHashedNumberParameter[file,"d"]; +abschi1=PSIDHashedNumberParameter[file,"S1/M1^2"]; +abschi2=PSIDHashedNumberParameter[file,"S2/M2^2"]; + +s1x=PSIDNumberParameter[file,"bhsx1"]; +s1y=PSIDNumberParameter[file,"bhsy1"]; +s1z=PSIDNumberParameter[file,"bhsz1"]; + +s2x=PSIDNumberParameter[file,"bhsx2"]; +s2y=PSIDNumberParameter[file,"bhsy2"]; +s2z=PSIDNumberParameter[file,"bhsz2"]; + +x1=PSIDNumberParameter[file,"bhx1"]; +y1=PSIDNumberParameter[file,"bhy1"]; +z1=PSIDNumberParameter[file,"bhz1"]; + +x2=PSIDNumberParameter[file,"bhx2"]; +y2=PSIDNumberParameter[file,"bhy2"]; +z2=PSIDNumberParameter[file,"bhz2"]; + +px1=PSIDNumberParameter[file,"bhpx1"]; +py1=PSIDNumberParameter[file,"bhpy1"]; +pz1=PSIDNumberParameter[file,"bhpz1"]; + +px2=PSIDNumberParameter[file,"bhpx2"]; +py2=PSIDNumberParameter[file,"bhpy2"]; +pz2=PSIDNumberParameter[file,"bhpz2"]; + +{m1,m2,madm,sep,abschi1,abschi2,s1x,s1y,s1z,s2x,s2y,s2z,{x1,y1,z1},{x2,y2,z2},{px1,py1,pz1},{px2,py2,pz2}} +]; + + +InitialDataParameters[idDir_,psidfile_]:=Module[{file}, + +file=idDir<>"/"<>psidfile; + +InitialDataParameters[file] +]; + + +ParfileToRules[filename_String]:=Module[{parlines,rules}, + parlines=ReadList[filename,String]; + + rules=Flatten[DefinitionsFromString/@parlines]; + + (*modify selected rules*) + rules=ReplaceRuleInRuleList[rules,"amr_nxyz",ToExpression/@StringSplit["amr_nxyz"/.rules]]; + + rules +] + + +BAMParfileToRules[filename_String]:=Module[{parlines,rules,par1,rules2,pos,rulesPn,var,value,list}, + parlines=ReadList[filename,String]; + + rules=Delete[parlines,Position[StringMatchQ[parlines,"*#*"],True]]; + rulesPn=StringTrim/@StringSplit[Flatten@StringSplit[Flatten[StringSplit[Select[parlines,StringMatchQ[#,"#$$*"]&],"#"]],"$$"],"="]; + (*pos=Flatten@Position[TakeColumn[rules2,1],StringMatchQ[" ",#]&,True];*) + +(* + (*modify selected rules*) + rules=ReplaceRuleInRuleList[rules,"amr_nxyz",ToExpression/@StringSplit["amr_nxyz"/.rules]]; +*) + + rules=StringTrim/@StringSplit[rules,"="]; + rulesPn=Flatten[ToExpression@StringReplace[ToString/@Select[StringSplit[ToString/@rulesPn," "],Length@#==2&],",,"->","],1]; + rules=Join[rules,rulesPn]; + + var=ToString/@rules[[All,1]]; + value=ToExpression/@rules[[All,2]]; + + + list={}; + Do[ + If[IsFPNumberQ@value[[i]], + value[[i]]=(StringToNumber@#)&/@value[[i]]; + ]; + list=AppendTo[list,{var[[i]]->value[[i]]}]; + , + {i,1,Length@value}]; + + Flatten@list + +] + + +SXSMetaFilesToRules[filePath_]:=Module[{filepath,fileList,meta1,pos1,meta2,meta3,meta4,value,var,list}, + + +If[ListQ@filePath,filepath=filePath[[1]],filepath=filePath]; +If[Not@FileExistsQ@filepath,Print["File not found"];Return[]]; + +(*Reading the file*) +fileList=ReadList[filepath,String]; +(*Delete comments*) + +meta1=Delete[fileList,Position[StringMatchQ[fileList,"#*"],True]]; + +(*Fix eccentricity*) +meta1[[Flatten@Position[StringMatchQ[meta1,"*<*e-*"],True]]]=StringReplace[meta1[[Flatten@Position[StringMatchQ[meta1,"*<*e-*"],True]]],"<"->""]; + +(*Find = *) +meta2=meta1[[Flatten@Position[StringMatchQ[meta1,"*=*"],True]]]; + +meta3=StringSplit[meta2,"="]; + +(* Select non-empty fields*) +meta3=Select[meta3,Length@#>1&]; + +(*Delete spaces*) +meta4=Transpose[{StringReplace[meta3[[All,1]]," "->""],StringReplace[meta3[[All,2]]," "->""]}]; + +var=meta4[[All,1]]; +value=meta4[[All,2]]; + +value=StringSplit[#,","]&/@value; +(*Delete empty elements*) +(*value=Select[value, UnsameQ[#, {}] &];*) + +list={}; +Do[ +If[Length@value[[i]]==0, + {} + , + If[IsFPNumberQ@value[[i,1]], + value[[i]]=(StringToNumber@#)&/@value[[i]]; + ]; + list=AppendTo[list,{var[[i]]->value[[i]]}]; + ]; +, +{i,1,Length@value}]; + +Flatten@list + +] + + +RITMetaFilesToRules[filePath_]:=Module[{filepath,fileList,meta1,pos1,meta2,meta3,meta4,value,var,list}, + + +If[ListQ@filePath,filepath=filePath[[1]],filepath=filePath]; +If[Not@FileExistsQ@filepath,Print["File not found"];Return[]]; + +(*Reading the file*) +fileList=ReadList[filepath,String]; +(*Delete comments*) + +meta1=Delete[fileList,Position[StringMatchQ[fileList,"#*"],True]]; + +(*Fix eccentricity*) +(*meta1[[Flatten@Position[StringMatchQ[meta1,"*<*e-*"],True]]]=StringReplace[meta1[[Flatten@Position[StringMatchQ[meta1,"*<*e-*"],True]]],"<"\[Rule]""];*) +(*We do not have < in the MetaFiles of RIT*) + +(*Find = *) +meta2=meta1[[Flatten@Position[StringMatchQ[meta1,"*=*"],True]]]; + +meta3=StringSplit[meta2,"="]; + +(* Select non-empty fields*) +meta3=Select[meta3,Length@#>1&]; + +(*Delete spaces*) +meta4=Transpose[{StringReplace[meta3[[All,1]]," "->""],StringReplace[meta3[[All,2]]," "->""]}]; + +var=meta4[[All,1]]; +value=meta4[[All,2]]; + +value=StringSplit[#,","]&/@value; +(*Delete empty elements*) +(*value=Select[value, UnsameQ[#, {}] &];*) + +list={}; +Do[ +If[Length@value[[i]]==0, + {} + , + If[IsFPNumberQ@value[[i,1]], + value[[i]]=(StringToNumber@#)&/@value[[i]]; + ]; + list=AppendTo[list,{var[[i]]->value[[i]]}]; + ]; +, +{i,1,Length@value}]; + +Flatten@list + +] + + +BAMMetaFilesToRules[filePath_]:=Module[{filepath,fileList,meta1,pos1,meta2,meta3,meta4,value,var,list,pos,rads,posdel}, + + +If[ListQ@filePath,filepath=filePath[[1]],filepath=filePath]; +If[Not@FileExistsQ@filepath,Print["File not found"];Return[]]; + +(*Reading the file*); +fileList=ToString/@ReadList[filepath,String]; + +(*Delete comments*) +meta1=Delete[fileList,Position[StringMatchQ[fileList,"*#*"],True]]; + +(*Find = *) +meta2=meta1[[Flatten@Position[StringMatchQ[meta1,"*=*"],True]]]; +meta3=StringSplit[meta2,"="]; +(*Select non-empty arrays*) +meta4=Select[meta3,Length@#==2&]; + +(*Delete spaces*) +meta4=Transpose[{StringTrim/@meta4[[All,1]],StringTrim/@meta4[[All,2]]}]; +(*Delete empty elements*) +meta4=Select[meta4, UnsameQ[#[[2]], {}] &]; + +var=meta4[[All,1]]; +value=meta4[[All,2]]; + +value=StringSplit[#,","]&/@value; + +list={}; +Do[ +If[Length@value[[i]]==0, + {} + , + If[IsFPNumberQ@value[[i,1]], + value[[i]]=(StringToNumber@#)&/@value[[i]]; + ]; + list=AppendTo[list,{var[[i]]->value[[i]]}]; + ]; +, +{i,1,Length@value}]; + +list=Flatten@list; + +(* Fix extraction radius repetition. Assume that the first entry is finite-radii *) +pos=Position[Flatten@list,"extraction-radius"]; +rads=Select[Flatten@list[[pos[[All,1]],2]],NumberQ@#&]; +list[[pos[[1,1]],2]]=rads; +posdel=Partition[TakeColumn[pos,1][[2;;-1]],1]; +list=Delete[list,posdel]; + +(* Gather together the extraction radius per each mode *) +pos=Select[DuplicatesPosition[list[[All,1]]],Length@#>1&]; +Do[list[[pos[[i,1]],2]]=Flatten@Join[{list[[pos[[i,1]],2]]},list[[pos[[i,2;;-1]],2]]],{i,Length@pos}]; +posdel=Partition[Flatten@Table[pos[[i,2;;-1]],{i,Length@pos}],1]; + +list=Delete[list,posdel] + +] + + +SXSParClassification[sxsdir_?ListQ,ClassStr_?ListQ,OptionsPattern[{"\[Epsilon]"->0.001,"HighSpin"->0.8,"UnRepeated"->False,"Verbose"->False,"Mass1-Str"->"initial-mass1","Mass2-Str"->"initial-mass2"}]]:=Module[{metafiles,metadata, +orbitStr="number-of-orbits",dStr="initial-separation",mass1Str,mass2Str,spin1Str="initial-dimensionless-spin1", +spin2Str="initial-dimensionless-spin2",eccStr="relaxed-eccentricity",spin1Dim,spin2Dim,mass1,mass2,massratio,eccentricity,dist,orbit,select,pos,condition,A1,A2,precvalue,precvalueNorm,\[Epsilon], +spin1Norm,spin2Norm,highspin,spintest,\[Chi]eff,sxsdirout,spinz,spinzDiff,auxDist,posdup,posdupDist,posdistecc,unrepeated,verbose,sxsdiroutaux,precvalue1,precvalue2,precvalueNorm1,precvalueNorm2}, + +Print["Classification Input Variables. Examples: {{'MassRatio', '0.99<#<1.1'}},{{'Distance', '#>16'}},{{'Orbits', '#>25'}},{{'Precessing'}}, +{{'Non-Precessing'}},{{'High-Spin'}},{{'\[Chi]eff','#>0.6'}},{{'\[Chi]1','#>0.6'}},{{'\[Chi]2','#>0.6'}},{{'Unequal'}}"]; +Print["Take care! Some of the sxs file names are not consistent with the metadata files"]; +Print["The spin definition is consitent with 'initial-spin' values and not relaxed ones"]; +Print["The mass definition is consitent with 'initial-mass' values and not relaxed ones"]; + +mass1Str=OptionValue["Mass1-Str"]; +mass2Str=OptionValue["Mass2-Str"]; + +(* Kill the loop if the root directory is wrong *) +If[And@@(Not/@DirectoryQ/@sxsdir),Print[Style["Directory not found",Red]];Return[{}]]; + +(* Useful function to detect the duplicates *) +positionDuplicates[listaux_]:=GatherBy[Range@Length[listaux],listaux[[#]]&]; + +sxsdirout=sxsdir; + +\[Epsilon]=OptionValue["\[Epsilon]"]; +highspin=OptionValue["HighSpin"]; +unrepeated=OptionValue["UnRepeated"]; +verbose=OptionValue["Verbose"]; + +metafiles=Flatten[FileNames["metadata.txt",#,4]&/@sxsdirout,1]; +metadata=SXSMetaFilesToRules[#]&/@metafiles; +mass1=Flatten@((mass1Str/.#)&/@metadata); +mass2=Flatten@((mass2Str/.#)&/@metadata); +massratio=mass1/mass2; +dist=Flatten@((dStr/.#)&/@metadata); +orbit=Flatten@((orbitStr/.#)&/@metadata); +spin1Dim=((spin1Str/.#)&/@metadata); +spin2Dim=((spin2Str/.#)&/@metadata); +A1=(1+3 massratio/(4.)); +A2=(1+3 /(4.*massratio) ); +\[Chi]eff=massratio/(1.+massratio)*spin1Dim +1./(1+massratio)*spin2Dim; +eccentricity=Flatten[(eccStr/.#)&/@metadata]; +spinz=Chop/@Transpose[{TakeColumn[spin1Dim,3],TakeColumn[spin2Dim,3]}]; +spinzDiff=Abs[(#[[2]]-#[[1]])&/@spinz]; +condition=ClassStr[[All,1]]; +select=Table[If[Length@ClassStr[[i]]==2,ToExpression@(ClassStr[[i,2]]),"Null"],{i,1,Length@ClassStr}]; +pos=Table[i,{i,Length@sxsdirout}]; + +Do[ + +Which[condition[[i]]=="MassRatio", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[massratio,_?(Evaluate[select[[i]]]&)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "Distance", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[sxsdirout=sxsdirout[[pos]];,_?(Evaluate[select[[i]]]&)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "Orbits", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[orbit,_?(Evaluate[select[[i]]]&)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "Non-Precessing", + +(*precvalue=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1+(spin2Dim)A2);*) +precvalue1=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1); +precvalue2=(#)\[Cross]{0,0,1}&/@((spin2Dim)A2); +precvalueNorm1=Norm[#]&/@precvalue1; +precvalueNorm2=Norm[#]&/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; +pos=Flatten@Position[precvalueNorm,_?(#<\[Epsilon] &)]; + +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "Unequal", + +pos=Flatten@Position[spinzDiff,_?(#>\[Epsilon] &)]; + +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]=="Precessing", + +precvalue1=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1); +precvalue2=(#)\[Cross]{0,0,1}&/@((spin2Dim)A2); +precvalueNorm1=Norm[#]&/@precvalue1; +precvalueNorm2=Norm[#]&/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; + +(*precvalue=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1+(spin2Dim)A2);*) + +pos=Flatten@Position[precvalueNorm,_?(#>\[Epsilon] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "High-Spin", + +spin1Norm=Norm[#]&/@spin1Dim; +spin2Norm=Norm[#]&/@spin2Dim; + +spintest=Table[If[Abs@spin1Norm[[i]]>=highspin || Abs@spin2Norm[[i]]>=highspin,True,False],{i,1,Length@spin1Norm}]; +pos=Flatten@Position[spintest,True]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "\[Chi]eff", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[Norm[#]&/@\[Chi]eff,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "\[Chi]1", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[Norm[#]&/@spin1Dim,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + +condition[[i]]== "\[Chi]2", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[Norm[#]&/@spin2Dim,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + + +condition[[i]]== "relaxed-eccentricity", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[eccentricity,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +sxsdirout=sxsdirout[[pos]];, + True, +Print[Style["Wrong input",Bold,Red,16]]; +Break[]; +]; +,{i,1,Length@ClassStr}]; + + +If[unrepeated, + +Print["Taking among the repeated cases only those with lower eccentricity and larger D (just in case ei=ej)"]; + +(* Selecting Case with lower e *) +auxDist=Transpose[{Round[#&/@massratio,0.1],Round[Chop[#,10^(-2)],0.01]&/@spin1Dim,Round[Chop[#,10^(-2)],0.01]&/@spin2Dim,dist,eccentricity}]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],5]],Min@auxDist[[posdup[[i]],5]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; +sxsdirout=sxsdirout[[posdistecc]]; + +(* Selecting Case with larger D *) +auxDist=auxDist[[posdistecc]]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],4]],Max@auxDist[[posdup[[i]],4]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; + +auxDist=auxDist[[posdistecc]]; +sxsdirout=sxsdirout[[posdistecc]]; +sxsdiroutaux=SortBy[Table[Join[{sxsdirout[[i]]},auxDist[[i]]],{i,1,Length@sxsdirout}],#[[2]]&]; + +If[verbose, +Print[Prepend[Table[ToString@#&/@sxsdiroutaux[[i]],{i,1,Length@sxsdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +sxsdiroutaux[[All,1]], + +auxDist=Transpose[{Round[#&/@massratio,0.1],Round[Chop[#,10^(-2)],0.01]&/@spin1Dim,Round[Chop[#,10^(-2)],0.01]&/@spin2Dim,dist,eccentricity}]; +(*sxsdiroutaux=Table[Join[{sxsdirout[[i]]},auxDist[[i]]],{i,1,Length@sxsdirout}];*) +sxsdiroutaux=SortBy[Table[Join[{sxsdirout[[i]]},auxDist[[i]]],{i,1,Length@sxsdirout}],#[[2]]&]; +If[verbose, +Print[Prepend[Table[ToString@#&/@sxsdiroutaux[[i]],{i,1,Length@sxsdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +sxsdiroutaux[[All,1]]] +] + + +SXSParClassification2[sxsdir_?ListQ,ClassStr_?ListQ,OptionsPattern[{"\[Epsilon]"->0.001,"HighSpin"->0.8,"UnRepeated"->False,"Verbose"->False}]]:=Module[{metafiles,metadata, +orbitStr="number-of-orbits",dStr="initial-separation",mass1Str="relaxed-mass1",mass2Str="relaxed-mass2",spin1Str="relaxed-spin1",spin2Str="relaxed-spin1", +STTOV="relaxed-spin2",eccStr="relaxed-eccentricity",spin1Dim,spin2Dim,mass1,mass2,massratio,eccentricity,dist,orbit,select,pos,condition,A1,A2,precvalue,precvalueNorm,\[Epsilon], +spin1Norm,spin2Norm,highspin,spintest,\[Chi]eff,sxsdirout,spinz,spinzDiff,auxDist,posdup,posdupDist,posdistecc,unrepeated,verbose,sxsdiroutaux,precvalue1,precvalue2, +precvalueNorm1,precvalueNorm2,parmatrix,myindex}, + +Print["Classification Input Variables. Examples: {{'MassRatio', '0.99<#<1.1'}},{{'Distance', '#>16'}},{{'Orbits', '#>25'}},{{'Precessing'}}, +{{'Non-Precessing'}},{{'High-Spin'}},{{'\[Chi]eff','#>0.6'}},{{'\[Chi]1','#>0.6'}},{{'\[Chi]2','#>0.6'}},{{'Unequal'}}"]; +Print["Take care! Some of the sxs file names are not consistent with the metadata files"]; + + + +(* Useful function to detect the duplicates *) +positionDuplicates[listaux_]:=GatherBy[Range@Length[listaux],listaux[[#]]&]; + +sxsdirout=sxsdir; + +\[Epsilon]=OptionValue["\[Epsilon]"]; +highspin=OptionValue["HighSpin"]; +unrepeated=OptionValue["UnRepeated"]; +verbose=OptionValue["Verbose"]; + + +metafiles=Flatten[FileNames["metadata.txt",#,4]&/@sxsdirout,1]; +metadata=SXSMetaFilesToRules[#]&/@metafiles; + + +mass1=Flatten@((mass1Str/.#)&/@metadata); +mass2=Flatten@((mass2Str/.#)&/@metadata); + +massratio=mass1/mass2; +dist=Flatten@((dStr/.#)&/@metadata); +orbit=Flatten@((orbitStr/.#)&/@metadata); +spin1Dim=((spin1Str/.#)&/@metadata)/(mass1*mass1); +spin2Dim=((spin2Str/.#)&/@metadata)/(mass2*mass2); +\[Chi]eff=massratio/(1.+massratio)*spin1Dim +1./(1+massratio)*spin2Dim; +spinzDiff=Abs[(#[[2]]-#[[1]])&/@Transpose[{TakeColumn[spin1Dim,3],TakeColumn[spin2Dim,3]}]]; +A1=(1+3. massratio/(4.)); +A2=(1+3. /(4.*massratio) ); +eccentricity=Flatten[(eccStr/.#)&/@metadata]; +precvalue1=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1); +precvalue2=(#)\[Cross]{0,0,1}&/@((spin2Dim)A2); +precvalueNorm1=Norm[#]&/@precvalue1; +precvalueNorm2=Norm[#]&/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; +spin1Norm=Norm[#]&/@spin1Dim; +spin2Norm=Norm[#]&/@spin2Dim; + +parmatrix=Transpose[{massratio,dist,orbit,precvalueNorm,spinzDiff,spin1Norm,spin2Norm,\[Chi]eff,spin1Dim,spin2Dim,eccentricity,sxsdirout}]; + +condition=ClassStr[[All,1]]; +select=Table[If[Length@ClassStr[[i]]==2,ToExpression@(ClassStr[[i,2]]),"Null"],{i,1,Length@ClassStr}]; + +Do[ + +Which[condition[[i]]== "MassRatio", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=1; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "Distance", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=2; +parmatrix=Select[parmatrix,Evaluate[StringReplace[select[[i]],"#"->ToString@(#[[myindex]])&]]];, + +condition[[i]]== "Orbits", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=3; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "Non-Precessing", + +myindex=4; + +parmatrix=Select[parmatrix,#[[myindex]]<\[Epsilon]&];, + +condition[[i]]== "Unequal", + +myindex=5; +parmatrix=Select[parmatrix,#[[myindex]]>\[Epsilon]&];, + +condition[[i]]== "Precessing", + +myindex=6; +parmatrix=Select[parmatrix,#[[myindex]]>=\[Epsilon]&];, + +condition[[i]]== "High-Spin", + +myindex=7; +parmatrix=Select[parmatrix,#[[myindex]]>=highspin& ||#[[myindex+1]]>=highspin& ];, + +condition[[i]]== "\[Chi]eff", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=8; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "\[Chi]1", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=9; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "\[Chi]2", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=10; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + + True, +Print[Style["Wrong input",Bold,Red,16]]; +Break[]; +]; +,{i,1,Length@ClassStr}]; + +If[unrepeated, + +Print["Taking among the repeated cases only those with lower eccentricity and larger D (just in case ei=ej)"]; + +(* Selecting Case with lower e *) +auxDist=Transpose[{Round[#&/@parmatrix[[All,1]],0.1],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,9]],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,10]],parmatrix[[All,2]],parmatrix[[All,11]]}]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],5]],Min@auxDist[[posdup[[i]],5]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; +parmatrix=parmatrix[[posdistecc]]; + +(* Selecting Case with larger D *) +auxDist=auxDist[[posdistecc]]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],4]],Max@auxDist[[posdup[[i]],4]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; + +auxDist=auxDist[[posdistecc]]; +parmatrix=parmatrix[[posdistecc]]; + +parmatrix=SortBy[parmatrix,#[[1]]&]; +sxsdiroutaux=Transpose[{#&/@parmatrix[[All,12]],Round[#&/@parmatrix[[All,1]],0.1],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,9]],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,10]],parmatrix[[All,2]],parmatrix[[All,11]]}]; + +If[verbose, +Print[Prepend[Table[ToString@#&/@sxsdiroutaux[[i]],{i,1,Length@sxsdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +parmatrix[[All,12]], + +sxsdiroutaux=Transpose[{#&/@parmatrix[[All,12]],Round[#&/@parmatrix[[All,1]],0.1],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,9]],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,10]],parmatrix[[All,2]],parmatrix[[All,11]]}]; + +(*sxsdiroutaux=SortBy[Table[Join[{sxsdirout[[i]]},auxDist[[i]]],{i,1,Length@sxsdirout}],#[[2]]&];*) +If[verbose, +Print[Prepend[Table[ToString@#&/@sxsdiroutaux[[i]],{i,1,Length@sxsdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +parmatrix[[All,12]]] +] + + +RITParClassification[ritdir_?ListQ,ClassStr_?ListQ,OptionsPattern[{"\[Epsilon]"->0.001,"HighSpin"->0.8,"UnRepeated"->False,"Verbose"->False}]]:=Module[{metafiles,metadata, +orbitStr="number-of-cycles-22",dStr="initial-separation",mass1Str="initial-mass1",mass2Str="initial-mass2",spin1x="initial-bh-chi1x",spin1y="initial-bh-chi1y",spin1z="initial-bh-chi1z", +spin2x="initial-bh-chi2x",spin2y="initial-bh-chi2y",spin2z="initial-bh-chi2z",eccStr="eccentricity",spin1Dim,spin2Dim,mass1,mass2,massratio,eccentricity,dist,orbit,select,pos,condition,A1,A2,precvalue,precvalueNorm,\[Epsilon], +spin1Norm,spin2Norm,highspin,spintest,\[Chi]eff,ritdirout,spinz,spinzDiff,auxDist,posdup,posdupDist,posdistecc,unrepeated,verbose,ritdiroutaux,precvalue1,precvalue2,precvalueNorm1,precvalueNorm2}, + +Print["Classification Input Variables. Examples: {{'MassRatio', '0.99<#<1.1'}},{{'Distance', '#>16'}},{{'Orbits', '#>25'}},{{'Precessing'}}, +{{'Non-Precessing'}},{{'High-Spin'}},{{'\[Chi]eff','#>0.6'}},{{'\[Chi]1','#>0.6'}},{{'\[Chi]2','#>0.6'}},{{'Unequal'}}"]; +Print["Take care! Some of the rit file names are not consistent with the metadata files"]; +Print["The spin definition is consitent with 'initial-spin' values and not relaxed ones"]; + +(* Useful function to detect the duplicates *) +positionDuplicates[listaux_]:=GatherBy[Range@Length[listaux],listaux[[#]]&]; + +ritdirout=ritdir; + +\[Epsilon]=OptionValue["\[Epsilon]"]; +highspin=OptionValue["HighSpin"]; +unrepeated=OptionValue["UnRepeated"]; +verbose=OptionValue["Verbose"]; + + +metafiles=Flatten[FileNames["Metadata",#,2]&/@ritdirout,1]; +metadata=RITMetaFilesToRules[#]&/@metafiles; + +mass1=Flatten@((mass1Str/.#)&/@metadata); +mass2=Flatten@((mass2Str/.#)&/@metadata); + +massratio=mass1/mass2; +dist=Flatten@((dStr/.#)&/@metadata); +orbit=Flatten@((orbitStr/.#)&/@metadata); +spin1Dim=(({spin1x,spin1y,spin1z}/.#)&/@metadata)(*/(mass1*mass1)*); (* In RIT the spin is already adimensional *) +spin2Dim=(({spin2x,spin2y,spin2z}/.#)&/@metadata)(*/(mass2*mass2)*); +spin1Dim=Flatten[#,1]&/@spin1Dim; +spin2Dim=Flatten[#,1]&/@spin2Dim; +Do[ (* This is to set to 0 ths x and y spin components for aligned cases *) + Do[ + If[Not@NumberQ[spin1Dim[[i,j]]],spin1Dim[[i,j]]=0]; + If[Not@NumberQ[spin2Dim[[i,j]]],spin2Dim[[i,j]]=0]; + ,{j,1,2}]; +,{i,Length@metadata}]; +A1=(1+3 massratio/(4.)); +A2=(1+3 /(4.*massratio) ); +\[Chi]eff=massratio/(1.+massratio)*spin1Dim +1./(1+massratio)*spin2Dim; +eccentricity=Flatten[(eccStr/.#)&/@metadata]; + +spinz=Transpose[{TakeColumn[spin1Dim,3],TakeColumn[spin2Dim,3]}]; +spinzDiff=Abs[(#[[2]]-#[[1]])&/@spinz]; + +condition=ClassStr[[All,1]]; +select=Table[If[Length@ClassStr[[i]]==2,ToExpression@(ClassStr[[i,2]]),"Null"],{i,1,Length@ClassStr}]; + +pos=Table[i,{i,1,Length@ritdirout}]; + +Do[ + +Which[condition[[i]]== "MassRatio", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[massratio,_?(Evaluate[select[[i]]]&)]; + +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "Distance", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[ritdirout=ritdirout[[pos]];,_?(Evaluate[select[[i]]]&)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "Orbits", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[orbit,_?(Evaluate[select[[i]]]&)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "Non-Precessing", + +(*precvalue=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1+(spin2Dim)A2);*) +precvalue1=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1); +precvalue2=(#)\[Cross]{0,0,1}&/@((spin2Dim)A2); +precvalueNorm1=Norm[#]&/@precvalue1; +precvalueNorm2=Norm[#]&/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; + +pos=Flatten@Position[precvalueNorm,_?(#<\[Epsilon] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "Unequal", + +pos=Flatten@Position[spinzDiff,_?(#>\[Epsilon] &)]; + +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "Precessing", + +precvalue1=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1); +precvalue2=(#)\[Cross]{0,0,1}&/@((spin2Dim)A2); +precvalueNorm1=Norm[#]&/@precvalue1; +precvalueNorm2=Norm[#]&/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; + +(*precvalue=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1+(spin2Dim)A2);*) + +pos=Flatten@Position[precvalueNorm,_?(#>\[Epsilon] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "High-Spin", + +spin1Norm=Norm[#]&/@spin1Dim; +spin2Norm=Norm[#]&/@spin2Dim; + +spintest=Table[If[Abs@spin1Norm[[i]]>=highspin || Abs@spin2Norm[[i]]>=highspin,True,False],{i,1,Length@spin1Norm}]; +pos=Flatten@Position[spintest,True]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "\[Chi]eff", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[Norm[#]&/@\[Chi]eff,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "\[Chi]1", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[Norm[#]&/@spin1Dim,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + +condition[[i]]== "\[Chi]2", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[Norm[#]&/@spin2Dim,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + + +condition[[i]]== "relaxed-eccentricity", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; + +pos=Flatten@Position[eccentricity,_?(Evaluate[select[[i]]] &)]; +massratio=massratio[[pos]]; +dist=dist[[pos]]; +orbit=orbit[[pos]]; +spin1Dim=spin1Dim[[pos]]; +spin2Dim=spin2Dim[[pos]]; +A1=A1[[pos]]; +A2=A2[[pos]]; +spinzDiff=spinzDiff[[pos]]; +eccentricity=eccentricity[[pos]]; +\[Chi]eff=\[Chi]eff[[pos]]; + +ritdirout=ritdirout[[pos]];, + True, +Print[Style["Wrong input",Bold,Red,16]]; +Break[]; +]; +,{i,1,Length@ClassStr}]; + + +If[unrepeated, + +Print["Taking among the repeated cases only those with lower eccentricity and larger D (just in case ei=ej)"]; + +(* Selecting Case with lower e *) +auxDist=Transpose[{Round[#&/@massratio,0.1],Round[Chop[#,10^(-2)],0.01]&/@spin1Dim,Round[Chop[#,10^(-2)],0.01]&/@spin2Dim,dist,eccentricity}]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],5]],Min@auxDist[[posdup[[i]],5]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; +ritdirout=ritdirout[[posdistecc]]; + +(* Selecting Case with larger D *) +auxDist=auxDist[[posdistecc]]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],4]],Max@auxDist[[posdup[[i]],4]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; + +auxDist=auxDist[[posdistecc]]; +ritdirout=ritdirout[[posdistecc]]; +ritdiroutaux=SortBy[Table[Join[{ritdirout[[i]]},auxDist[[i]]],{i,1,Length@ritdirout}],#[[2]]&]; + +If[verbose, +Print[Prepend[Table[ToString@#&/@ritdiroutaux[[i]],{i,1,Length@ritdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +ritdiroutaux[[All,1]], + +auxDist=Transpose[{Round[#&/@massratio,0.1],Round[Chop[#,10^(-2)],0.01]&/@spin1Dim,Round[Chop[#,10^(-2)],0.01]&/@spin2Dim,dist,eccentricity}]; +(*ritdiroutaux=Table[Join[{ritdirout[[i]]},auxDist[[i]]],{i,1,Length@ritdirout}];*) +ritdiroutaux=SortBy[Table[Join[{ritdirout[[i]]},auxDist[[i]]],{i,1,Length@ritdirout}],#[[2]]&]; +If[verbose, +Print[Prepend[Table[ToString@#&/@ritdiroutaux[[i]],{i,1,Length@ritdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +ritdiroutaux[[All,1]]] +] + + +ritParClassification2[ritdir_?ListQ,ClassStr_?ListQ,OptionsPattern[{"\[Epsilon]"->0.001,"HighSpin"->0.8,"UnRepeated"->False,"Verbose"->False}]]:=Module[{metafiles,metadata, +orbitStr="number-of-orbits",dStr="initial-separation",mass1Str="relaxed-mass1",mass2Str="relaxed-mass2",spin1Str="relaxed-spin1", +spin2Str="relaxed-spin2",eccStr="relaxed-eccentricity",spin1Dim,spin2Dim,mass1,mass2,massratio,eccentricity,dist,orbit,select,pos,condition,A1,A2,precvalue,precvalueNorm,\[Epsilon], +spin1Norm,spin2Norm,highspin,spintest,\[Chi]eff,ritdirout,spinz,spinzDiff,auxDist,posdup,posdupDist,posdistecc,unrepeated,verbose,ritdiroutaux,precvalue1,precvalue2, +precvalueNorm1,precvalueNorm2,parmatrix,myindex}, + +Print["Classification Input Variables. Examples: {{'MassRatio', '0.99<#<1.1'}},{{'Distance', '#>16'}},{{'Orbits', '#>25'}},{{'Precessing'}}, +{{'Non-Precessing'}},{{'High-Spin'}},{{'\[Chi]eff','#>0.6'}},{{'\[Chi]1','#>0.6'}},{{'\[Chi]2','#>0.6'}},{{'Unequal'}}"]; +Print["Take care! Some of the rit file names are not consistent with the metadata files"]; + +(* Useful function to detect the duplicates *) +positionDuplicates[listaux_]:=GatherBy[Range@Length[listaux],listaux[[#]]&]; + +ritdirout=ritdir; + +\[Epsilon]=OptionValue["\[Epsilon]"]; +highspin=OptionValue["HighSpin"]; +unrepeated=OptionValue["UnRepeated"]; +verbose=OptionValue["Verbose"]; + + +metafiles=Flatten[FileNames["metadata.txt",#,4]&/@ritdirout,1]; +metadata=ritMetaFilesToRules[#]&/@metafiles; + + +mass1=Flatten@((mass1Str/.#)&/@metadata); +mass2=Flatten@((mass2Str/.#)&/@metadata); + +massratio=mass1/mass2; +dist=Flatten@((dStr/.#)&/@metadata); +orbit=Flatten@((orbitStr/.#)&/@metadata); +spin1Dim=((spin1Str/.#)&/@metadata)/(mass1*mass1); +spin2Dim=((spin2Str/.#)&/@metadata)/(mass2*mass2); +\[Chi]eff=massratio/(1.+massratio)*spin1Dim +1./(1+massratio)*spin2Dim; +spinzDiff=Abs[(#[[2]]-#[[1]])&/@Transpose[{TakeColumn[spin1Dim,3],TakeColumn[spin2Dim,3]}]]; +A1=(1+3. massratio/(4.)); +A2=(1+3. /(4.*massratio) ); +eccentricity=Flatten[(eccStr/.#)&/@metadata]; +precvalue1=(#)\[Cross]{0,0,1}&/@((spin1Dim)A1); +precvalue2=(#)\[Cross]{0,0,1}&/@((spin2Dim)A2); +precvalueNorm1=Norm[#]&/@precvalue1; +precvalueNorm2=Norm[#]&/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; +spin1Norm=Norm[#]&/@spin1Dim; +spin2Norm=Norm[#]&/@spin2Dim; + +parmatrix=Transpose[{massratio,dist,orbit,precvalueNorm,spinzDiff,spin1Norm,spin2Norm,\[Chi]eff,spin1Dim,spin2Dim,eccentricity,ritdirout}]; + +condition=ClassStr[[All,1]]; +select=Table[If[Length@ClassStr[[i]]==2,ToExpression@(ClassStr[[i,2]]),"Null"],{i,1,Length@ClassStr}]; + +Do[ + +Which[condition[[i]]== "MassRatio", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=1; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "Distance", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=2; +parmatrix=Select[parmatrix,Evaluate[StringReplace[select[[i]],"#"->ToString@(#[[myindex]])&]]];, + +condition[[i]]== "Orbits", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=3; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "Non-Precessing", + +myindex=4; + +parmatrix=Select[parmatrix,#[[myindex]]<\[Epsilon]&];, + +condition[[i]]== "Unequal", + +myindex=5; +parmatrix=Select[parmatrix,#[[myindex]]>\[Epsilon]&];, + +condition[[i]]== "Precessing", + +myindex=6; +parmatrix=Select[parmatrix,#[[myindex]]>=\[Epsilon]&];, + +condition[[i]]== "High-Spin", + +myindex=7; +parmatrix=Select[parmatrix,#[[myindex]]>=highspin& ||#[[myindex+1]]>=highspin& ];, + +condition[[i]]== "\[Chi]eff", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=8; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "\[Chi]1", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=9; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + +condition[[i]]== "\[Chi]2", + +If[Length@ClassStr[[i]]!= 2,Print["Wrong input"];Break[]]; +myindex=10; +pos=Flatten@Position[parmatrix[[All,myindex]],_?(Evaluate[select[[i]]]&)]; +parmatrix=parmatrix[[pos]];, + + True, +Print[Style["Wrong input",Bold,Red,16]]; +Break[]; +]; +,{i,1,Length@ClassStr}]; + + +If[unrepeated, + +Print["Taking among the repeated cases only those with lower eccentricity and larger D (just in case ei=ej)"]; + +(* Selecting Case with lower e *) +auxDist=Transpose[{Round[#&/@parmatrix[[All,1]],0.1],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,9]],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,10]],parmatrix[[All,2]],parmatrix[[All,11]]}]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],5]],Min@auxDist[[posdup[[i]],5]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; +parmatrix=parmatrix[[posdistecc]]; + +(* Selecting Case with larger D *) +auxDist=auxDist[[posdistecc]]; +posdup=positionDuplicates@auxDist[[All,1;;3]]; +posdistecc=Flatten[#,1]&/@Table[Position[auxDist[[posdup[[i]],4]],Max@auxDist[[posdup[[i]],4]]],{i,1,Length@posdup}]; +posdistecc=Flatten@Table[posdup[[i,posdistecc[[i]]]],{i,1,Length@posdup}]; + +auxDist=auxDist[[posdistecc]]; +parmatrix=parmatrix[[posdistecc]]; + +parmatrix=SortBy[parmatrix,#[[1]]&]; +ritdiroutaux=Transpose[{#&/@parmatrix[[All,12]],Round[#&/@parmatrix[[All,1]],0.1],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,9]],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,10]],parmatrix[[All,2]],parmatrix[[All,11]]}]; + +If[verbose, +Print[Prepend[Table[ToString@#&/@ritdiroutaux[[i]],{i,1,Length@ritdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +parmatrix[[All,12]], + +ritdiroutaux=Transpose[{#&/@parmatrix[[All,12]],Round[#&/@parmatrix[[All,1]],0.1],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,9]],Round[Chop[#,10^(-2)],0.01]&/@parmatrix[[All,10]],parmatrix[[All,2]],parmatrix[[All,11]]}]; + +(*ritdiroutaux=SortBy[Table[Join[{ritdirout[[i]]},auxDist[[i]]],{i,1,Length@ritdirout}],#[[2]]&];*) +If[verbose, +Print[Prepend[Table[ToString@#&/@ritdiroutaux[[i]],{i,1,Length@ritdiroutaux}],{"Case","q","\[Chi]1","\[Chi]2","D","e"}]//TableForm]]; + +parmatrix[[All,12]]] +] + + +BAMStringParameter[directory_,parametername_]:=Module[{file,dirname,content}, + +file = directory; + + If[TrueQ[FileType@directory == Directory], + file=ZippedOrUnzipped@ParfileInDirectory[directory]; +]; + +Print["BAMStringParameter identified parameter file ",file]; + +If[FileType@file==File,content=StringSplit[Import[file,"String"],EndOfLine],content={}]; +If[content=={},Print["parameter file does not exist"],content=Map[StringCases[#,StartOfLine~~parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x__~~WhitespaceCharacter...~~EndOfLine->x]&,content]; +content=First@Flatten@content; +content=First@StringSplit[content,EndOfLine];]; +content +]; + + +BAMNumberParameter[directory_,parametername_]:=Module[{file,dirname,content}, + +file = directory; + +If[TrueQ[FileType@directory == Directory], + file=ZippedOrUnzipped@ParfileInDirectory[directory]; +]; + +Print["BAMStringParameter identified parameter file ",file]; + +If[FileType@file==File,content=StringSplit[Import[file,"String"],EndOfLine],content={}]; + +Print["Read ",Length@content, " parameter file entries"]; + +If[content== {}, +Print["parameter file does not exist"], +content=Flatten@Map[StringCases[#,parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x:NumberString-> x]&, content]; +content=Map[ToExpression,content]; + +content=First@Select[content,NumberQ] +]; +content +]; + + +BAMNumberParameterInFile[file_,parametername_,default_]:=Module[{dirname,content}, + +If[FileType@file==File,content=StringSplit[Import[file,"String"],EndOfLine],content={}]; + +If[content== {}, +Print["parameter file does not exist"], +content=Flatten@Map[StringCases[#,parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x:NumberString-> x]&, content]; +content=Map[ToExpression,content]; + +If[content == {}, + content = default, + content=First@Select[content,NumberQ] +] +]; +content +]; + + +BAMNumberParameterInFile[file_,parametername_]:=BAMNumberParameterInFile[file,parametername,Indeterminate] + + +BAMNumberParametersInFile[file_,parametername_]:=Module[{dirname,content,x}, + +If[FileType@file==File,content=StringSplit[Import[file,"String"],EndOfLine],content={}]; + +If[content== {}, +Print["parameter file does not exist"], +content=Flatten@Map[StringCases[#,parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x__..-> x]&, content]; + +content=Map[StringSplit[#,"#"]&,content]; +content=Map[First,content]; +content=StringReplace[content,Whitespace-> ","]; +content=Map[StringReplace[#, ","~~EndOfString->""]&,content]; +content=Map["{"<>#<>"}"&,content]; +content=Map[ToExpression,content][[1]] +]; +content +]; + + +BAMNumberParameters[directory_,parametername_]:=Module[{file,dirname,content,x}, + +file=ParfileInDirectory[directory]; +file=ZippedOrUnzipped@file; +Print["Identified parameter file ",file]; +If[FileType@file==File,content=StringSplit[Import[file,"String"],EndOfLine],content={}]; + +Print["Read ",Length@content, " parameter file entries"]; + +If[content== {}, +Print["parameter file does not exist"], +content=Flatten@Map[StringCases[#,parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x__..-> x]&, content]; + +content=Map[StringSplit[#,"#"]&,content]; +content=Map[First,content]; +content=StringReplace[content,Whitespace-> ","]; +content=Map[StringReplace[#, ","~~EndOfString->""]&,content]; +content=Map["{"<>#<>"}"&,content]; +content=Map[ToExpression,content][[1]] +]; +content +]; + + +PSIDHashedNumberParameter[file_,parametername_]:=Module[{content,x}, + + content = PSIDReadHeader[file]; + + If[content == {}, + Print["psid file does not exist"], + content = Flatten@Map[StringCases[#,"# "~~parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x:NumberString-> x]&, content]; + content = Map[ToExpression,content]; + + content = First@Select[content,NumberQ] + ]; + content +]; + + +PSIDNumberParameter[file_,parametername_]:=Module[{content,x}, + + content = PSIDReadHeader[file]; + + If[content == {}, + Print["psid file does not exist"], + content = Flatten@Map[StringCases[#,StartOfLine~~parametername~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x___-> x]&, content]; + content = Map[StringToNumber,content]; + + content = First@Select[content,NumberQ] + ]; + content +]; + + +PSIDReadHeader[file_]:=Module[{content,psidStream,str}, + (* only read the header of the psid file until the ID section starting with "data xx xx xx" *) + + If[FileType@file == File, + psidStream = OpenRead[file]; + content = {}; str = {}; + While[True, + str = Read[psidStream, String]; + If[StringMatchQ[str, RegularExpression["data[\\s\\d+]+"]], + Break[] + ]; + AppendTo[content, str]; + ]; + Close[psidStream]; + , + content = {}; + ]; + content +]; + + +PSIDReadData[file_]:=Module[{header,data,str,dims}, + (* helper function to partition flat data *) + unflatten[e_,{d__?((IntegerQ[#]&&Positive[#])&)}]:= Fold[Partition,e,Take[{d},{-1,2,-1}]] /;(Length[e]===Times[d]); + + data = {}; + If[FileType@file == File, + psidStream = OpenRead[file]; + header = {}; data={}; str = {}; + + (* read header *) + While[True, + str = Read[psidStream, String]; + If[StringMatchQ[str, RegularExpression["data[\\s\\d+]+"]], Break[]]; + AppendTo[header, str]; + ]; + + (* get dimensions (nz,ny,nx) *) + dims = Reverse@ToExpression@StringCases[str, RegularExpression["\\d+"]]; + + (* read data *) + data = ReadList[psidStream,Real]; + + (* partition into array according to dimensions *) + data = unflatten[data, dims]; + Close[psidStream]; + ]; + + data +]; + + +PSID2Rules[filename_?StringQ]:=Module[{M1,M2,x1,y1,z1,x2,y2,z2,px1,py1,pz1 +,px2,py2,pz2,s1x,s1y,s1z,s2x,s2y,s2z,mtot,sep,sepInM,prel,xrel,Madm,m1,m2}, + +M1=PSIDHashedNumberParameter[filename,"M1"]; +M2=PSIDHashedNumberParameter[filename,"M2"]; + +Madm=PSIDHashedNumberParameter[filename,"Madm"]; + +m1=PSIDNumberParameter[filename,"bhmass1"]; +m2=PSIDNumberParameter[filename,"bhmass2"]; + +x1=PSIDNumberParameter[filename,"bhx1"]; +y1=PSIDNumberParameter[filename,"bhy1"]; +z1=PSIDNumberParameter[filename,"bhz1"]; + +x2=PSIDNumberParameter[filename,"bhx2"]; +y2=PSIDNumberParameter[filename,"bhy2"]; +z2=PSIDNumberParameter[filename,"bhz2"]; + +px1=PSIDNumberParameter[filename,"bhpx1"]; +py1=PSIDNumberParameter[filename,"bhpy1"]; +pz1=PSIDNumberParameter[filename,"bhpz1"]; + +px2=PSIDNumberParameter[filename,"bhpx2"]; +py2=PSIDNumberParameter[filename,"bhpy2"]; +pz2=PSIDNumberParameter[filename,"bhpz2"]; + +s1x=PSIDNumberParameter[filename,"bhsx1"]; +s1y=PSIDNumberParameter[filename,"bhsy1"]; +s1z=PSIDNumberParameter[filename,"bhsz1"]; + +s2x=PSIDNumberParameter[filename,"bhsx2"]; +s2y=PSIDNumberParameter[filename,"bhsy2"]; +s2z=PSIDNumberParameter[filename,"bhsz2"]; + +mtot=M1+M2; + +sep={x1,y1,z1}-{x2,y2,z2}; +sep=Sqrt[sep.sep]; +sepInM = sep/mtot; + +prel={px1,py1,pz1}-{px2,py2,pz2}; +xrel={x1,y1,z1}-{x2,y2,z2}; + + +{"M1"->M1,"M2"->M2,"M"->mtot, +"x1"->x1,"y1"->y1,"z1"->z1,"px1"->px1,"py1"->py1,"pz1"->pz1,"s1x"->s1x,"s1y"->s1y,"s1z"->s1z, +"x2"->x2,"y2"->y2,"z2"->z2,"px2"->px2,"py2"->py2,"pz2"->pz2,"s2x"->s2x,"s2y"->s2y,"s2z"->s2z, +"D[M]"->sepInM, "Madm"-> Madm, "BHMassParam1" -> m1, "BHMassParam2" -> m2 +} +] + + +NMovingLevels[parRules_]:="amr_lmax"-"amr_move_lcube"/.parRules + + +CactusThornsAvailable[cactusdir_]:=Module[{arrDir,arrangements,thorns,allThorns}, + +arrDir=FileNameJoin[{cactusdir,"arrangements"}]; +arrangements=FileNames["*",arrDir]; +arrangements=FileNameTake[#,-2]& /@Select[arrangements,FileType@#==Directory&]; + + +thorns=FileNames["*",arrDir,2]; +thorns=FileNameTake[#,-2]& /@ Select[thorns,FileType@#==Directory&]; +allThorns=Select[Complement[thorns,arrangements],Not@StringMatchQ[#,".*"]&]; + + +{"Arrangements"-> arrangements, "Thorns"-> allThorns} +]; + + +NormalizeCactusParfile[parfile_,cactusDir_,OptionsPattern[ +{"ThornListOutputFile"-> "","ParameterOutputFile"-> ""}]]:=Module[{temp,arrangements,allThorns, +import,activeThorns,flatThornList,fullNameThorns, +outThornList,outcontent,content,i,thorn,outparfile}, + +outThornList = OptionValue["ThornListOutputFile"]; +outparfile = OptionValue["ParameterOutputFile"]; + +temp=CactusThornsAvailable@cactusDir; +arrangements = "Arrangements"/.temp; +allThorns="Thorns"/.temp; + +import = Import[parfile,"String"]; +import=StringReplace[import,{ +"\n "-> " ", +"\n"~~Whitespace...~~"\""->"\"", + "\n"~~Whitespace...~~"="->"\""," "...~~"="->" =" +}]; + + +import=Flatten@StringSplit[StringSplit[import,EndOfLine],"\n"]; +import=Map[StringReplace[#,WhitespaceCharacter...~~x__~~WhitespaceCharacter...~~"#"~~y___->x]&,import]; +import=Map[StringReplace[#,WhitespaceCharacter...~~x__->x]&,import]; +import=Map[StringReplace[#,WhitespaceCharacter...~~"#"~~x___->""]&,import]; +import=Map[StringReplace[#,"\t"->" "]&,import]; +import=Select[import,StringLength@#>1&]; + +activeThorns=Select[import,StringMatchQ[#,"*ActiveThorns*"]&]; +activeThorns=Map[StringReplace[#, + "ActiveThorns"~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x__->x]&, + activeThorns]; +activeThorns=Map[StringSplit[#," "]&,activeThorns]; + + +flatThornList=Sort@Union@(StringReplace[#,"\""-> ""]&/@Flatten@activeThorns); +flatThornList=Select[flatThornList,# != ""& ]; + +fullNameThorns=Flatten@Table[ +Select[allThorns,StringMatchQ[#,"*/"<>flatThornList[[i]]]&],{i,1,Length@flatThornList}]; + +outcontent=StringJoin[#<>"\n"&/@fullNameThorns]; + +If[outThornList!= "", + Print["Exporting thornlist to file ", outThornList]; + Export[outThornList,outcontent,"Text"]; +]; + +temp=Table[thorn=flatThornList[[i]]; {"\nActiveThorns = \""<>thorn<>"\"", + Sort@Union@Select[import,StringMatchQ[#,thorn<>"::*"]&]} ,{i,1,Length@flatThornList}]; +temp = Flatten@{"# thornlist created by NormalizeCactusParfile from file "<>parfile, temp}; + +If[outThornList!= "", + Print["Exporting normalized parameters to file ", outparfile]; + Export[outparfile,Flatten@temp,"Text"]; +]; + + +{"AvailableArrangements"-> arrangements,"AvailableThorns"-> allThorns, +"ActiveThorns"-> activeThorns,"FullNameThorns"-> fullNameThorns,"Parameters"-> import, +"NormalizedParfile"-> temp} +]; + + +CompleteCactusParfile[parfile_,cactusDir_,OptionsPattern[ +{"ThornListOutputFile"-> "","ParameterOutputFile"-> ""}]]:=Module[{temp,arrangements,allThorns, +import,activeThorns,flatThornList,fullNameThorns, +outThornList,outcontent,content,i,thorn,outparfile}, + +outThornList = OptionValue["ThornListOutputFile"]; +outparfile = OptionValue["ParameterOutputFile"]; + +temp=CactusThornsAvailable@cactusDir; +arrangements = "Arrangements"/.temp; +allThorns="Thorns"/.temp; + +import = Import[parfile,"String"]; +import=StringReplace[import,{ +"\n "-> " ", +"\n"~~Whitespace...~~"\""->"\"", + "\n"~~Whitespace...~~"="->"\""," "...~~"="->" =" +}]; + + +import=Flatten@StringSplit[StringSplit[import,EndOfLine],"\n"]; +import=Map[StringReplace[#,WhitespaceCharacter...~~x__~~WhitespaceCharacter...~~"#"~~y___->x]&,import]; +import=Map[StringReplace[#,WhitespaceCharacter...~~x__->x]&,import]; +import=Map[StringReplace[#,WhitespaceCharacter...~~"#"~~x___->""]&,import]; +import=Map[StringReplace[#,"\t"->" "]&,import]; +import=Select[import,StringLength@#>1&]; + +(* *) +activeThorns=Select[import,StringMatchQ[#,"*ActiveThorns*"]&]; +activeThorns=Map[StringReplace[#, + "ActiveThorns"~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x__->x]&, + activeThorns]; +activeThorns=Map[StringSplit[#," "]&,activeThorns]; + + +flatThornList=Sort@Union@(StringReplace[#,"\""-> ""]&/@Flatten@activeThorns); +flatThornList=Select[flatThornList,# != ""& ]; + +fullNameThorns=Flatten@Table[ +Select[allThorns,StringMatchQ[#,"*/"<>flatThornList[[i]]]&],{i,1,Length@flatThornList}]; + +outcontent=StringJoin[#<>"\n"&/@fullNameThorns]; + +If[outThornList!= "", + Print["Exporting thornlist to file ", outThornList]; + Export[outThornList,outcontent,"Text"]; +]; + + +temp=Table[thorn=flatThornList[[i]]; {"\nActiveThorns = \""<>thorn<>"\"", + Sort@Union@Select[import,StringMatchQ[#,thorn<>"::*"]&]} ,{i,1,Length@flatThornList}]; +temp = Flatten@{"# thornlist created by NormalizeCactusParfile from file "<>parfile, temp}; + +If[outThornList!= "", + Print["Exporting normalized parameters to file ", outparfile]; + Export[outparfile,Flatten@temp,"Text"]; +]; + + +{"AvailableArrangements"-> arrangements,"AvailableThorns"-> allThorns, +"ActiveThorns"-> activeThorns,"FullNameThorns"-> fullNameThorns,"Parameters"-> import, +"NormalizedParfile"-> temp} +]; + + +SetParfileEntryValue[text_,key_,value_]:= +StringReplace[text,key~~ws1:WhitespaceCharacter... ~~\!\(\* +TagBox[ +StyleBox["\"\<=\>\"", +ShowSpecialCharacters->False, +ShowStringCharacters->True, +NumberMarks->True], +FullForm]\)~~ws2:WhitespaceCharacter...~~x__~~EndOfLine:> key<>ws1<>"="<>ws2<>ToString@value] + + +SetParfileValue[text_,key_,value_]:=Module[{entry,temp,len,new,x,out}, + +entry=StringCases[text,Shortest[key~~WhitespaceCharacter...~~"="~~WhitespaceCharacter...~~x___~~EndOfLine]]; +(* Print@entry; *) + +out = text; + +If[Length@entry > 0, + entry=Last@entry; + + new = SetParfileEntryValue[entry,key,value]; + + If[StringQ@entry, + out = StringReplace[text,entry :> new]; + ]; +]; + +out +]; + + +SetParfileVectorValue[text_,key_,component_,value_]:=Module[{entry,temp,len,new,s,x,out}, +s = "["~~WhitespaceCharacter...~~ ToString@component ~~WhitespaceCharacter...~~ "]"; + +entry = StringCases[text,Shortest[key~~WhitespaceCharacter...~~ s ~~WhitespaceCharacter...~~"= "~~x__~~EndOfLine]]; +(* Print[entry]; *) + +out = text; + +If[Length@entry > 0, +entry=Last@entry; + +s = "[" <> ToString@component <> "]"; +new = key <> s <> " = " <> ToString@value; + +If[StringQ@entry, + out = StringReplace[text,entry -> new]; +]; +]; + +out +]; + + +CreateDataReduceDirectory[dirname_]:=CreateDirectory[dirname<>"/DataReduce"] + + +CreateDataReduceDirectory[reduceroot_,dirname_]:=CreateDirectory[reduceroot<>"/"<>LastInPath@dirname<>"/DataReduce"] + + +LocateMode[modeDir_,lmode_,mmode_]:=Module[{searchString,modeFiles,file,radii,outerradius,level}, + +searchString="hmod.r*.l*.l"<>ToString@lmode<>".m"<>ToString@mmode<>"*"; +Print["Searching for files matching ", searchString]; +modeFiles=FileNames[searchString,modeDir]; + +Print["Found mode files: ", modeFiles]; + +level=Union@Map[IntegerPart,Map[levelFun,modeFiles]]; +Print["Available refinement levels: ", level]; + +radii=Sort@TakeColumn[level,1]; +level=Sort@TakeColumn[level,2]; + +outerradius={ToString@Last@radii,ToString@First@level}; + +file="hmod.r"<>outerradius[[1]]<>".l"<>outerradius[[2]]<>".l"<>ToString@lmode<>".m"<>ToString@mmode; +file=ZippedOrUnzipped[file]; +If[FileType@file!= File,Print["cannot find hmod file"];file="";]; + +file +]; + + +LocateModes[modeDir_,lmode_,mmode_]:=Module[{searchString,modeFiles,file,radii,outerradius,level,levelFun}, + +searchString="hmod.r*.l*.l"<>ToString@lmode<>".m"<>ToString@mmode<>"*"; +Print["Searching for files matching ", searchString]; +FileNames[searchString,modeDir] +]; + + +CopyL2mode[configStr_,modesdir_,reducedir_]:=Module[{command,modeFile,source,fname}, +modeFile=LocateMode[modesdir,2,2]; +Print["Called CopyL2mode with mode file ", modeFile]; + +source=modesdir<>"/"<>modeFile; +source=ZippedOrUnzipped@source; +If[FileType@source==File, +fname=Last@StringSplit[source,"/"]; +command="cp "<>source<>" "<>reducedir<>"/"<>configStr<>"_"<>fname; +Print["Running command ",command]; +Run[Evaluate@command];, +Print["ERROR: Could not find hmod modes file"]; +]; + +source=ZippedOrUnzipped@StringReplace[source,"hmod"-> "psi3col"]; +If[FileType@source==File, +fname=Last@StringSplit[source,"/"]; +command="cp "<>source<>" "<>reducedir<>"/"<>configStr<>"_"<>fname; +Print["Running command ",command]; +Run[Evaluate@command];, +Print["ERROR: Could not find psi4 modes file"]; +]; +]; + + +CopyL2modes[configStr_,modesdir_,reducedir_]:=Module[{command,modeFiles,modeFile,source,fname,i}, +modeFiles=LocateModes[modesdir,2,2]; +Print["Called CopyL2modes with mode files ", modeFiles]; + +Do[ +source=modeFiles[[i]]; + +If[FileType@source==File, +fname=Last@StringSplit[source,"/"]; +command="cp "<>source<>" "<>reducedir<>"/"<>configStr<>"_"<>fname; +Print["CopyL2modes running command ",command]; +Run[Evaluate@command];, +Print["ERROR: Could not find hmod modes file"]; +]; +source=ZippedOrUnzipped@StringReplace[source,"hmod"-> "psi3col"]; +If[FileType@source==File, +fname=Last@StringSplit[source,"/"]; +command="cp "<>source<>" "<>reducedir<>"/"<>configStr<>"_"<>fname; +Print["CopyL2modes running command ",command]; +Run[Evaluate@command];, +Print["ERROR: Could not find psi4 modes file"]; +];,{i,1,Length@modeFiles}]; +]; + + +CopyModes[configStr_,modesdir_,reducedir_,Lmode_,Mmode_]:=Module[{command,modeFiles,modeFile,source,fname,i}, +modeFiles=LocateModes[modesdir,Lmode,Mmode]; +Print["Called CopyModes with mode files ", modeFiles]; + +Do[ +source=modeFiles[[i]]; + +If[FileType@source==File, +fname=Last@StringSplit[source,"/"]; +command="cp "<>source<>" "<>reducedir<>"/"<>configStr<>"_"<>fname; +Print["CopyModes running command ",command]; +Run[Evaluate@command];, +Print["ERROR: Could not find hmod modes file"]; +]; +source=ZippedOrUnzipped@StringReplace[source,"hmod"-> "psi3col"]; +If[FileType@source==File, +fname=Last@StringSplit[source,"/"]; +command="cp "<>source<>" "<>reducedir<>"/"<>configStr<>"_"<>fname; +Print["CopyModes running command ",command]; +Run[Evaluate@command];, +Print["ERROR: Could not find psi4 modes file"]; +];,{i,1,Length@modeFiles}]; +]; + + +CopyFiles[configStr_,modesdir_,reducedir_,patterns_]:=Module[{command,files,modeFile,source,fname,i,prefix}, + +files=Map[FileNames[#,modesdir]&,patterns]; + +(* Print["CopyFiles found files ", files]; *) + +files=Flatten@files; + +If[configStr == "", +prefix = "", +prefix = configStr<>"_"; +]; + +Do[ +source=files[[i]]; + +If[FileType@source==File || FileType@source==Directory, +fname=Last@StringSplit[source,"/"]; +command="cp -r "<>source<>" "<>reducedir<>"/"<>prefix<>fname; +(* Print["CopyFiles running command ",command];*) +Run[Evaluate@command];, +Print["ERROR: CopyFiles could not find file"]; +];,{i,1,Length@files}]; + + +]; + + +FormatPunctureData[mp_,string_,M_]:=Module[{xl,yl,zl,vxl,vyl,vzl,rl,wl,\[Omega]l,times},xl=TakeColumn[Position/.mp,1]; +yl=TakeColumn[Position/.mp,2]; +zl=TakeColumn[Position/.mp,3]; +vxl=TakeColumn[Speed/.mp,1]; +vyl=TakeColumn[Speed/.mp,2]; +vzl=TakeColumn[Speed/.mp,3]; +times=Times/.mp; +times=times/M; +xl=xl/M; +yl=yl/M; +zl=zl/M; +Clear[Evaluate["times"<>string],Evaluate["xlist"<>string],Evaluate["ylist"<>string],Evaluate["zlist"<>string],Evaluate["vxlist"<>string],Evaluate["vylist"<>string],Evaluate["vzlist"<>string],Evaluate["xf"<>string],Evaluate["yf"<>string],Evaluate["zf"<>string],Evaluate["vxf"<>string],Evaluate["vyf"<>string],Evaluate["vzf"<>string],Evaluate["rlist"<>string],Evaluate["rf"<>string],Evaluate["wlist"<>string],Evaluate["wf"<>string],Evaluate["\[Omega]list"<>string],Evaluate["\[Omega]f"<>string]]; +Print["Defining the quantities: \n",Evaluate["times"<>string]," , ",Evaluate["[xyz]list"<>string]," , ",Evaluate["v[xyz]list"<>string]," , ",Evaluate["v[xyz]f"<>string]," , ",Evaluate["rlist"<>string]," , ",Evaluate["rf"<>string]," , ",Evaluate["wlist"<>string]," , ",Evaluate["wf"<>string]]; +Evaluate@ToExpression["times"<>string]=times; +Evaluate@ToExpression["xf"<>string]=Interpolation[Union@CombineColumns[times,xl]]; +Evaluate@ToExpression["yf"<>string]=Interpolation[Union@CombineColumns[times,yl]]; +Evaluate@ToExpression["zf"<>string]=Interpolation[Union@CombineColumns[times,zl]]; +Evaluate@ToExpression["vxf"<>string]=Interpolation[Union@CombineColumns[times,vxl]]; +Evaluate@ToExpression["vyf"<>string]=Interpolation[Union@CombineColumns[times,vyl]]; +Evaluate@ToExpression["vzf"<>string]=Interpolation[Union@CombineColumns[times,vzl]]; +Evaluate@ToExpression["xlist"<>string]=xl; +Evaluate@ToExpression["ylist"<>string]=yl; +Evaluate@ToExpression["zlist"<>string]=zl; +Evaluate@ToExpression["vxlist"<>string]=vxl; +Evaluate@ToExpression["vylist"<>string]=vyl; +Evaluate@ToExpression["vzlist"<>string]=vzl; +rl=Sqrt[xl^2+yl^2+zl^2]; +Evaluate@ToExpression["rf"<>string]=Interpolation[Union@CombineColumns[times,rl]]; +wl=Sqrt[vxl^2+vyl^2+vzl^2]/Sqrt[xl^2+yl^2+zl^2]; +Evaluate@ToExpression["wf"<>string]=Interpolation[Union@CombineColumns[times,wl]]; +\[Omega]l=(vyl xl-vxl yl)/(xl^2+yl^2+zl^2); +Evaluate@ToExpression["\[Omega]f"<>string]=Interpolation[Union@CombineColumns[times,\[Omega]l]]; +Evaluate@ToExpression["rlist"<>string]=rl; +Evaluate@ToExpression["wlist"<>string]=wl; +Evaluate@ToExpression["\[Omega]list"<>string]=\[Omega]l;]; + + + +SafeFormatPunctureData2[mp1_,mp2_,string_,m1_,m2_]:=Module[{M,xl1,yl1,zl1,xl2,yl2,zl2,xlc,ylc,zlc,dxl,dyl,dzl, +vxl1,vyl1,vzl1,vxl2,vyl2,vzl2,vxlc,vylc,vzlc,rl,wl,\[Omega]l,vrxl,vryl,vrzl,wxl,wyl,wzl,vrl,vtl,times,timesSorted,timesSorted1,timesSorted2,pos},M=m1+m2; +xl1=TakeColumn[Position/.mp1,1]; +yl1=TakeColumn[Position/.mp1,2]; +zl1=TakeColumn[Position/.mp1,3]; +vxl1=TakeColumn[Speed/.mp1,1]; +vyl1=TakeColumn[Speed/.mp1,2]; +vzl1=TakeColumn[Speed/.mp1,3]; +xl2=TakeColumn[Position/.mp2,1]; +yl2=TakeColumn[Position/.mp2,2]; +zl2=TakeColumn[Position/.mp2,3]; +vxl2=TakeColumn[Speed/.mp2,1]; +vyl2=TakeColumn[Speed/.mp2,2]; +vzl2=TakeColumn[Speed/.mp2,3]; +times=Times/.mp1; +timesSorted1=Union@times; + +times=Times/.mp2; +timesSorted2=Union@times; + +If[Length@timesSorted2 >= Length@timesSorted1, timesSorted = timesSorted1,timesSorted = timesSorted2] + +Clear[timesSorted1,timesSorted2]; + +pos=Table[Position[times,timesSorted[[i]]],{i,1,Length@timesSorted}]; +pos=Flatten@Map[First,pos]; +times=Table[times[[pos[[i]]]],{i,1,Length@pos}]; +xl1=Table[xl1[[pos[[i]]]],{i,1,Length@pos}]; +yl1=Table[yl1[[pos[[i]]]],{i,1,Length@pos}]; +zl1=Table[zl1[[pos[[i]]]],{i,1,Length@pos}]; +xl2=Table[xl2[[pos[[i]]]],{i,1,Length@pos}]; +yl2=Table[yl2[[pos[[i]]]],{i,1,Length@pos}]; +zl2=Table[zl2[[pos[[i]]]],{i,1,Length@pos}]; +vxl1=Table[vxl1[[pos[[i]]]],{i,1,Length@pos}]; +vyl1=Table[vyl1[[pos[[i]]]],{i,1,Length@pos}]; +vzl1=Table[vzl1[[pos[[i]]]],{i,1,Length@pos}]; +vxl2=Table[vxl2[[pos[[i]]]],{i,1,Length@pos}]; +vyl2=Table[vyl2[[pos[[i]]]],{i,1,Length@pos}]; +vzl2=Table[vzl2[[pos[[i]]]],{i,1,Length@pos}]; +(*scale to units of M*)times=times/M; +xl1=xl1/M; +yl1=yl1/M; +zl1=zl1/M; +xl2=xl2/M; +yl2=yl2/M; +zl2=zl2/M; +(*center-of-mass vector*)xlc=(m1 xl1+m2 xl2)/M; +ylc=(m1 yl1+m2 yl2)/M; +zlc=(m1 zl1+m2 zl2)/M; +(*relative coordinates*)xl1=xl1-xlc; +yl1=yl1-ylc; +zl1=zl1-zlc; +xl2=xl2-xlc; +yl2=yl2-ylc; +zl2=zl2-zlc; +Clear[Evaluate["times"<>string],Evaluate["xlista"<>string],Evaluate["ylista"<>string],Evaluate["zlista"<>string],Evaluate["vxlista"<>string],Evaluate["vylista"<>string],Evaluate["vzlista"<>string],Evaluate["xfa"<>string],Evaluate["yfa"<>string],Evaluate["zfa"<>string],Evaluate["vxfa"<>string],Evaluate["vyfa"<>string],Evaluate["vzfa"<>string],Evaluate["rlist"<>string],Evaluate["rf"<>string],Evaluate["wlist"<>string],Evaluate["wf"<>string],Evaluate["\[Omega]list"<>string],Evaluate["\[Omega]f"<>string],Evaluate["xlistb"<>string],Evaluate["ylistb"<>string],Evaluate["zlistb"<>string],Evaluate["vxlistb"<>string],Evaluate["vylistb"<>string],Evaluate["vzlistb"<>string],Evaluate["xfb"<>string],Evaluate["yfb"<>string],Evaluate["zfb"<>string],Evaluate["vxfb"<>string],Evaluate["vyfb"<>string],Evaluate["vzfb"<>string]]; +Print["Defining the quantities: \n",Evaluate["times"<>string]," , ",Evaluate["[xyz]list"<>string]," , ",Evaluate["v[xyz]list"<>string]," , ",Evaluate["v[xyz]f"<>string]," , ",Evaluate["rlist"<>string]," , ",Evaluate["rf"<>string]," , ",Evaluate["wlist"<>string]," , ",Evaluate["wf"<>string]]; +Evaluate@ToExpression["times"<>string]=times; +Evaluate@ToExpression["xfa"<>string]=Interpolation[CombineColumns[times,xl1]]; +Evaluate@ToExpression["yfa"<>string]=Interpolation[CombineColumns[times,yl1]]; +Evaluate@ToExpression["zfa"<>string]=Interpolation[CombineColumns[times,zl1]]; +Evaluate@ToExpression["vxfa"<>string]=Interpolation[CombineColumns[times,vxl1]]; +Evaluate@ToExpression["vyfa"<>string]=Interpolation[CombineColumns[times,vyl1]]; +Evaluate@ToExpression["vzfa"<>string]=Interpolation[CombineColumns[times,vzl1]]; +Evaluate@ToExpression["xlista"<>string]=xl1; +Evaluate@ToExpression["ylista"<>string]=yl1; +Evaluate@ToExpression["zlista"<>string]=zl1; +Evaluate@ToExpression["vxlista"<>string]=vxl1; +Evaluate@ToExpression["vylista"<>string]=vyl1; +Evaluate@ToExpression["vzlista"<>string]=vzl1; +Evaluate@ToExpression["xfb"<>string]=Interpolation[CombineColumns[times,xl2]]; +Evaluate@ToExpression["yfb"<>string]=Interpolation[CombineColumns[times,yl2]]; +Evaluate@ToExpression["zfb"<>string]=Interpolation[CombineColumns[times,zl2]]; +Evaluate@ToExpression["vxfb"<>string]=Interpolation[CombineColumns[times,vxl2]]; +Evaluate@ToExpression["vyfb"<>string]=Interpolation[CombineColumns[times,vyl2]]; +Evaluate@ToExpression["vzfb"<>string]=Interpolation[CombineColumns[times,vzl2]]; +Evaluate@ToExpression["xlistb"<>string]=xl2; +Evaluate@ToExpression["ylistb"<>string]=yl2; +Evaluate@ToExpression["zlistb"<>string]=zl2; +Evaluate@ToExpression["vxlistb"<>string]=vxl2; +Evaluate@ToExpression["vylistb"<>string]=vyl2; +Evaluate@ToExpression["vzlistb"<>string]=vzl2; +rl=Sqrt[(xl1-xl2)^2+(yl1-yl2)^2+(zl1-zl2)^2]; +rl=Table[Max[rl[[i]],$MachineEpsilon],{i,1,Length@rl}]; +Evaluate@ToExpression["rf"<>string]=Interpolation[CombineColumns[times,rl]]; +wl=Sqrt[(vxl1-vxl2)^2+(vyl1-vyl2)^2+(vzl1-vzl2)^2]/rl; +Evaluate@ToExpression["wf"<>string]=Interpolation[CombineColumns[times,wl]]; +dxl=(xl2-xl1)/rl; +dyl=(yl2-yl1)/rl; +dzl=(zl2-zl1)/rl; +(*w=drl\[Cross]\[CapitalDelta]yl*)wxl=dyl (vzl2-vzl1)-dzl (vyl2-vyl1); +wyl=dzl (vxl2-vxl1)-dxl (vzl2-vzl1); +wzl=dxl (vyl2-vyl1)-dyl (vxl2-vxl1); +(*\[Omega]=(|drl\[Cross]\[CapitalDelta]yl|)/rl*)\[Omega]l=Sqrt[wxl^2+wyl^2+wzl^2]/rl; +Evaluate@ToExpression["\[Omega]f"<>string]=Interpolation[CombineColumns[times,\[Omega]l]]; +Evaluate@ToExpression["rlist"<>string]=rl; +Evaluate@ToExpression["wlist"<>string]=wl; +Evaluate@ToExpression["\[Omega]list"<>string]=\[Omega]l;]; + + +SafeFormatPunctureDataCactus[mp_,string_,m1_,m2_]:=Module[{M,xl1,yl1,zl1,xl2,yl2,zl2,xlc,ylc,zlc,dxl,dyl,dzl,vxl1,vyl1,vzl1,vxl2,vyl2,vzl2,vxlc,vylc,vzlc,rl,wl,\[Omega]l,vrxl,vryl,vrzl,wxl,wyl,wzl,vrl,vtl,times,timesSorted,pos},M=m1+m2; +xl1=TakeColumn[mp,23]; +yl1=TakeColumn[mp,33]; +zl1=TakeColumn[mp,43]; +xl2=TakeColumn[mp,24]; +yl2=TakeColumn[mp,34]; +zl2=TakeColumn[mp,44]; +times=TakeColumn[mp,9]; +timesSorted=Union@times; +pos=Table[Position[times,timesSorted[[i]]],{i,1,Length@timesSorted}]; +pos=Flatten@Map[First,pos]; +times=Table[times[[pos[[i]]]],{i,1,Length@pos}]; +xl1=Table[xl1[[pos[[i]]]],{i,1,Length@pos}]; +yl1=Table[yl1[[pos[[i]]]],{i,1,Length@pos}]; +zl1=Table[zl1[[pos[[i]]]],{i,1,Length@pos}]; +xl2=Table[xl2[[pos[[i]]]],{i,1,Length@pos}]; +yl2=Table[yl2[[pos[[i]]]],{i,1,Length@pos}]; +zl2=Table[zl2[[pos[[i]]]],{i,1,Length@pos}]; +times=times/M; +vx1=D[Interpolation[CombineColumns[times,xl1]][t],t]/.ff1_[tt_]->ff1; +vy1=D[Interpolation[CombineColumns[times,yl1]][t],t]/.ff2_[tt_]->ff2; +vz1=D[Interpolation[CombineColumns[times,zl1]][t],t]/.ff3_[tt_]->ff3; +vx2=D[Interpolation[CombineColumns[times,xl2]][t],t]/.ff4_[tt_]->ff4; +vy2=D[Interpolation[CombineColumns[times,yl2]][t],t]/.ff5_[tt_]->ff5; +vz2=D[Interpolation[CombineColumns[times,zl2]][t],t]/.ff6_[tt_]->ff6; +vxl1=Map[vx1,times]; +vyl1=Map[vy1,times]; +vzl1=Map[vz1,times]; +vxl2=Map[vx2,times]; +vyl2=Map[vy2,times]; +vzl2=Map[vz2,times]; +xl1=xl1/M; +yl1=yl1/M; +zl1=zl1/M; +xl2=xl2/M; +yl2=yl2/M; +zl2=zl2/M; +xlc=m1 xl1+m2 xl2; +ylc=m1 yl1+m2 yl2; +zlc=m1 zl1+m2 zl2; +xl1=xl1-xlc; +yl1=yl1-ylc; +zl1=zl1-zlc; +xl2=xl2-xlc; +yl2=yl2-ylc; +zl2=zl2-zlc; +Clear[Evaluate["times"<>string],Evaluate["xlista"<>string],Evaluate["ylista"<>string],Evaluate["zlista"<>string],Evaluate["vxlista"<>string],Evaluate["vylista"<>string],Evaluate["vzlista"<>string],Evaluate["xfa"<>string],Evaluate["yfa"<>string],Evaluate["zfa"<>string],Evaluate["vxfa"<>string],Evaluate["vyfa"<>string],Evaluate["vzfa"<>string],Evaluate["rlist"<>string],Evaluate["rf"<>string],Evaluate["wlist"<>string],Evaluate["wf"<>string],Evaluate["\[Omega]list"<>string],Evaluate["\[Omega]f"<>string],Evaluate["xlistb"<>string],Evaluate["ylistb"<>string],Evaluate["zlistb"<>string],Evaluate["vxlistb"<>string],Evaluate["vylistb"<>string],Evaluate["vzlistb"<>string],Evaluate["xfb"<>string],Evaluate["yfb"<>string],Evaluate["zfb"<>string],Evaluate["vxfb"<>string],Evaluate["vyfb"<>string],Evaluate["vzfb"<>string]]; +Print["Defining the quantities: \n",Evaluate["times"<>string]," , ",Evaluate["[xyz]list"<>string]," , ",Evaluate["rlist"<>string]," , ",Evaluate["rf"<>string]," , ",Evaluate["wlist"<>string]," , ",Evaluate["wf"<>string]]; +Evaluate@ToExpression["times"<>string]=times; +Evaluate@ToExpression["xfa"<>string]=Interpolation[CombineColumns[times,xl1]]; +Evaluate@ToExpression["yfa"<>string]=Interpolation[CombineColumns[times,yl1]]; +Evaluate@ToExpression["zfa"<>string]=Interpolation[CombineColumns[times,zl1]]; +Evaluate@ToExpression["xfb"<>string]=Interpolation[CombineColumns[times,xl2]]; +Evaluate@ToExpression["yfb"<>string]=Interpolation[CombineColumns[times,yl2]]; +Evaluate@ToExpression["zfb"<>string]=Interpolation[CombineColumns[times,zl2]]; +Evaluate@ToExpression["xlista"<>string]=xl1; +Evaluate@ToExpression["ylista"<>string]=yl1; +Evaluate@ToExpression["zlista"<>string]=zl1; +Evaluate@ToExpression["xlistb"<>string]=xl2; +Evaluate@ToExpression["ylistb"<>string]=yl2; +Evaluate@ToExpression["zlistb"<>string]=zl2; +rl=Sqrt[(xl1-xl2)^2+(yl1-yl2)^2+(zl1-zl2)^2]; +rl=Table[Max[rl[[i]],$MachineEpsilon],{i,1,Length@rl}]; +Evaluate@ToExpression["rf"<>string]=Interpolation[CombineColumns[times,rl]]; +wl=Sqrt[(vxl1-vxl2)^2+(vyl1-vyl2)^2+(vzl1-vzl2)^2]/rl; +Evaluate@ToExpression["wf"<>string]=Interpolation[CombineColumns[times,wl]]; +dxl=(xl2-xl1)/rl; +dyl=(yl2-yl1)/rl; +dzl=(zl2-zl1)/rl; +wxl=dyl (vzl2-vzl1)-dzl(vyl2-vyl1); +wyl=dzl (vxl2-vxl1)-dxl(vzl2-vzl1); +wzl=dxl (vyl2-vyl1)-dyl(vxl2-vxl1); +\[Omega]l=Sqrt[wxl^2+wyl^2+wzl^2]/rl; +Evaluate@ToExpression["\[Omega]f"<>string]=Interpolation[CombineColumns[times,\[Omega]l]]; +Evaluate@ToExpression["rlist"<>string]=rl; +Evaluate@ToExpression["wlist"<>string]=wl; +Evaluate@ToExpression["\[Omega]list"<>string]=\[Omega]l;]; + + +BAMModesFilesTo3Col[modesFile_,OptionsPattern[{"DeleteSourceFiles" -> False}]]:=Module[{rootString,path,noPath,reData,imData,rad,lev,modeString,timesRe,timesIm, +col3Data,file,col3data,deleteSourceFiles,lm,commonTimes}, +deleteSourceFiles = OptionValue["DeleteSourceFiles"]; + +path = FileNameTake[modesFile,FileNameDepth[modesFile]-1]; +noPath=FileNameTake[modesFile,-1]; +rootString = StringCases[modesFile,{"r","i"}~~"psi4mode"~~postfix__:> {"rpsi4mode"<>postfix,"ipsi4mode"<>postfix}]; + +If[rootString != {}, + + {rad,lev}=First@StringCases[modesFile,"r"~~rad:NumberString~~".t"~~lev:NumberString~~___ :> {rad,lev}]; + + modeString = First@StringCases[modesFile,{"r","i"}~~"psi4mode"~~mode__~~"_r"~~postfix__:> mode]; + lm = Switch[modeString, + "20", {2, 0}, + "2m1", {2,-1}, + "21", {2, 1}, + "2m2", {2,-2}, + "22", {2, 2} + ]; + + file = FileNameJoin[{path,rootString[[1,1]]}]; + If[FileType@file != File, + Print["BAMModesFilesTo3Col:: File not found: ", file]; Return[];, + + reData = TimeUnion@NRFiles`ReadColData[file,2,1]; + If[deleteSourceFiles,DeleteFile[file];]; + timesRe = NRLists`TakeColumn[reData,1]; + + If[lm[[2]]!=0, + file = FileNameJoin[{path,rootString[[1,2]]}]; + + If[FileType@file != File, + Print["BAMModesFilesTo3Col:: File not found: ", file]; + imData = {};, + timesIm = {}; + imData = TimeUnion@NRFiles`ReadColData[file,2,1]; + If[deleteSourceFiles,DeleteFile[file];]; + timesIm = NRLists`TakeColumn[imData,1]; + ];, + timesIm = timesRe; + imData = Transpose@{timesIm,0*timesIm}; + ]; + + If[timesIm==timesRe, + col3data = Transpose@{timesRe, NRLists`TakeColumn[reData,2], NRLists`TakeColumn[imData,2]}; + file = path<>"/psi3col_bam_r"<>ToString@rad<>".l"<>ToString@lev<>".l"<>ToString@lm[[1]]<>".m"<>ToString@lm[[2]]<>".gz"; + Print["Exporting file ", file]; + Export[file,col3data,{"GZIP","Table"}], + Print["BAMModesFilesTo3Col:: fixing inconsistent lengths of real and imaginary part"]; + Print["Length@Re@wave = ", Length@timesRe, ", ", "Length@Im@wave = ", Length@timesIm]; + commonTimes = Intersection[timesIm,timesRe]; + reData = Select[reData,MemberQ[commonTimes,#[[1]]]&]; + imData = Select[imData,MemberQ[commonTimes,#[[1]]]&]; + + col3data = Transpose@{commonTimes, NRLists`TakeColumn[reData,2], NRLists`TakeColumn[imData,2]}; + file = path<>"/psi3col_bam_r"<>ToString@rad<>".l"<>ToString@lev<>".l"<>ToString@lm[[1]]<>".m"<>ToString@lm[[2]]<>".gz"; + Print["Exporting file ", file]; + Export[file,col3data,{"GZIP","Table"}] + ]; + ]; +]; +]; + + +BAMTrajectoryFileTo4Col[inFile_,OptionsPattern[{"DeleteSourceFiles" -> False}]]:=Module[{path,noPath,data, +lev,bh,modeString,timesRe,times, +file,col4data,deleteSourceFiles}, + +deleteSourceFiles = OptionValue["DeleteSourceFiles"]; + +If[FileType@inFile == File, + +path = path = FileNameTake[inFile,FileNameDepth[inFile]-1]; +noPath = FileNameTake[inFile,-1]; + +{bh,lev} = First@StringCases[noPath, + "moving_puncture_integrate"~~bh:NumberString~~".txyz"~~lev:NumberString~~X___ :> {bh,lev}]; + +lev = StringReplace[lev, "."->""]; + +data = Import@inFile; +If[deleteSourceFiles,DeleteFile[inFile];]; +col4data = TimeUnion@NRLists`TakeColumn[data,{7,1,2,3}]; + +file = path<>"/traj_"<>ToString@bh<>".l"<> ToString@lev<>".gz"; +Print["Exporting file ", file]; +Export[file,col4data,{"GZIP","Table"}]; +]; +]; + + +BAMHorizonFilesToNRARFiles[inFile_,OptionsPattern[{"DeleteSourceFiles" -> False}]]:=Module[{path,noPath,data,lev,bh,modeString,timesRe,times, +file,col4data,deleteSourceFiles, +hmass,hspin,totalSpin,htraj, +t,m}, + +deleteSourceFiles = OptionValue["DeleteSourceFiles"]; + +If[FileType@inFile == File, + +path = path = FileNameTake[inFile,FileNameDepth[inFile]-1]; +noPath = FileNameTake[inFile,-1]; +Print["BAMHorizonFilesToNRARFiles: filename: ", noPath]; + +bh = First@StringCases[noPath,"horizon_"~~bh:NumberString :> bh]; +Print["BAMHorizonFilesToNRARFiles: bh: ", bh]; +bh = ToExpression@bh + 1; + +data = TimeUnion@ReadColData[inFile,9,1]; +If[deleteSourceFiles, DeleteFile[inFile];]; + +times = TakeColumn[data,1]; +hmass = TakeColumn[data,5]; +hspin = TakeColumn[data,{1,6,7,8}]; + + +totalSpin = TakeColumn[data,9]; + +hmass = Sqrt[hmass^2+1/4 totalSpin^2/hmass^2]; +hmass = CombineColumns[times,hmass]; + + +htraj = TakeColumn[data,{1,2,3,4}]; + + +file = path<>"/hmass_"<>ToString@bh<>".gz"; +Print["Exporting file ", file]; +Export[file,hmass,{"GZIP","Table"}]; + +file = path<>"/htraj_"<>ToString@bh<>".gz"; +Print["Exporting file ", file]; +Export[file,htraj,{"GZIP","Table"}]; + +file = path<>"/hspin_"<>ToString@bh<>".gz"; +Print["Exporting file ", file]; +Export[file,hspin,{"GZIP","Table"}]; +]; +]; + + +WaveExtractionRadii[rootDir_,modesDir_]:=Module[{admFiles,adm,i,admradii,outerradius,level,massScale=1,len}, + +admFiles=FileNames["hmod.r*.l*.l*.m*",modesDir]; + +If[admFiles == {}, +Print["ERROR: could not find any hmod data in directory ", LastInPath@modesDir]; +Return[]; +]; + +level=Union@Map[IntegerPart,Map[levelFun,admFiles]]; +Print["WaveExtractionRadii: Available refinement levels: ", level]; + +outerradius=TakeColumn[level,1]; +Print["Wave extraction indices: ", outerradius]; +outerradius=Max@Map[ToExpression,outerradius]; +Print["Maximal wave extraction radius: ", outerradius]; + +admradii=BAMNumberParameters[rootDir,"invariants_modes_r"]; +Print["Wave extraction radii: ", admradii]; + +admradii +]; + + +ADMReduce[rootDir_,reduceDir_]:=Module[{admFiles,adm,i,admradii,outerradius,level,levelFun,massScale=1,len}, + +admFiles=FileNames["*ADM_mass_r*",rootDir]; + +Print["ADM data files: ", admFiles]; + +If[admFiles == {}, +Print["ERROR: ADMReduce could not find any ADM data in directory ", LastInPath@rootDir];Return[];, +Print["Starting ADM analysis"]; +]; + +levelFun[str_]:=ToExpression@First@StringCases[str,"ADM_mass_r"~~NumberString..~~".t"~~x:NumberString-> x]; + +level=Map[IntegerPart,Map[levelFun,admFiles]]; +Print["Available refinement levels: ", level]; + +outerradius=Map[Last@StringSplit[#,"/"]&,admFiles]; +outerradius=Union@Map[StringSplit[#,"_"][[3]]&,outerradius]; +outerradius=Union@Map[StringSplit[#,"."][[1]]&,outerradius]; +outerradius=Union@StringReplace[outerradius,"r"-> ""]; + +Print["ADM-style integrals extraction indices: ", outerradius]; +outerradius=Max@Map[ToExpression,outerradius]; +Print["Maximal ADM-stlye integral extraction radius: ", outerradius]; + +admradii=BAMNumberParameters[rootDir,"ADM_mass_r"]; +Print["ADM-style integrals extraction radii: ", admradii]; + +len=Length@admradii; +level=First@Union@Flatten@Select[myGather[level],Length@#==len&]; +Print["All extraction radii seem present at level ", level]; + + +admFiles=FileNames["*ADM_mass_r*.t"<>ToString@level<>"*",rootDir]; +Print["Reading data from files ", admFiles, " at level ", level]; +adm=Table[{admFiles[[i]],admradii[[i]]} , {i,1,Length@admFiles}]; + +ADMFit1Res[adm,massScale]; +]; + + +BBHDataReduce[modesdir_,IDroot_,ReduceRoot_]:=Module[{modesroot,reducedir,outerradius,psidfile,configStr, +idDir,m1,m2,madm,sep,abschi1,abschi2,s1x,s1y,s1z,s2x,s2y,s2z,a1x,a1y,a1z,a2x,a2y,a2z,q,eta,mtot,qString, +dString,chiString,myround,tmpString,modeDecompConfig,bitant,lmax=6,cleanModeConfig,extractionRadii, +extractionRadiiString,modesDecompDir,levels,radii,stdout}, + +tmpString = Map[ToString,{m1,m2,madm,sep,abschi1,abschi2,q}]; + +modesroot = ParentDirectory@modesdir; +Print["========================================================"]; +Print["Start case modesroot = ", modesroot]; + + +If[ReduceRoot==".", + reducedir=modesroot<>"/DataReduce", + reducedir=ReduceRoot<>"/"<>Last@StringSplit[modesroot,"/"]<>"/DataReduce" +]; + +Print["Data reduction directory is ", reducedir]; +CreateDirectory[reducedir]; + +modesDecompDir = reducedir<>"/ModeDecomp"; +Print["Mode decomposition directory is ", modesDecompDir]; +CreateDirectory[modesDecompDir]; + +outerradius = FileNames["*hmod.r*.l*",modesdir]; + +outerradius = Map[Last@StringSplit[#,"/"]&,outerradius]; +levels = Map[IntegerPart,Union@Map[levelFun,outerradius]]; +Print["Levels ", levels]; +radii = TakeColumn[levels,1]; +levels = TakeColumn[levels,2]; +outerradius = Union@Map[StringSplit[#,"."][[2]]&,outerradius]; +outerradius = Union@StringReplace[outerradius,"r"-> ""]; + +extractionRadii = outerradius; +Print["Radiation extraction radii: ", extractionRadii]; +outerradius = Max@Map[ToExpression,outerradius]; +Print["Maximal radiation extraction radius: ", outerradius]; + +psidfile = BAMStringParameter[modesroot,"punctures_ps_file"]; +psidfile = Last@StringSplit[psidfile,"/"]; +psidfile = StringReplace[psidfile," "->""]; +Print["psid-file determined from evolution parameter file as: ", psidfile]; +idDir = LocateInitialDataDirectory[IDroot,psidfile]; +{m1,m2,madm,sep,abschi1,abschi2,s1x,s1y,s1z,s2x,s2y,s2z} = InitialDataParameters[idDir,psidfile]; +mtot = m1+m2; +q = Max[m1,m2]/Min[m1,m2]; +{a1x,a1y,a1z}={s1x,s1y,s1z}/m1^2; +{a2x,a2y,a2z}={s2x,s2y,s2z}/m2^2; + +Map[ValPrint,tmpString]; +Print["a1 =", {a1x,a1y,a1z}]; +Print["a2 =", {a2x,a2y,a2z}]; + +myround[x_]:=N[Round[10000x]/10000]; + +qString = ToString@myround[q]; +dString = ToString@myround[sep/mtot]; + +bitant = False; +If[s1x==s1y==s2x==s2y==0, +Print["Aligned spins!"]; +bitant = True; +chiString = ToString@myround@a1z<>"_"<>ToString@myround@a2z;, +Print["Precessing spins!"]; +chiString = "Precess"<>ToString@myround@a1x<>"_"<>ToString@myround@a1y<>ToString@myround@a1z<>"_"<>ToString@myround@a2x<>ToString@myround@a1y<>"_"<>ToString@myround@a2z; +]; + +configStr = "D"<>dString<>"_q"<> qString<>"_"<>chiString; +Print["Generated configuration string ", configStr]; +Print["Finished Initialization, starting analysis"]; + +modeDecompConfig="dirnames = {\""<>modesroot<>"\"};\n\n"<> +"mass1 = {"<>ToString@m1<>"};\n"<> +"mass2 = {"<>ToString@m2<>"};\n\n"<> +"minradius = "<>ToString@Min@radii<>";\n"<> +"maxradius = "<>ToString@Max@radii<>";\n"<> +"level = "<>ToString@Max@levels<>";\n\n"<> (* This is not really correct, want a list here. *) +"lmin = 2;\n"<> +"lmax = "<>ToString@lmax<>";\n\n"<> +"BITANT = "<>ToString@bitant<>";"; + +Export[modesDecompDir<>"/allmodesH.in.m",modeDecompConfig,"Text"]; + +extractionRadii=WaveExtractionRadii[modesroot,modesdir]; +extractionRadiiString=ToString@extractionRadii; + +cleanModeConfig="dirnames = {\""<>modesDecompDir<>"\"};\n\n"<> +"RadiusValue = "<>ToString@extractionRadiiString<>";\n"<> +"winoffset = -1;\n\n"<> +"minradius = "<>ToString@Min@radii<>";\n"<> +"maxradius = "<>ToString@Max@radii<>";\n"<> +"level = "<>ToString@Max@levels<>";\n\n"<> (* This is not really correct, want a list here. *) +"lmin = 2;\n"<> +"lmax = "<>ToString@lmax<>";\n\n"<> +"dtResample = -1;\n"<> +"mintime = 150\n"<> +"maxtime = 5000"; + +Export[modesDecompDir<>"/cleanPsi.in.m",cleanModeConfig,"Text"]; + +ADMReduce[modesroot,reducedir]; + +(* CopyL2mode[configStr,modesdir,reducedir]; +CopyL2modes[configStr,modesdir,reducedir]; +CopyModes[configStr,modesdir,reducedir,2,1]; +CopyModes[configStr,modesdir,reducedir,3,2]; +CopyModes[configStr,modesdir,reducedir,3,3]; +CopyModes[configStr,modesdir,reducedir,4,4];*) + +CopyFiles[configStr,modesdir,reducedir, +{ +"hmod.r*", +"psi3col.r*" +}]; + +stdout = Last@FileNameSplit@First@FileNames["stdout.*",modesroot]; +Print["Found example stdout file: ", stdout]; + +(* overwrite modes files if we find some in the main directory *) +CopyFiles[configStr,modesroot,reducedir, +{ +"d*dt_r*.t*","ADM_mass_r*.t*", +"moving_puncture_integrate1.txyz*", +"moving_puncture_integrate2.txyz*", +"hmod.r*", +"psi3col.r*", +"system.log*", +stdout +}]; + +Print["========================================================\n\n"]; +]; + + +SymmetriesFromParfile[parfile_]:=Module[{grid,bitant, quadrant}, + +grid = BAMStringParameter[FileNameDrop[parfile,-1], "grid"]; + +If[StringMatchQ[grid, "*quadrant*"], quadrant = True, quadrant = False]; +If[StringMatchQ[grid, "*bitant*"], bitant = True, bitant = False]; + +{bitant, quadrant} +]; + + +WriteModeDecompConfigFile[DirectoryRules_?ListQ, + OptionsPattern[{"LMin" -> 2,"LMax" -> 6, "RunDecomp"-> False, "ModesTargetDirectory" -> "","JustPretendCalculation"-> False}]]:=Module[{modeDecompConfig, +evDir,targetDir,evDirHasModes,redDirHasModes,modesroot,parfile, +evModesDir,idDir,exportFile, +psidFile,psidRules, +M1,M2,radii,bitant,quadrant, +modesDecompDir,levels,lmin,lmax,runDecomp,command,justPretendCalculation}, + +Print["======= entering WriteModeDecompConfigFile ======="]; + +lmin = OptionValue["LMin"]; +lmax = OptionValue["LMax"]; +runDecomp = OptionValue["RunDecomp"]; +targetDir = OptionValue["ModesTargetDirectory"]; +justPretendCalculation = OptionValue["JustPretendCalculation"]; + +evDir = "EvolutionDirectory" /. DirectoryRules; +If[TrueQ[targetDir == ""], targetDir = evDir]; + +evDirHasModes = "EvolutionDirectoryHasModes"/. DirectoryRules; +(* targetDirHasModes = "ModesTargetDirectoryHasModes" /. DirectoryRules;*) + +evModesDir = "EvolutionModesDir" /. DirectoryRules; + +idDir = "InitialDataDir" /. DirectoryRules; +psidFile = "PSIDFile" /. DirectoryRules; + +psidRules = PSID2Rules[psidFile]; + +modesDecompDir = FileNameJoin[{targetDir,"Psi4ModeDecomp"}]; + +If[FileType@modesDecompDir != None, modesDecompDir == modesDecompDir <> "_new"]; +If[FileType@modesDecompDir != None, Print["modes directory already exists!"]; Return[]]; + +CreateDirectory[modesDecompDir]; + +M1 = "M1" /. psidRules; +M2 = "M2" /. psidRules; + +radii = Range@Length@BAMExtractionRadii[evDir]; + +levels = Union@Flatten@TakeColumn[BAMExtractionRadii[evDir],2]; + +parfile = ParfileInDirectory[evDir]; +{bitant, quadrant} = SymmetriesFromParfile[parfile]; + +modesroot = evDir; +modeDecompConfig = +"(* run as cd " <> modesDecompDir <> "; math < " <> Global`BAMToolsDir <> "/ModeDecomp/allmodes.m > out.m 2> err.m & *)\n\n" <> +"dirnames = {\""<>modesroot<>"\"};\n\n"<> +"mass1 = {"<> ToString@M1 <>"};\n"<> +"mass2 = {"<> ToString@M2 <>"};\n\n"<> +"minradius = "<>ToString@Min@radii<>";\n"<> +"maxradius = "<> ToString@Max@radii<>";\n"<> +"level = " <> ToString@Max@levels<>";\n\n"<> (* This is not really correct, want a list here. *) +"lmin = " <> ToString@lmin <>";\n"<> +"lmax = " <> ToString@lmax<>";\n\n"<> +"PISYM = " <> ToString@quadrant<>";\n" <> +"BITANT = " <> ToString@bitant<>";\n\n" <> +"ExportRPsi4IPsi4 = False;"; + +If[justPretendCalculation, + modeDecompConfig = modeDecompConfig <> "\n\nJustPretendCalculation = True;"; +]; + +(* export mode decomp config file *) +exportFile = modesDecompDir<>"/allmodes.in.m"; +Print["Exporting file: ", exportFile]; +Export[exportFile,modeDecompConfig,"Text"]; + + +CopyFile[Global`BAMToolsDir <> "/ModeDecomp/allmodes.m", modesDecompDir <>"/allmodes.m"]; (* copy the mode decomp file *) + +(* now write a shell script *) +modeDecompConfig = +"#!/bin/bash\n" <> +"rm -f ModeDecomp_Done\n\n" <> +"cd " <> modesDecompDir <> "; math < allmodes.m > out.m 2> err.m\n\n" <> +"rm -f *psi*m-0.gz"; + +If[Not@justPretendCalculation, + modeDecompConfig = modeDecompConfig <> "\ntouch ModeDecomp_Done"; +]; + + +exportFile = modesDecompDir<>"/runModeDecomp.sh"; +Print["Exporting file: ", exportFile]; +Export[exportFile,modeDecompConfig,"Text"]; + +(* change file permissions to execute *) +command = "cd " <> modesDecompDir <> "; chmod u+x runModeDecomp.sh"; +Print["Running command ", command]; +Run[command]; + +If[runDecomp, +Print["Running mode decomposition in batch mode"]; +If[justPretendCalculation, + command = "cd " <> modesDecompDir <> "; ./runModeDecomp.sh > out 2> err";, (* wait for result *) + command = "cd " <> modesDecompDir <> "; ./runModeDecomp.sh > out 2> err &"; (* do not wait for result *) +]; + +Print["Running command ", command]; +Run[command]; +]; + +Print["======= exiting WriteModeDecompConfigFile ======="]; +]; + + +BAMExtractionRadii[evolutiondir_]:=Module[{outerradius,levels,radii,extractionRadii,levelfun, +evolutionParfile,collectLevels,r,l,i}, + +levelfun[str_]:=ToExpression@First@StringCases[str,"rpsi4.r"~~r:NumberString..~~".l"~~l:NumberString-> {r,l}]; + +collectLevels[level_,levels_] := Map[Last,Select[levels,#[[1]]==level&]]; + +outerradius = FileNames["rpsi4.r*.l*",evolutiondir]; + +outerradius = Map[Last@StringSplit[#,"/"]&,outerradius]; + +levels = Map[IntegerPart,Union@Map[levelfun,outerradius]]; + +outerradius = Union@Map[StringSplit[#,"."][[2]]&,outerradius]; +outerradius = Union@StringReplace[outerradius,"r"-> ""]; + +extractionRadii = outerradius; +Print["Radiation extraction radii from psi4 file names: ", extractionRadii]; + +evolutionParfile = ParfileInDirectory[evolutiondir]; + +radii = BAMNumberParametersInFile[evolutionParfile, "invariants_modes_r"]; + +If[Length@radii > Length@extractionRadii, + Print["Found inconsistent extraction radii, assume outermost radius did not fit on extraction levels"]; + Print["BAMExtractionRadii: radii = ", radii]; + Print["BAMExtractionRadii: radii = ", extractionRadii]; +]; + +If[Length@radii < Length@extractionRadii, + Print["Found inconsistent extraction radii!"]; + Print["radii : extractionRadii ", Length@radii, " : ", Length@extractionRadii]; + Print["BAMExtractionRadii: radii = ", radii]; + Print["BAMExtractionRadii: radii = ", extractionRadii]; +Return[{False,False}]; +]; + +Table[{radii[[i]],collectLevels[i,levels]},{i,1,Length@radii}] +]; + + +CurateBBHData[DirectoryRules_?ListQ, + OptionsPattern[{"DestinationDirectory" -> ".", "SubmitterEmail" -> "Sascha Husa <sascha.husa@gmail.zebra.elephant.com>", + "ModeDecomp"-> False,"VivekModesSource"-> {} }]]:=Module[{reducedir,outerradius,psidfile,configString,filePrefix, +idDir,m1,m2,madm,sep,abschi1,abschi2,s1x,s1y,s1z,s2x,s2y,s2z,a1x,a1y,a1z,a2x,a2y,a2z,q,eta,mtot,qString, +dString,chiString,myround,tmpString,modeDecompConfig,bitant,lmax,extractionRadii, +extractionRadiiString,modesDecompDir,levels,radii,stdout,evDir,redDir,evDirHasModes,redDirHasModes,modesroot,parfile, +evModesDir,redModesDir,exportFile, +psidFile,psidRules,modesdir,modesString,timer,destinationDir,myDestinationDir,X1,X2,P1,P2, +modesFiles,selectFiles,str, +rad,lev,l,m,tmp,rules, +modesFilesAndRadii,trajectoriesSection,metadataFile,baseSection,psi4BAMModesSections,psi4ModesSections,metadataContent,physicsSection, +evParfileRules,resolution,L,eccentricityData,metaFile,metaFile2, +radius,startTime,nCycles,startFreq,cycleInfo, +afterJunkTime=140, +tt,sx,sy,sz, +pickHighestLevel, +BAMLogDir,EnergyMomentumDir,Psi4ModesDir,Psi4BAMModesDir, +submitterEmail,modeDecomp,canCreateModeFiles,VivekModesSource}, + +Print["Entering Function CurateBBHData"]; + +(* determine where we can find data, and where we will put data *) +destinationDir = OptionValue["DestinationDirectory"]; +submitterEmail = OptionValue["SubmitterEmail"]; +modeDecomp = OptionValue["ModeDecomp"]; + +Print["DirectoryRules: ", DirectoryRules]; + +evDir = "EvolutionDirectory"/. DirectoryRules; +redDir = "ReducedDirectory" /. DirectoryRules; + +VivekModesSource = OptionValue["VivekModesSource"]; +Print["Value of VivekModesSource: ", VivekModesSource]; + +configString = FileNameTake[evDir,-1]; +Print["Configuration Name = ", configString]; + +evDirHasModes = "EvolutionDirectoryHasModes"/. DirectoryRules; +redDirHasModes = "ReducedDirectoryHasModes" /. DirectoryRules; + +evModesDir = "EvolutionModesDir" /. DirectoryRules; +redModesDir = "ReducedModesDir" /. DirectoryRules; + +idDir = "InitialDataDir" /. DirectoryRules; +psidFile = "PSIDFile" /. DirectoryRules; + +parfile = ParfileInDirectory[evDir]; + +(* create uuid and basic.bbh files in evolution directory, if they do not alrady exist *) +tmp = FileNames["uuid",evDir]; +If[Length@tmp == 0, + Run["cd "<> evDir <> "; uuidgen > uuid"]; +]; + +tmp = FileNames["basic.bbh",evDir]; +If[Length@tmp == 0, + Run["cd "<> evDir <> "; cp " <> FileNameJoin[{Global`BBHReduceDir, "bam_metadata_template.bbh"}] <> " basic.bbh"]; +]; + + +(* determine from where we will take the psi4-modes*) +modesString = "psi3col*"; +If[StringQ@redModesDir, + Print["Using modes from reduced-data directory: ", redModesDir]; + modesdir = redModesDir, + If[StringQ@evModesDir, + Print["Using modes from reduced-data directory: ", evModesDir]; + modesdir = evModesDir, + Print["Using l=2 modes from BAM on-the-fly integration in directory: ", evDir]; + modesString = "*psi4*mode*"; +]; +]; + + +myDestinationDir = FileNameJoin[{destinationDir,configString}]; +Print["file destination directory: ", myDestinationDir]; + +If[FileType@destinationDir == Directory, + Print["Destination directory already exists!"];, + CreateDirectory[destinationDir]; +]; + +If[FileType@myDestinationDir == Directory, + Print["Configuration-specific destination directory already exists"];, + CreateDirectory[myDestinationDir]; + Print[myDestinationDir] +]; + +CreateDirectory[myDestinationDir]; + + +(* determine simulation parameters *) +psidRules = PSID2Rules[psidFile]; +evParfileRules = ParfileToRules[parfile]; + +tmpString = Map[ToString,{m1,m2,madm,sep,abschi1,abschi2,q}]; +{m1,m2,madm,sep,abschi1,abschi2,s1x,s1y,s1z,s2x,s2y,s2z,X1,X2,P1,P2} = InitialDataParameters[psidFile]; + +mtot = m1 + m2; + +q = Max[m1,m2]/Min[m1,m2]; + +{a1x,a1y,a1z}={s1x,s1y,s1z}/m1^2; +{a2x,a2y,a2z}={s2x,s2y,s2z}/m2^2; +Print["a1 =", {a1x,a1y,a1z}]; +Print["a2 =", {a2x,a2y,a2z}]; + +resolution = "UNDEFINED"; + +If[IsFPNumberQ@ToString["nxyz" /. evParfileRules], + resolution = "nxyz" /. evParfileRules; +]; + +If[IsFPNumberQ@ToString["amr_move_nxyz" /. evParfileRules], + resolution = "amr_move_nxyz" /. evParfileRules; +]; + +tmp = "amr_nxyz" /. evParfileRules; +If[ListQ@tmp, + If[IsFPNumberQ@ToString@Last@tmp, + resolution = Last["amr_nxyz" /. evParfileRules]; + ]; +]; + +L = (X1-X2)\[Cross]P1; + +physicsSection = { +"submitter-email" -> submitterEmail, +"simulation-name" -> configString, +"resolution" -> resolution, +"initial-ADM-energy" -> "Madm" /. psidRules, +"initial-angular-momentumx" -> L[[1]], +"initial-angular-momentumy" -> L[[2]], +"initial-angular-momentumz" -> L[[3]], +"initial-separation" -> sep, +(* *) +"eccentricity" -> "", +(* *) +"freq-start-22" -> "", +"number-of-cycles-22" -> "", +(* *) +"phase-error" -> "", +"amplitude-error-relative" -> "", +(* *) +"after-junkradiation-time" -> afterJunkTime, +(* *) +"mass1" -> m1, +"mass2" -> m2, +(* *) +"initial-bh-position1x" -> X1[[1]], +"initial-bh-position1y" -> X1[[2]], +"initial-bh-position1z" -> X1[[3]], +(* *) +"initial-bh-position2x" -> X2[[1]], +"initial-bh-position2y" -> X2[[2]], +"initial-bh-position2z" -> X2[[3]], +(* *) +"initial-bh-momentum1x" -> P1[[1]], +"initial-bh-momentum1y" -> P1[[2]], +"initial-bh-momentum1z" -> P1[[3]], +(* *) +"initial-bh-momentum2x" -> P2[[1]], +"initial-bh-momentum2y" -> P2[[2]], +"initial-bh-momentum2z" -> P2[[3]], +(* *) +"initial-bh-spin1x" -> s1x, +"initial-bh-spin1y" -> s1y, +"initial-bh-spin1z" -> s1z, +(* *) +"initial-bh-spin2x" -> s2x, +"initial-bh-spin2y" -> s2y, +"initial-bh-spin2z" -> s2z, +(* *) +"after-junkradiation-spin1x" -> "", +"after-junkradiation-spin1y" -> "", +"after-junkradiation-spin1z" -> "", +(* *) +"after-junkradiation-spin2x" -> "", +"after-junkradiation-spin2y" -> "", +"after-junkradiation-spin2z" -> "" +}; +physicsSection = Drop[ComposeConfigSection["dummy",physicsSection],1]; + +Map[ValPrint,tmpString]; + +myround[x_]:=N[Round[10000x]/10000]; + +qString = ToString@myround[q]; +dString = ToString@myround[sep/mtot]; + +bitant = False; +If[s1x==s1y==s2x==s2y==0, +Print["Aligned spins!"];, (* TODO: check consistency with settings in evolution-parfile *) +Print["Precessing spins!"]; +]; + +(* copy and create files *) +filePrefix = ""; (* do not prefix files *) + +(* stdout and timer files: only copy 2 files each *) +stdout = FileNames["stdout.*",evDir]; +If[Length@stdout >= 1, + stdout = {Last@FileNameSplit@First@stdout, Last@FileNameSplit@Last@stdout} +]; +Print["Found example stdout file: ", stdout]; + +timer = FileNames["timer.*",evDir]; +If[Length@timer >= 1, + timer = {Last@FileNameSplit@First@FileNames["timer.*",evDir], Last@FileNameSplit@Last@FileNames["timer.*",evDir]}; +]; +Print["Found example timer file: ", timer]; + +BAMLogDir = FileNameJoin[{myDestinationDir,"BAMLogs"}]; +CreateDirectory[BAMLogDir]; + +If[Length@stdout > 0, CopyFiles[filePrefix, evDir, BAMLogDir, stdout]]; +If[Length@timer > 0, CopyFiles[filePrefix, evDir, BAMLogDir, timer]]; + +(* GW modes *) +Psi4BAMModesDir = FileNameJoin[{myDestinationDir,"Psi4BAMModes"}]; +CreateDirectory[Psi4BAMModesDir]; + +(* Psi4ModesDir = FileNameJoin[{myDestinationDir,"Psi4Modes"}];*) +Psi4ModesDir = myDestinationDir; +(*CreateDirectory[Psi4ModesDir];*) + + + +Print["Copying GW modes of the form ", modesString]; +CopyFiles[filePrefix,evDir,Psi4BAMModesDir, {modesString}]; + +modesFiles = FileNames[modesString,myDestinationDir,2]; + +selectFiles= Select[modesFiles,StringMatchQ[#,"*/rpsi4mode*"]&]; + +Map[BAMModesFilesTo3Col[#,"DeleteSourceFiles"-> True]&,selectFiles]; +modesString = "psi3col*"; + +(* now that we have a unified naming convention for psi4-files, compose modes metadata sections *) +modesFiles = FileNames[modesString,myDestinationDir,2]; + +Print["Calling BAMExtractionRadii"]; +radii = TakeColumn[BAMExtractionRadii[evDir],1]; +Print["BAMExtractionRadii found radii = ", radii]; + +modesFilesAndRadii = Table[ +str = modesFiles[[i]]; +{StringCases[str,"r"~~rad:NumberString~~".l"~~lev:NumberString~~".l"~~l:NumberString~~".m"~~m:NumberString~~___ :> + {rad,lev}],str},{i,1,Length@modesFiles}]; + +pickHighestLevel[xxx_?ListQ]:=\[NonBreakingSpace]Last@Gather[xxx, First@#1 ==First@#2 &]; + +tmp = Gather[modesFilesAndRadii, First@First@First@#1 == First@First@First@#2 &]; +modesFilesAndRadii = Map[pickHighestLevel,tmp]; + + +psi4BAMModesSections = Table[ + modesFiles = TakeColumn[modesFilesAndRadii[[i]],2]; + {rad,lev} = TakeColumn[modesFilesAndRadii[[i]], 1][[1, 1]]; + + str = radii[[ToExpression@rad]]; + + tmp=ComposeStrainModesSection[First@modesFiles, + "Verbose"-> False,"SectionHeader"-> "psi4t-data", + "Modes"-> "All","Path" -> "Psi4BAMModes/"]; + tmp[[2]] = {tmp[[2]], "extraction-radius = "<> ToString@str <>"\n"}; + AppendTo[tmp, "\n\n"]; + Flatten@tmp, +{i,1,Length@modesFilesAndRadii}]; +ExportText[FileNameJoin[{myDestinationDir,"psi4BAMmodes.bbh"}], Flatten@psi4BAMModesSections,"Overwrite"->True]; + +(* NOW THE WHOLE THING AGAIN FOR THE FULL MODES *) + +(* First, check if Vivek-style modes are available *) +VivekModesFiles = FileNames[modesString,VivekModesSource,2]; +Print["Found Vivek-style modes files: ", VivekModesFiles]; + +If[Length@VivekModesFiles > 0, +modesFiles=VivekModesFiles; +modesDecompDir = FileNameJoin[{Psi4ModesDir,"Psi4ModeDecomp"}]; +(*CreateDirectory[modesDecompDir];*) + +CopyDirectory[VivekModesSource<>"/data",modesDecompDir]; + +canCreateModeFiles = False;, + +(* check for psi4 source files and whether mode decomp can be run *) +WriteModeDecompConfigFile[DirectoryRules,"RunDecomp"-> True, + "ModesTargetDirectory"-> Psi4ModesDir,"JustPretendCalculation"-> True]; + +modesFiles = FileNames[modesString,Psi4ModesDir<>"/Psi4ModeDecomp",2]; +If[Length@modesFiles == 0, + Print["Mode decomposition yields no results - no mode files can be created."]; + canCreateModeFiles = False;, + canCreateModeFiles = True; +]; +]; + +modesFilesAndRadii = Table[ +str = modesFiles[[i]]; +{StringCases[str,"r"~~rad:NumberString~~".l"~~lev:NumberString~~".l"~~l:NumberString~~".m"~~m:NumberString~~___ :> + {rad,lev}],str},{i,1,Length@modesFiles}]; + +pickHighestLevel[xxx_?ListQ]:=\[NonBreakingSpace]Last@Gather[xxx, First@#1 ==First@#2 &]; + +tmp = Gather[modesFilesAndRadii, First@First@First@#1 == First@First@First@#2 &]; +modesFilesAndRadii = Map[pickHighestLevel,tmp]; + +psi4ModesSections = Table[ + modesFiles = TakeColumn[modesFilesAndRadii[[i]],2]; + {rad,lev} = TakeColumn[modesFilesAndRadii[[i]], 1][[1, 1]]; + + str = radii[[ToExpression@rad]]; + + tmp=ComposeStrainModesSection[First@modesFiles, + "Verbose"-> False,"SectionHeader"-> "psi4t-data", + "Modes"-> "All","Path" -> "Psi4ModeDecomp/"]; + tmp[[2]] = {tmp[[2]], "extraction-radius = "<> ToString@str <>"\n"}; + AppendTo[tmp, "\n\n"]; + Flatten@tmp, +{i,1,Length@modesFilesAndRadii}]; + +Export[FileNameJoin[{myDestinationDir,"psi4modes.bbh"}], Flatten@psi4ModesSections,"Text"]; + + +(* overwrite modes files if we find some in the main directory *) +CopyFiles[filePrefix,evDir,myDestinationDir, +{ +"moving_puncture_integrate1.txyz*", +"moving_puncture_integrate2.txyz*", +"psi3col.r*", +"*.par*", +"horizon_*", +"ah.xy*", +"basic.bbh", +"uuid" +}]; + + +CopyFiles[filePrefix,evDir,BAMLogDir, +{"system.log*"}]; + +EnergyMomentumDir = FileNameJoin[{myDestinationDir,"EnergyMomentum"}]; +CreateDirectory[EnergyMomentumDir]; + +CopyFiles[filePrefix,evDir,EnergyMomentumDir, +{"d*dt_r*.t*","ADM_mass_r*.t*"}]; + +(* compress some files *) +Run["cd "<> myDestinationDir <> "; " <> + "gzip moving_puncture_integrate* system.log* ah.xy*/*"]; + +Run["cd "<> EnergyMomentumDir <> "; " <> + "gzip d*dt_r*.t* ADM_mass_r*.t*"]; + +Run["cd "<> BAMLogDir <> "; " <> + "gzip *"]; + +(* convert horizon and puncture track files to NRAR format and add entries to metadata file *) +rules={}; + +tmp = FileNames["horizon_*",myDestinationDir,2]; +If[Length@tmp == 0, +Print["Could not find horizon files!"];, + +Map[BAMHorizonFilesToNRARFiles[#,"DeleteSourceFiles"-> False]&,tmp]; + +tmp = LastInPath@First@FileNames["hmass_1.*",myDestinationDir,2]; +AppendTo[rules, "horizon-mass1" -> tmp]; + +tmp = LastInPath@First@FileNames["hmass_2.*",myDestinationDir,2]; +AppendTo[rules, "horizon-mass2" -> tmp]; + +tmp = LastInPath@First@FileNames["hspin_1.*",myDestinationDir,2]; +AppendTo[rules, "spin1" -> tmp]; + +tmp = LastInPath@First@FileNames["hspin_2.*",myDestinationDir,2]; +AppendTo[rules, "spin2" -> tmp]; + +tmp = LastInPath@First@FileNames["htraj_1.*",myDestinationDir,2]; +AppendTo[rules, "horizon-center1" -> tmp]; + +tmp = LastInPath@First@FileNames["htraj_2.*",myDestinationDir,2]; +AppendTo[rules, "horizon-center2" -> tmp]; +]; + +tmp = Join[FileNames["moving_puncture_integrate1.txyz*",myDestinationDir,2], + FileNames["moving_puncture_integrate2.txyz*",myDestinationDir,2]]; + +If[Length@tmp == 0, +Print["Could not find puncture track files!"];, +Print["Found puncture track files: ", tmp]; +Map[BAMTrajectoryFileTo4Col[#,"DeleteSourceFiles"-> False]&,tmp]; + +(* below, Last is used to get data at the finest available level *) +tmp = Last@FileNames["traj_1.l*",myDestinationDir,2]; +AppendTo[rules,"trajectory1" -> FileNameTake[tmp,-1]]; + +tmp = Last@FileNames["traj_2.l*",myDestinationDir,2]; +AppendTo[rules, "trajectory2" -> FileNameTake[tmp,-1]]; +]; + + +trajectoriesSection = ComposeConfigSection["body-data", Flatten@rules, "Verbose" -> True]; + +tmp=FileNames["basic.bbh",myDestinationDir,2]; +If[Length@tmp == 0, + Print["Missing metadata file basic.bbh!"]; + baseSection = {"[metadata]","# empty"};, + metadataFile = First@tmp; + If[FileType@metadataFile == File, + tmp = ConfigFileToRules@metadataFile; + baseSection = Flatten@StringSplit[StringSplit[Import[metadataFile,"String"],EndOfLine],"\n"]; + DeleteFile@metadataFile; +]; +]; + + +metadataContent = Flatten@Join[baseSection,physicsSection,trajectoriesSection,psi4BAMModesSections]; +metaFile = FileNameJoin[{myDestinationDir, configString<>".raw.bbh"}]; +ExportText[metaFile,metadataContent,"Overwrite"-> True]; + +metadataContent = Flatten@Join[baseSection,physicsSection,trajectoriesSection,psi4ModesSections]; +metaFile2 = FileNameJoin[{myDestinationDir, configString<>".bbh"}]; +ExportText[metaFile2,metadataContent,"Overwrite"-> True]; + + +(* compute eccentricity and modify metadata *) + +(* use the maximal finite extraction radius *) +eccentricityData = NinjaBase`NinjaEccentricity[metaFile,"SectionInstance" -> "MaxRad","Verbose"-> True]; +ChangeConfigEntry[metaFile,metaFile, "eccentricity", ToString@eccentricityData[[1]]]; +ChangeConfigEntry[metaFile2,metaFile2, "eccentricity", ToString@eccentricityData[[1]]]; + +Print["select max from metaFile ", metaFile]; +radius=ReadNinjaModes[FileNameTake[metaFile,FileNameDepth@metaFile-1],FileNameTake[metaFile,-1], + "MModes"-> {2,2}, "DataSection" -> "psi4t-data","SectionInstance" -> "MaxRad", "Tag" -> "mode22","Verbose" -> True, + "OnlyComputeExtractionInfo" -> True]; + +Print[]; +Print["Found extraction radii = ", FullForm@radius]; +Print["Found max radius = ", radius=Max[StringToNumber /@ radius]]; + + +(* compute start frequency and number of cycles, and modify metadata *) +startTime = afterJunkTime + radius; +Print["Calling NinjaCyclesStartFreq with startTime = ", startTime]; +cycleInfo = NinjaCyclesStartFreq[metaFile,startTime]; + +startFreq = "freq-start-22" /.cycleInfo; +nCycles = "number-of-cycles-22" /. cycleInfo; + +Print["found start freq = ", startFreq, ", ", "#\[NonBreakingSpace]of cycles = ", nCycles ]; + +(* tmp = ListPlot[{Abs@ninjlm["mode22",2,2],Re@ninjlm["mode22",2,2], + {{afterJunkTime + radius,0},{afterJunkTime + radius,Max[TakeColumn[Abs@ninjlm["mode22",2,2],2]]}}}, +PlotRange\[Rule] All,Joined\[Rule] True]; +Export[FileNameJoin[{myDestinationDir,"timedomain_psi4_22.pdf"}],tmp]; *) + +ChangeConfigEntry[metaFile,metaFile, "freq-start-22", ToString@startFreq]; +ChangeConfigEntry[metaFile,metaFile, "number-of-cycles-22", ToString@nCycles]; + +ChangeConfigEntry[metaFile2,metaFile2, "freq-start-22", ToString@startFreq]; +ChangeConfigEntry[metaFile2,metaFile2, "number-of-cycles-22", ToString@nCycles]; + + +Print["changed metadata entries for freq-start-22 and number-of-cycles-22"]; + +(* compute spins after junk-radiation, and modify metadata *) +Clear[tt,sx,sy,sz]; +tmp = ReadNinjaData[metaFile,"body-data", "spin1"]; +If[ListQ@tmp, + tmp = tmp /. {tt_?NumberQ,sx_?NumberQ,sy_?NumberQ,sz_?NumberQ} -> {tt,{sx,sy,sz}}; + tmp = Interpolation@tmp; + tmp = Chop/@ tmp@afterJunkTime; + Print["spin1 after junk = ", tmp]; + ChangeConfigEntry[metaFile,metaFile, "after-junkradiation-spin1x", ToString@tmp[[1]]]; + ChangeConfigEntry[metaFile,metaFile, "after-junkradiation-spin1y", ToString@tmp[[2]]]; + ChangeConfigEntry[metaFile,metaFile, "after-junkradiation-spin1z", ToString@tmp[[3]]]; + + ChangeConfigEntry[metaFile2,metaFile2, "after-junkradiation-spin1x", ToString@tmp[[1]]]; + ChangeConfigEntry[metaFile2,metaFile2, "after-junkradiation-spin1y", ToString@tmp[[2]]]; + ChangeConfigEntry[metaFile2,metaFile2, "after-junkradiation-spin1z", ToString@tmp[[3]]]; +]; + + +tmp = ReadNinjaData[metaFile,"body-data", "spin2"] /. {tt_,sx_,sy_,sz_} -> {tt,{sx,sy,sz}}; +If[ListQ@tmp, + tmp = Interpolation@tmp; + tmp = Chop /@ tmp@afterJunkTime; + Print["spin2 after junk = ", tmp]; + ChangeConfigEntry[metaFile,metaFile, "after-junkradiation-spin2x", ToString@tmp[[1]]]; + ChangeConfigEntry[metaFile,metaFile, "after-junkradiation-spin2y", ToString@tmp[[2]]]; + ChangeConfigEntry[metaFile,metaFile, "after-junkradiation-spin2z", ToString@tmp[[3]]]; + + ChangeConfigEntry[metaFile2,metaFile2, "after-junkradiation-spin2x", ToString@tmp[[1]]]; + ChangeConfigEntry[metaFile2,metaFile2, "after-junkradiation-spin2y", ToString@tmp[[2]]]; + ChangeConfigEntry[metaFile2,metaFile2, "after-junkradiation-spin2z", ToString@tmp[[3]]]; +]; + +Print["Deleting file ", FileNameJoin[{myDestinationDir,"psi4BAMmodes.bbh"}]]; +DeleteFile[FileNameJoin[{myDestinationDir,"psi4BAMmodes.bbh"}]]; + +If[canCreateModeFiles, + WriteModeDecompConfigFile[DirectoryRules,"RunDecomp"-> modeDecomp,"ModesTargetDirectory"-> Psi4ModesDir];, + CopyFile[metaFile, metaFile2]; +]; + +Print["========================================================\n\n"]; +]; + + +NRARPsi4ToStrain[metaFile_,LMAX_,\[Omega]GWStart_]:=Module[{newMetaFile,dir,newMeta,tmp,psi4tInstances,readOut,filesRead,originalFile,newFile,times,data,col3data,file}, + +newMetaFile=StringReplace[metaFile,".bbh"->".hFFI.bbh"]; +dir=FileNameTake[metaFile,FileNameDepth[metaFile]-1]; + +myDestinationDir=FileNameJoin[{FileNameDrop[metaFile,-1],"FFIStrainModes"}]; + +If[FileType@myDestinationDir==None, + CreateDirectory[myDestinationDir], + RenameDirectory[myDestinationDir,myDestinationDir<>"_bak"]; +]; + +Run["cp "<>metaFile<>" "<>newMetaFile]; + +newMeta=Import[newMetaFile,"Text"]; +tmp=StringReplace[newMeta,"[psi4t-data]"->"[ht-data]"]; +tmp=StringReplace[tmp,"Psi4ModeDecomp/psi"->"FFIStrainModes/h"]; +Export[newMetaFile,tmp,"Text"]; + +psi4tInstances=Length@Cases[ConfigSectionHeaders[metaFile,"Union"-> False],"psi4t-data"]; + +Do[ +readOut=ReadNinjaModes[dir,FileNameTake[metaFile,-1],"DataSection"->"psi4t-data","LMax"->LMAX,"SectionInstance"->i,"Tag"->"dummy"]; +filesRead=readOut[[2]]; + +Print@readOut; + +Do[ + +If[m!=0,strain=hFromPsi4FFI[ninjlm["dummy",l,m],(Abs@m/2)\[Omega]GWStart/(2 \[Pi])];,strain=hFromPsi4FFI[ninjlm["dummy",l,m],(1/2)\[Omega]GWStart/(2 \[Pi])];]; + +originalFile=Last@First@Select[filesRead,#[[1]]=={l,m}&]; +newFile=StringReplace[originalFile,"Psi4ModeDecomp/psi"->"FFIStrainModes/h"]; + +times=TakeColumn[strain,1]; +data=TakeColumn[strain,2]; + +col3data=Transpose@{times,Re@data,Im@data}; +file=FileNameJoin[{FileNameDrop[myDestinationDir,-1],newFile}]; +Print["Exporting file ",file]; +Export[file,col3data,{"GZIP","Table"}],{l,2,LMAX},{m,-l,l}] +,{i,psi4tInstances}] +] + + +Options[SXSLuminosityFromMetaFiles]={"PrecessingTolerance"->0.001`,"OutputTag"->"SXSLuminosities_","OutputDir"->".","ExtrapOrder"->{2},"Verbose"->"False"} + + +SXSLuminosityFromMetaFiles[metadata_?ListQ,modes_?ListQ,OptionsPattern[]]:=Module[{tags,metarules,\[CapitalOmega]startMetadata,M1,M2,\[Chi]1vect,\[Chi]2vect,\[Chi]1,\[Chi]2,M,\[Eta],q,A1,A2,Lx,Ly,Lz,Lvect, +LvectNorm,precvalue1,precvalue2,precvalueNorm1,precvalueNorm2,precvalueNorm,precessing,\[Chi]1p,\[Chi]2p,Initial\[Chi]Plane,\[Chi]1vect\[Chi]2vect,fnameBase,myFile,mymodes,h5file,dir, +ta,test\[Psi],pos,test\[Psi]22,domain,times,f0,mm,lum,sumModes,sumModesDominant,sumModesLum,sumModesLumDom,tmaxSum,tmaxSumDom,modesMaxima,data,int,verbose,lmax,ls,lsms, +lsmsm1,dommodes,testdommodes,posdom,domsneg,precessingtolerance,outputtag,outputdir,xx,yy,extraporder}, + +mymodes=modes; + +verbose=OptionValue["Verbose"]; +precessingtolerance=OptionValue["PrecessingTolerance"]; +outputtag=OptionValue["OutputTag"]; +outputdir=OptionValue["OutputDir"]; +extraporder=OptionValue["ExtrapOrder"]; + +(* read metadata and convert to physical quantities *) +tags=(FileNameTake[#1,{-3}]&)/@metadata; +metarules=SXSMetaFilesToRules/@metadata; +\[CapitalOmega]startMetadata[tags]="initial-orbital-frequency"/. metarules; +M1=Flatten["initial-mass1"/. metarules,1]; +M2=Flatten["initial-mass2"/. metarules,1]; +M=M1+M2;\[Eta]=(M1 M2)^2/M^2; +q=(Max[#1,1]&)/@(M1/M2); + +\[Chi]1vect=("initial-spin1"/. metarules)/M1^2; +\[Chi]2vect=("initial-spin2"/. metarules)/M2^2; +\[Chi]1vect\[Chi]2vect=Transpose[{\[Chi]1vect,\[Chi]2vect}]; +\[Chi]1=Norm/@\[Chi]1vect; +\[Chi]2=Norm/@\[Chi]2vect; + +Lvect="initial-ADM-angular-momentum"/. metarules; +LvectNorm=Lvect/(Norm/@Lvect); +Initial\[Chi]Plane=Table[{\[Chi]1vect\[Chi]2vect[[i,1]]-Lvect[[i]] Lvect[[i]].\[Chi]1vect\[Chi]2vect[[i,2]],\[Chi]1vect\[Chi]2vect[[i,2]]-Lvect[[i]] Lvect[[i]].\[Chi]1vect\[Chi]2vect[[i,2]]},{i,Length[Lvect]}]; +\[Chi]1p=Norm/@Initial\[Chi]Plane[[All,1]]; +\[Chi]2p=Norm/@Initial\[Chi]Plane[[All,2]]; + + +(* Is it precessing? *) +A1=1+3/4. q; +A2=1+3/(4. q); +precvalue1=Table[(\[Chi]1vect[[i]] A1[[i]])\[Cross]LvectNorm[[i]],{i,Length[tags]}]; +precvalue2=Table[(\[Chi]2vect[[i]] A2[[i]])\[Cross]LvectNorm[[i]],{i,Length[tags]}]; +precvalueNorm1=Norm/@precvalue1; +precvalueNorm2=Norm/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; +Do[If[precvalueNorm[[i]]<0.001,precessing[tags[[i]]]=False,precessing[tags[[i]]]=True],{i,Length[tags]}]; + +(* Compute Luminosity *) +Table[ + (* Find rpsi4 files *) + fnameBase=ToString[outputtag]; + Print["Computing Luminosity from: ",tags[[i]]]; + myFile=ToString[outputdir]<>"/"<>fnameBase<>ToString[tags[[i]]]<>".dat"; + + dir=FileNameDrop[metadata[[i]],-2]; + h5file=First[FileNames["rMPsi4_Asymptotic_GeometricUnits.h5",dir,2]]; + + If[FileExistsQ[h5file],Print["Found ",h5file," . Continue"];,Print["Not found ",h5file," . Bye"];Return[]]; + If[precessing[tags[[i]]],Print["Precessing run. Non simetry. Taking all modes"];,Print["Non-Precessing run. Assuming simetry. Taking only m>0 modes"];mymodes=Select[mymodes,#1[[2]]>=0&];]; + Print["Modes selection : ",mymodes]; + + (* How many dominant modes are present? eg. {{2,2},{2,1},{2,-2}}? *) + lmax=Max[mymodes[[All,1]]]; + ls=DeleteDuplicates[mymodes[[All,1]]]; + lsms=CombineColumns[ls,ls]; + lsmsm1=CombineColumns[ls,ls-1]; + dommodes=Sort[Join[lsms,lsmsm1]]; + domsneg=dommodes/. {xx_,yy_}->{xx,-yy}; + dommodes=Sort[Join[dommodes,domsneg]]; + testdommodes=(MemberQ[mymodes,#1]&)/@dommodes; + posdom=Flatten[Position[testdommodes,True]]; + dommodes=dommodes[[posdom]];Print["Dominant modes : ",dommodes]; + + ta=Table[ + (* Load and process data *) + Print["Extrapolation order : ",j]; + test\[Psi]=GetAsymptoticMultiMode[h5file,j,mymodes]; + Print["Modes Loaded"]; + + pos=First[First[Position[mymodes,{2,2}]]]; + test\[Psi]22=test\[Psi][[pos]]; + domain={First[First[test\[Psi]22]],First[Last[test\[Psi]22]]}; + times=Range[First[domain],Last[domain],0.5]; + test\[Psi]=Interpolation/@test\[Psi]; + test\[Psi]=Table[CombineColumns[times,test\[Psi][[i]][times]],{i,Length[test\[Psi]]}]; + + (* 22 mode guess frequency *) + f0=Abs[First[GuessFFIf0[test\[Psi][[pos]],"MinTime"->First[First[test\[Psi][[pos]]]]+250]]]; + + (* compute Luminosoties *) + + Do[If[mymodes[[l,2]]!=0,mm=mymodes[[l,2]]/2,mm=(mymodes[[l,2]]+1)/2]; + lum[mymodes[[l,1]],mymodes[[l,2]]]=Abs[TakeColumn[NewsFromPsi4FFI[test\[Psi][[l]],0.75f0 Abs[mm]],2]]^2;Print[mymodes[[l]]];,{l,Length[mymodes]}]; + + If[precessing[tags[[i]]], + sumModes=1/(16 \[Pi])Sum[lum[mymodes[[l,1]],mymodes[[l,2]]],{l,Length@mymodes}]; + sumModesDominant=1/(16 \[Pi])Sum[lum[dommodes[[l,1]],dommodes[[l,2]]],{l,Length@dommodes}]; + , + sumModes=1/(8 \[Pi])Sum[lum[mymodes[[l,1]],mymodes[[l,2]]],{l,Length@mymodes}]; + sumModesDominant=1/(8 \[Pi])Sum[lum[dommodes[[l,1]],dommodes[[l,2]]],{l,Length@dommodes}];]; + + + sumModesLum=CombineColumns[times,sumModes]; + sumModesLumDom=CombineColumns[times,sumModesDominant]; + tmaxSum=TimeOfMaximum[sumModesLum]; + tmaxSumDom=TimeOfMaximum[sumModesLumDom]; + modesMaxima=Table[data=CombineColumns[times,lum[mymodes[[l,1]],mymodes[[l,2]]]]; + int=Interpolation[data]; + {ValueOfMaximum[data],int[tmaxSum],int[tmaxSumDom]},{l,Length[mymodes]}]; + +If[verbose,Print[ListPlot[{sumModesLum,sumModesLumDom},Joined->True,PlotRange->All]];]; +Flatten[{tags[[i]],\[Eta][[i]],\[Chi]1[[i]],\[Chi]2[[i]],\[Chi]1p[[i]],\[Chi]2p[[i]],Initial\[Chi]Plane[[i]],j,ValueOfMaximum[sumModesLum],tmaxSum,ValueOfMaximum[sumModesLumDom],tmaxSumDom,Flatten[modesMaxima]}],{j,extraporder}]; + +Print["Exporting results to : ",myFile];Export[myFile,ta]; +,{i,Length[tags]}]; + +ta] + + +Options[BAMLuminosityFromMetaFiles]={"PrecessingTolerance"->0.001,"OutputTag"->"BAMLuminosities_","OutputDir"->".","ExtractionRadius"->{},"Verbose"->"False"}; + + +BAMLuminosityFromMetaFiles[metadata_?ListQ,modes_?ListQ,OptionsPattern[]]:=Module[{tags,metarules,\[CapitalOmega]startMetadata,M1,M2,\[Chi]1vect,\[Chi]2vect,\[Chi]1,\[Chi]2,M,\[Eta],q,A1,A2,Lx,Ly,Lz,Lvect, +LvectNorm,precvalue1,precvalue2,precvalueNorm1,precvalueNorm2,precvalueNorm,precessing,\[Chi]1p,\[Chi]2p,Initial\[Chi]Plane,\[Chi]1vect\[Chi]2vect,fnameBase,myFile,mymodes,h5file,dir, +ta,test\[Psi],pos,test\[Psi]22,domain,times,f0,mm,lum,sumModes,sumModesDominant,sumModesLum,sumModesLumDom,tmaxSum,tmaxSumDom,modesMaxima,data,int,verbose,lmax,ls,lsms, +lsmsm1,dommodes,testdommodes,posdom,domsneg,precessingtolerance,outputtag,outputdir,xx,yy,extractionradius,p1,p2,r1,r2,InitialOrbitalAngularMomentum,InitialAngularMomentum, +extraddef,myRad,myrads}, + +mymodes=modes; + +verbose=OptionValue["Verbose"]; +precessingtolerance=OptionValue["PrecessingTolerance"]; +outputtag=OptionValue["OutputTag"]; +outputdir=OptionValue["OutputDir"]; +extractionradius=OptionValue["ExtractionRadius"]; + +(* read metadata and convert to physical quantities *) +tags=FileNameTake[#,{-3}]&/@metadata; +metarules=BAMMetaFilesToRules/@metadata; + +M1=Flatten["mass1"/. metarules,1]; +M2=Flatten["mass2"/. metarules,1]; +M=M1+M2; +\[Eta]=(M1 M2)^2/M^2; +q=(Max[#1,1]&)/@(M2/M1); + +\[Chi]1vect=Transpose@{(("initial-bh-spin1x"/. metarules)/M1^2)[[All,1]],(("initial-bh-spin1y"/. metarules)/M1^2)[[All,1]],(("initial-bh-spin1z"/. metarules)/M1^2)[[All,1]]}; + +\[Chi]2vect=Transpose@{(("initial-bh-spin2x"/. metarules)/M2^2)[[All,1]],(("initial-bh-spin2y"/. metarules)/M2^2)[[All,1]],(("initial-bh-spin2z"/. metarules)/M2^2)[[All,1]]}; +\[Chi]1vect\[Chi]2vect=Transpose[{\[Chi]1vect,\[Chi]2vect}]; +\[Chi]1=Norm/@\[Chi]1vect; +\[Chi]2=Norm/@\[Chi]2vect; + + +r1=Transpose[{("initial-bh-position1x"/.metarules)[[All,1]],("initial-bh-position1y"/.metarules)[[All,1]],("initial-bh-position1z"/.metarules)[[All,1]]}]; +r2=Transpose[{("initial-bh-position2x"/.metarules)[[All,1]],("initial-bh-position2y"/.metarules)[[All,1]],("initial-bh-position2z"/.metarules)[[All,1]]}]; +p1=Transpose[{("initial-bh-momentum1x"/.metarules)[[All,1]],("initial-bh-momentum1y"/.metarules)[[All,1]],("initial-bh-momentum1z"/.metarules)[[All,1]]}]; +p2=Transpose[{("initial-bh-momentum2x"/.metarules)[[All,1]],("initial-bh-momentum2y"/.metarules)[[All,1]],("initial-bh-momentum2z"/.metarules)[[All,1]]}]; + +Lvect= Table[p1[[i]]\[Cross]r1[[i]] + p2[[i]]\[Cross]r2[[i]],{i,Length@metadata}]; +LvectNorm=Lvect/(Norm/@Lvect); +Initial\[Chi]Plane=Table[{\[Chi]1vect\[Chi]2vect[[i,1]]-Lvect[[i]] Lvect[[i]].\[Chi]1vect\[Chi]2vect[[i,2]],\[Chi]1vect\[Chi]2vect[[i,2]]-Lvect[[i]] Lvect[[i]].\[Chi]1vect\[Chi]2vect[[i,2]]},{i,Length[Lvect]}]; + +\[Chi]1p=Norm/@Initial\[Chi]Plane[[All,1]]; +\[Chi]2p=Norm/@Initial\[Chi]Plane[[All,2]]; + + +(* Is it precessing? *) +A1=1+3/4. q; +A2=1+3/(4. q); +precvalue1=Table[(\[Chi]1vect[[i]] A1[[i]])\[Cross]LvectNorm[[i]],{i,Length[tags]}]; +precvalue2=Table[(\[Chi]2vect[[i]] A2[[i]])\[Cross]LvectNorm[[i]],{i,Length[tags]}]; +precvalueNorm1=Norm/@precvalue1; +precvalueNorm2=Norm/@precvalue2; +precvalueNorm=precvalueNorm1^2+precvalueNorm2^2; +Do[If[precvalueNorm[[i]]<0.001,precessing[tags[[i]]]=False,precessing[tags[[i]]]=True],{i,Length[tags]}]; + +extraddef=Table["extraction-radius"/.metarules[[i]],{i,Length@metarules}]; + +If[Length@extractionradius!=0,extraddef==TakeColumn[extraddef,extractionradius]]; + +(* Compute Luminosity *) +Table[ + (* Find rpsi4 files *) + fnameBase=ToString[outputtag]; + Print["Computing Luminosity from: ",tags[[i]]]; + myFile=ToString[outputdir]<>"/"<>fnameBase<>ToString[tags[[i]]]<>".dat"; + + dir=FileNameTake[metadata[[i]],FileNameDepth[metadata[[i]]]-1]; + myrads=extraddef[[i]]; + + If[FileExistsQ[dir],Print["Found ",dir," . Continue"];,Print["Not found ",dir," . Bye"];Return[]]; + If[precessing[tags[[i]]],Print["Precessing run. Non simetry. Taking all modes"];,Print["Non-Precessing run. Assuming simetry. Taking only m>0 modes"];mymodes=Select[mymodes,#1[[2]]>=0&];]; + Print["Modes selection : ",mymodes]; + + (* How many dominant modes are present? eg. {{2,2},{2,1},{2,-2}}? *) + lmax=Max[mymodes[[All,1]]]; + ls=DeleteDuplicates[mymodes[[All,1]]]; + lsms=CombineColumns[ls,ls]; + lsmsm1=CombineColumns[ls,ls-1]; + dommodes=Sort[Join[lsms,lsmsm1]]; + domsneg=dommodes/. {xx_,yy_}->{xx,-yy}; + dommodes=Sort[Join[dommodes,domsneg]]; + testdommodes=(MemberQ[mymodes,#1]&)/@dommodes; + posdom=Flatten[Position[testdommodes,True]]; + dommodes=dommodes[[posdom]];Print["Dominant modes : ",dommodes]; + + ta=Table[ + (* Load and process data *) + Clear[ninjlm]; + Print["Extraction radius : ",myrads[[j]]]; + + Do[myReadNinjaModes[dir,FileNameTake[metadata[[i]],-1],"DataSection"-> "psi4t-data","LMax" -> 2,"MModes" -> {mymodes[[l,1]],mymodes[[l,2]]}, "SectionInstance" -> j, + "Tag"-> "dummy"];,{l,Length@mymodes}]; + Print["Modes Loaded"]; + + (* 22 mode guess frequency *) + test\[Psi]=TimeUnion@ninjlm["dummy",2,2]; + f0=Abs@First@GuessFFIf0[test\[Psi], "MinTime"-> First@First@test\[Psi]+250]; + times=TakeColumn[test\[Psi],1]; + + (* compute Luminosoties *) + Do[If[mymodes[[l,2]]!=0,mm=mymodes[[l,2]]/2,mm=(mymodes[[l,2]]+1)/2]; + test\[Psi]=TimeUnion@ninjlm["dummy",mymodes[[l,1]],mymodes[[l,2]]]; + lum[mymodes[[l,1]],mymodes[[l,2]]]=Abs[TakeColumn[NewsFromPsi4FFI[test\[Psi],0.75f0 Abs[mm]],2]]^2;Print[mymodes[[l]]];,{l,Length[mymodes]}]; + + If[precessing[tags[[i]]], + sumModes=1/(16 \[Pi])Sum[lum[mymodes[[l,1]],mymodes[[l,2]]],{l,Length@mymodes}]; + sumModesDominant=1/(16 \[Pi])Sum[lum[dommodes[[l,1]],dommodes[[l,2]]],{l,Length@dommodes}]; + , + sumModes=1/(8 \[Pi])Sum[lum[mymodes[[l,1]],mymodes[[l,2]]],{l,Length@mymodes}]; + sumModesDominant=1/(8 \[Pi])Sum[lum[dommodes[[l,1]],dommodes[[l,2]]],{l,Length@dommodes}];]; + + + sumModesLum=CombineColumns[times,sumModes]; + sumModesLumDom=CombineColumns[times,sumModesDominant]; + tmaxSum=TimeOfMaximum[sumModesLum]; + tmaxSumDom=TimeOfMaximum[sumModesLumDom]; + modesMaxima=Table[data=CombineColumns[times,lum[mymodes[[l,1]],mymodes[[l,2]]]]; + int=Interpolation[data]; + {ValueOfMaximum[data],int[tmaxSum],int[tmaxSumDom]},{l,Length[mymodes]}]; + +If[verbose,Print[ListPlot[{sumModesLum,sumModesLumDom},Joined->True,PlotRange->All]];]; +Flatten[{tags[[i]],\[Eta][[i]],\[Chi]1[[i]],\[Chi]2[[i]],\[Chi]1p[[i]],\[Chi]2p[[i]],Initial\[Chi]Plane[[i]],myrads[[j]],ValueOfMaximum[sumModesLum],tmaxSum,ValueOfMaximum[sumModesLumDom],tmaxSumDom,Flatten[modesMaxima]}],{j,Length@myrads}]; + +Print["Exporting results to : ",myFile]; +Export[myFile,ta]; + +,{i,Length[tags]}]; + +ta +] + + +AHBAMsmall[q_,s_]:=Sqrt[0.7599216762029171` -0.6443660299643744` s^2]/(1+q) +AHBAMbig[q_,s_]:=(q Sqrt[0.9466225527668473` -0.8578738205662785` s^2])/(1+q) + + +AHBAMsmall2017[q_,s_]:=(0.9097788740970632` Sqrt[1-0.8630715321085808` s^2]-0.013097939946145838` q Sqrt[1-0.8630715321085808` s^2])1/(1+q) +AHBAMbig2017[q_,s_]:=(0.9092695479821113` Sqrt[1-0.9004695426988402` s^2]+0.025102624533684333` q Sqrt[1-0.9004695426988402` s^2])q/(1+q) + + +End[]; +EndPackage[]; + + + diff --git a/code/DataFits.m b/code/DataFits.m new file mode 100644 index 0000000000000000000000000000000000000000..315fbe96baddee87d94337a0464bbcd50858085d --- /dev/null +++ b/code/DataFits.m @@ -0,0 +1,2224 @@ +(* ::Package:: *) + +(************************************************************************) +(* This file was generated automatically by the Mathematica front end. *) +(* It contains Initialization cells from a Notebook file, which *) +(* typically will have the same name as this file except ending in *) +(* ".nb" instead of ".m". *) +(* *) +(* This file is intended to be loaded into the Mathematica kernel using *) +(* the package loading commands Get or Needs. Doing so is equivalent *) +(* to using the Evaluate Initialization Cells menu command in the front *) +(* end. *) +(* *) +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) +(* automatically each time the parent Notebook file is saved in the *) +(* Mathematica front end. Any changes you make to this file will be *) +(* overwritten. *) +(************************************************************************) + + + +(* ::Code::Initialization:: *) +BeginPackage["DataFits`",{"NRLists`","ErrorBarPlots`"}]; + + +(* ::Code::Initialization:: *) +\[Eta]::usage="\[Eta] for local usage"; +S::usage="S for local usage"; +\[Chi]1::usage="\[Chi]1 for local usage"; +\[Chi]2::usage="\[Chi]2 for local usage"; +\[Delta]\[Chi]::usage="\[Delta]\[Chi] for local usage"; + +a0::usage="a0 for local usage"; +a1::usage="a1 for local usage"; +a2::usage="a2 for local usage"; + +sTot::usage=""; +sTot3::usage=""; +\[Chi]Tot::usage=""; + +\[Chi]diffplus::usage=""; +\[Chi]diffstan::usage=""; + +DataFitFunction::usage="DataFitFunction[data_?ListQ,ansatzList_?ListQ,OptionsPattern[]]"; + +DataFitFunctionAll::usage="DataFitFunctionAll[dataraw_?ListQ,OptionsPattern[]]"; +DataFitFunctionAllNoWeights::usage="DataFitFunctionAllWeights[dataraw_?ListQ,OptionsPattern[]]"; + +AnsatzRestrictions::usage="AnsatzRestrictions[nsfit_, q1fit_, ansatzGen_]"; + +Plot2DFits::usage="Plot2DFits[data_?ListQ,fitlist_?ListQ,fitvars_?ListQ, OptionsPattern[]]"; +myListPlot3D::usage="myListPlot3D[data_?ListQ,options]: Plot 3d data + interpolated function"; +ColorGradient::usage="ColorGradient[data,colors,options]. Create a linear gradient of colors for the data"; +CreateColors::usage="CreateColors[codes,colors]. Set different colors for each NR code"; + +CleanAnsatzParams::usage="cleanAnsatzParams[paramsGuess_, vars_]"; + +Generate1DPolynomialAnsatz::usage="Generate1DPolynomialAnsatz[CoefficientPrefixString_?StringQ,variable_,MinOrder_?IntegerQ,MaxOrder_?IntegerQ] creates a polynomial function ansatz."; + +Residuals::usage="Residuals[data_,fit_,vars_] computes fit residuals."; +AtomsList::usage="Take the coefficients out"; + +GeneralizeFunction::usage="GeneralizeFunction[expr_,x_] insert free coefficient at all (non-exact) real numbers in a function"; +GeneralizeFunction::usage="GeneralizeFunction[expr_,x_,coord_,orderNum,orderDenom_] insert polynomial with free coefficients at all (non-exact) real numbers in a function"; + +ExactPade::usage="ExactPade[ansatz_,coeffRules_,padeOptions_] get Pade approximant while keeping exact coefficients fixed."; +Generate1DPadeAnsatzList::usage="Generate1DPadeAnsatzList[ansatz_,\!\(\* +StyleBox[\"coeffRules_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"variable_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"paramName_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"minPadeTypeSum_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"maxPadeTypeSum_\", \"Code\"]\)] make a list of all Pade ansaetze with type (num+denom) summing up between [min,max]."; + +InvertRules::usage="InvertRules[rules_] invert a list of rules"; +Get1dInverseRules::usage="Get1dInverseRules[ansatz_,coeffRules_] invert a set of 1d rules in eta or S, taking care of the Pade form"; +Get1dInverseRulesS::usage="Get1dInverseRulesS[ansatz_,coeffRules_,productAnsatz_] invert the 1d rules in S, taking care of normalization and Pade form"; + +FitPredictionIntervalFunctionFinalOnly::usage="FitPredictionIntervalFunctionFinalOnly[fit_,ansatzRules_] return function for the fit uncertainty (prediction interval), final fit statistics only"; +FitPredictionIntervalFunctionFinalOnlyq1::usage="FitPredictionIntervalFunctionFinalOnlyq1[fit_,ansatzRules_] return function for the fit uncertainty (prediction interval), in the limit of q=1, final fit statistics only"; +FitPredictionIntervalFinalOnly::usage="FitPredictionIntervalFinalOnly[fit_,ansatzRules_,etain_,chi1in_,chi2in_] estimate the fit uncertainty (prediction interval) at a given point, final fit statistics only"; +FitPredictionIntervalStderrSq::usage="FitPredictionIntervalStderrSq[\!\(\* +StyleBox[\"finalFit_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"finalAnsatzRules_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"fit2dParts_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\[Eta]0stuff_,extraCoeffRules_,productAnsatz_,q1_] evaluate the various stderrsq contributions for fit uncertainty intervals"; +FitPredictionIntervalFunction::usage="FitPredictionIntervalFunction[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0stuff_,extraCoeffRules_,productAnsatz_] return function for the fit uncertainty (prediction interval)"; +FitPredictionIntervalFunctionq1::usage="FitPredictionIntervalFunctionq1[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0stuff_,extraCoeffRules_,productAnsatz_] return function for the fit uncertainty (prediction interval), in the limit of q=1"; +FitPredictionInterval::usage="FitPredictionInterval[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0fit_,extraCoeffRules_,productAnsatz_,etain_,chi1in_,chi2in_] estimate the fit uncertainty (prediction interval) at a given point"; + +TeXExportCoeffTable::usage="TeXExportCoeffTable[fit_,filename_] export a fit coefficient table into a nice TeX file."; +TeXExportCovarMatrixTable::usage="TeXExportCovarMatrixTable[fitCovar_,fitCoeffRules_,filename_] export fit covariance matrix into a nice TeX file."; +SubscriptRules::usage="SubscriptRules[rules_] make a subscript rule from a numeric coefficient rule."; +GetRawTwoDAnsatz::usage="GetRawTwoDAnsatz[finalfit_,fit2dParts_,productAnsatz_,constrained_] put together raw 2d ansatz equation."; +GetAllRules::usage="GetAllRules[finalfit_,fit2dParts_,twodrules_] collect all 1d, 2d and 3d coefficient rules"; +TeXFormatAnsatz::usage="TeXFormatAnsatz[ansatz_,formattingRules_,coeffRules_] format an ansatz nicer in TeX"; +TeXExportAnsatz::usage="TeXExportAnsatz[ansatz_,formattingRules_,coeffRules_,filename_] export a nicely formatted ansatz to TeX."; +TeXExportTwoDAnsatz::usage="TeXExportTwoDAnsatz[finalfit_,fit2dParts_,twodrules_,formattingRules_,productAnsatz_,constrained_,filename_] format the 2d part of the final ansatz."; +TeXExportChiDiffTerms::usage="TeXExportChiDiffTerms[chidiffAnsaetze_,formattingRules_,coeffRules_,filename_] concatenate and export to TeX the various chidiff ansatz terms."; +TeXExportFinalAnsatz::usage="TeXExportFinalAnsatz[finalfit_,fit2dParts_,twodrules_,chidiffAnsaetze_,formattingRules_,productAnsatz_,twodConstrained_,filename_] format the final ansatz nicely."; +TexExportCoeffTable::usage="TeXExportCoeffTable[coeffRules_,covar_,filename_] format a fit coefficient table without t-stat nor p-value."; +TeXExportTabularTable::usage="TeXExportTabularTable[datatable_,filename_,rowHeadings_,colHeadings_,padZeroes_] export a table with array->tabular and formatting fixes."; + +PyExportFinalFit::usage="PyExportFinalFit[fit_,extraFormattingRules_,filename_] export the final fit (with numerical coefficients) for python LAL uise."; +PyExportFinalAnsatz::usage="PyExportFinalAnsatz[finalfit_,fit2dParts_,chidiffAnsaetze_,productAnsatz_,extraFormattingRules_,filename_] export the final ansatz (with symbolic coefficients) for python LAL uise."; +PyExportFinalFitCoeffs::usage="PyExportFinalFitCoeffs[finalfit_,fit2dParts_,\!\(\* +StyleBox[\"all2dconstraints_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)filename_] export the numerical coefficients to be used together with the ansatz."; + +SupplExportAllFitCoeffs::usage="SupplExportAllFitCoeffs[finalfit_,fit2dParts_,\!\(\* +StyleBox[\"all2dconstraints_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)\!\(\* +StyleBox[\"eta0covar_\", \"Code\"]\)\!\(\* +StyleBox[\",\", \"Code\"]\)filename_] export the numerical coefficients to a plain ASCII table file."; +SupplExportCovarMatrix::usage="SupplExportCovarMatrix[covar_,coeffRules_,fileName_] export covariance matrices as simple ASCII table files."; + +AIC::usage="AIC[data,fitname,variables,number of parameters]: Explicit computation of the AIC value given by NonlinearModelFit. In data [[#,-2]]: values, [[#,-1]]: weights. Fit is the fit name e.g FinalSpin0815. Does not work for RITFinalSpinNonPrec2014"; +AICc::usage="AIC[data,fitname,variables,number of parameters]: Explicit computation of the AICc value given by NonlinearModelFit. In data [[#,-2]]: values, [[#,-1]]: weights. Fit is the fit name e.g FinalSpin0815. Does not work for RITFinalSpinNonPrec2014"; +BIC::usage="AIC[data,fitname,variables,number of parameters]: Explicit computation of the BIC value given by NonlinearModelFit. In data [[#,-2]]: values, [[#,-1]]: weights. Fit is the fit name e.g FinalSpin0815. Does not work for RITFinalSpinNonPrec2014"; +KullbagLeiblerDiv::usage="KullbagLeiblerDiv[p1_?ListQ,p2_?ListQ]: Computation of the KL criterion"; +JensenShanonDiv::usage="JensenShanonDiv[p1_?ListQ,p2_?ListQ]: Computation of the JS criterion"; +KL::usage="KL[p1_?ListQ,p2_?ListQ],lim: Computation of the KL criterion"; +JS::usage="JS[p1_?ListQ,p2_?ListQ,lim]: Computation of the JS criterion"; + + +CredibleRegion::usage="CredibleRegion[data_,level_]: Computation of the credible region"; +ComputeEdges::usage="ComputeEdges[pts]"; +CredibleInterval::usage="CredibleInterval[data_,level_]: Computation of the credible intervals"; + + +(* ::Code::Initialization:: *) +Begin["`Private`"]; + + +(* ::Code::Initialization:: *) +AtomsList[expr_]:=Union@Select[Level[expr,{0,Infinity}],AtomQ]; + + +InterpolationDomain[fun_]:=Module[{min,max},{min,max}={fun[[1,1,1]],fun[[1,1,2]]}]; + + +q\[Eta][\[Eta]_]:=-(1.-1/(2\[Eta]))+Sqrt[(1-1/(2\[Eta]))^2 -1] + + +\[Eta]q[q_]:=q/(1.+q)^2. + + +\[Chi]diffplus[\[Eta]_,xx_,yy_]:=Module[{s},s=(1/2(1+Sqrt[1-4 \[Eta]])xx - 1/2(1-Sqrt[1-4 \[Eta]])yy)] + + +\[Chi]diffstan[\[Eta]_,xx_,yy_]:=Module[{s},s=xx-yy] + + +myListPlot3D[list_,opt___]:=Module[{p1,p2}, + p1=ListPlot3D[If[(Length@Dimensions@list)>1,list[[1]],list],InterpolationOrder-> 3]; + p2=ListPointPlot3D[list,PlotStyle-> PointSize-> Large,opt]; + Show[p1,p2] +]; + + +myListPlot3D[list_,opt___]:=Module[{p1,p2}, + p1=ListPlot3D[list,InterpolationOrder-> 3,opt]; + p2=ListPointPlot3D[list,PlotStyle-> PointSize-> Large,opt]; + Show[p1,p2] +]; + + +\[Chi]Tot[\[Eta]_,\[Chi]1_,\[Chi]2_]:=Module[{m1,m2,s}, + +m1=1/2 (1+Sqrt[1-4 \[Eta]]); +m2=1/2 (1-Sqrt[1-4 \[Eta]]); + +s=(m1 \[Chi]1 + m2 \[Chi]2)/(m1+ m2) +] + + +sTot[\[Eta]_,\[Chi]1_,\[Chi]2_]:=Module[{m1,m2}, + +m1=1/2 (1+Sqrt[1-4 \[Eta]]); +m2=1/2 (1-Sqrt[1-4 \[Eta]]); + +(m1^2 \[Chi]1 + m2^2 \[Chi]2) +] + + +sTotR[\[Eta]_,\[Chi]1_,\[Chi]2_]:=Module[{m1,m2}, +m1=1/2 (1+Sqrt[1-4 \[Eta]]); +m2=1/2 (1-Sqrt[1-4 \[Eta]]); + +(m1^2 \[Chi]1 + m2^2 \[Chi]2)/(m1^2 + m2^2) +] + + +sTot3[\[Eta]_,\[Chi]1_,\[Chi]2_]:=Module[{m1,m2}, +m1=1/2 (1+Sqrt[1-4 \[Eta]]); +m2=1/2 (1-Sqrt[1-4 \[Eta]]); + +(m1^2 \[Chi]1 + m2^2 \[Chi]2)/(m1^2 + m2^2) +] + + +countSummands[expr_]:=If[Head[expr]===Plus,Length[expr],If[expr===0,0,1]] + + +GeneralizeFunction[expr_,x_]:=Module[{num,numTermsNum,numSymbolsFirstTerm,i,termsNum,termsDenom,iStart,rule0,rulesNum,rulesDenom,reals}, + +num=Numerator[expr]; +numTermsNum = countSummands[num]; +If[numTermsNum==1, +termsNum = {num}; +numSymbolsFirstTerm=1; +, +termsNum = Level[num,{1,1}]; +numSymbolsFirstTerm=Length[Cases[Level[termsNum[[1]],{1,Infinity}],y_Symbol]]; +]; + +If[numSymbolsFirstTerm==0, + iStart=2; + reals=Cases[Tally[Select[Level[termsNum[[1]],{0,Infinity}],AtomQ]][[All,1]],y_Real]; + If[Length[reals]>0, + rule0={termsNum[[1]]->termsNum[[1]] ToExpression[ToString@x<>"0"]}; + , + rule0={}; + ]; + , + iStart=1; + rule0={}; +]; +rulesNum=rule0; + +For[i=iStart,i<=Length[termsNum],i++, + reals=Cases[Tally[Select[Level[termsNum[[i]],{0,Infinity}],AtomQ]][[All,1]],y_Real]; + If[Length[reals]>0, + rulesNum=Join[rulesNum,{termsNum[[i]] -> termsNum[[i]] ToExpression[ToString@x<>ToString[i-iStart+1]]}]; + ]; +]; + +(* currently assumes that denominator always has a -1 in front, can be easily generalized with countSummands as for numerator *) +termsDenom = Level[Denominator[expr],{1,1}]; +rulesDenom = {}; +For[i=1,i<=Length[termsDenom],i++, + reals=Cases[Tally[Select[Level[termsDenom[[i]],{0,Infinity}],AtomQ]][[All,1]],y_Real]; + If[Length[reals]>0, + rulesDenom=Join[rulesDenom,{termsDenom[[i]] -> termsDenom[[i]] ToExpression[ToString@x<>ToString[Length[termsNum]-iStart+1+i]]}]; + ]; +]; + +Return[(Numerator[expr]/.rulesNum)/(Denominator[expr]/.rulesDenom)] +] + + +GeneralizeFunction[expr_,x_,coord_,orderNum_,orderDenom_]:=Module[{num,numTermsNum,numSymbolsFirstTerm,i,termsNum,termsDenom,iStart,rule0,rulesNum,rulesDenom,reals}, + +num=Numerator[expr]; +numTermsNum = countSummands[num]; +If[numTermsNum==1, +termsNum = {num}; +numSymbolsFirstTerm=1; +, +termsNum = Level[num,{1,1}]; +numSymbolsFirstTerm=Length[Cases[Level[termsNum[[1]],{1,Infinity}],y_Symbol]]; +]; + +If[numSymbolsFirstTerm==0, + iStart=2; + reals=Cases[Tally[Select[Level[termsNum[[1]],{0,Infinity}],AtomQ]][[All,1]],y_Real]; + If[Length[reals]>0, + rule0={termsNum[[1]]->termsNum[[1]](Sum[coord^j ToExpression/@ToExpression@(ToString@x<>"0"<>ToString@j),{j,0,orderNum}])}; + , + rule0={}; + ]; + , + iStart=1; + rule0={}; +]; +rulesNum=rule0; + +For[i=iStart,i<=Length[termsNum],i++, + reals=Cases[Tally[Select[Level[termsNum[[i]],{0,Infinity}],AtomQ]][[All,1]],y_Real]; + If[Length[reals]>0, + rulesNum=Join[rulesNum,{termsNum[[i]] -> termsNum[[i]](Sum[coord^j ToExpression@(ToString@x<>ToString[i-iStart+1]<>ToString@j),{j,0,orderNum}])}]; + ]; +]; + +(* currently assumes that denominator always has a -1 in front, can be easily generalized with countSummands as for numerator *) +termsDenom = Level[Denominator[expr],{1,1}]; +rulesDenom = {}; +For[i=1,i<=Length[termsDenom],i++, + reals=Cases[Tally[Select[Level[termsDenom[[i]],{0,Infinity}],AtomQ]][[All,1]],y_Real]; + If[Length[reals]>0, + rulesDenom=Join[rulesDenom,{termsDenom[[i]] -> termsDenom[[i]](Sum[coord^j ToExpression/@ToExpression@(ToString@x<>ToString[Length[termsNum]-iStart+1+i]<>ToString@j),{j,0,orderDenom}])}]; + ]; +]; + +(Numerator[expr]/.rulesNum)/(Denominator[expr]/.rulesDenom) +] + + +(*wrapper to Pade approximant that keeps exact coefficients like Sqrt[2] exact, so that GeneralizeFunction won't assign extra coefficients to them.*) +ExactPade[ansatz_,coeffRules_,padeOptions_]:=PadeApproximant[ansatz,padeOptions]/.coeffRules; + + +myRound[x_,d_] := Module[{mantExp,mant,exp}, +mantExp = MantissaExponent[x]; +mant = mantExp[[1]]; +exp = mantExp[[2]]; +If[mant<1.0, + mant = 10*mant; + exp = exp-1; +]; +mant = Round[mant,0.1^d]; +(* +If[exp<0, + mant = Round[mant,0.1^(d-1)]; + , + mant = Round[mant,0.1^d]; +]; +*) +Return[mant*10^exp] +] + + +Generate1DPadeAnsatzList[ansatz_,coeffRules_,variable_,paramName_,minPadeTypeSum_,maxPadeTypeSum_]:=Module[{i,j,ansatzDegree,padeAnsatzList,padeType,exactPade,genPade,genPadeList,exactPadeReals,exactPadeRounding}, +For[i=1,i<maxPadeTypeSum,i++, + j=Max[1,minPadeTypeSum-i]; + While[(j<=i)&&(i+j<=maxPadeTypeSum), + ansatzDegree = Exponent[ansatz,variable]; + If[(j==1)&&(i==ansatzDegree), + Print["Not generating Pade approximant for type ("<>ToString[i]<>","<>ToString[j]<>") with polynomial ansatz of order "<>ToString[ansatzDegree]<>", as it would just duplicate the polynomial."]; + , + padeType = {i,j}; + exactPade = ExactPade[ansatz,coeffRules,{variable,0,padeType}]; + exactPadeReals=Cases[AtomsList[exactPade],y_Real]; + exactPadeRounding=Table[exactPadeReals[[i]]->myRound[exactPadeReals[[i]],2],{i,1,Length@exactPadeReals}]; + exactPade = exactPade /. exactPadeRounding; + genPade = GeneralizeFunction[exactPade,paramName]; + If[!ValueQ[genPadeList], + genPadeList={{genPade,{variable}}}; + , + AppendTo[genPadeList,{genPade,{variable}}]; + ] + ]; + j++; + ]; + ]; +Print["Generated these Pade approximants:"]; +Print[genPadeList]; +Return[genPadeList]; +] + + +InvertRules[rules_]:=Module[{}, +Table[rules[[i,2]]->rules[[i,1]],{i,Length@rules}] +] + + +Get1dInverseRules[ansatz_,coeffRules_]:=Module[{origCoeffs,inverseRules}, + +(* in case this is a Pade rational ansatz, disentangle it *) +origCoeffs = Cases[Select[Join[Level[Numerator[ansatz],{1,Infinity}],Level[Denominator[ansatz],{1,Infinity}]],AtomQ],y_Real]; + +If[Length[origCoeffs]>0, + inverseRules = Table[origCoeffs[[i]]*coeffRules[[i,2]] -> origCoeffs[[i]]*coeffRules[[i,1]], {i,Length@coeffRules}]; + , + inverseRules = InvertRules[coeffRules]; +]; + +Return[inverseRules]; + +] + + +Get1dInverseRulesS[ansatz_,coeffRules_,productAnsatz_]:=Module[{ansatzWithoutS0,inverseRules}, + +If[productAnsatz, +ansatzWithoutS0 = ansatz/(ansatz/.S->0)/.{1.->1}; +, +ansatzWithoutS0 = ansatz-(ansatz/.S->0)/.{0.->0}; +]; + +inverseRules = Get1dInverseRules[ansatzWithoutS0,coeffRules]; +Return[inverseRules]; + +] + + +ColorGradient[data_,ColorList_,OptionsPattern[{"Weights"->"","Verbose"->False}]]:=Module[{min,max,weights,wc,blendtab,\[Delta]n,verbose}, + +weights=OptionValue["Weights"]; +verbose=OptionValue["Verbose"]; + +min=Min[data]; +max=Max[data]; +\[Delta]n=(max-min)1./(Length@ColorList-1); + +If[Not@ListQ@weights,weights=Table[min + \[Delta]n(i-1),{i,Length@ColorList}];,weights=weights Table[min + \[Delta]n(i-1),{i,Length@ColorList}];]; +blendtab=Table[{weights[[i]],ColorList[[i]]},{i,Length@ColorList}]; + +If[verbose,Print["Weights: ",weights]]; + +Table[Blend[blendtab,data[[i]]],{i,Length@data}] +] + + +CreateColors[code_,colors_]:=Module[{}, +Which[code=="BAM",colors[[1]],code=="SXS",colors[[2]],code=="GaTech",colors[[3]],code=="RIT",colors[[4]],True,colors[[5]]]] + + +FitPredictionIntervalFunctionFinalOnly[fit_,ansatzRules_]:=Module[{ansatz,coeffNames,coeffRules,Ncoeff,Ndata,EstVar,quant95,covarMatrix,coeffGrad,stderrsq}, + +ansatz = fit[[15]]; +coeffRules = fit[[2]]; +coeffNames = coeffRules[[All,1]]; +Ncoeff = Length@coeffNames; +Ndata = Length@Last@fit; (* length of residuals vector *) +EstVar = fit[[16]]; (* would be = Total[resid^2]/(Ndata-Ncoeff) without weights *) + +(* take gradient vector in the coefficients *) +coeffGrad = Table[D[ansatz/.ansatzRules,coeffNames[[i]]],{i,Ncoeff}] /. coeffRules; + +(* estimate of fit error: multiply coefficient gradient with covariance matrix *) +covarMatrix = fit[[14]]; +stderrsq = (coeffGrad.covarMatrix.coeffGrad); + +(* report back the 95% student-t quantile (applied on both sides, this gives a 90% interval) *) +quant95 = Quantile[StudentTDistribution[Ndata-Ncoeff],0.95]; +Return[quant95 * Sqrt[ EstVar + stderrsq ]]; +] + + +FitPredictionIntervalFunctionFinalOnlyq1[fit_,ansatzRules_]:=Module[{ansatz,coeffNames,coeffRules,Ncoeff,Ndata,EstVar,quant95,covarMatrix,coeffGrad,stderrsq,chidiffcoeff,chidiff2coeff}, + +ansatz = fit[[15]]; +coeffRules = fit[[2]]; +coeffNames = coeffRules[[All,1]]; +Ncoeff = Length@coeffNames; +Ndata = Length@Last@fit; (* length of residuals vector *) +EstVar = fit[[16]]; (* would be = Total[resid^2]/(Ndata-Ncoeff) without weights *) + +(* take gradient vector in the coefficients *) +coeffGrad = Table[D[ansatz/.ansatzRules,coeffNames[[i]]],{i,Ncoeff}] /. coeffRules; + +(* take care of issues in the q=1, eta=0.25 limit of the spin-diff terms *) +chidiffcoeff = Coefficient[coeffGrad,(\[Chi]1-\[Chi]2)]; +chidiff2coeff = Coefficient[coeffGrad,(\[Chi]1-\[Chi]2)^2]; +coeffGrad = coeffGrad - chidiffcoeff(\[Chi]1-\[Chi]2) + Limit[chidiffcoeff,\[Eta]->0.25](\[Chi]1-\[Chi]2) - chidiff2coeff (\[Chi]1-\[Chi]2)^2 + Limit[chidiff2coeff,\[Eta]->0.25](\[Chi]1-\[Chi]2)^2; + +(* estimate of fit error: multiply coefficient gradient with covariance matrix *) +covarMatrix = fit[[14]]; +stderrsq = (coeffGrad.covarMatrix.coeffGrad); + +(* report back the 95% student-t quantile (applied on both sides, this gives a 90% interval) *) +quant95 = Quantile[StudentTDistribution[Ndata-Ncoeff],0.95]; +Return[quant95 * Sqrt[ EstVar + stderrsq ]]; +] + + +FitPredictionIntervalFinalOnly[fit_,ansatzRules_,etain_,chi1in_,chi2in_]:=Module[{fiterrFunc,fiterrFuncq1,fiterrs,i,eta,chi1,chi2}, + +(* so we can deal with both scalars and lists *) +If[Length[etain]==0, + eta = {etain}; + chi1 = {chi1in}; + chi2 = {chi2in}; + , + eta = etain; + chi1 = chi1in; + chi2 = chi2in; +]; + +(* evaluate the general error estimate *) +fiterrFunc = FitPredictionIntervalFunctionFinalOnly[fit,ansatzRules]; + +(* avoid indeterminates at q=1, eta=0.25 *) +If[MemberQ[eta,0.25], + fiterrFuncq1 = FitPredictionIntervalFunctionFinalOnlyq1[fit,ansatzRules]; +]; +fiterrs = Table[fiterrFunc,{i,1,Length@eta}]; +For[i=1,i<=Length@eta,i++, + If[eta[[i]]==0.25, + fiterrs[[i]]=fiterrFuncq1; + ]; +]; + +(* switch spin parametrization and insert user values *) +fiterrs = fiterrs/.{S->sTot3[\[Eta],\[Chi]1,\[Chi]2]}; +Return[Table[fiterrs[[i]]/.{\[Eta]->eta[[i]],\[Chi]1->chi1[[i]],\[Chi]2->chi2[[i]]},{i,1,Length@eta}]]; + +] + + +FitPredictionIntervalStderrSq[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0stuff_,extraCoeffRules_,productAnsatz_,q1_]:=Module[{finalAnsatz,finalCoeffNames,finalCoeffRules,NfinalCoeffs,finalCovarMatrix,finalCoeffGrad,chidiffcoeff,chidiff2coeff, +etaCoeffRules,etaCoeffNames,NetaCoeffs,etaAnsatz,etaInverseRules,etaCoeffGrad,etaCovarMatrix, +SCoeffRules,SCoeffNames,NSCoeffs,SAnsatz,SInverseRules,SCoeffGrad,SCovarMatrix, +twodCoeffRules,ansatz2dRaw,zeroRules, +\[Eta]0fit,\[Eta]0Constraints,\[Eta]0CoeffRules,\[Eta]0CoeffNames,N\[Eta]0Coeffs,\[Eta]0CovarMatrix,\[Eta]0Coeffgrad, +finalStderrSq,etaStderrSq,SStderrSq,twodStderrSq,\[Eta]0StderrSq, +allStderrSq}, + +finalAnsatz = finalFit[[15]]; +finalCoeffRules = finalFit[[2]]; +finalCoeffNames = finalCoeffRules[[All,1]]; +NfinalCoeffs = Length@finalCoeffNames; + +(* take gradient vector in the coefficients *) +finalCoeffGrad = Table[D[finalAnsatz/.finalAnsatzRules,finalCoeffNames[[i]]],{i,NfinalCoeffs}] /. finalCoeffRules; + +(* take care of issues in the q=1, eta=0.25 limit of the spin-diff terms *) +If[q1, + chidiffcoeff = Coefficient[finalCoeffGrad,(\[Chi]1-\[Chi]2)]; + chidiff2coeff = Coefficient[finalCoeffGrad,(\[Chi]1-\[Chi]2)^2]; + finalCoeffGrad = finalCoeffGrad - chidiffcoeff(\[Chi]1-\[Chi]2) + Limit[chidiffcoeff,\[Eta]->0.25](\[Chi]1-\[Chi]2) - chidiff2coeff (\[Chi]1-\[Chi]2)^2 + Limit[chidiff2coeff,\[Eta]->0.25](\[Chi]1-\[Chi]2)^2; + finalCoeffGrad = Limit[finalCoeffGrad,\[Eta]->0.25]; +]; + +(* estimate of fit error: multiply coefficient gradient with covariance matrix *) +finalCovarMatrix = finalFit[[14]]; +finalStderrSq = (finalCoeffGrad.finalCovarMatrix.finalCoeffGrad); + +(* also get contributions from 1D eta and S fits *) +etaAnsatz = fit2dParts[[2]]; +etaCoeffRules = fit2dParts[[3]]; +etaCoeffNames = etaCoeffRules[[All,1]]; +NetaCoeffs = Length@etaCoeffNames; +etaCovarMatrix = fit2dParts[[4]]; + +SAnsatz = fit2dParts[[5]]; +SCoeffRules = fit2dParts[[6]]; +SCoeffNames = SCoeffRules[[All,1]]; +NSCoeffs = Length@SCoeffNames; +SCovarMatrix = fit2dParts[[7]]; + +(* construct raw 2D ansatz *) +etaInverseRules = Get1dInverseRules[etaAnsatz,etaCoeffRules]; +SInverseRules = Get1dInverseRulesS[SAnsatz,SCoeffRules,productAnsatz]; +twodCoeffRules = Join[fit2dParts[[8]],fit2dParts[[9]]]; +If[Not@productAnsatz, + zeroRules = Table[ToExpression["f"<>ToString@i<>"0"]->0,{i,0,Exponent[Numerator[fit2dParts[[1]]],S]}]; + twodCoeffRules = Join[twodCoeffRules/.zeroRules,zeroRules]; +]; +ansatz2dRaw = fit2dParts[[1]]/.etaInverseRules/.SInverseRules; + +(* take gradient vectors of the final ansatz (only 2D part needed) in the previously-determined coefficients *) +etaCoeffGrad = Table[D[ansatz2dRaw, etaCoeffNames[[i]]], {i,NetaCoeffs}] /. Join[etaCoeffRules,SCoeffRules,twodCoeffRules]; +SCoeffGrad = Table[D[ansatz2dRaw, SCoeffNames[[i]]], {i,NSCoeffs}] /. Join[etaCoeffRules,SCoeffRules,twodCoeffRules]; + +(* also get contribution from extreme-mass ratio limit fit *) +If[ListQ[\[Eta]0stuff]&&(Length[\[Eta]0stuff]==0), + \[Eta]0StderrSq=0; + etaCoeffGrad = etaCoeffGrad /. Join[finalCoeffRules,extraCoeffRules]; + SCoeffGrad = SCoeffGrad /. Join[finalCoeffRules,extraCoeffRules]; + , + If[ListQ[\[Eta]0stuff], + \[Eta]0fit = \[Eta]0stuff[[1]]; + \[Eta]0Constraints = \[Eta]0stuff[[2]]; + , + \[Eta]0fit = \[Eta]0stuff; + \[Eta]0Constraints = {}; + ]; + \[Eta]0CoeffRules = \[Eta]0fit["BestFitParameters"]; + \[Eta]0CoeffNames = \[Eta]0CoeffRules[[All,1]]; + N\[Eta]0Coeffs = Length@\[Eta]0CoeffNames; + \[Eta]0CovarMatrix = \[Eta]0fit["CovarianceMatrix"]; + \[Eta]0Coeffgrad = Table[D[ansatz2dRaw/.twodCoeffRules/.\[Eta]0Constraints, \[Eta]0CoeffNames[[i]]], {i,N\[Eta]0Coeffs}] /. Join[etaCoeffRules,SCoeffRules] /. Join[\[Eta]0CoeffRules,finalCoeffRules,extraCoeffRules]; + If[q1, + \[Eta]0Coeffgrad = Limit[\[Eta]0Coeffgrad, \[Eta]->0.25]; + ]; + \[Eta]0StderrSq = (\[Eta]0Coeffgrad.\[Eta]0CovarMatrix.\[Eta]0Coeffgrad); + etaCoeffGrad = etaCoeffGrad /. \[Eta]0Constraints /. Join[\[Eta]0CoeffRules,finalCoeffRules,extraCoeffRules]; + SCoeffGrad = SCoeffGrad /. \[Eta]0Constraints /. Join[\[Eta]0CoeffRules,finalCoeffRules,extraCoeffRules]; +]; + +(* dot gradient vectors together with the corresponding covar matrices *) +etaStderrSq = (etaCoeffGrad.etaCovarMatrix.etaCoeffGrad); +SStderrSq = (SCoeffGrad.SCovarMatrix.SCoeffGrad); + +If[q1, + etaCoeffGrad = Limit[etaCoeffGrad, \[Eta]->0.25]; + SCoeffGrad = Limit[SCoeffGrad, \[Eta]->0.25]; +]; + +allStderrSq = {finalStderrSq,etaStderrSq,SStderrSq,\[Eta]0StderrSq}; +Return[allStderrSq]; +] + + +FitPredictionIntervalFunction[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0fit_,extraCoeffRules_,productAnsatz_]:=Module[{finalCoeffRules,finalCoeffNames,NfinalCoeffs,Ndata,EstVar,quant95,stderrsq,stderrSqContribs,q1}, + +finalCoeffRules = finalFit[[2]]; +finalCoeffNames = finalCoeffRules[[All,1]]; +NfinalCoeffs = Length@finalCoeffNames; +Ndata = Length@Last@finalFit; (* length of residuals vector *) +EstVar = finalFit[[16]]; (* would be = Total[resid^2]/(Ndata-Ncoeff) without weights *) + +q1=False; +stderrSqContribs = FitPredictionIntervalStderrSq[finalFit,finalAnsatzRules,fit2dParts,\[Eta]0fit,extraCoeffRules,productAnsatz,q1]; + +(* add up all error contributions in quadrature *) +stderrsq = Total[stderrSqContribs]; + +(* report back the 95% student-t quantile (applied on both sides, this gives a 90% interval), adding up also the variance contribution for PREDICTION interval (not mean confidence) *) +quant95 = Quantile[StudentTDistribution[Ndata-NfinalCoeffs],0.95]; +Return[quant95 * Sqrt[ EstVar + stderrsq ]]; +] + + +FitPredictionIntervalFunctionq1[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0stuff_,extraCoeffRules_,productAnsatz_]:=Module[{finalCoeffRules,finalCoeffNames,NfinalCoeffs,Ndata,EstVar,quant95,stderrsq,stderrSqContribs,q1}, + +finalCoeffRules = finalFit[[2]]; +finalCoeffNames = finalCoeffRules[[All,1]]; +NfinalCoeffs = Length@finalCoeffNames; +Ndata = Length@Last@finalFit; (* length of residuals vector *) +EstVar = finalFit[[16]]; (* would be = Total[resid^2]/(Ndata-Ncoeff) without weights *) + +q1=True; +stderrSqContribs = FitPredictionIntervalStderrSq[finalFit,finalAnsatzRules,fit2dParts,\[Eta]0stuff,extraCoeffRules,productAnsatz,q1]; + +(* add up all error contributions in quadrature *) +stderrsq = Total[stderrSqContribs]; + +(* report back the 95% student-t quantile (applied on both sides, this gives a 90% interval), adding up also the variance contribution for PREDICTION interval (not mean confidence) *) +quant95 = Quantile[StudentTDistribution[Ndata-NfinalCoeffs],0.95]; +Return[quant95 * Sqrt[ EstVar + stderrsq ]]; +] + + +FitPredictionInterval[finalFit_,finalAnsatzRules_,fit2dParts_,\[Eta]0stuff_,extraCoeffRules_,productAnsatz_,etain_,chi1in_,chi2in_]:=Module[{fiterrFunc,fiterrFuncq1,fiterrs,i,eta,chi1,chi2}, + +(* so we can deal with both scalars and lists *) +If[Length[etain]==0, + eta = {etain}; + chi1 = {chi1in}; + chi2 = {chi2in}; + , + eta = etain; + chi1 = chi1in; + chi2 = chi2in; +]; + +(* evaluate the general error estimate *) +fiterrFunc = FitPredictionIntervalFunction[finalFit,finalAnsatzRules,fit2dParts,\[Eta]0stuff,extraCoeffRules,productAnsatz]; + +(* avoid indeterminates at q=1, eta=0.25 *) +If[MemberQ[eta,0.25], + fiterrFuncq1 = FitPredictionIntervalFunctionq1[finalFit,finalAnsatzRules,fit2dParts,\[Eta]0stuff,extraCoeffRules,productAnsatz]; +]; +fiterrs = Table[fiterrFunc,{i,1,Length@eta}]; +For[i=1,i<=Length@eta,i++, + If[eta[[i]]==0.25, + fiterrs[[i]]=fiterrFuncq1; + ]; +]; + +(* switch spin parametrization and insert user values *) +fiterrs = fiterrs/.{S->sTot3[\[Eta],\[Chi]1,\[Chi]2]}; +Return[Table[fiterrs[[i]]/.{\[Eta]->eta[[i]],\[Chi]1->chi1[[i]],\[Chi]2->chi2[[i]]},{i,1,Length@eta}]]; + +] + + +TeXExportCoeffTable[coeffTable_,filename_]:=Module[{texTable}, +texTable = StringReplace[ToString[TeXForm[NumberForm[coeffTable,3]]],{"$\\grave{ }$*${}^{\\wedge}$"->"}\\cdot10^{"}]; +Export[filename, texTable, "Text"]; +] + + +TeXExportCovarMatrixTable[fitCovar_,fitCoeffRules_,filename_]:=Module[{covarMatrix,paramNames,fullMatrix,texTable}, +covarMatrix = fitCovar; +paramNames = fitCoeffRules[[All,1]]; +fullMatrix = Join[List/@Join[{""},paramNames],Join[{paramNames},covarMatrix,1],2]; +texTable = StringReplace[ToString[TeXForm[NumberForm[fullMatrix,3]]],{"$\\grave{ }$*${}^{\\wedge}$"->"}\\cdot10^{"}]; +Export[filename,texTable,"Text"]; +(* then run on the resulting file: sed -i 's/{/[/g;s/}/],/g;s/*^/e/g' PeakLuminosityUIBCovMatrix_S5.txt *) +] + + +SubscriptRules[rules_]:=Module[{}, +Return[Table[rules[[i,1]]->Subscript[ToExpression[StringTake[ToString@rules[[i,1]],1]],ToExpression[StringTake[ToString@rules[[i,1]],2;;]]],{i,1,Length@rules}]]; +] + + +TeXFormatAnsatz[ansatz_,formattingRules_,coeffRules_]:=Module[{subscripts,formattedAnsatz,TeXansatz}, + +subscripts = SubscriptRules[coeffRules]; + +formattedAnsatz = ansatz/.formattingRules/.subscripts; + +(* +ansatzReals=Cases[AtomsList[ansatzRaw],y_Real]; +ansatzRounding=Table[ansatzReals[[i]]\[Rule]NumberForm[ansatzReals[[i]],{2,2}],{i,1,Length@ansatzReals}]; +formattedAnsatz = formattedAnsatz ./ .ansatzRounding; +*) + +TeXansatz = TeXForm[formattedAnsatz]; +TeXansatz = StringReplace[ToString@TeXansatz," _"->"_"]; +TeXansatz = StringReplace[TeXansatz,"{}"->""]; +TeXansatz = StringReplace[TeXansatz,"\\overset{\\land }"->"\\widehat"]; +TeXansatz = StringReplace[TeXansatz,"\\hat"->"\\widehat"]; +Return[TeXansatz]; +] + + +TeXExportAnsatz[ansatz_,formattingRules_,coeffRules_,filename_]:=Module[{TeXansatz}, +TeXansatz = TeXFormatAnsatz[ansatz,formattingRules,coeffRules]; +Export[filename, TeXansatz, "Text"]; +] + + +GetRawTwoDAnsatz[finalfit_,fit2dParts_,productAnsatz_,constrained_]:=Module[{etaAnsatz,etaCoeffRules,etaInverseRules,SAnsatz,SCoeffRules,SInverseRules,ansatzRaw}, + +etaAnsatz = fit2dParts[[2]]; +etaCoeffRules = fit2dParts[[3]]; +etaInverseRules = Get1dInverseRules[etaAnsatz,etaCoeffRules]; + +SAnsatz = fit2dParts[[5]]; +SCoeffRules = fit2dParts[[6]]; +SInverseRules = Get1dInverseRulesS[SAnsatz,SCoeffRules,productAnsatz]; + +ansatzRaw = (fit2dParts[[1]]/.etaInverseRules/.SInverseRules); + +If[constrained, + ansatzRaw = ansatzRaw /. fit2dParts[[8]] /. fit2dParts[[9]] /. {4.->4, 16.->16, 64.->64, 256.->256} /. {-4.->-4, -16.->-16, -64.->-64, -256.->-256}; +]; + +Return[ansatzRaw]; + +] + + +GetAllRules[finalfit_,fit2dParts_,twodrules_]:=Module[{allRules}, +allRules=Join[fit2dParts[[3]],fit2dParts[[6]],fit2dParts[[8]],fit2dParts[[9]],finalfit[[2]]]; (* etaCoeffRules, SCoeffRules, 2dconstraintsNumerator, 2dconstraintsDenominator, finalfitCoeffRules *) +If[ListQ@twodrules&&(Length@twodrules>0), + allRules=Join[allRules,twodrules]; +]; +Return[allRules]; +] + + +TeXExportTwoDAnsatz[finalfit_,fit2dParts_,twodrules_,formattingRules_,productAnsatz_,constrained_,filename_]:=Module[{ansatzRaw,allRules,zeroRules}, +ansatzRaw = GetRawTwoDAnsatz[finalfit,fit2dParts,productAnsatz,constrained]; +allRules = GetAllRules[finalfit,fit2dParts,twodrules]; +If[Not@productAnsatz, + zeroRules=Table[ToExpression["f"<>ToString@i<>"0"]->0,{i,0,Exponent[Numerator[fit2dParts[[1]]],S]}]; + allRules=Join[allRules,zeroRules]; +]; +TeXExportAnsatz[ansatzRaw,formattingRules,allRules,filename]; +] + + +TeXExportChiDiffTerms[chidiffAnsaetze_,formattingRules_,coeffRules_,filename_]:=Module[{fullTeX,numChiDiffTerms,thisTerm}, + +fullTeX = ""; + +numChiDiffTerms = Length@chidiffAnsaetze; +If[numChiDiffTerms>=1, + thisTerm = TeXFormatAnsatz[chidiffAnsaetze[[1]],formattingRules,coeffRules]; + fullTeX = "A_1(\\eta)&="<>thisTerm; +]; +If[numChiDiffTerms>=2, + thisTerm = TeXFormatAnsatz[chidiffAnsaetze[[2]],formattingRules,coeffRules]; + fullTeX = fullTeX<>" \\\\\nA_2(\\eta)&="<>thisTerm; +]; +If[numChiDiffTerms>=3, + thisTerm = TeXFormatAnsatz[chidiffAnsaetze[[3]],formattingRules,coeffRules]; + fullTeX = fullTeX<>" \\\\\nA_3(\\eta)&="<>thisTerm; +]; + +Export[filename, fullTeX, "Text"]; + +] + + +TeXExportFinalAnsatz[finalfit_,fit2dParts_,twodrules_,chidiffAnsaetze_,formattingRules_,productAnsatz_,twodConstrained_,filename_]:=Module[{ansatzRaw,numChiDiffTerms,allRules}, + +ansatzRaw = GetRawTwoDAnsatz[finalfit,fit2dParts,productAnsatz,twodConstrained]; + +numChiDiffTerms = Length@chidiffAnsaetze; +If[numChiDiffTerms>=1, + ansatzRaw = ansatzRaw + chidiffAnsaetze[[1]] (\[Chi]1-\[Chi]2); +]; +If[numChiDiffTerms>=2, + ansatzRaw = ansatzRaw + chidiffAnsaetze[[2]] (\[Chi]1-\[Chi]2)^2; +]; +If[numChiDiffTerms>=3, + ansatzRaw = ansatzRaw + chidiffAnsaetze[[3]] S (\[Chi]1-\[Chi]2); +]; + +allRules = GetAllRules[finalfit,fit2dParts,twodrules]; + +TeXExportAnsatz[ansatzRaw,formattingRules,allRules,filename]; + +] + + +TeXExportCoeffTable[coeffRules_,covar_,filename_]:=Module[{coeffNames,coeffErrs,headerLine,coeffTable,texTable}, +coeffNames = coeffRules[[All,1]]/.SubscriptRules[coeffRules]; +coeffErrs = Sqrt[Diagonal[covar]]; +headerLine = {"estimate","std.err.","rel.err.[%]"}; +(* +coeffTable = TableForm[Table[{coeffRules[[i,2]],coeffErrs[[i]],Abs[100*coeffErrs[[i]]/coeffRules[[i,2]]]},{i,Length@coeffRules}],TableHeadings\[Rule]{coeffNames,headerLine}]; +texTable = StringReplace[ToString[TeXForm[NumberForm[coeffTable,3]]],{"$\\grave{ }$*${}^{\\wedge}$"\[Rule]"}\\cdot10^{"}]; +Export[filename,texTable, "Text"]; +*) +(* +TeXExportTabularTable[Map[NumberForm[#,3]&,Table[{coeffRules[[i,2]],coeffErrs[[i]],Abs[100*coeffErrs[[i]]/coeffRules[[i,2]]]},{i,Length@coeffRules}],{2}], filename, coeffNames, headerLine] +*) +TeXExportTabularTable[Table[{NumberForm[coeffRules[[i,2]],3],NumberForm[coeffErrs[[i]],3],NumberForm[Abs[100*coeffErrs[[i]]/coeffRules[[i,2]]],{3,1}]},{i,Length@coeffRules}], + filename, coeffNames, headerLine, 0] +] + + +TeXExportTabularTable[datatable_,filename_,rowLabels_,colHeadings_,padZeroes_]:=Module[{nRows,tableFormatted,texTable,tableAtoms,maxDecDigits}, +nRows = Length@datatable; + +tableFormatted = TableForm[datatable, TableHeadings->{rowLabels,colHeadings}]; +texTable = ToString[TeXForm[tableFormatted]]; +texTable = StringReplace[texTable,{"array"->"tabular"}]; +texTable = StringReplace[texTable,{"&"->"$&$"}]; (* close and open math mode at each field separator *) +texTable = StringReplace[texTable,{"$&$"->"&$"},1]; (* remove the extra open$ at first separator *) +texTable = StringReplace[texTable,{"$\$&$$"->"\&"},1];(* remove the extra elements when exporting & *) +texTable = StringReplace[texTable,{"\\\\"->"$\\\\"}]; (* close math mode at each line break *) +texTable = StringReplace[texTable,{"\\\\"->"\\\\$"},nRows]; (* reopen math mode after each line break, but only for numrows (not at last one) *) +texTable = StringReplace[texTable,{"\\\\"->"\\\\\\hline"},1]; (* add a horizontal line after the first (headers) line *) +texTable = StringReplace[texTable,{"{tabular}{c"->"{tabular}{l"}]; (* make row-headers column left-centered *) +texTable = StringReplace[texTable,{"cc}"->"cc}\\hline\\hline"}]; (* add initial double line *) +texTable = StringReplace[texTable,{"\\end{tabular}"->"\\hline\\hline\\end{tabular}"}]; (* final double lines at end of table *) + +If[padZeroes==1, (* pad trailing zeroes *) +texTable = StringReplace[texTable,{".\\times"->".0\\times"}]; +, +If[padZeroes==2, +texTable = StringReplace[texTable,{".\\times"->".00\\times"}]; +texTable = StringReplace[texTable,Table["."<>ToString@i<>"\\times"->"."<>ToString@i<>"0\\times",{i,0,9}]]; +, +If[padZeroes==3, +texTable = StringReplace[texTable,{".\\times"->".000\\times"}]; +texTable = StringReplace[texTable,Table["."<>ToString@i<>"\\times"->"."<>ToString@i<>"00\\times",{i,0,9}]]; +texTable = StringReplace[texTable,Flatten[Table[Table["."<>ToString@i<>ToString@j<>"\\times"->"."<>ToString@i<>ToString@j<>"0\\times",{i,0,9}],{j,0,9}]]]; +]; +]; +]; + +Export[filename, texTable, "Text"]; +] + + +PyExportFinalFit[fit_,extraFormattingRules_,filename_]:=Module[{fitCform,pyRules1,pyRules2,pyRules3,fitPyform}, + +fitCform = ToString@CForm[fit]; + +(* formatting hacks: greek letters, powers, Shat (FIXME: not yet variable wrt to effective-spin parameter choice!) *) +pyRules1 = {"\[Eta]"->"eta","\[Chi]"->"chi","Sqrt(2)"->"sqrt2","Sqrt(3)"->"sqrt3"}; +pyRules2 = Join[{"(chi1 - chi2)"->"chidiff","Power(chi1 - chi2,2)"->"chidiff2"}, + Table["Power(eta,"<>ToString@i<>")"->"eta"<>ToString@i,{i,2,9}], + Table["Power(S,"<>ToString@i<>")"->"S"<>ToString@i,{i,2,9}], + {"Power(1 - 4*eta,0.5)"->"sqrt1m4eta"}]; +pyRules3 = {"S"->"Shat","1 "->"1. ","0 "->"0. "}; +fitPyform = StringReplace[StringReplace[StringReplace[StringReplace[fitCform,pyRules1],pyRules2],pyRules3],extraFormattingRules]; + +fitPyform = fitPyform<>"\n"; +Export[filename, fitPyform, "Text"]; + +] + + +PyExportFinalAnsatz[finalfit_,fit2dParts_,chidiffAnsaetze_,keepfi0_,extraFormattingRules_,filename_]:=Module[{ansatzRaw,numChiDiffTerms,zeroRules,ansatzCform, +pyRules1,pyRules2,pyRules3,ansatzPyform,sqrti,sqrtRules,fracs,fracStrings,fracReals,fracRules,twodConstrained}, + +twodConstrained = True; +ansatzRaw = GetRawTwoDAnsatz[finalfit,fit2dParts,productAnsatz,twodConstrained]; + +numChiDiffTerms = Length@chidiffAnsaetze; +If[numChiDiffTerms>=1, + ansatzRaw = ansatzRaw + chidiffAnsaetze[[1]] (\[Chi]1-\[Chi]2); +]; +If[numChiDiffTerms>=2, + ansatzRaw = ansatzRaw + chidiffAnsaetze[[2]] (\[Chi]1-\[Chi]2)^2; +]; +If[numChiDiffTerms>=3, + ansatzRaw = ansatzRaw + chidiffAnsaetze[[3]] S (\[Chi]1-\[Chi]2); +]; + +If[Not@keepfi0, + zeroRules = Table[ToExpression["f"<>ToString@i<>"0"]->0,{i,0,Exponent[Numerator[fit2dParts[[1]]],S]}]; + ansatzRaw = ansatzRaw/.zeroRules; +]; + +(* hack to avoid rounding of square-roots *) +sqrti = {2,3,5,6,7}; +sqrtRules = Table[Sqrt[sqrti[[i]]]->ToExpression["sqrt"<>ToString@sqrti[[i]]<>""],{i,Length@sqrti}]; +(* hack to avoid rounding of fractions, first part: replace by named string before ToString@CForm[SetPrecision[...]] *) +fracs = {1/3,2/3,4/3,5/3}; +fracs = Join[fracs,-fracs]; +fracStrings = Table[ToExpression["frac"<>StringReplace[ToString@Numerator@fracs[[i]],{"-"->"m"}]<>ToString@Denominator@fracs[[i]]],{i,Length@fracs}]; +fracRules = Table[fracs[[i]]->fracStrings[[i]],{i,Length@fracs}]; + +ansatzCform = ToString@CForm[SetPrecision[ansatzRaw/.sqrtRules/.fracRules,3]]; + +(* hack to avoid rounding of fractions, second part: replace named string back to real number fractions *) +fracReals = Table[ToString@SetPrecision[Numerator@fracs[[i]],2]<>"/"<>ToString@SetPrecision[Denominator@fracs[[i]],2],{i,Length@fracs}]; +fracRules = Table[ToString@fracStrings[[i]]->fracReals[[i]],{i,Length@fracs}]; +ansatzCform = StringReplace[ansatzCform,fracRules]; + +(* more formatting hacks: greek letters, powers, Shat (FIXME: not yet variable wrt to effective-spin parameter choice!) *) +pyRules1 = {"\[Eta]"->"eta","\[Chi]"->"chi"}; +pyRules2 = Join[{"(chi1 - 1.*chi2)"->"chidiff","Power(chi1 - 1.*chi2,2)"->"chidiff2"}, + Table["Power(eta,"<>ToString@i<>")"->"eta"<>ToString@i,{i,2,9}], + Table["Power(S,"<>ToString@i<>")"->"S"<>ToString@i,{i,2,9}], + {"Power(1. - 4.*eta,0.5)"->"sqrt1m4eta"},{"Sqrt(1. - 4.*eta)"->"sqrt1m4eta"}]; +pyRules3 = {"S"->"Shat"}; +ansatzPyform = StringReplace[StringReplace[StringReplace[StringReplace[ansatzCform,pyRules1],pyRules2],pyRules3],extraFormattingRules]; + +ansatzPyform = ansatzPyform<>"\n"; +Export[filename, ansatzPyform, "Text"]; + +] + + +PyExportFinalFitCoeffs[finalfit_,fit2dParts_,all2dconstraints_,filename_]:=Module[{pyCoeffsList,pyCoeffsString}, + +pyCoeffsList = Join[Table[ToString@fit2dParts[[3,i,1]]<>" = "<>ToString@CForm@fit2dParts[[3,i,2]],{i,Length@fit2dParts[[3]]}], + Table[ToString@fit2dParts[[6,i,1]]<>" = "<>ToString@CForm@fit2dParts[[6,i,2]],{i,Length@fit2dParts[[6]]}], + Table[ToString@all2dconstraints[[i,1]]<>" = "<>ToString@CForm[all2dconstraints[[i,2]]/.{1->1.,0->0.}],{i,Length@all2dconstraints}], + (*{ToString@\[Eta]0derconstv3[[1,1]]<>" = "<>ToString@CForm[\[Eta]0derconstv3[[1,2]]]}, *) + Table[ToString@finalfit[[2,i,1]]<>" = "<>ToString@CForm@finalfit[[2,i,2]],{i,Length@finalfit[[2]]}] +]; + +pyCoeffsString = ""; +For[i=1, i <= Length@pyCoeffsList, i++, + pyCoeffsString = pyCoeffsString<>" "<>pyCoeffsList[[i]]<>"\n"]; + +Export[filename, pyCoeffsString, "Text"]; + +] + + +SupplExportAllFitCoeffs[finalfit_,fit2dParts_,all2dconstraints_,eta0covar_,filename_]:=Module[{coeffsList,coeffsString,stdErrsEta,stdErrsS,stdErrs2D,stdErrsFinal}, + +stdErrsEta = Sqrt[Diagonal[fit2dParts[[4]]]]; +stdErrsS = Sqrt[Diagonal[fit2dParts[[7]]]]; +stdErrs2D = Join[Sqrt[Diagonal[eta0covar]],ConstantArray[0.0,Length[all2dconstraints]-Length[eta0covar]]]; +stdErrsFinal = Sqrt[Diagonal[finalfit[[14]]]]; + +coeffsList = Join[Table[ToString@fit2dParts[[3,i,1]]<>" "<>ToString@CForm@fit2dParts[[3,i,2]]<>" "<>ToString@CForm@stdErrsEta[[i]],{i,Length@fit2dParts[[3]]}], + Table[ToString@fit2dParts[[6,i,1]]<>" "<>ToString@CForm@fit2dParts[[6,i,2]]<>" "<>ToString@CForm@stdErrsS[[i]],{i,Length@fit2dParts[[6]]}], + Table[ToString@all2dconstraints[[i,1]]<>" "<>ToString@CForm[all2dconstraints[[i,2]]/.{1->1.,0->0.}]<>" "<>ToString@CForm@stdErrs2D[[i]],{i,Length@all2dconstraints}], + (*{ToString@\[Eta]0derconstv3[[1,1]]<>" "<>ToString@CForm[\[Eta]0derconstv3[[1,2]]]}, *) + Table[ToString@finalfit[[2,i,1]]<>" "<>ToString@CForm@finalfit[[2,i,2]]<>" "<>ToString@CForm@stdErrsFinal[[i]],{i,Length@finalfit[[2]]}] +]; + +coeffsString = "# coeff estimate stderr\n"; +For[i=1, i <= Length@coeffsList, i++, + coeffsString = coeffsString<>coeffsList[[i]]<>"\n"]; + +coeffsString = StringReplace[coeffsString,{". "->".0 ",".\n"->".0\n"}]; + +Export[filename, coeffsString, "Text"]; + +] + + +SupplExportCovarMatrix[covar_,coeffRules_,fileName_]:=Module[{coeffNames,fullMatrix,covarString}, + +coeffNames = coeffRules[[All,1]]; + +covarString = "# coeffs:"; +For[i=1, i <= Length@coeffRules, i++, + covarString = covarString<>" "<>ToString@coeffRules[[i,1]]; + ]; +covarString = covarString<>"\n"; +For[i=1, i <= Length@covar, i++, + For[j=1, j <= Length@covar, j++, + covarString = covarString<>" "<>ToString@NumberForm[covar[[i,j]], {16, 16}, ExponentFunction -> (If[-10 < # < 10, Null, #] &)]; + ]; + covarString = covarString<>"\n"; + ]; + +Export[fileName, covarString, "Text"]; + +] + + +Options[AIC]={"Weights"->False}; +AIC[data_,fit_,fitvars_,OptionsPattern[]]:=Module[{bracketedvars,coeff,datapnts,err,n,res,ress,weigths}, + +n=Length@data; +coeff=Length@fitvars; +weigths=OptionValue["Weights"]; +If[weigths,err=data[[All,-1]];datapnts=data[[All,-2]];,err=1;datapnts=data[[All,-1]];]; + +res=Table[data[[i,-2]]-(fit/.Table[fitvars[[j]]->data[[i,j]],{j,Length@fitvars}]),{i,Length@data}]; +ress=Total[err (res)^2]; +n + n Log[2\[Pi]]+n Log[ress/n]+2(coeff+1) + +] + + +Options[AICc]=Options[AIC]; +AICc[data_,fit_,fitvars_,OptionsPattern[]]:=Module[{coeff,n,res,newfit,bracketedvars,ress,weigths}, +weigths=OptionValue["Weights"]; +n=Length@data; +coeff=Length@fitvars; + +AIC[data,fit,fitvars,"Weights"->weigths]+(2*coeff(coeff+1) )/(n - coeff -1) + +] + + +BIC[data_,fit_,fitvars_,coeff_]:=Module[{n,res,newfit,bracketedvars,ress}, + +n=Length@data; +bracketedvars=StringReplace[StringReplace[ToString@fitvars,"{"->"["],"}"->"]"]; +newfit=ToExpression[ToString@fit<>bracketedvars]; + +res=Table[data[[i,-2]]-(newfit/.Table[fitvars[[j]]->data[[i,j]],{j,Length@fitvars}]),{i,Length@data}]; +ress=Total[data[[All,-1]](res)^2]; +n + n Log[2\[Pi]]+n Log[ress/n]+Log[n](coeff+1) + +] + + +Residuals[data_,fit_,vars_,OptionsPattern[{"Verbose"->False,"Relative"->False}]]:=Module[{datvals,relative,fitvals,res,verbose}, + +verbose=OptionValue["Verbose"]; +relative=OptionValue["Relative"]; + + +If[verbose,Print["variables -> ",vars]]; + +datvals=TakeColumn[data,-1]; +fitvals=fit/.Table[(vars[[j]]->data[[All,j]]),{j,Length@vars}]; +If[relative,res=1-fitvals/datvals,res=datvals-fitvals] +] + + +KullbagLeiblerDiv[p1_?ListQ,p2_?ListQ]:=Module[{fun}, +fun=1.Function[{p,q},Limit[p*Log[(p+\[Epsilon])/(q+\[Epsilon])],\[Epsilon]->0]][p2,p1]; +Total[fun] +] + + +KL[data1_,data2_,lim_]:=Module[{n,res}, + +n=Length@data1; + +NIntegrate[PDF[data1,x] Log[PDF[data1,x]/PDF[data2,x]], {x,-lim,lim}] + +] + + +JensenShanonDiv[p1_?ListQ,p2_?ListQ]:=Module[{m,fun}, +m=0.5 (p1+p2); +fun=Function[{p,q,m},Limit[p*Log[(p+\[Epsilon])/(m+\[Epsilon])]+ q*Log[(q+ \[Epsilon])/(m+\[Epsilon])],\[Epsilon]->0]][p1,p2,m]; +Total[fun] +] + + +JS[data1_,data2_,lim_]:=Module[{n,res}, + +n=Length@data1; + +1/2 NIntegrate[PDF[data1,x] Log[PDF[data1,x]/(PDF[data2,x]+ PDF[data1,x])], {x,-lim,lim}] + 1/2 NIntegrate[PDF[data2,x] Log[PDF[data2,x]/(PDF[data2,x]+PDF[data1,x])] , {x,-lim,lim}] +] + + +ComputeEdges[pts_]:=Module[{ptsx,auxvar,auxvar2,nears,i}, +ptsx=SortBy[pts,First]; +auxvar={}; +i=1; +AppendTo[auxvar,{ptsx[[i]]}]; +While[i<= Length@ptsx-1, +If[ptsx[[i+1,1]]==ptsx[[i,1]],i=i+1,AppendTo[auxvar,{ptsx[[i]]}];i=i+1] +]; +AppendTo[auxvar,{ptsx[[i]]}]; +auxvar=Flatten[auxvar,1]; + +i=Length@ptsx-1; +While[i> 1, +If[ptsx[[i+1,1]]==ptsx[[i,1]],i=i-1,AppendTo[auxvar,ptsx[[i+1]]];i=i-1] +]; +AppendTo[auxvar,ptsx[[i]]]; +Do[auxvar=AppendTo[auxvar,0.5auxvar[[1]]+0.5auxvar[[-1]]],{i,3}]; +auxvar +] + + +CredibleRegion[data_,level_]:=Module[{datasrt,prob,cumprob,pbound}, +(* Last column must be the PDF *) +datasrt=SortBy[data,Last]; +prob=TakeColumn[datasrt,-1]; +cumprob=Accumulate[prob]/Total[prob]; + +pbound=Quiet@Position[cumprob,_?(#>= (1-level) cumprob[[-1]]& ),1][[1,1]]; + +ComputeEdges[datasrt[[pbound-1;;-1]]][[All,1;;-2]] +] + + +CredibleInterval[data_,level_]:=Module[{datasrt,prob,cumprob,pbound}, +(* Last column must be the PDF *) +datasrt=SortBy[data,Last]; +prob=TakeColumn[datasrt,-1]; +cumprob=Accumulate[prob]/Total[prob]; + +pbound=Quiet@Position[cumprob,_?(#>= (1-level) cumprob[[-1]]& ),1][[1,1]]; +datasrt[[pbound;;-1]] +] + + +Generate1DPolynomialAnsatz[CoefficientPrefixString_?StringQ,variable_,MinOrder_?IntegerQ,MaxOrder_?IntegerQ]:=Module[{ansatz,i,j}, +ansatz = Total/@Table[ToExpression[CoefficientPrefixString<>ToString@i] * variable^i,{j,MinOrder,MaxOrder},{i,0,j}]; + +Transpose[{ansatz,Table[{variable},{i,Length@ansatz}]}] +] + + +CleanAnsatzParams[paramsGuess_, vars_]:=Module[{pos,params,varsStr,paramsStr,tmp}, + +params = DeleteDuplicates@Flatten@paramsGuess; + +tmp=Select[params, Not@NumberQ@#& ]; + +varsStr = ToString/@vars; +paramsStr= ToString/@tmp; + +(* Clean the variables from the parameters and identify variables *) +pos = Flatten[Position[paramsStr,#]&/@varsStr,1]; +params=Delete[tmp,pos]; + +params +]; + + +(* ::Code::Initialization:: *) +Options[DataFitFunction]={ +"FitAll" -> True, +"AxesTag" -> "Amplitude", +"Verbose" -> 1, +"StatisticalTest" -> "AIC", +"Sorted" -> True, +"Weights" -> {}, +"PlotRange" -> All, +"ToolTipTags" -> "", +"Domain" -> {0,1}, +"GetIntervals" -> False +}; + + +DataFitFunction[dataRAW_?ListQ,ansatzList_?ListQ,OptionsPattern[]]:=Module[{ansatz,ansatzaparams,ansatzvars,cleartrue,fit,stats,verbose, +ansatzparamsStr,ansatzvarsStr,outparams,fittab,plot1,plot2,datasorted,plotdomain,myvar,plotdomain1,axestag,aic,aicc,bic,rsquared,rmse, +statisticaltest,stattoplot,sortfield,residuals,minexp,maxexp,minexp2,maxexp2,sorted,paramerrors,residualsplot,weights,plotrange,print, +ansatzaparamsGuess,paramTStat,overview,data,dimWeights,tooltiptags,inner,confidenceinttable,userPlotDomain,vcov, +estvar,confbands,predbands,getintervals,loglikelihood}, + +verbose = OptionValue["Verbose"]; +axestag = OptionValue["AxesTag"]; +statisticaltest = OptionValue["StatisticalTest"]; +sorted = OptionValue["Sorted"]; +weights = OptionValue["Weights"]; +plotrange = OptionValue["PlotRange"]; +tooltiptags = OptionValue["ToolTipTags"]; +userPlotDomain = OptionValue["Domain"]; +getintervals = OptionValue["GetIntervals"]; + +If[TrueQ@weights, + dimWeights = Last@Dimensions@dataRAW; + weights = TakeColumn[dataRAW,dimWeights]; + data = TakeColumn[dataRAW, Range[dimWeights-1]], + data = dataRAW[[All,1;;Length@dataRAW[[1]]]]; + If[verbose,Print["Raw data with no weights on the lists!"]]; +]; + +If[verbose>=2, + print[x___]:=Print[x], + print[x___]:={} +]; + +ansatz = Chop/@ (ansatzList[[All,1]]); +ansatzvars = ansatzList[[All,2]]; + +ansatzaparamsGuess = N/@AtomsList/@ansatz; + +ansatzaparams = Table[CleanAnsatzParams[ansatzaparamsGuess[[i]], ansatzvars[[i]]],{i,Length@ansatzvars}]; + +(* +print["Ans\[ADoubleDot]tze -> ", ansatz//TableForm]; +print["#\[NonBreakingSpace]data points -> ", Length@data]; +print["#\[NonBreakingSpace]data points -> ", Length@Union[data, SameTest->(Abs[#1[[1]]-#2[[1]]] < 0.01 &)], " identifying x-values deviating < 0.01"]; +*) + +(*Print["Weights: ", If[Length@weights>0,weights,Automatic]];*) + +fittab=Table[ +If[Length@ansatzaparams[[i]]>=1, + fit = NonlinearModelFit[data,ansatz[[i]],ansatzaparams[[i]],ansatzvars[[i]],MaxIterations->1000,Weights->If[Length@weights>0,weights,Automatic]]; + outparams = fit["BestFitParameters"]; + stats = fit["ParameterTable"]; + paramerrors = fit["ParameterErrors"]; + paramTStat = fit["ParameterTStatistics"]; + residuals = fit["FitResiduals"]; + + aic = fit["AIC"]; + aicc = aic + (2*Length@outparams(Length@outparams+1) )/(Length@data - Length@outparams -1); + bic = fit["BIC"]; + rsquared = fit["RSquared"]; + rmse = Sqrt@Mean[residuals^2]; + confidenceinttable = fit["ParameterConfidenceIntervalTable"]; + vcov = fit["CovarianceMatrix"]; + estvar = fit["EstimatedVariance"]; + +If[getintervals, + confbands = fit["MeanPredictionBands",ConfidenceLevel->0.9]; + predbands = fit["SinglePredictionBands",ConfidenceLevel->0.9]; + , + confbands = {}; + predbands = {}; +]; + (* 1 2 3 4 5 6 7 8 9 *) + {Normal@fit, outparams, stats, aic, aicc, bic, rsquared, ScientificForm@rmse, paramerrors, + (* 10 11 12 13 14 15 *) + Sort[CombineColumns[ansatzaparams[[i]],paramTStat],Abs@#1[[2]]<Abs@#2[[2]]&], Length@ansatzaparams[[i]], rmse, confidenceinttable, vcov, ansatz[[i]], + (* 16 17 18 19 *) + estvar, confbands, predbands, residuals }, + {ansatz[[i]],"dummy","dummy","dummy","dummy","dummy","dummy","dummy","dummy","dummy"}] +,{i,Length@ansatzList}]; + +Which[statisticaltest=="AIC", + stattoplot=aic; + sortfield=4; + , + statisticaltest=="AICc", + stattoplot=aicc; + sortfield=5; + , + statisticaltest=="BIC", + stattoplot=bic; + sortfield=6; + , + statisticaltest=="RSquared", + stattoplot=rsquared; + sortfield=7; + , + statisticaltest=="RMSE", + stattoplot=rmse; + sortfield=12; + ]; + +If[sorted, fittab = SortBy[fittab,#[[sortfield]]& ]]; +overview = TakeColumn[fittab,{1,11,7,8,5,6,3}]; (* fit eqn, numParams, Rsquared, RSME, AICc, BIC, coefficient table *) +residuals = fittab[[All,19]]; + +(* +resVSaic = TakeColumn[fittab, {4,7}]; +resVSaicc = TakeColumn[fittab, {5,7}]; +resVSbic = TakeColumn[fittab, {6,7}]; +Print[ListLogPlot[{resVSaic,resVSaicc,resVSbic},PlotRange\[Rule]All,PlotStyle\[Rule]{Red,Blue,Green},PlotLegends\[Rule] {"AIC","AICc","BIC"}, +Frame\[Rule] True,FrameLabel\[Rule] {"*IC*","RMSE"}]]; +*) + +If[verbose>=1, + Print[overview//TableForm]; +]; + +If[verbose>=2, + + Which[Length@ansatzvars[[1]]==1, + (* {minexp,maxexp}={Min[Exponent[#,ansatzvars]&/@ansatz],Max[Exponent[#,ansatzvars]&/@ansatz]}; *) + {minexp,maxexp}={Min[Table[Length[fittab[[i,2]]],{i,Length@ansatzList}]],Max[Table[Length[fittab[[i,2]]],{i,Length@ansatzList}]]}; + datasorted=SortBy[data,First]; + + plotdomain={Min[First@First@datasorted,First@userPlotDomain],Max[First@Last@datasorted,Last@userPlotDomain]}; + + (*plot1=Plot[Evaluate[Table[fittab[[i,1]]/.ansatzvars[[i,1]]\[Rule]x,{i,Length@ansatzList}]],{x,First@plotdomain,Last@plotdomain}, + Epilog\[Rule]{Point[Table[Tooltip[#,If[ListQ@tooltiptags,tooltiptags[[i]],ToString[data[[i]]]]],{i,Length@data}]&/@data]}, + PlotRange\[Rule]plotrange,Frame\[Rule]True,PlotStyle\[Rule]Red,FrameLabel\[Rule]{Style[ToString@ansatzvars[[1,1]],14],Style["f("<>ToString@ansatzvars[[1,1]]<>")",14]}];*) + plot1=Plot[Evaluate[Table[fittab[[i,1]]/.ansatzvars[[i,1]]->x,{i,Length@ansatzList}]],{x,First@plotdomain,Last@plotdomain},PlotLegends->Evaluate[Table[fittab[[i,1]],{i,Length@ansatzList}]]]; + plot2=ListPlot[Table[Tooltip[data[[i]],If[ListQ@tooltiptags,tooltiptags[[i]],ToString[data[[i]]]]],{i,Length@data}], PlotStyle->Red]; + + stattoplot=Transpose[{Table[Length[fittab[[i,2]]],{i,Length@ansatzList}],TakeColumn[fittab,sortfield]}]; + + inner=(Inner[List,data[[All,1]],#,List]&/@residuals); + + Print@{Show[plot1, plot2, ImageSize->450, Frame->True, FrameLabel->{Style[ToString@ansatzvars[[1,1]],14],Style["f("<>ToString@ansatzvars[[1,1]]<>")",14]}], + ListPlot[Partition[stattoplot,1],Frame->True,FrameLabel->{Style["\!\(\*SubscriptBox[\(N\), \(coeff\)]\)",14],Style[statisticaltest,14]},ImageSize->450,PlotRange->{{minexp-1,maxexp+1},All}, + PlotLegends->Table[fittab[[i,1]],{i,Length@ansatzList}]], + ListPlot[Table[Tooltip[#[[i]],If[ListQ@tooltiptags,tooltiptags[[i]],ToString[data[[i]]]]],{i,Length@data}]&/@inner,PlotRange->{plotdomain,All}, + ImageSize->450,Frame->True,FrameLabel->{Style[ToString@ansatzvars[[1,1]],14],Style["data-fit",14]}] + }; + , + Length@ansatzvars[[1]]==2, + + (* + {minexp,maxexp} ={Min[Exponent[#,ansatzvars[[1,1]]]&/@ansatz],Max[Exponent[#,ansatzvars[[1,1]]]&/@ansatz]}; + {minexp2,maxexp2}={Min[Exponent[#,ansatzvars[[1,2]]]&/@ansatz],Max[Exponent[#,ansatzvars[[1,2]]]&/@ansatz]}; + *) + + plot2=ListPointPlot3D[data,PlotRange->plotrange,PlotStyle->PointSize[0.02],PlotLegends->{"data"}]; + plot1=Plot3D[Evaluate[Table[fittab[[i,1]]/.ansatzvars[[i,1]]->x/.ansatzvars[[1,2]]->y,{i,Length@ansatzList}]], + {x,First@First@userPlotDomain,Last@First@userPlotDomain}, {y,First@Last@userPlotDomain,Last@Last@userPlotDomain}, PlotRange->plotrange, + AxesLabel->{Style[ToString@ansatzvars[[1,1]],14],Style[ToString@ansatzvars[[1,2]],14],Style["f("<>ToString@ansatzvars[[1,1]]<>","<>ToString@ansatzvars[[1,2]]<>")",14]}, + PlotLegends->(*Evaluate[Table[fittab[[i,1]],{i,Length@ansatzList}]]*)Table["Ansatz "<>ToString[i],{i,Length@ansatzList}]]; + + stattoplot=Table[{Exponent[fittab[[i,1]], ansatzvars[[i,1]]],Exponent[fittab[[i,1]], ansatzvars[[i,2]]],fittab[[i,4]]},{i,Length@ansatzList}]; + residualsplot=Table[Transpose[{data[[All,1]],data[[All,2]],residuals[[i]]}],{i,Length@ansatzList}]; + + Print@{Show[plot1,plot2,ImageSize->450], + (* ListPointPlot3D[stattoplot,PlotStyle\[Rule]Red,AxesLabel\[Rule]{"order "<>ToString@ansatzvars[[1,1]],"order "<>ToString@ansatzvars[[1,2]],statisticaltest},ImageSize\[Rule]450,PlotRange\[Rule]{{minexp-0.2,maxexp+0.2},{minexp2-0.2,maxexp2+0.2},Automatic}],*) + (*myListPlot3D[residualsplot,AxesLabel\[Rule]{Style[ToString@ansatzvars[[1,1]],14],Style[ToString@ansatzvars[[1,2]],14],""},PlotLabel->Style["Residuals",14],ImageSize\[Rule]450],*) + myListPlot3D[residualsplot,AxesLabel->{Style[ToString@ansatzvars[[1,1]],14],Style[ToString@ansatzvars[[1,2]],14],Style["data-fit",14]},ImageSize->450,PlotRange->plotrange]}; + Print[]; + ,True, + Print["More than 2 variables can not be plotted :) "]; + ]; +]; + +Return[fittab]; +] + + +Options[DataFitFunctionAll]={ +"NSFitindex" -> 1, (* which fit to pick *) +"q1Fitindex" -> 1, +"FitCase" -> 1, (* 1: 1D fits, 2: 1D+2D fits, return 2D only: 3: 1D+2D fits, return both; 4: 1D+2D+3D fits, return only 2D+3D; 5: 1D+2D+3D fits, return all, but with reduced verbosity *) +"MassRatioUnequalFits" -> {1,1.5,2.,3.,4.,8.,18.}, +"NonSpinningAnsatzList" -> {{a1 \[Eta]+a2 \[Eta]^2+a3 \[Eta]^3,{\[Eta]}},{a1 \[Eta]+a2 \[Eta]^2+a3 \[Eta]^3+a4 \[Eta]^4,{\[Eta]}},{a1 \[Eta]+a2 \[Eta]^2+a3 \[Eta]^3+a4 \[Eta]^4+a5 \[Eta]^5,{\[Eta]}}}, +"EqualBHAnsatzList" -> {{b1 S+b2 S^2+b3 S^3,{S}},{b1 S+b2 S^2+b3 S^3+b4 S^4,{S}},{b1 S+b2 S^2+b3 S^3+b4 S^4+b5 S^5,{S}},{b1 S+b2 S^2+b3 S^3+b4 S^4+b5 S^5+b6 S^6,{S}},{b1 S+b2 S^2+b3 S^3+b4 S^4+b5 S^5+b6 S^6+b7 S^7,{S}}, + {b1 S+b2 S^2+b3 S^3+b4 S^4+b5 S^5+b6 S^6+b7 S^7+b8 S^8,{S}}}, +"Addq1Ansatz" -> {}, +"AddNSAnsatz" -> {}, +"AddGenAnsatz" -> {}, +"StatisticalTest" -> "BIC", +"AnsatzTestCombinations" -> {{1},{1}}, +"PlotRange" -> All, +"RationalFunctions" -> True, +"ProductAnsatz" -> False, +"GeneralAnsatzRules" -> {}, +"ToolTipTags" -> "", +"ProductGeneralizeOrder" -> 2, +"ProductGeneralizeOrderDenom" -> -1, +"ProductGeneralizeMinPowerNum" -> -1, +"TwoDSpinAnsatzOrderNum" -> -1, +"TwoDSpinAnsatzOrderDenom" -> -1, +"SpinDiffWeights" -> True, +"Weights" -> True, +"AddSpinDiffLinAnsatz" -> {}, +"AddSpinDiffQuadAnsatz" -> {}, +"AddSpinDiffMixAnsatz" -> {}, +"SpinDifferenceRules" -> {}, +"\[Eta]LimitEqualSpin" -> 0, +"GetIntervals" -> False, +"SpinParameter" -> sTot3, +"SpinDiffParameter" -> \[Chi]diffstan(*(\[Chi]1-\[Chi]2)*), +"FastAnalysis" -> False, +"Addf00ToAnsatz" -> False +}; + + +DataFitFunctionAll[data_?ListQ,OptionsPattern[]]:=Module[{datans,nsfits,nsansatz,ansatzvars,dataq1,dataq1sorted,ansatzq1,nsfitindex,q1fit,ansatz,nsfit,sys,solNS,coeffs,ansatzS,solq1,ansatzFinal, +ansatzFinal\[Delta]\[Chi],allData,fitEq,allDataEqS,dataeqs,my\[Eta],myd\[Eta],dataq1Sym,pos,massratioplots,myfit,tabfits,uneqfits,massratiounequalfits, +uneqfit2,uneqfit,uneqfit3,q1fitopt,q1fitindex,expans,expns,mydq,thisq,oneDverbosity,perqVerbosity, +ansatzFinal\[Delta]\[Chi]1,ansatzFinal\[Delta]\[Chi]2,lplot,lqplotl,lqplotq,lmplotl,lmplotm,lmqplotl,lmqplotm,lmqplotq, +addnsansatz,addq1ansatz,\[Eta]sfit,statisticaltest,nsdegree,q1degree,addgenansatz,genansatzindex,ansatzchidifflinear,ansatzchidiffquadratic,plot1,plot2,plot3,plot4,plot4a,plot4b,plot4mirror, +testansatzcomb,myfit2,q1fits,ansatzAll,fitcase,alldataeqfit,alldataeqfitv2,eqdatafit,linearpar,linearparerr,linearpar2,linearpar2err,quadpar,quadparerr, +linearfit1,quadfit,ansatz\[Eta]1,ansatz\[Eta]2,linearfit2,plotrange,uneqredunfit,uneqredunfit2,ansatzFinalS\[Delta]\[Chi],spindiffterm, +spindiffterm2,ansatz\[Eta]3,ansatz\[Eta]4,spindiffterm21,spindiffterm22,generalAnsatzRules,weights,num,denom,zeroRules,spinAnsatz,q1fitS0,fitabc,tooltiptags,dataq1tag,mysel,dataq1pos,tooltiptagsaux, +\[Eta]0Ansatz,spinpart,spindifferencerules,spindiffweights,datauneqs,dataeqs2,addspindifflinansatz,addspindiffquadansatz,addspindiffmixansatz,ansatzchidiffmix, +tooltiptagsns,tooltiptagseq,dataq1mixterm,myfitmixterm,linearpar3,linearpar3err,mixpar,mixparerr,linearfit3,mixfit,spindiffterm31,spindiffterm32,ansatzS\[Delta]\[Chi]raw,ansatzFinalS\[Delta]\[Chi]\[Chi]2, +ansatzS\[Delta]\[Chi]\[Chi]2raw,myfitmixquadterm,dataq1mixquadterm,linearpar4err,linearpar4,linearfit4,mixparerr2,mixpar2,quadparerr2,quadpar2,mixfit2,quadfit2,spindiffterm41,spindiffterm42, +spindiffterm43,unphysical,numRestrictions,denomRestrictions,extraStuff,ansatzRaw,spinAnsatzRaw,etaAnsatz,etaCoeffRules,etaCovar,SAnsatz,SCoeffRules,SCovar,getintervals,data\[Eta]S\[Chi]diff, +spinparameter,avgerrperq,avgwgthperq,extrawght,dataeqsunmass,allDataEqSv2,eqdatafitv2,dataunconstr,allDataUnconstr,spindiffparameter, +productAnsatz,productGeneralizeOrderNum,productGeneralizeOrderDenom,productGeneralizeMinPowerNum,twoDSpinAnsatzOrderNum,twoDSpinAnsatzOrderDenom, +q1fitS0orderNum,q1fitS0orderDenom,spinAnsatzToGeneralize,spinAnsatzNum,spinAnsatzDenom,q1AnsatzRaw,q1AnsatzRawS0,spinAnsatzRawNum,spinAnsatzRawDenom,spinAnsatzRawToGeneralize, +dfitspindiffterm,dfitspindiffterm21,dfitspindiffterm22,dfitspindiffterm31,dfitspindiffterm32,dfitspindiffterm41,dfitspindiffterm42,dfitspindiffterm43,fastanalysis,plot3a,dataq1a}, + +(* Input field "data" is expected in the form {\[Eta], \[Chi]1, \[Chi]2, value}, convention: m1 \[GreaterEqual] m2 !!!!CHECK!!!! *) + +nsfitindex = OptionValue["NSFitindex"]; +q1fitindex = OptionValue["q1Fitindex"]; +addnsansatz = OptionValue["AddNSAnsatz"]; +addq1ansatz = OptionValue["Addq1Ansatz"]; +fitcase = OptionValue["FitCase"]; +statisticaltest= OptionValue["StatisticalTest"]; +addgenansatz = OptionValue["AddGenAnsatz"]; +testansatzcomb = OptionValue["AnsatzTestCombinations"]; +plotrange = OptionValue["PlotRange"]; +generalAnsatzRules = OptionValue["GeneralAnsatzRules"]; +tooltiptags=OptionValue["ToolTipTags"]; +spindifferencerules=OptionValue["SpinDifferenceRules"]; +spindiffweights=OptionValue["SpinDiffWeights"]; +weights=OptionValue["Weights"]; +massratiounequalfits=\[Eta]q[OptionValue["MassRatioUnequalFits"]]; +addf00toansatz=OptionValue["Addf00ToAnsatz"]; +addspindifflinansatz=OptionValue["AddSpinDiffLinAnsatz"]; +addspindiffquadansatz=OptionValue["AddSpinDiffQuadAnsatz"]; +addspindiffmixansatz=OptionValue["AddSpinDiffMixAnsatz"]; +getintervals=OptionValue["GetIntervals"]; +spinparameter=OptionValue["SpinParameter"]; +spindiffparameter=OptionValue["SpinDiffParameter"]; +productAnsatz = OptionValue["ProductAnsatz"]; +productGeneralizeOrderNum = OptionValue["ProductGeneralizeOrder"]; +productGeneralizeOrderDenom = OptionValue["ProductGeneralizeOrderDenom"]; +productGeneralizeMinPowerNum = OptionValue["ProductGeneralizeMinPowerNum"]; +If[productGeneralizeOrderDenom<0, productGeneralizeOrderDenom = productGeneralizeOrderNum;]; +If[productGeneralizeMinPowerNum<0, productGeneralizeMinPowerNum = If[productAnsatz,0,1];]; (* by default, set the fi0 terms to zero in a sum ansatz, but keep them in a product ansatz; can be user-overriden *) +twoDSpinAnsatzOrderNum = OptionValue["TwoDSpinAnsatzOrderNum"]; +twoDSpinAnsatzOrderDenom = OptionValue["TwoDSpinAnsatzOrderDenom"]; +fastanalysis = OptionValue["FastAnalysis"]; + +nsansatz = OptionValue["NonSpinningAnsatzList"]; + +If[Length@addnsansatz>0,Do[nsansatz=Append[nsansatz,addnsansatz[[i]]];,{i,Length@addnsansatz}]]; + +unphysical = Select[data,#1[[1]] > 0.25 &]; +Print["data points with \[Eta] > 0.25: ", unphysical]; + +datans = Select[data, #1[[2]]^2+#1[[3]]^2 < 0.01 &]; (* zero spin, for 1d fit *) +dataeqs = Select[data, (Abs[#1[[2]]-#1[[3]]] < 0.01)||(#1[[1]]< OptionValue["\[Eta]LimitEqualSpin"]) &]; (* all equal spins, including zero *) +datauneqs = Complement[data,dataeqs]; (* all unequal spins *) +dataq1 = Select[dataeqs, (Abs[#1[[1]]-0.25] < 0.0001) && (#1[[2]]^2+#1[[3]]^2 >= 0.01) &]; (* equal nonzero spins, equal mass, for 1d fit *) +dataeqsunmass = Select[dataeqs, (Abs[#1[[1]]-0.25] > 0.0001) && (#1[[2]]^2+#1[[3]]^2 >= 0.01) &]; (* equal nonzero spins, unequal mass, for 2d fit *) +dataunconstr = Complement[data,Join[datans,dataq1]]; (* not 1D constrained: unequal-spin equal-mass or nonzero-spin unequal-mass, for 3d fit *) + +If[ListQ@tooltiptags, +pos = Flatten[Position[data,#]&/@datans]; +tooltiptagsns = tooltiptags[[pos]]; +]; + +Print["#\[NonBreakingSpace]of data points: ", Length@data]; +Print["#\[NonBreakingSpace]of non-spinning data points: ", Length@datans]; +Print["#\[NonBreakingSpace]of equal-spin equal-mass data points: ", Length@dataq1]; +Print["#\[NonBreakingSpace]of equal-spin unequal-mass data points: ", Length@dataeqsunmass]; +Print["#\[NonBreakingSpace]of unequal-spin data points: ", Length@datauneqs]; +Print["# of non-zero-spin unequal-mass data points: ", Length@dataunconstr]; +Print["Sums of subspaces: S=0 + q=1 + equal-spin + unequal-spin cases: ", Length@datans + Length@dataq1 + Length@dataeqsunmass + Length@datauneqs]; +Print[" S=0 + q=1 + others: ", Length@datans + Length@dataq1 + Length@dataunconstr]; + +Print["Eff. spin parameter: ",spinparameter]; +Print["Spin-diff parameter: ",spindiffparameter]; +(* +Print["Rules for General Anzatze : ", generalAnsatzRules]; +Print["Rules for Spin Difference Anzatze : ", spindifferencerules]; +*) + +allData = TakeColumn[data, {1,2,3,4,5}]/. {\[Eta]\[Eta]_,c1_,c2_,res_,ww_}->{\[Eta]\[Eta],spinparameter[\[Eta]\[Eta],c1,c2],res,ww}; +allDataEqS = TakeColumn[dataeqs, {1,2,3,4,5}]/. {\[Eta]\[Eta]_,c1_,c2_,res_,ww_}->{\[Eta]\[Eta],spinparameter[\[Eta]\[Eta],c1,c2],res,ww}; +allDataEqSv2 = TakeColumn[dataeqsunmass, {1,2,3,4,5}]/. {\[Eta]\[Eta]_,c1_,c2_,res_,ww_}->{\[Eta]\[Eta],spinparameter[\[Eta]\[Eta],c1,c2],res,ww}; +allDataUnconstr = TakeColumn[dataunconstr, {1,2,3,4,5}]/. {\[Eta]\[Eta]_,c1_,c2_,res_,ww_}->{\[Eta]\[Eta],spinparameter[\[Eta]\[Eta],c1,c2],res,ww}; + +If[(fitcase==3)||(fitcase>=5), + oneDverbosity = 0; + , + oneDverbosity = 2; +]; + +(* non-spinning fit *) +Print[Style["Non-Spinning Fit",Blue]]; +nsfits = DataFitFunction[TakeColumn[datans,{1,4,5}], nsansatz, "Domain"->{0,0.25}, "PlotRange"->plotrange, "StatisticalTest"->statisticaltest, "Verbose"->oneDverbosity, "Weights"->weights, + "ToolTipTags"->tooltiptagsns, "GetIntervals"->getintervals&&(fitcase==1)]; + +Print["---------------------"]; +Print["Select \[Chi]1=\[Chi]2=0 Fit with nsfitindex = ", nsfitindex, " -> ", nsfit = nsfits[[nsfitindex,1]] ]; +Print["---------------------"]; + +(* equal mass/equal spin fit *) +Print[Style["q=1, \[Chi]1=\[Chi]2 Fit",Blue]]; + +dataq1sorted = Sort[TakeColumn[dataq1,{2,3,4,5}]]/. {xx_?NumberQ,yy_,zz_,ww_}->{spinparameter[0.25,xx,yy],zz,ww}; + +If[ListQ@tooltiptags, + pos = Flatten[Position[data,#]&/@dataq1sorted]; + tooltiptagseq = tooltiptags[[pos]]; +]; + +Clear[b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,S]; +(* ansatzq1 = Total/@Table[ToExpression["b"<>ToString@i] * S^i,{j,3,8},{i,1,j}]; +ansatzq1 = Transpose[{ansatzq1,Table[{S},{i,Length@ansatzq1}]}]; *) + +ansatzq1 = OptionValue["EqualBHAnsatzList"]; + +If[Length@addq1ansatz>0,Do[ansatzq1=Append[ansatzq1,addq1ansatz[[i]]];,{i,Length@addq1ansatz}]]; + + +If[productAnsatz, + ansatzq1[[All,1]]=(nsfit/. \[Eta]->0.25) * ansatzq1[[All,1]]; + , + ansatzq1[[All,1]]=(nsfit/. \[Eta]->0.25) + ansatzq1[[All,1]]; +]; + +If[ListQ@tooltiptags, + pos = Flatten[Position[TakeColumn[data,{2,3,4,5}]/. {xx_?NumberQ,yy_,zz_,ww_}->{spinparameter[0.25,xx,yy],zz,ww},#]&/@dataq1sorted]; + tooltiptagseq = tooltiptags[[pos]]; +]; +q1fits = DataFitFunction[dataq1sorted, ansatzq1, "Domain"-> {-1,1}, "PlotRange"->plotrange, "StatisticalTest"->statisticaltest, "Verbose"->oneDverbosity, "Weights"->weights, + "ToolTipTags"->tooltiptagseq, "GetIntervals"->getintervals&&(fitcase==1)]; + +If[fitcase==1, Return[{nsfits,q1fits}]]; + +etaAnsatz = nsfits[[nsfitindex,15]]; +etaCoeffRules = nsfits[[nsfitindex,2]]; +etaCovar = nsfits[[nsfitindex,14]]; +SAnsatz = q1fits[[q1fitindex,15]]; +SCoeffRules = q1fits[[q1fitindex,2]]; +SCovar = q1fits[[q1fitindex,14]]; + +q1fit = q1fits[[q1fitindex,1]]; + +Print["---------------------"]; +Print["Select q=1 Fit with q1fitindex = ", q1fitindex, " -> ", q1fit]; +Print["---------------------"]; + + +Print[Style["{\[Eta],S} Fit",Blue]]; + +nsdegree = Exponent[nsfit,\[Eta],List]; +q1degree = Exponent[q1fit,S,List]; + +ansatz={Flatten[Total@Table[Total@Table[ToExpression["f"<>ToString@i<>ToString@j] *S^j,{j,q1degree}]*\[Eta]^i,{i,nsdegree}]],{\[Eta],S}}; +If[productAnsatz, + ansatz=Collect[nsfit * Flatten[Total@Table[Total@Table[ToExpression["f"<>ToString@i<>ToString@j] * S^j, {j,4}]*\[Eta]^i, {i,4}]], S]; + , + ansatz=Collect[nsfit + Flatten[Total@Table[Total@Table[ToExpression["f"<>ToString@i<>ToString@j] * S^j, {j,4}]*\[Eta]^i, {i,4}]], S]; +]; + +(*If[Length@addgenansatz>0,ansatz=addgenansatz[[1]];];*) +(*ansatzFinal=Table[AnsatzRestrictions[ansatzAll[[i,1]],ansatzAll[[i,2]],ansatzAll[[i,3]]],{i,Length@ansatzAll}];*) + +If[fitcase<=4, + Print["\[InvisibleSpace]using nsfit: ", nsfit]; + Print["\[InvisibleSpace]using q1fit: ", q1fit]; +]; + +If[Length@addgenansatz>0 + , + ansatzFinal=addgenansatz[[1]]; + Print[Style["Selecting ansatz from AddGenAnsatz",Blue]]; + , +If[OptionValue["RationalFunctions"], + +Print[]; + +If[productAnsatz, + q1fitS0 = q1fit/(q1fit/. S-> 0); + , + q1fitS0 = q1fit-(q1fit/. S-> 0); +]; +q1fitS0 = Chop[q1fitS0]/.{1.->1}; + +q1fitS0orderNum = Exponent[Numerator[q1fitS0],S]; +q1fitS0orderDenom = Exponent[Denominator[q1fitS0],S]; +If[twoDSpinAnsatzOrderNum<0, twoDSpinAnsatzOrderNum = q1fitS0orderNum]; +If[twoDSpinAnsatzOrderDenom<0, twoDSpinAnsatzOrderDenom = q1fitS0orderDenom]; +If[(twoDSpinAnsatzOrderNum>q1fitS0orderNum)||(twoDSpinAnsatzOrderDenom>q1fitS0orderDenom), + spinAnsatzNum = Numerator[q1fitS0] + Sum[1.0*S^i,{i,q1fitS0orderNum+1,twoDSpinAnsatzOrderNum}]; + spinAnsatzDenom = Denominator[q1fitS0] + Sum[1.0*S^i,{i,q1fitS0orderDenom+1,twoDSpinAnsatzOrderDenom}]; + spinAnsatzToGeneralize = spinAnsatzNum/spinAnsatzDenom; + , + spinAnsatzToGeneralize = q1fitS0; +]; + +spinAnsatz = GeneralizeFunction[spinAnsatzToGeneralize, "f", \[Eta], productGeneralizeOrderNum, productGeneralizeOrderDenom]; +Print["spinAnsatz before boundary conditions = ", spinAnsatz]; + +(* spinAnsatzRaw = spinAnsatz /. InvertRules[SCoeffRules]; *) +q1AnsatzRaw = q1fits[[q1fitindex,15]]; +If[productAnsatz, + q1AnsatzRawS0 = q1AnsatzRaw/(q1AnsatzRaw/.S->0); + , + q1AnsatzRawS0 = q1AnsatzRaw-(q1AnsatzRaw/.S->0); +]; +q1AnsatzRawS0 = Chop[q1AnsatzRawS0]/.{1.->1}; +If[(twoDSpinAnsatzOrderNum>q1fitS0orderNum)||(twoDSpinAnsatzOrderDenom>q1fitS0orderDenom), + spinAnsatzRawNum = Numerator[q1AnsatzRawS0] + Sum[1.0*S^i,{i,q1fitS0orderNum+1,twoDSpinAnsatzOrderNum}]; + spinAnsatzRawDenom = Denominator[q1AnsatzRawS0] + Sum[1.0*S^i,{i,q1fitS0orderDenom+1,twoDSpinAnsatzOrderDenom}]; + spinAnsatzRawToGeneralize = spinAnsatzRawNum/spinAnsatzRawDenom; + , + spinAnsatzRawToGeneralize = q1AnsatzRawS0; +]; +spinAnsatzRaw = GeneralizeFunction[spinAnsatzRawToGeneralize, "f", \[Eta], productGeneralizeOrderNum, productGeneralizeOrderDenom]; + +numRestrictions = AnsatzRestrictions[Numerator[q1fitS0],Numerator[spinAnsatz],"Parameters"->True]; +denomRestrictions = AnsatzRestrictions[Denominator[q1fitS0],Denominator[spinAnsatz],"Parameters"->True]; + +num = Collect[Numerator[spinAnsatz]/.numRestrictions,{S,\[Eta]}]; +If[productGeneralizeMinPowerNum>0, + zeroRules = Flatten@Table[ToExpression["f"<>ToString@i<>ToString@j]->0,{i,0,Exponent[num,S]},{j,0,productGeneralizeMinPowerNum-1}]; + Print["setting the following coefficients to zero:"]; + Print[zeroRules]; + num = num/.zeroRules; +]; + +denom = Collect[Denominator[spinAnsatz]/.denomRestrictions,{S,\[Eta]}]; +spinpart = num/denom; +Print["spinAnsatz after equal mass boundary conditions = ",spinpart]; + +Print["applying user-set generalAnsatzRules:"]; +Print[generalAnsatzRules]; + +If[productAnsatz, + ansatzFinal = (nsfit * spinpart) /. generalAnsatzRules; + (* \[Eta]0Ansatz =Limit[(spinAnsatz/\[Eta]), \[Eta]\[Rule] 0]//Chop//Simplify; *) + ansatzRaw = nsfit * spinAnsatzRaw; + , + ansatzFinal = (nsfit + spinpart) /. generalAnsatzRules; + (* \[Eta]0Ansatz =Limit[(spinpart/\[Eta]), \[Eta]\[Rule] 0]//Chop//Simplify; *) + ansatzRaw = nsfit + spinAnsatzRaw; +]; + +Print[]; +(* 1 2 3 4 5 6 7 8 9 *) +extraStuff = {ansatzRaw, etaAnsatz, etaCoeffRules, etaCovar, SAnsatz, SCoeffRules, SCovar, numRestrictions, denomRestrictions}; + +, +(* Constrain the ansatz to non spinning and q=1 cases *) +(*ansatzFinal=AnsatzRestrictions[nsfit,q1fit,ansatz] /. generalAnsatzRules;*) +ansatzFinal=AnsatzRestrictions[ nsfit,q1fit,ansatz]; +]; +]; + +Print["\[InvisibleSpace]ansatzFinal: ", ansatzFinal]; +Print[]; + +(* +(* this is redundant and should only differ from 'v2' in uncertainty interval widths *) +If[fitcase\[LessEqual]4, + Print[Style["eqS fit to all "<>ToString@Length@allData<>" data points:",Blue]]; + alldataeqfit = DataFitFunction[allData, {{ansatzFinal,{\[Eta],S}}}, "PlotRange"\[Rule]{{0,0.25},{-1,1},All}, "Domain"\[Rule]{{0,0.25},{-1,1}}, + "Verbose"\[Rule]2, "Weights"\[Rule]weights,"StatisticalTest"\[Rule]statisticaltest, "GetIntervals"\[Rule]getintervals]; +]; +*) +Print[Style["eqS fit to all "<>ToString@Length@allDataUnconstr<>" data points without 1D regions:",Blue]]; +alldataeqfitv2 = DataFitFunction[allDataUnconstr, {{ansatzFinal,{\[Eta],S}}}, "PlotRange"->{{0,0.25},{-1,1},All}, "Domain"->{{0,0.25},{-1,1}}, + "Verbose"->2, "Weights"->weights,"StatisticalTest"->statisticaltest, "GetIntervals"->getintervals]; +(* +(* this is redundant and should only differ from 'v2' in uncertainty interval widths *) +If[fitcase\[LessEqual]4, + Print[Style["eqS fit to "<>ToString@Length@allDataEqS<>" equal-spin data points:",Blue]]; + eqdatafit = DataFitFunction[allDataEqS, {{ansatzFinal,{\[Eta],S}}}, "PlotRange"\[Rule]{{0,0.25},{-1,1},All}, "Domain"\[Rule]{{0,0.25},{-1,1}}, + "Verbose"\[Rule]2, "Weights"\[Rule]weights,"StatisticalTest"\[Rule]statisticaltest, "GetIntervals"\[Rule]getintervals]; +]; +*) +Print[Style["eqS fit to "<>ToString@Length@allDataEqSv2<>" equal-spin data points without 1D regions:",Blue]]; +eqdatafitv2 = DataFitFunction[allDataEqSv2, {{ansatzFinal,{\[Eta],S}}}, "PlotRange"->{{0,0.25},{-1,1},All}, "Domain"->{{0,0.25},{-1,1}}, + "Verbose"->2, "Weights"->weights,"StatisticalTest"->statisticaltest, "GetIntervals"->getintervals]; + +(* 2DeqS 2Dall 3D placeholders 1D2Dparts 1Deta 1DS 2DSansatz *) +If[fitcase<=3, Return[{eqdatafitv2, alldataeqfitv2, {}, {}, {}, {}, extraStuff, nsfits, q1fits, spinpart}];]; + +Print[Style["(fit to allData) - (fit to allDataEqS):",Blue]]; +Print[Plot3D[alldataeqfitv2[[1,1]]-eqdatafitv2[[1,1]],{\[Eta],0,0.25`},{S,-1,1},AxesLabel->{Style["\[Eta]",Black,14],Style["S",Black,14],Style["diff",14]}]]; + +Clear[a0,a1,a2,a3,\[Chi]diff,q]; +(* Fit the spin difference terms *) +Print["----------------"]; +Print[Style["{\[Eta],S,\[Chi]diff}",Blue]]; + +mydq=0.005; +tabfits=Table[ + Print[Style["MassRatio -> ",Blue],q\[Eta][i]]; + my\[Eta]=i; + thisq=q\[Eta][i]; + If[ thisq < 2, + myd\[Eta] = Abs[0.0001+mydq (-2 thisq/(1+thisq)^3 + 1./(1+thisq)^2) ];, + myd\[Eta] = 0.001; + ]; + Print["myd\[Eta] = ", myd\[Eta] ]; + + mysel = Select[data,my\[Eta]-myd\[Eta]<#1[[1]]<my\[Eta]+myd\[Eta]&]; + dataq1 = TakeColumn[mysel,{2,3,4,5}]/. {xx_?NumberQ,yy_,zz_,ww_}->{xx,yy,eqdatafitv2[[1,1]]/. \[Eta]->my\[Eta]/. S->spinparameter[my\[Eta],xx,yy],ww}; + avgwgthperq = Mean[dataq1[[All,-1]]]; + + If[fitcase>=5, + perqVerbosity = 0; (* for higher fit cases, still do the per-q analysis, but suppress the plots *) + , + perqVerbosity = 1; + If[ListQ@tooltiptags, + dataq1pos = Flatten[Position[data,#]&/@mysel]; + tooltiptagsaux = tooltiptags[[dataq1pos]]; + ]; + + If[0.25 -myd\[Eta]<my\[Eta]<0.25 +myd\[Eta], + dataq1Sym = dataq1/. {xx_?NumberQ,yy_,zz_,ww_}->{yy,xx,zz,ww}; + dataq1 = Join[dataq1,dataq1Sym]; + ]; + plot1 = myListPlot3D[dataq1[[All,1;;3]], AxesLabel->{Style["\[Chi]1",14],Style["\[Chi]2",14],""}, PlotRange->{{-1,1},{-1,1},All}, PlotLabel->Style["data(\[Chi]1,\[Chi]2)",14], ImageSize->250]; + + dataq1 = TakeColumn[mysel,{2,3,4,5}]/. {xx_?NumberQ,yy_,zz_,ww_}->{xx,yy,zz-(eqdatafitv2[[1,1]]/. \[Eta]->my\[Eta]/. S->spinparameter[my\[Eta],xx,yy]),ww}; + If[0.25 -myd\[Eta]<my\[Eta]<0.25 +myd\[Eta], + dataq1Sym=dataq1/. {xx_?NumberQ,yy_,zz_,ww_}->{yy,xx,zz,ww}; + dataq1=Join[dataq1,dataq1Sym]; + ]; + plot2 = myListPlot3D[dataq1[[All,1;;3]], AxesLabel->{Style["\[Chi]1",14],Style["\[Chi]2",14],""}, PlotRange->{{-1,1},{-1,1},All}, PlotLabel->Style["data(\[Chi]1,\[Chi]2) - fit(S)",14], ImageSize->250]; + + dataq1 = TakeColumn[mysel,{2,3,4,5}]/. {xx_?NumberQ,yy_,zz_,ww_}->{spinparameter[my\[Eta],xx,yy],xx-yy,zz-(eqdatafitv2[[1,1]]/. \[Eta]->my\[Eta]/. S->spinparameter[my\[Eta],xx,yy]),ww}; + If[0.25 -myd\[Eta]<my\[Eta]<0.25+myd\[Eta], + dataq1Sym=dataq1/. {xx_?NumberQ,yy_,zz_,ww_}->{xx,-yy,zz,ww}; + dataq1=Join[dataq1,dataq1Sym]; + ]; + plot3 = myListPlot3D[dataq1[[All,1;;3]], PlotStyle->Directive[RGBColor[0.880722, 0.611041, 0.142051],Opacity[0.7]], Lighting->{{"Ambient",RGBColor[0.880722, 0.611041, 0.142051]}}, + AxesLabel->{Style["S",14],Style["\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\)",14],""}, PlotRange->{{-1,1},{-2,2},All}, PlotLabel->Style["data(S,\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\)) - fit(S)",14], ImageSize->250]; + ]; + + Clear[a,b,c,\[Chi]1,\[Chi]2,\[Delta]\[Chi]]; + dataq1a= TakeColumn[dataq1,{1,2,3}]; + + dataq1 = TakeColumn[mysel,{2,3,4,5}]/. {xx_?NumberQ,yy_,zz_,ww_}->{spindiffparameter[my\[Eta],xx,yy],zz-(eqdatafitv2[[1,1]]/. \[Eta]->my\[Eta]/. S->spinparameter[my\[Eta],xx,yy]),ww}; + (*dataq1 = TakeColumn[mysel,{2,3,4,5}]/.\[VeryThinSpace]{xx_?NumberQ,yy_,zz_,ww_}\[Rule]{(xx-yy),zz-(eqdatafitv2[[1,1]]/.\[VeryThinSpace]\[Eta]\[Rule]my\[Eta]/.\[VeryThinSpace]S\[Rule]spinparameter[my\[Eta],xx,yy]),ww}*) + + + Print["data dimensionality: ",Length@dataq1]; + If[0.25 -myd\[Eta]<my\[Eta]<0.25+myd\[Eta], + dataq1Sym = dataq1/. {xx_?NumberQ,zz_,ww_}->{-xx,zz,ww}; + dataq1 = Join[dataq1,dataq1Sym]; + If[perqVerbosity>0, tooltiptagsaux = Join[tooltiptagsaux,tooltiptagsaux];]; + Print["data dimensionality (including symmetric duplicates): ",Length@dataq1]; + ]; + + (*dataq1mixterm = TakeColumn[mysel,{2,3,4,5}]/.\[VeryThinSpace]{xx_?NumberQ,yy_,zz_,ww_}\[Rule]{xx-yy,spinparameter[my\[Eta],xx,yy]*(xx-yy),zz-(eqdatafitv2[[1,1]]/.\[VeryThinSpace]\[Eta]\[Rule]my\[Eta]/.\[VeryThinSpace]S\[Rule]spinparameter[my\[Eta],xx,yy]),ww};*) + dataq1mixterm = TakeColumn[mysel,{2,3,4,5}]/. {xx_?NumberQ,yy_,zz_,ww_}->{spindiffparameter[my\[Eta],xx,yy],spinparameter[my\[Eta],xx,yy]*spindiffparameter[my\[Eta],xx,yy],zz-(eqdatafitv2[[1,1]]/. \[Eta]->my\[Eta]/. S->spinparameter[my\[Eta],xx,yy]),ww}; + + myfit = DataFitFunction[dataq1, {{a \[Delta]\[Chi], {\[Delta]\[Chi]}}, {a \[Delta]\[Chi] + b \[Delta]\[Chi]^2,{\[Delta]\[Chi]}}}, "Verbose"->perqVerbosity, "AxesTag"->"Amplitude", + "StatisticalTest"->statisticaltest, "Sorted"->False, "Weights"->weights, "GetIntervals"->False]; + myfitmixterm = DataFitFunction[dataq1mixterm, {{a \[Delta]\[Chi] + c y, {\[Delta]\[Chi],y}}, {a \[Delta]\[Chi] + c y +b \[Delta]\[Chi]^2,{\[Delta]\[Chi],y}}}, "Verbose"->perqVerbosity, "AxesTag"->"Amplitude", + "StatisticalTest"->statisticaltest, "Sorted"->False, "Weights"->weights, "GetIntervals"->False]; + + myfit = Join[myfit,myfitmixterm,{avgwgthperq}]; + (* do NOT show mix-term fits here, as they tend to blow the scale, and are only projected down anyway *) + (* plot4=Show[Plot[{myfit[[1,1]],myfit[[2,1]]},{\[Delta]\[Chi],-0.1,0.1},PlotRange\[Rule]All,ImageSize\[Rule]250, + Frame\[Rule]True,FrameLabel\[Rule]{"Subscript[\[Chi], diff]","\[CapitalDelta](Subscript[\[Chi], diff])"},PlotLegends\[Rule]{"linear","lin+quad"}], + ListPlot[Table[Tooltip[dataq1[[i,1;;2]],If[ListQ@tooltiptags,tooltiptagsaux[[i]],ToString[{dataq1[[i,1]],dataq1[[i,2]]}]]],{i,Length@dataq1}],PlotStyle\[Rule]PointSize[Medium],PlotRange\[Rule]All,Frame->True]]; + *) + + dataq1a= Transpose[{dataq1a[[All,1]],dataq1a[[All,2]],dataq1a[[All,3]]-(myfit[[1,1]]/.\[Delta]\[Chi]->dataq1[[All,1]])}]; + plot3a = myListPlot3D[dataq1a, PlotStyle->Directive[RGBColor[0.880722, 0.611041, 0.142051],Opacity[0.7]], Lighting->{{"Ambient",RGBColor[0.880722, 0.611041, 0.142051]}}, + AxesLabel->{Style["S",14],Style["\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\)",14],""}, PlotRange->{{-1,1},{-2,2},All}, PlotLabel->Style["data(S,\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\)) - (fit(S) + f(\[Eta])\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\))",14], ImageSize->250]; + + If[fitcase==4, + plot4a = ListPlot[Table[Tooltip[dataq1[[i,1;;2]],If[ListQ@tooltiptags,tooltiptagsaux[[i]],ToString[{dataq1[[i,1]],dataq1[[i,2]]}]]],{i,Length@dataq1}], + PlotStyle->PointSize[Medium], PlotRange->{{-2.,2.},All}, PlotLegends->{"NR data"}]; + plot4b = Plot[{myfit[[1,1]],myfit[[2,1]]},{\[Delta]\[Chi],-2.,2.}, PlotLegends->{"linear","lin+quad"}, PlotRange->{{-2.,2.},All}]; + If[0.25 -myd\[Eta]<my\[Eta]<0.25+myd\[Eta], + plot4mirror = ListPlot[Table[{dataq1[[i,1]],dataq1[[i,2]]},{i,Length@dataq1}], PlotStyle->{Gray,PointSize[Medium]}, PlotMarkers->\!\(\* +StyleBox["\"\<\[FilledSquare]\>\"", +StripOnInput->False, +FontSize->8]\), PlotLegends->{"mirror NR data"}]; + plot4 = Show[{plot4b,plot4a}, Frame->True, FrameLabel->{"\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\)","\[CapitalDelta](\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\))"}, ImageSize->250]; + , + plot4 = Show[{plot4b,plot4a}, Frame->True, FrameLabel->{"\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\)","\[CapitalDelta](\!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\))"}, ImageSize->250]; + ]; + Print[{plot1,plot2,plot3,plot3a,plot4}]; + ]; + + myfit, {i,massratiounequalfits}]; (* this line finishes the tabfits list *) + +(*Print[tabfits[[All,-1]]];*) + +Print["-----------"]; +Print[Style["\[Eta] dependence of \!\(\*SubscriptBox[\(\[Chi]\), \(diff\)]\) terms",Blue]]; + +extrawght=Join[tabfits[[All,-1]],{1.}]; + +If[fastanalysis, + +If[Length@addspindifflinansatz>0, + ansatzchidifflinear = addspindifflinansatz[[1,1]]; + , + ansatzchidifflinear = (ToExpression["a10"] \[Eta]^Abs[ToExpression["a11"]] Sqrt[1-4 \[Eta]]^Abs[ToExpression["a12"]] ) /. spindifferencerules; +]; + +If[Length@addspindiffquadansatz>0, + ansatzchidiffquadratic = addspindiffquadansatz[[1,1]]; + , + ansatzchidiffquadratic = ((ToExpression["a20"] \[Eta]^Abs[ToExpression["a21"]] Sqrt[1-4 \[Eta]]^Abs[ToExpression["a22"]] )) /. spindifferencerules; +]; +ansatzFinal\[Delta]\[Chi]2 = (ansatzFinal /. S->spinparameter[\[Eta],\[Chi]1,\[Chi]2]) + ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffquadratic spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]^2; + +If[Length@addspindiffmixansatz>0, + ansatzchidiffmix = addspindiffmixansatz[[1,1]]; + , + ansatzchidiffmix = ((ToExpression["a30"] \[Eta]^Abs[ToExpression["a31"]] Sqrt[1-4 \[Eta]]^Abs[ToExpression["a32"]] )) /. spindifferencerules; +]; + +ansatzS\[Delta]\[Chi]\[Chi]2raw = ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffmix S spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffquadratic spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]^2; (* needed to extract the coefficients later on *) +ansatzFinalS\[Delta]\[Chi]\[Chi]2 = ( ansatzFinal + ansatzS\[Delta]\[Chi]\[Chi]2raw )/.S->spinparameter[\[Eta],\[Chi]1,\[Chi]2]; (* this is the form passed to DataFitFunction[] *) + +Print[Style["full 3D fit to all "<>ToString@Length@dataunconstr<>" data points without 1D regions... (see results at the end after plots)",Blue]]; + +uneqfit2 = DataFitFunction[dataunconstr, {{ansatzFinalS\[Delta]\[Chi]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}}}, + "Verbose"->0, "AxesTag"->"Amplitude", "StatisticalTest"->statisticaltest, "Sorted"->False, "Weights"->weights, "GetIntervals"->getintervals]; + + +Print["Done"]; +Return[{uneqfit2 ,extraStuff, nsfits, q1fits, spinpart}]; + +, + +linearparerr=Flatten@TakeColumn[tabfits,1][[All,9,1]]; +linearparerr=Join[linearparerr,{10^-9}]; +linearpar=Transpose[{Join[massratiounequalfits,{0}],Join[a/.TakeColumn[tabfits,1][[All,2]],{0}],extrawght/linearparerr^2}]; +linearpar[[1]]={0.25,0,extrawght[[1]]/(10^(-9))^2}; +linearparerr[[1]]={10^-9}; + +linearpar2err=Flatten@TakeColumn[tabfits,2][[All,9,1]]; +linearpar2err=Join[linearpar2err,{10^-9}]; +linearpar2=Transpose[{Join[massratiounequalfits,{0}],Join[a/.TakeColumn[tabfits,2][[All,2]],{0}],extrawght/linearpar2err^2}]; +linearpar2[[1]]={0.25,0,extrawght[[1]]/(10^(-9))^2}; +linearpar2err[[1]]={10^-9}; + +quadparerr=Flatten@TakeColumn[tabfits,2][[All,9,2]]; +quadparerr=Join[quadparerr,{10^-9}]; +quadpar=Transpose[{Join[massratiounequalfits,{0}],Join[b/.TakeColumn[tabfits,2][[All,2]],{0}],extrawght/quadparerr^2}]; + +linearpar3err=Flatten@TakeColumn[tabfits,3][[All,9,1]]; +linearpar3err=Join[linearpar3err,{10^-9}]; +linearpar3=Transpose[{Join[massratiounequalfits,{0}],Join[a/.TakeColumn[tabfits,3][[All,2]],{0}],extrawght/linearpar2err^2}]; +linearpar3[[1]]={0.25,0,extrawght[[1]]/(10^(-9))^2}; +linearpar3err[[1]]={10^-9}; + +mixparerr=Flatten@TakeColumn[tabfits,3][[All,9,2]]; +mixparerr=Join[mixparerr,{10^-9}]; +mixpar=Transpose[{Join[massratiounequalfits,{0}],Join[c/.TakeColumn[tabfits,3][[All,2]],{0}],extrawght/mixparerr^2}]; +mixpar[[1]]={0.25,0,extrawght[[1]]/(10^(-9))^2}; +mixparerr[[1]]={10^-9}; + +linearpar4err=Flatten@TakeColumn[tabfits,4][[All,9,1]]; +linearpar4err=Join[linearpar4err,{10^-9}]; +linearpar4=Transpose[{Join[massratiounequalfits,{0}],Join[a/.TakeColumn[tabfits,4][[All,2]],{0}],extrawght/linearpar4err^2}]; +linearpar4[[1]]={0.25,0,extrawght[[1]]/(10^(-9))^2}; +linearpar4err[[1]]={10^-9}; + +mixparerr2=Flatten@TakeColumn[tabfits,4][[All,9,2]]; +mixparerr2=Join[mixparerr2,{10^-9}]; +mixpar2=Transpose[{Join[massratiounequalfits,{0}],Join[c/.TakeColumn[tabfits,4][[All,2]],{0}],extrawght/mixparerr2^2}]; +mixpar2[[1]]={0.25,0,extrawght[[1]]/(10^(-9))^2}; +mixparerr2[[1]]={10^-9}; + +quadparerr2=Flatten@TakeColumn[tabfits,4][[All,9,2]]; +quadparerr2=Join[quadparerr2,{10^-9}]; +quadpar2=Transpose[{Join[massratiounequalfits,{0}],Join[b/.TakeColumn[tabfits,4][[All,2]],{0}],extrawght/quadparerr2^2}]; + +(*ansatz\[Eta]1=a0 \[Eta]^Abs[a1] N[1-4 \[Eta]]^0.7;*) +(*ansatz\[Eta]1=a0 \[Eta]^Abs[a1] N[1-4 \[Eta]]^Abs[a2];*) +(*ansatz\[Eta]1=a0 \[Eta] N[1-4 \[Eta]]^Abs[a2];*) + +If[Length@addspindifflinansatz>0, + ansatzchidifflinear = addspindifflinansatz[[1,1]]; + , + ansatzchidifflinear = (ToExpression["a10"] \[Eta]^Abs[ToExpression["a11"]] Sqrt[1-4 \[Eta]]^Abs[ToExpression["a12"]] ) /. spindifferencerules; +]; +(*ansatzFinal\[Delta]\[Chi]=(ansatzFinal/. S\[Rule] spinparameter[\[Eta],\[Chi]1,\[Chi]2])+ansatzchidifflinear (\[Chi]1-\[Chi]2);*) + + +ansatzFinal\[Delta]\[Chi] = (ansatzFinal /. S->spinparameter[\[Eta],\[Chi]1,\[Chi]2]) + ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]; + +If[Length@addspindiffquadansatz>0, + ansatzchidiffquadratic = addspindiffquadansatz[[1,1]]; + , + ansatzchidiffquadratic = ((ToExpression["a20"] \[Eta]^Abs[ToExpression["a21"]] Sqrt[1-4 \[Eta]]^Abs[ToExpression["a22"]] )) /. spindifferencerules; +]; +ansatzFinal\[Delta]\[Chi]2 = (ansatzFinal /. S->spinparameter[\[Eta],\[Chi]1,\[Chi]2]) + ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffquadratic spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]^2; + +If[Length@addspindiffmixansatz>0, + ansatzchidiffmix = addspindiffmixansatz[[1,1]]; + , + ansatzchidiffmix = ((ToExpression["a30"] \[Eta]^Abs[ToExpression["a31"]] Sqrt[1-4 \[Eta]]^Abs[ToExpression["a32"]] )) /. spindifferencerules; +]; +ansatzS\[Delta]\[Chi]raw = ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffmix S spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]; (* needed to extract the coefficients later on *) +ansatzFinalS\[Delta]\[Chi] = ( ansatzFinal + ansatzS\[Delta]\[Chi]raw ) /. S->spinparameter[\[Eta],\[Chi]1,\[Chi]2]; (* this is the form passed to DataFitFunction[] *) + +ansatzS\[Delta]\[Chi]\[Chi]2raw = ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffmix S spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffquadratic spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]^2; (* needed to extract the coefficients later on *) +ansatzFinalS\[Delta]\[Chi]\[Chi]2 = ( ansatzFinal + ansatzS\[Delta]\[Chi]\[Chi]2raw ) /. S->spinparameter[\[Eta],\[Chi]1,\[Chi]2]; (* this is the form passed to DataFitFunction[] *) + +Print["Fitting ansaetze to per-q slopes, linear only:"]; +linearfit1 = DataFitFunction[linearpar, {{ansatzchidifflinear,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +Print["linear+quadratic:"]; +linearfit2 = DataFitFunction[linearpar2, {{ansatzchidifflinear,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +quadfit = DataFitFunction[quadpar, {{ansatzchidiffquadratic,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +Print["linear+mixture:"]; +linearfit3 = DataFitFunction[linearpar3, {{ansatzchidifflinear,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +mixfit = DataFitFunction[mixpar, {{ansatzchidiffmix,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +Print["linear+mixture+quadratic:"]; +linearfit4 = DataFitFunction[linearpar4, {{ansatzchidifflinear,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +mixfit2 = DataFitFunction[mixpar2, {{ansatzchidiffmix,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; +quadfit2 = DataFitFunction[quadpar2, {{ansatzchidiffquadratic,{\[Eta]}}}, "Verbose"->1, "Weights"->weights]; + +Clear[a10,a11,a12,a20,a21,a22,a30,a31,a32,a1,a2,a0]; + +(*If[Length@addgenansatz>0,ansatz=addgenansatz[[1]];];*) +(*ansatzFinal=Table[AnsatzRestrictions[ansatzAll[[i,1]],ansatzAll[[i,2]],ansatzAll[[i,3]]],{i,Length@ansatzAll}];*) + +(* this will only differ from uneqfit2 in the width of the error bars, not in the results, and is not needed anymore, but let's keep it here commented-out to have it handy for sanity checks *) +(* +Print[Style["full 3D fit to all "<>ToString@Length@data<>" data points...",Blue]]; +uneqfit = DataFitFunction[data, {{ansatzFinal\[Delta]\[Chi],{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinal\[Delta]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinalS\[Delta]\[Chi],{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinalS\[Delta]\[Chi]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}}}, + "Verbose"\[Rule]0, "AxesTag"\[Rule]"Amplitude", "StatisticalTest"\[Rule]statisticaltest, "Sorted"\[Rule]False, "Weights"\[Rule] weights, "GetIntervals"\[Rule]getintervals]; +*) + +Print[Style["full 3D fit to all "<>ToString@Length@dataunconstr<>" data points without 1D regions... (see results at the end after plots)",Blue]]; +uneqfit2 = DataFitFunction[dataunconstr, {{ansatzFinal\[Delta]\[Chi],{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinal\[Delta]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinalS\[Delta]\[Chi],{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinalS\[Delta]\[Chi]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}}}, + "Verbose"->0, "AxesTag"->"Amplitude", "StatisticalTest"->statisticaltest, "Sorted"->False, "Weights"->weights, "GetIntervals"->getintervals]; + + +Print[Style["spin-diff fit to "<>ToString@Length@datauneqs<>" unequal-spin data points...",Blue]]; +uneqfit3 = DataFitFunction[TakeColumn[datauneqs,{1,2,3,4,5}]/. {\[Eta]\[Eta]_,c1_,c2_,res_,ww_}->{\[Eta]\[Eta],c1,c2,res-(eqdatafitv2[[1,1]]/. \[Eta]->\[Eta]\[Eta]/. S->spinparameter[\[Eta]\[Eta],c1,c2]),ww}, + {{ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2], {\[Eta],\[Chi]1,\[Chi]2}}, + {ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffquadratic spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]^2, {\[Eta],\[Chi]1,\[Chi]2}}, + {ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffmix spinparameter[\[Eta],\[Chi]1,\[Chi]2] spindiffparameter[\[Eta],\[Chi]1,\[Chi]2], {\[Eta],\[Chi]1,\[Chi]2}}, + {ansatzchidifflinear spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffmix spinparameter[\[Eta],\[Chi]1,\[Chi]2] spindiffparameter[\[Eta],\[Chi]1,\[Chi]2] + ansatzchidiffquadratic spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]^2, {\[Eta],\[Chi]1,\[Chi]2}}}, + "Verbose"->1, "AxesTag"->"Amplitude", "StatisticalTest"->statisticaltest, "Sorted"->False, "Weights"->weights, "GetIntervals"->getintervals]; + +(* +Print[Style["full 3D fit to "<>ToString@Length@datauneqs<>" unequal-spin data points...",Blue]]; +uneqfit3 = DataFitFunction[datauneqs, {{ansatzFinal\[Delta]\[Chi],{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinal\[Delta]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinalS\[Delta]\[Chi],{\[Eta],\[Chi]1,\[Chi]2}},{ansatzFinalS\[Delta]\[Chi]\[Chi]2,{\[Eta],\[Chi]1,\[Chi]2}}}, + "Verbose"\[Rule]0, "AxesTag"\[Rule]"Amplitude", "StatisticalTest"\[Rule]statisticaltest, "Sorted"\[Rule]False, "Weights"\[Rule] weights, "GetIntervals"\[Rule]getintervals]; +*) + +(* eta-dependence for direct 3D fit over all non-1D data *) +spindiffterm = CoefficientList[uneqfit2[[1,1]]/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +spindiffterm21 = CoefficientList[uneqfit2[[2,1]]/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +spindiffterm22 = CoefficientList[uneqfit2[[2,1]]/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[3]]; +spindiffterm31 = CoefficientList[ansatzS\[Delta]\[Chi]raw/.uneqfit2[[3,2]]/.S->0/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +spindiffterm32 = CoefficientList[ansatzS\[Delta]\[Chi]raw/.uneqfit2[[3,2]]/.S*spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->y,y][[2]]; +spindiffterm41 = CoefficientList[ansatzS\[Delta]\[Chi]\[Chi]2raw/.uneqfit2[[4,2]]/.S->0/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +spindiffterm42 = CoefficientList[ansatzS\[Delta]\[Chi]\[Chi]2raw/.uneqfit2[[4,2]]/.S spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->y,y][[2]]; +spindiffterm43 = CoefficientList[ansatzS\[Delta]\[Chi]\[Chi]2raw/.uneqfit2[[4,2]]/.S->0/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[3]]; + +(* eta-dependence for residuals-only spin-diff fit over all uneqS data *) +dfitspindiffterm = CoefficientList[uneqfit3[[1,1]]/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +dfitspindiffterm21 = CoefficientList[uneqfit3[[2,1]]/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +dfitspindiffterm22 = CoefficientList[uneqfit3[[2,1]]/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[3]]; +dfitspindiffterm31 = CoefficientList[ansatzS\[Delta]\[Chi]raw/.uneqfit3[[3,2]]/.S->0/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +dfitspindiffterm32 = CoefficientList[ansatzS\[Delta]\[Chi]raw/.uneqfit3[[3,2]]/.S*spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->y,y][[2]]; +dfitspindiffterm41 = CoefficientList[ansatzS\[Delta]\[Chi]\[Chi]2raw/.uneqfit3[[4,2]]/.S->0/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[2]]; +dfitspindiffterm42 = CoefficientList[ansatzS\[Delta]\[Chi]\[Chi]2raw/.uneqfit3[[4,2]]/.S spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->y,y][[2]]; +dfitspindiffterm43 = CoefficientList[ansatzS\[Delta]\[Chi]\[Chi]2raw/.uneqfit3[[4,2]]/.S->0/.spindiffparameter[\[Eta],\[Chi]1,\[Chi]2]->\[Chi]diff,\[Chi]diff][[3]]; + +lplot=Show[{Plot[{spindiffterm,dfitspindiffterm,linearfit1[[1,1]]}, {\[Eta],0,0.25}, PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{linearpar[[i,1;;2]], ErrorBar[1/Sqrt[linearpar[[i,-1]]]]}, {i,Length@linearparerr}], PlotStyle->Red], + ErrorListPlot[Table[{linearpar[[i,1;;2]], ErrorBar[linearparerr[[i]]]}, {i,Length@linearparerr}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@linearpar[[All,2]]-0.001,Max@linearpar[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])",14]}, PlotLabel->{"linear fit, \!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])="{ansatzchidifflinear}}]; + +lqplotl=Show[{Plot[{spindiffterm21,dfitspindiffterm21,linearfit2[[1,1]]}, {\[Eta],0,0.25}, PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{linearpar2[[i,1;;2]], ErrorBar[1/Sqrt[linearpar2[[i,-1]]]]}, {i,Length@linearpar2err}], PlotStyle->Red], + ErrorListPlot[Table[{linearpar2[[i,1;;2]], ErrorBar[linearpar2err[[i]]]}, {i,Length@linearpar2err}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@linearpar2[[All,2]]-0.001,Max@linearpar2[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])",14]}, PlotLabel->{"lin+quad fit, lin term, \!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])="{ansatzchidifflinear}}]; + +lqplotq=Show[{Plot[{spindiffterm22,dfitspindiffterm22,quadfit[[1,1]]}, {\[Eta],0,0.25}, PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{quadpar[[i,1;;2]],ErrorBar[1/Sqrt[quadpar[[i,-1]]]]},{i,Length@quadparerr}], PlotStyle->Red], + ErrorListPlot[Table[{quadpar[[i,1;;2]],ErrorBar[quadparerr[[i]]]},{i,Length@quadparerr}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@quadpar[[All,2]]-0.001,Max@quadpar[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(b\)]\)(\[Eta])",14]}, PlotLabel->{"lin+quad fit, quad term, \!\(\*SubscriptBox[\(f\), \(b\)]\)(\[Eta])="{ansatzchidiffquadratic}}]; + +lmplotl=Show[{Plot[{spindiffterm31,dfitspindiffterm31,linearfit3[[1,1]]},{\[Eta],0,0.25},PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{linearpar3[[i,1;;2]],ErrorBar[1/Sqrt[linearpar3[[i,-1]]]]},{i,Length@linearpar3err}], PlotStyle->Red], + ErrorListPlot[Table[{linearpar3[[i,1;;2]],ErrorBar[linearpar3err[[i]]]},{i,Length@linearpar3err}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@linearpar3[[All,2]]-0.001,Max@linearpar3[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])",14]}, PlotLabel->{"lin+mix fit, lin term, \!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])="{ansatzchidifflinear}}]; + +lmplotm=Show[{Plot[{spindiffterm32,dfitspindiffterm32,mixfit[[1,1]]},{\[Eta],0,0.25},PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{mixpar[[i,1;;2]],ErrorBar[1/Sqrt[mixpar[[i,-1]]]]},{i,Length@mixparerr}], PlotStyle->Red], + ErrorListPlot[Table[{mixpar[[i,1;;2]],ErrorBar[mixparerr[[i]]]},{i,Length@mixparerr}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@mixpar[[All,2]]-0.001,Max@mixpar[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(c\)]\)(\[Eta])",14]}, PlotLabel->{"lin+mix fit, mix term, \!\(\*SubscriptBox[\(f\), \(c\)]\)(\[Eta])="{ansatzchidiffmix}}]; + + +lmqplotl=Show[{Plot[{spindiffterm41,dfitspindiffterm41,linearfit4[[1,1]]},{\[Eta],0,0.25},PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{linearpar4[[i,1;;2]],ErrorBar[1/Sqrt[linearpar4[[i,-1]]]]},{i,Length@linearpar4err}], PlotStyle->Red], + ErrorListPlot[Table[{linearpar4[[i,1;;2]],ErrorBar[linearpar4err[[i]]]},{i,Length@linearpar4err}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@linearpar4[[All,2]]-0.001,Max@linearpar4[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])",14]}, PlotLabel->{"lin+mix+quad fit, lin term, \!\(\*SubscriptBox[\(f\), \(a\)]\)(\[Eta])="{ansatzchidifflinear}}]; + +lmqplotq=Show[{Plot[{spindiffterm43,dfitspindiffterm43,quadfit2[[1,1]]},{\[Eta],0,0.25},PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{quadpar2[[i,1;;2]],ErrorBar[1/Sqrt[quadpar2[[i,-1]]]]},{i,Length@quadparerr2}], PlotStyle->Red], + ErrorListPlot[Table[{quadpar2[[i,1;;2]],ErrorBar[quadparerr2[[i]]]},{i,Length@quadparerr2}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@quadpar2[[All,2]]-0.001,Max@quadpar2[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(b\)]\)(\[Eta])",14]}, PlotLabel->{"lin+mix+quad fit, quad term, \!\(\*SubscriptBox[\(f\), \(b\)]\)(\[Eta])="{ansatzchidiffquadratic}}]; + +lmqplotm=Show[{Plot[{spindiffterm42,dfitspindiffterm42,mixfit2[[1,1]]},{\[Eta],0,0.25},PlotLegends->{"direct 3D fit","fit to residuals","per-q res. fits"}, PlotStyle->{{Orange},{Magenta,Dotted},{Blue,Dashed}}], + ErrorListPlot[Table[{mixpar2[[i,1;;2]],ErrorBar[1/Sqrt[mixpar2[[i,-1]]]]},{i,Length@mixparerr2}], PlotStyle->Red], + ErrorListPlot[Table[{mixpar2[[i,1;;2]],ErrorBar[mixparerr2[[i]]]},{i,Length@mixparerr2}], PlotLegends->{"per-q fit results"}]}, + PlotRange->{{0,0.25},{Min@mixpar2[[All,2]]-0.001,Max@mixpar2[[All,2]]+0.001}}, ImageSize->330, Frame->True, FrameLabel->{Style["\[Eta]",14],Style["\!\(\*SubscriptBox[\(f\), \(c\)]\)(\[Eta])",14]}, PlotLabel->{"lin+mix+quad fit, mix term, \!\(\*SubscriptBox[\(f\), \(c\)]\)(\[Eta])="{ansatzchidifflinear}}]; + +Print[{lplot,lqplotl}] +Print[{lmplotl,lmqplotl}]; +Print[{lqplotq,lmqplotq,Show[lmqplotq,PlotRange->{{0.0,0.25},Automatic}]}]; +Print[{lmplotm,lmqplotm,Show[lmqplotm,PlotRange->{{0.0,0.25},Automatic}]}]; + +(* rewrite fit and ansatz output in terms of (\[Eta],S.\[Chi]1,\[Chi]2) and not as the expanded (\[Eta],\[Chi]1,\[Chi]2) version processed by DataFitFunction *) +uneqfit2[[1,1]] = ( ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) )/.uneqfit2[[1,2]]; +uneqfit2[[1,15]] = ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2); +uneqfit2[[2,1]] = ( ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) + ansatzchidiffquadratic (\[Chi]1-\[Chi]2)^2 )/.uneqfit2[[2,2]]; +uneqfit2[[2,15]] = ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) + ansatzchidiffquadratic (\[Chi]1-\[Chi]2)^2; +uneqfit2[[3,1]] = ( ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) + ansatzchidiffmix S (\[Chi]1-\[Chi]2) )/.uneqfit2[[3,2]]; +uneqfit2[[3,15]] = ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) + ansatzchidiffmix S (\[Chi]1-\[Chi]2); +uneqfit2[[4,1]] = ( ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) + ansatzchidiffmix S (\[Chi]1-\[Chi]2) + ansatzchidiffquadratic (\[Chi]1-\[Chi]2)^2 )/.uneqfit2[[4,2]]; +uneqfit2[[4,15]] = ansatzFinal + ansatzchidifflinear (\[Chi]1-\[Chi]2) + ansatzchidiffmix S (\[Chi]1-\[Chi]2) + ansatzchidiffquadratic (\[Chi]1-\[Chi]2)^2; + +Print[Style["total fit (linear in spindiff) to all data:",Blue]]; +Print[uneqfit2[[1,1;;8]]]; +Print[Style["total fit (linear+ quadratic in spindiff) to all data:",Blue]]; +Print[uneqfit2[[2,1;;8]]]; +Print[Style["total fit (linear in spindiff + spineff*spindiff) to all data:",Blue]]; +Print[uneqfit2[[3,1;;8]]]; +Print[Style["total fit (linear+quadratic in spindiff + spineff*spindiff) to all data:",Blue]]; +Print[uneqfit2[[4,1;;8]]]; + +Print[Style["----------------", Blue]]; +(* 2DeqS 2Dall 3Dlin 3Dlinquad 3Dlinmix 3Dlinquadmix 1D2Dparts 1Deta 1DS 2DSansatz *) +Return[{eqdatafitv2, alldataeqfitv2, uneqfit2[[1;;1]], uneqfit2[[2;;2]], uneqfit2[[3;;3]], uneqfit2[[4;;4]], extraStuff, nsfits, q1fits, spinpart}];]; +] + + +AnsatzRestrictions[q1fit_,ansatzGen_,var_,varval_,OptionsPattern[{"Parameters"->False}]]:=Module[{ansatz,nsdegree,q1degree,expans,coeffs1,coeffs2,q1var,coeff\[Eta],expns,coeffS,sys, +coeffs,solveVars,solNS,ansatzS,solq1,ansatzFinal,parameters}, + +parameters=OptionValue["Parameters"]; + +ansatz=ansatzGen; +q1var=Variables[q1fit][[1]]; + +expans= Exponent[ansatz,q1var]; +expns = Exponent[q1fit, q1var]; + +coeffs1= CoefficientList[Collect[ansatz,S],q1var]; +solveVars= CoefficientList[#,var]&/@ coeffs1; +solveVars = Last/@\[NonBreakingSpace]Select[solveVars, Length@# > 0 &]; + +solveVars =Select[AtomsList[solveVars],!NumberQ[#1]&]; +Print["solveVars: ", solveVars]; + +Print["q1fit: ", q1fit]; +coeffs1=Select[CoefficientList[Collect[ansatz,S],q1var]/. var->varval,Not@NumberQ@#&]; +coeffs2 = Drop[CoefficientList[q1fit,q1var],1]; (* this won't always work *) + +(* +Print["coeffs1: ", coeffs1]; +Print["coeffs2: ", coeffs2]; +*) +sys=Table[coeffs1[[i]]==coeffs2[[i]],{i,Min[Length@coeffs1,Length@coeffs2]}]; +(* +Print["sys: ",sys]; +*) + +coeffs=Drop[Select[AtomsList[ansatz/.var-> varval],!NumberQ[#1]&],-1]; +(* +Print["coeffs:", coeffs[[1;;Min[expans+1,expns+1]]]]; +*) +solq1=Simplify@First[Solve[sys,solveVars]]; +ansatzFinal=ansatz/. solq1; + +Print["Applying q=1 restriction : ",solq1 ]; +(*Print["Applying q=1 restriction : ",solq1//TableForm ];*) + +If[parameters,solq1,ansatzFinal] +]; + + +AnsatzRestrictions[q1fit_,ansatzGen_,OptionsPattern[{"Parameters"->False}]]:=Module[{ansatz,nsdegree,q1degree,expans,coeffs1,coeffs2,q1var,coeff\[Eta],expns,coeffS,sys,coeffs,solveVars, +solNS,ansatzS,solq1,ansatzFinal,parameters}, + +parameters=OptionValue["Parameters"]; + +ansatz=ansatzGen; +q1var=Variables[q1fit][[1]]; + +expans= Exponent[ansatz,q1var]; +expns = Exponent[q1fit, q1var]; + +coeffs1= CoefficientList[Collect[ansatz,S],q1var]; +solveVars= CoefficientList[#,\[Eta]]&/@ coeffs1; +solveVars = Last/@\[NonBreakingSpace]Select[solveVars, Length@# > 0 &]; + +solveVars =Select[AtomsList[solveVars],!NumberQ[#1]&]; +Print["solveVars: ", solveVars]; + +Print["q1fit: ", q1fit]; + +coeffs1 = Select[CoefficientList[Collect[ansatz,S],q1var],Not@NumberQ@#&]/. \[Eta]->0.25; +(* coeffs2 = Take[CoefficientList[q1fit,q1var],-Length@coeffs1] (* won't always work *); *) +coeffs2 = Coefficient[q1fit,q1var^Sort@Select[Exponent[MonomialList[ansatz,q1var],q1var],#>0& ] ]; (* this should work more generally, unless maybe for non-exact S-independent constant coefficients...? *) +Print["coeffs1: ", coeffs1]; +Print["coeffs2: ", coeffs2]; + +sys=Table[coeffs1[[i]]==coeffs2[[i]],{i,Min[Length@coeffs1,Length@coeffs2]}]; + +Print["sys: ",sys]; + + +coeffs=Drop[Select[AtomsList[ansatz/. \[Eta]->0.25],!NumberQ[#1]&],-1]; +(* +Print["coeffs:", coeffs[[1;;Min[expans+1,expns+1]]]]; +*) +solq1=Simplify@First[Solve[sys,solveVars]]; +ansatzFinal=ansatz/. solq1; + +Print["Applying q=1 restriction : ",solq1//TableForm ]; + +If[parameters,solq1,ansatzFinal] +]; + + +AnsatzRestrictions[nsfit_,q1fit_,ansatzGen_,OptionsPattern[{"Parameters"->False}]]:=Module[{ansatz,nsdegree,q1degree,expans,expns,nsvar,q1var,coeff\[Eta],coeffS,sys,coeffs,solNS,ansatzS, +solq1,ansatzFinal,parameters}, + +parameters=OptionValue["Parameters"]; + +ansatz=ansatzGen; +nsvar=Variables[nsfit][[1]]; +q1var=Variables[q1fit][[1]]; + +Print["nsvar: ", nsvar]; +Print["q1var: ", q1var]; + +expans= Exponent[ansatz,nsvar]; +expns = Exponent[nsfit, nsvar]; + +Print["expans: ", expans]; +Print["expns: ", expns]; + +sys=Table[CoefficientList[Collect[ansatz/. q1var->0,nsvar],nsvar][[i]]==CoefficientList[nsfit,nsvar][[i]],{i,Min[expans+1,expns+1]}]; + +Print["sys: ",sys]; + +If[Length@Select[sys,Not@TrueQ]==0, + ansatzS=ansatz, + Print[Style["Something is wrong with the restrictions",Red]] +]; + +Print["Applying non-spinning restriction : ", ansatz//TableForm ]; + +expans= Exponent[ansatz,q1var]; +expns = Exponent[q1fit, q1var]; + +Print["expans: ", expans]; +Print["expns: ", expns]; + + +sys=Table[CoefficientList[Collect[ansatzS/. nsvar->0.25,S],q1var][[i]]==CoefficientList[q1fit,q1var][[i]],{i,Min[expans+1,expns+1]}]; + +Print["sys: ",sys]; + + +coeffs=Drop[Select[AtomsList[ansatzS/. nsvar->0.25],!NumberQ[#1]&],-1]; + + +Print["coeffs: ",coeffs]; + +solq1=First[Solve[sys,coeffs[[1;;Min[expans+1,expns+1]]]]]; +ansatzFinal=ansatzS/. solq1; + +Print["Applying q=1 restriction : ",solq1//TableForm ]; + +If[parameters,solq1,ansatzFinal] +]; + + +Plot2DFits[data_?ListQ,fitlist_?ListQ,fitvars_?ListQ,OptionsPattern[{"PlotRange"->Automatic,"ShowLegend"->True,"zLabel"->"","ToolTipTags"->"","Outliers"->0.005}]]:=Module[{myfitlist,fitdata,myresidual,styles,plotrange,pos,myvar1,myvar2, +myminvar1,mymaxvar2,mymaxvar1,myminvar2,myfitlistfunc,plot1,plot2,plot3,plottab,showlegend,zlabel,tooltiptags,myresidualhist,posoutliers,outliers,mylegend}, + +plotrange=OptionValue["PlotRange"]; +showlegend=OptionValue["ShowLegend"]; +zlabel=OptionValue["zLabel"]; +tooltiptags=OptionValue["ToolTipTags"]; +outliers=OptionValue["Outliers"]; + +myfitlist=Flatten[TakeColumn[#,1]&/@fitlist,1]; + +myvar1=Evaluate@Symbol@ToString@fitvars[[1]]; +myvar2=Evaluate@Symbol@ToString@fitvars[[2]]; + +If[ListQ@plotrange, +myminvar1=plotrange[[1,1]]; +mymaxvar1=plotrange[[1,2]]; +myminvar2=plotrange[[2,1]]; +mymaxvar2=plotrange[[2,2]]; +, +myminvar1=Min[data[[All,1]]]; +mymaxvar1=Max[data[[All,1]]]; +myminvar2=Min[data[[All,2]]]; +mymaxvar2=Max[data[[All,2]]]; +]; + +myfitlist=(#/.myvar1->x/.myvar2->y)&/@myfitlist; + +Print[Length[data]," data points, variables plotted -> ",{myvar1, myvar2}]; +If[showlegend, + +mylegend=(myfitlist/.x->myvar1/.y->myvar2); +Print[plot1=Show[{Plot3D[myfitlist,{x,myminvar1,mymaxvar1},{y,myminvar2,mymaxvar2},PlotStyle->Drop[ColorData[3,"ColorList"],1],PlotLabel->Style[ToString[zlabel],14,Black],PlotLegends->mylegend,Lighting->Automatic,PlotRange->plotrange, +AxesLabel->{Style[ToString@myvar1,14,Black],Style[ToString@myvar2,14,Black],""}],ListPointPlot3D[data,PlotStyle->PointSize[0.025]]}]], +Print[plot1=Show[{Plot3D[myfitlist,{x,myminvar1,mymaxvar1},{y,myminvar2,mymaxvar2},PlotStyle->Drop[ColorData[3,"ColorList"],1],PlotLabel->Style[ToString[zlabel],14,Black],Lighting->Automatic,PlotRange->plotrange, +AxesLabel->{Style[ToString@myvar1,14,Black],Style[ToString@myvar2,14,Black],""}],ListPointPlot3D[data,PlotStyle->PointSize[0.025]]}]] +]; + +plottab=Table[ +Print[myfitlist[[j]]/.x->myvar1/.y->myvar2]; + +fitdata=Transpose[{data[[All,1]],data[[All,2]],Table[myfitlist[[j]]/.x->data[[i,1]]/.y->data[[i,2]],{i,Length@data}]}]; +myresidual=Transpose[{data[[All,1]],data[[All,2]],fitdata[[All,3]]-data[[All,3]]}]; +myresidualhist=myresidual[[All,3]]/fitdata[[All,3]]; + + +Print[{plot2=Show[ListPointPlot3D[data,PlotStyle->PointSize[0.025],PlotRange->All], + Plot3D[myfitlist[[j]],{x,myminvar1,mymaxvar1},{y,myminvar2,mymaxvar2},PlotLabel->Style[ToString[zlabel],14,Black], + AxesLabel->{Style[ToString@myvar1,14,Black],Style[ToString@myvar2,14,Black],""},ImageSize->350, + PlotStyle->Drop[ColorData[3,"ColorList"],1][[j]],Lighting->Automatic,PlotRange->plotrange],AxesLabel->{Style[ToString@myvar1,14,Black], + Style[ToString@myvar2,14,Black],""}], + plot3=myListPlot3D[myresidual,PlotLabel->Style[ToString["residual"],14,Black],PlotRange->plotrange,ImageSize->350,AxesLabel->{Style[ToString@myvar1,14,Black], + Style[ToString@myvar2,14,Black],""},PlotStyle->Drop[ColorData[3,"ColorList"],1][[j]]], + If[Length@fitlist[[j,1]]==1,"No stats. available",fitlist[[j,1,3]]],Show[Histogram[myresidualhist,100],Frame->True,FrameLabel -> {"1-data/fit", "#"}], + ListPlot[Table[Tooltip[myresidualhist[[i]],If[ListQ@tooltiptags,tooltiptags[[i]],ToString[{data[[i,1]],data[[i,2]]}]]],{i,Length@myresidualhist}],PlotRange->All,Frame->True,FrameLabel -> {"#","1-data/fit"}], + Sqrt@Mean[myresidual[[All,3]]^2], + Select[(Reverse@SortBy[Transpose[{Abs@myresidualhist,If[ListQ@tooltiptags,tooltiptags,data[[All,1;;2]]]}],First]),#[[1]]>outliers&][[All,2]]//TableForm + }]; + +{plot2,plot3} + +,{j,Length@myfitlist}]; +Return[{plot1,plottab}] +] + + +(* ::Code::Initialization:: *) +End[]; +EndPackage[]; diff --git a/code/GRTensor.m b/code/GRTensor.m new file mode 100644 index 0000000000000000000000000000000000000000..44c78cc0d76a36adc28fdd5aa946ab392c3e0c7f --- /dev/null +++ b/code/GRTensor.m @@ -0,0 +1,1334 @@ +(* ::Package:: *) + +(************************************************************************) +(* This file was generated automatically by the Mathematica front end. *) +(* It contains Initialization cells from a Notebook file, which *) +(* typically will have the same name as this file except ending in *) +(* ".nb" instead of ".m". *) +(* *) +(* This file is intended to be loaded into the Mathematica kernel using *) +(* the package loading commands Get or Needs. Doing so is equivalent *) +(* to using the Evaluate Initialization Cells menu command in the front *) +(* end. *) +(* *) +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) +(* automatically each time the parent Notebook file is saved in the *) +(* Mathematica front end. Any changes you make to this file will be *) +(* overwritten. *) +(************************************************************************) + + + + +(* Probably not all the extra packages are really needed *) +BeginPackage["GRTensor`"]; + + +MetDet::usage="MetDet[g_]. Compute the determinant of the metric"; +InverseMetric::usage="InverseMetric[g_]. Compute the inverse of the metric"; + + +ChristoffelSymbol::usage="ChristoffelSymbol[coords_,g_,pert_:0]. Compute Christoffel symbols. Default for perturbation variabel pert is 0."; +WeylTensor::usage="WeylTensor[coords_,g_,pert_:0]. Compute Weyl tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1. Default for perturbation variabel pert is 0. "; +RiemannTensor::usage="RiemannTensor[coords_,g_,pert_:0]. Compute Riemann tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 .Default for perturbation variabel pert is 0. "; +RicciTensor::usage="RicciTensor[coords_,g_,pert_:0]. Compute Riemann tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1. Default for perturbation variabel pert is 0. "; +RicciScalar::usage="RicciScalar[coords_,g_,pert_:0]. Compute RicciScalar scalar. Default for perturbation variabel pert is 0. "; +KrScalar::usage="KrScalar[coords_,g_]. Compute Kretschmann scalar"; +WeylTrace::usage"WeylTrace[coords_,g_]: Compute Weyl Tensor trace"; +Einstein::usage="Einstein[coords_,g_,\[Epsilon]p:]. Compute Einstein tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 with perturbation index \[Epsilon]p"; +ETensor::usage="ETensor[coords_,g_,\[Epsilon]p_]. Compute the energy momentum tensor with perturbation index \[Epsilon]p."; + + +DAlembert::usage="DAlembert[coords_,g_,func_]. Compute D'Alembert operator for func[coords]"; +CovDer::usage="CovDer[coords_,metric_,tensor_,comps_]. Compute the covariant derivative (default covariant version) for scalar and 1-2 forms. The components are given in a list as: {a},{a,b},{a,b,c}"; +NonZeroChristoffel::usage="NonZeroChristoffel[\[CapitalGamma]]. Show the nonzero Christoffel components."; +NonZeroMetricComp::usage="NonZeroMetricComp[g]. Show the nonzero metric components."; +NonZeroTensorComp::usage="NonZeroTensorComp[T]. Show the nonzero Tensor components. It works with any symmetric m xmxmxmx... tensor"; +LeviCivitaTensorCurv::usage="LeviCivitaTensorCurv[coords_,g_]. Compute the Levi-Civita antisymmetric tensor for curvilinear coordinates. For cartesian xx recovers the usual \[Epsilon]_(abc)."; +CheckTetrad::usage="[gab_,nullv_]. Check whether the 4 null tetrad vectors satisfy orthonormality conditions."; + + +EinsteinfR::usage="EinsteinfR[coords_,g_,fR_]. Compute fR Einstein equations following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 "; +EinsteinST::usage="EinsteinST[coords_,g_,v\[Phi]_]. Compute scalar-tensor Einstein equations following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 "; +STensorT\[Psi]::usage="STensorT\[Psi][coords_,g_,v\[Phi]_]. Compute scalar-tensor Energy momentum tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 "; +TeffFR::usage="TeffFR[coords_,g_,fR_]. Compute fR Teff tensor such Gab=8\[Pi]/f'[R](Tab + Teff) following the convention of Misner et al., that is, [S2] = 1, [S3] = 1"; +TeffST::usage="TeffST[coords_,g_,{V\[CurlyPhi],\[CurlyPhi]}]. Compute ST-EF/JF Teff tensor such Gab=8\[Pi] (Tab + Teff) following the convention of Misner et al., that is, [S2] = 1, [S3] = 1. Allowed options for the Frame are Einstein, Jordan"; +FRTOV::usage="FRTOV[coords_,g_,fR_,vars_]. Compute fR TOV eqs such Gab=8\[Pi]/f'[R](Tab + Teff) following the convention of Misner et al., that is, [S2] = 1, [S3] = 1"; +STTOV::usage="STTOV[coords_,g_,{V\[CurlyPhi]_,var\[CurlyPhi]_},vars_]. Compute ST-EF/JF TOV eqs such Gab=8\[Pi](Tab + Teff) following the convention of Misner et al., that is, [S2] = 1, [S3] = 1"; +fR2Pot::usage="fR2UJF[fR_]. From fR model to the ST potential U(\[Phi])-V(\[Phi])"; +CurlCurvilinear::usage"CurlCurvilinear[xx,g,vec]. It computes the curl tensor in curvilinear coordinates"; +ElectricTensor3p1Dev::usage="ElectricTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]"; +MagneticTensor3p1Dev::usage="MagneticTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]" + + +EoSCallParsBSks::usage="EoSCallParsBSks[model_]: Parameters for BSK1-3 EOS for the matter density."; +EoSCallParsSly::usage="EoSCallParsSly[model_]: Parameters for SLy1 EOS for the matter density."; +EoSBSks::usage="EoSBSks[model_]: Analytic EOS for BSK1-3for BSK1-3 EOS for the matter density."; +EoSSly::usage="EoSSly[model_]: Analytic EOS for SLy1 EOS for the matter density."; +SlyInner::usage=""; +SlyLCore::usage=""; +SlyLCoreAll::usage=""; +SlyInnerAll::usage=""; +EoSFitsPars::usage="EoSFitsPars[model_,verbose_:False]. Parameters for the JRead(arxiv:0812.2163) parameters."; +EoSSlyCrust::usage="EoSSlyCrust[\[Rho]_]. Crust model for the NS of JRead(arxiv:0812.2163)"; +EoSFits::usage="EoSFits[model_,OptionsPattern[]]. NS EOS of JRead(arxiv:0812.2163)"; +EoSPol::usage="EoSPol[model_]. NS EOS for a non-relativistic (NR) and relativistic (R, default) NS respectively"; +EoSPol\[Epsilon]::usage="EoSPol\[Epsilon][model_]. NS EOS for a non-relativistic (NR) and relativistic (R, default) NS respectively"; +From\[Rho]To\[Epsilon]Fits::usage"From\[Rho]To\[Epsilon]Fits[eos_]. NS EOS of JRead(arxiv:0812.2163) for the energy density."; + + +ShootingNStars::usage="ShootingNStars[eqs_,eqsRg_,rvar_,vars_,shtdInd_,varshtdRg_]. Shooting function of the index var shtdInd for a set of eqs integrated in eqsRg on the variables vars ;"; +BracketingSTNStars::usage="BracketingSTNStars[eqs_,eqsRg_,rvar_,vars_,shtdInd_,varshtdRg_]. Shooting function of the index var shtdInd for a set of eqs integrated in eqsRg on the variables vars ;"; + + +RK4::usage="RK4[func_?ListQ,vars_?ListQ,ivals_?ListQ,pars_?ListQ,step_]"; +TestCode::usage"TestCode[eqs_,vars_,icond_,rlst_,drlst_]"; + + +AtomsList::usage="Take the coefficients out"; +InterpolationDomain::usage="InterpolationDomain[interpolatedfunction]. It outputs the domain in a format {tmin,tmax}"; +TakeColumn::usage="TakeColumn[list1_,list2_] extracts columns list2 from list1, i.e. it gives the functionality of the pre-Mathematica 6 Column function."; + + +(* All here below are dev. versions. Replace them when they are sufficiently tested. *) +ChristoffelSymbolDev::usage="ChristoffelSymbolDev[coords_,g_,pert_:0]. Compute Christoffel symbols. Default for perturbation variabel pert is 0." +RiemannTensorDev::usage="RiemannTensor[coords_,g_,pert_:0]. Compute Riemann tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 .Default for perturbation variabel pert is 0. " +RicciTensorDev::usage="RicciTensorDev[coords_,g_,pert_:0]. Compute Riemann tensor following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 .Default for perturbation variabel pert is 0. "; + + +Begin["`Private`"]; + + +Options[MetDet]={"PerturbationIndex"->1,"SimplifyFunction"->Identity}; +MetDet[g_,OptionsPattern[]]:=Block[{simpl},simpl=OptionValue["SimplifyFunction"]; simpl@Det[g]]; + +Options[InverseMetric]={"PerturbationIndex"->1,"SimplifyFunction"->Identity}; +InverseMetric[g_,OptionsPattern[]]:=Block[{simpl},simpl=OptionValue["SimplifyFunction"]; simpl@Inverse[g]] + + +Options[ChristoffelSymbol]={"Verbose"->False,"PerturbationIndex"->1,"SimplifyFunction"->Identity}; +ChristoffelSymbol[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{n,ig,res,perti,simpl,verbose}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +verbose=OptionValue["Verbose"]; + +n=Length@xx; +ig=InverseMetric[g]; +res=Table[(1/2)*If[NumericQ[pert],Sum[ig[[i,s]]*(-D[g[[j,k]],xx[[s]]]+D[g[[j,s]],xx[[k]]]+D[g[[s,k]],xx[[j]]]),{s,1,n}], + Normal@Series[Sum[ig[[i,s]]*(-D[g[[j,k]],xx[[s]]]+D[g[[j,s]],xx[[k]]]+D[g[[s,k]],xx[[j]]]),{s,1,n}],{pert,0,perti}]],{i,1,n},{j,1,n},{k,1,n}]; +simpl@res] + +Options[RiemannTensor]=Options[ChristoffelSymbol]; +RiemannTensor[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{n,Chr,res,perti,simpl,verbose}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +verbose=OptionValue["Verbose"]; + +n=Length@xx; +If[verbose,Print["Starting with Christoffel symbols..."]]; +Chr=ChristoffelSymbol[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +If[verbose,Print["Christoffel symbols computed. Starting with Riemann..."]]; +res=Table[If[NumericQ[pert],D[Chr[[i,k,m]],xx[[l]]]-D[Chr[[i,k,l]],xx[[m]]]+Sum[Chr[[i,s,l]]*Chr[[s,k,m]],{s,1,n}]-Sum[Chr[[i,s,m]]*Chr[[s,k,l]],{s,1,n}], + Normal@Series[D[Chr[[i,k,m]],xx[[l]]]-D[Chr[[i,k,l]],xx[[m]]]+Sum[Chr[[i,s,l]]*Chr[[s,k,m]],{s,1,n}]-Sum[Chr[[i,s,m]]*Chr[[s,k,l]],{s,1,n}],{pert,0,perti}]],{i,1,n},{k,1,n},{l,1,n},{m,1,n}]; +If[verbose,Print["...Riemann computed"]]; +simpl@res]; + +Options[WeylTensor]=Options[ChristoffelSymbol]; +WeylTensor[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{n,Chr,riemann,riemanndown,ricciS,ricciT,res,perti,simpl,verbose}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +verbose=OptionValue["Verbose"]; +n=Length@xx; + +If[verbose,Print["Starting with RicciScalar..."]]; +ricciS=RicciScalar[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +If[verbose,Print["Following with RicciTensor..."]]; +ricciT=RicciTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +If[verbose,Print["Following with Riemann..."]]; +riemann=RiemannTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +riemanndown=Table[Sum[g[[a,\[Alpha]]]riemann[[\[Alpha],b,c,d]],{\[Alpha],4}],{a,n},{b,n},{c,n},{d,n}]; + +res=Table[If[NumericQ[pert],riemanndown[[i,k,l,m]]+1/(n-2)(ricciT[[i,m]]g[[k,l]]-ricciT[[i,l]]g[[k,m]]+ricciT[[k,l]]g[[i,m]]-ricciT[[k,m]]g[[i,l]])+1/((n-1)(n-2))ricciS(g[[i,l]]g[[k,m]]-g[[i,m]]g[[k,l]]), + Normal@Series[riemanndown[[i,k,l,m]]+1/(n-2)(ricciT[[i,m]]g[[k,l]]-ricciT[[i,l]]g[[k,m]]+ricciT[[k,l]]g[[i,m]]-ricciT[[k,m]]g[[i,l]])+1/((n-1)(n-2))ricciS(g[[i,l]]g[[k,m]]-g[[i,m]]g[[k,l]]),{pert,0,perti}]],{i,1,n},{k,1,n},{l,1,n},{m,1,n}]; +(*Simplify[res]*) +simpl@res]; + + +Options[RicciTensor]=Options[ChristoffelSymbol]; +RicciTensor[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{Rie,res,n,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; + +n=Length@xx; +Rie=RiemannTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +res=Table[If[NumericQ[pert],Sum[Rie[[s,i,s,j]],{s,1,n}], + Normal@Series[Sum[Rie[[s,i,s,j]],{s,1,n}],{pert,0,perti}]],{i,1,n},{j,1,n}]; +(*Simplify[res]*) +simpl@res] + +Options[RicciScalar]=Options[ChristoffelSymbol]; +RicciScalar[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{Ricc,ig,res,n,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +n=Length@xx; + +Ricc=RicciTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +ig=InverseMetric[g,"SimplifyFunction"->simpl]; +res=If[NumericQ[pert],Sum[ig[[s,i]] Ricc[[s,i]],{s,1,n},{i,1,n}], + Normal@Series[Sum[ig[[s,i]] Ricc[[s,i]],{s,1,n},{i,1,n}],{pert,0,perti}]]; +simpl@res] + +Options[KrScalar]=Options[ChristoffelSymbol]; +KrScalar[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{Rie,res,n,Ried,Rieup,gup,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +n=Length@xx; + +Rie=RiemannTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +gup=Inverse@g; +Ried=Table[Sum[g[[i,k]] Rie[[i,j,m,l]],{i,1,n}],{k,1,n},{j,1,n},{m,1,n},{l,1,n}]; +Rieup=Table[Sum[gup[[j,k]]gup[[m,\[Mu]]] gup[[l,\[Nu]]] Rie[[i,j,m,l]],{j,1,n},{m,1,n},{l,1,n}],{i,1,n},{k,1,n},{\[Mu],1,n},{\[Nu],1,n}]; +res=Sum[Ried[[i,j,m,l]] Rieup[[i,j,m,l]],{i,1,n},{j,1,n},{m,1,n},{l,1,n}]; + +If[NumericQ[pert],simpl@res,Normal@Series[simpl@res,{pert,0,perti}]]]; + +Options[WeylTrace]=Options[ChristoffelSymbol]; +WeylTrace[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{Chr,ig,n,riemann,Rieup,ricciS,ricciT,res,perti,simpl,weylT,weylTup}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +n=Length@xx; +ig=InverseMetric[g,"SimplifyFunction"->simpl]; + +weylT=WeylTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +weylTup=Table[Sum[ig[[a,\[Alpha]]] ig[[b,\[Beta]]] ig[[c,\[Gamma]]] ig[[d,\[Delta]]] weylT[[\[Alpha],\[Beta],\[Gamma],\[Delta]]],{\[Alpha],n},{\[Beta],n},{\[Gamma],n},{\[Delta],n}],{a,n},{b,n},{c,n},{d,n}]; +res=If[NumericQ[pert],Sum[weylT[[i,k,l,m]]weylTup[[i,k,l,m]],{i,n},{k,n},{l,n},{m,n}], + Normal@Series[Sum[weylT[[i,k,l,m]]weylTup[[i,k,l,m]],{i,n},{k,n},{l,n},{m,n}],{pert,0,perti}]]; + +simpl@res]; + +Options[Einstein]=Options[ChristoffelSymbol]; +Einstein[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{res,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +res=RicciTensor[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]-1/2 RicciScalar[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl] g; +If[NumericQ[pert],simpl@res,Normal@Series[simpl@res,{pert,0,perti}]] +] + + +DAlembert[xx_,metric_,scalfun_]:=Block[{metdet,dal,metup,sqrtdet}, + +metup=Inverse[metric]; +metdet=MetDet[metric]; +sqrtdet=Sqrt[-metdet]; + +dal=FullSimplify[(1/sqrtdet) Sum[ +D[sqrtdet metup[[\[Nu],\[Mu]]] D[scalfun,xx[[\[Mu]]]],xx[[\[Nu]]]],{\[Nu],4},{\[Mu],4}]] +] + + +Options[ETensor]=Join[{"Signature"->1},Options[ChristoffelSymbol]]; + +ETensor[coors_,met_,pert_:0,OptionsPattern[]]:=Block[{g,gup,Global`\[Rho],\[Rho]c,Global`p,perti,pc,riscal,riscalvars,sign,simpl,T\[Mu]\[Nu],T\[Mu]\[Nu]up,u,udown,\[CapitalOmega]}, +perti=OptionValue["PerturbationIndex"]; +sign=OptionValue["Signature"]; +simpl=OptionValue["SimplifyFunction"]; + +g=met; +riscal=RicciScalar[coors,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +riscalvars=Complement[coors,Complement[coors,AtomsList[riscal]]]; +gup=Inverse[g]; +pc=Global`p@@riscalvars; +\[Rho]c=Global`\[Rho]@@riscalvars; + +u=If[sign==1,{1/Sqrt[-g[[1,1]]],0,0,pert \[CapitalOmega]/Sqrt[-g[[1,1]]]},{1/Sqrt[g[[1,1]]],0,0,pert \[CapitalOmega]/Sqrt[g[[1,1]]]}]; +u=Normal@Series[u,{pert,0,perti}]; +udown=Table[Sum[u[[i]]g[[i,l]],{i,Length@coors}],{l,Length@coors}]; +udown=Normal@Series[udown,{pert,0,perti}]; + +If[Simplify[Normal@Series[u.udown,{pert,0,1}]]!=-1,Return["Wrong normalization"]]; + +T\[Mu]\[Nu]up=If[sign==1,Normal@Series[Table[(pc+\[Rho]c) u[[i]] u[[j]]+pc gup[[i,j]],{i,Length@coors},{j,Length@coors}],{pert,0,perti}], + Normal@Series[Table[(pc+\[Rho]c) u[[i]] u[[j]]-pc gup[[i,j]],{i,Length@coors},{j,Length@coors}],{pert,0,perti}]]//Simplify; +T\[Mu]\[Nu]=Normal@Series[g(T\[Mu]\[Nu]up.g),{pert,0,1}] +] + + +Options[NonZeroTensorComp]={"Verbose"->True,"TensorString"->"T"}; +NonZeroTensorComp[gamma_,OptionsPattern[]]:=Module[{dimension,ii,nonzerpos,tstring,verbose, +allpos,zerpos}, + +tstring=OptionValue["TensorString"]; +verbose=OptionValue["Verbose"]; + +(* set dimensions and total number or elements *) +dimension=Dimensions[gamma]; +(*allpos=Flatten[Table[{i,j,k},{i,dimension[[1]]},{j,dimension[[1]]},{k,dimension[[1]]}],1];*) +allpos=Tuples[Table[i,{i,dimension[[1]]}],Length@dimension]; + +zerpos=Position[gamma,_?(#== 0 &)]; +nonzerpos=Complement[allpos,zerpos]; + +If[verbose,Do[Print[ToString[Subscript[tstring, StringJoin[ToString/@(nonzerpos[[i,1;;Length@dimension]]-1)]],StandardForm]<>" = "<>ToString[Extract[gamma,nonzerpos[[i]]],StandardForm]],{i,Length@nonzerpos}]]; +nonzerpos +] + + +Options[NonZeroMetricComp]={"Verbose"->True,"TensorString"->"T"}; +NonZeroMetricComp[gamma_,OptionsPattern[]]:=Module[{allpos,dimension, +n,nonzerpos,tstring,verbose,zerpos}, + +verbose=OptionValue["Verbose"]; +tstring=OptionValue["TensorString"]; + +n=Length@gamma; + +(* set dimensions and total number or elements *) +dimension=Dimensions[gamma][[1]]; +allpos=Flatten[Table[{i,j},{i,dimension},{j,dimension}],1]; + +zerpos=Position[gamma,_?(#== 0 &)]; +nonzerpos=Complement[allpos,zerpos]; + +If[verbose,Do[Print[ToString[tstring,StandardForm]<>" = "<>ToString[gamma[[nonzerpos[[i,1]],nonzerpos[[i,2]]]],StandardForm]],{i,Length@nonzerpos}]]; +nonzerpos +] + + +CovDer[coords_,metric_,tensor_,index_,OptionsPattern[{"Valence"->"Covariant","Verbose"->False}]]:=Block[{Crhistoffel,g,xx,n,h\[Eta]\[Nu],rank,cov,valence,verbose,c,b,a}, +(*Print[Style["It is wrong!",Red]];*) +valence=OptionValue["Valence"]; +verbose=OptionValue["Verbose"]; +n=Length@coords; +g=metric; +h\[Eta]\[Nu]=tensor; +xx=coords; +If[ListQ[h\[Eta]\[Nu]], + rank=Length@Dimensions@tensor; + Crhistoffel=ChristoffelSymbol[xx,g], + rank=0; + ]; + +Which[rank==0, If[verbose,Print["Scalar , "];Print[valence];]; + {a}=index; + cov=D[h\[Eta]\[Nu],xx[[index]]]; , + rank==1, If[verbose,Print["Vector , "];Print[valence];]; + {a,b}=index; + Which[valence=="Covariant", + cov=D[h\[Eta]\[Nu][[b]],xx[[a]]]-Sum[Crhistoffel[[\[Rho],a,b]]h\[Eta]\[Nu][[\[Rho]]],{\[Rho],Length@xx}];, + valence=="Contravariant", + cov=D[h\[Eta]\[Nu][[b]],xx[[a]]]+Sum[Crhistoffel[[\[Rho],a,b]]h\[Eta]\[Nu][[\[Rho]]],{\[Rho],Length@xx}]; + ];, + rank==2, If[verbose,Print["Tensor , "];Print[valence];]; + {a,b,c}=index; + Which[valence=="Covariant", + cov=D[h\[Eta]\[Nu][[b,c]],xx[[a]]]-Sum[Crhistoffel[[d,a,b]]h\[Eta]\[Nu][[c,d]]+Crhistoffel[[d,a,c]]h\[Eta]\[Nu][[b,d]],{d,n}];, + valence=="Contravariant", + cov=D[h\[Eta]\[Nu][[b,c]],xx[[a]]]+Sum[Crhistoffel[[b,a,d]]h\[Eta]\[Nu][[c,d]]+Crhistoffel[[c,a,d]]h\[Eta]\[Nu][[d,b]],{d,n}];, + valence=="Mixed", + cov=D[h\[Eta]\[Nu][[b,c]],xx[[a]]]+Sum[Crhistoffel[[b,a,d]]h\[Eta]\[Nu][[c,d]]-Crhistoffel[[c,a,d]]h\[Eta]\[Nu][[d,b]],{d,n}];];, + True, If[verbose,Print["Rank not recognised"]]; + Return[]; +]; +Simplify@cov +] + + +LeviCivitaTensorCurv[xx_,g_]:=Module[{dim}, +dim=Length@xx; +Sqrt[Det[g]]LeviCivitaTensor[dim,List] +] + + +CurlCurvilinear[xx_,g_,vec_]:=Module[{lv,vecb,DCov,lvup,gup,vecn}, +lv=LeviCivitaTensorCurv[xx,g]; +vecb=Sqrt[Diagonal[g]]; +vecn=vec*vecb; +DCov=Table[CovDer[xx,g,vecn,{a,b}],{a,Length@xx},{b,Length@xx}]; +gup=InverseMetric[g]; +lvup=Simplify[Table[Sum[gup[[i,a]]gup[[j,b]] gup[[k,c]] lv[[a,b,c]],{a,Length@xx},{b,Length@xx},{c,Length@xx}],{i,Length@xx},{j,Length@xx},{k,Length@xx}]]; + +Table[Simplify[Sum[lvup[[i,e,d]]DCov[[e,d]],{e,Length@xx},{d,Length@xx}]]vecb[[i]],{i,Length@xx}] +] + + +Options[CheckTetrad]=Options[ChristoffelSymbol]; +CheckTetrad[gab_,nullv_,OptionsPattern[]]:=Block[{l,n,m,mb,test,verbose}, +{l,n,m,mb}=nullv; +verbose=OptionValue["Verbose"]; + +test=Chop@Simplify@{l.gab.l, +n.gab.n, +m.gab.m, +mb.gab.mb, +l.gab.m, +l.gab.mb, +n.gab.m, +n.gab.mb, +l.gab.n, +m.gab.mb}; + +If[verbose,Print["{l.l,n.n,m.m,mb.mb,l.m,l.mb,n.m,n.mb,l.n,m.mb} = ",test]]; + +If[Total@test[[1;;8]]==0&&test[[9]]*test[[10]]==-1,Print[Style["Your tetrad satisfies the properties of orthonormality",Blue]];,Print[Style["Your tetrad has some troubles",Blue]]]]; + + +Options[ChristoffelSymbolDev]={"Verbose"->False,"PerturbationIndex"->1,"SimplifyFunction"->Identity,"Compile"->False,"CompileCoordinateIndex"->{1,2,3,4}}; +ChristoffelSymbolDev[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{n,ig,compile,compilecind,coords,res,perti,simpl,verbose}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +verbose=OptionValue["Verbose"]; +compile=OptionValue["Compile"]; +compilecind=OptionValue["CompileCoordinateIndex"]; + + +n=Length@xx; +ig=InverseMetric[g]; +res=ConstantArray[0,{n,n,n}]; +If[NumericQ[pert], Do[res[[i,j,k]]=Sum[ig[[i,s]]*(-D[g[[j,k]],xx[[s]]]+D[g[[j,s]],xx[[k]]]+D[g[[s,k]],xx[[j]]]),{s,n}],{i,n},{j,n},{k,j,n}];, + Do[res[[i,j,n]]=Normal@Series[Sum[ig[[i,s]]*(-D[g[[j,k]],xx[[s]]]+D[g[[j,s]],xx[[k]]]+D[g[[s,k]],xx[[j]]]),{s,n}],{pert,0,perti}],{i,n},{j,n},{k,j,n}]]; +res=simpl[1/2 res]; + +(* Compile *) +If[compile, Do[res[[i,j,k]]=If[NumberQ[res[[i,j,k]]],res[[i,j,k]],Compile[Evaluate@({#,_Real}&/@(xx[[compilecind]])),Evaluate[res[[i,j,k]]],CompilationTarget->"C",CompilationOptions->"InlineExternalDefinitions"->True]],{i,n},{j,n},{k,j,n}];]; +(* Applying symmetries *) +Do[res[[i,j+1,k]]=res[[i,k,j+1]];,{i,n},{j,n-1},{k,j}]; + +res +] + + +Options[RiemannTensorDev]=Join[Options[ChristoffelSymbolDev],{"IndexDown"->False}]; +RiemannTensorDev[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{caux,n,Chr,compile,compilecind,index,res,perti,simpl,time,verbose}, +index=OptionValue["IndexDown"]; +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +compile=OptionValue["Compile"]; +compilecind=OptionValue["CompileCoordinateIndex"]; +verbose=OptionValue["Verbose"]; + +n=Length@xx; +If[verbose,Print["Starting with Christoffel symbols..."]]; +Chr=ChristoffelSymbolDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl,"Compile"->False]; +If[verbose,Print["Christoffel symbols computed. Starting with Riemann..."]]; + +res=ConstantArray[0,{n,n,n,n}]; +If[index, + If[NumericQ[pert], Do[res[[i,k,l,m]]=Sum[g[[i,p]](D[Chr[[p,k,m]],xx[[l]]]-D[Chr[[p,k,l]],xx[[m]]]+Sum[Chr[[p,s,l]]*Chr[[s,k,m]]-Chr[[p,s,m]]*Chr[[s,k,l]],{s,n}]),{p,n}],{i,n},{k,i,n},{l,n},{m,l,n}], + Do[res[[i,k,l,m]]=Sum[g[[i,p]](Normal@Series[D[Chr[[p,k,m]],xx[[l]]]-D[Chr[[p,k,l]],xx[[m]]]+Sum[Chr[[p,s,l]]*Chr[[s,k,m]],{s,n}]-Sum[Chr[[p,s,m]]*Chr[[s,k,l]],{s,n}],{pert,0,perti}]),{p,n}],{i,n},{k,n},{l,n},{m,n}]]; + + (* Applying simmetries *) + (*Do[res[[i+1,k,l,m]]=res[[l,k,i+1,m]],{i,n-1},{k,n},{l,i},{m,n}];*) + Do[res[[i,k,l+1,m]]=-res[[i,k,m,l+1]],{i,n},{k,n},{l,n-1},{m,l}]; + Do[res[[i+1,k,l,m]]=-res[[k,i+1,l,m]],{i,n-1},{k,i},{l,n},{m,n}]; + If[compile,caux=0; Do[time=Timing[res[[i,k,l,m]]=Compile[Evaluate@({#,_Real}&/@(xx[[compilecind]])),Evaluate[res[[i,k,l,m]]],RuntimeOptions->"Speed"]][[1]];If[verbose,Print["compiling: ",{i,k,l,m}," ",time," s"]];,{i,n},{k,n},{l,n},{m,n}];] + , + If[NumericQ[pert], Do[res[[i,k,l,m]]=(D[Chr[[i,k,m]],xx[[l]]]-D[Chr[[i,k,l]],xx[[m]]]+Sum[Chr[[i,s,l]]*Chr[[s,k,m]]-Chr[[i,s,m]]*Chr[[s,k,l]],{s,n}]),{i,n},{k,n},{l,n},{m,n}], + Do[res[[i,k,l,m]]=(Normal@Series[D[Chr[[i,k,m]],xx[[l]]]-D[Chr[[i,k,l]],xx[[m]]]+Sum[Chr[[i,s,l]]*Chr[[s,k,m]],{s,n}]-Sum[Chr[[i,s,m]]*Chr[[s,k,l]],{s,n}],{pert,0,perti}]),{i,n},{k,n},{l,n},{m,n}]]; + ]; + + +If[verbose,Print["...Riemann computed"]]; +simpl@res]; + + +Options[RicciTensorDev]=Options[ChristoffelSymbolDev]; +RicciTensorDev[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{compile,Rie,res,n,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +compile=OptionValue["Compile"]; +simpl=OptionValue["SimplifyFunction"]; + +n=Length@xx; +Rie=RiemannTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; + +res=ConstantArray[0,{n,n}]; +If[NumericQ[pert], Do[res[[i,j]]=Sum[Rie[[s,i,s,j]],{s,n}],{i,n},{j,n}], + Do[res[[i,j]]=Normal@Series[Sum[Rie[[s,i,s,j]],{s,n}],{pert,0,perti}],{i,n},{j,i,n}]]; + +If[compile, Do[res[[i,j]]=If[NumberQ[res[[i,j]]],res[[i,j]],Compile[Evaluate@({#,_Real}&/@xx),Evaluate[res[[i,j]]],CompilationTarget->"C",CompilationOptions->"InlineExternalDefinitions"->True]],{i,n},{j,i,n}];] ; +(* Applying symmetries *) +Do[res[[i+1,j]]=res[[j,i+1]];,{i,n-1},{j,i}]; + +simpl@res] + + +Options[ElectricTensor3p1Dev]=Options[ChristoffelSymbolDev]; +ElectricTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]:=Block[{compile,gup,Ks,Ktup,Ric,res,n,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +compile=OptionValue["Compile"]; +simpl=OptionValue["SimplifyFunction"]; + +n=Length@xx; +Ric=RicciTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +gup=InverseMetric[g]; +Ktup=(gup.gup.Kt); +Ks=(Sum[gup[[a,b]]Kt[[a,b]],{a,n},{b,n}]); + +res=ConstantArray[0,{n,n}]; +If[NumericQ[pert], Do[res[[i,j]]=Ric[[i,j]]+Ks Kt[[i,j]]-Sum[Kt[[i,m]]Ktup[[m,j]],{m,n}],{i,n},{j,i,n}], + Do[res[[i,j]]=Normal@Series[Ric[[i,j]]+Ks Kt[[i,j]]-Sum[Kt[[i,m]]Ktup[[m,j]],{m,n}],{pert,0,perti}],{i,n},{j,i,n}]]; + +If[compile, Do[res[[i,j]]=If[NumberQ[res[[i,j]]],res[[i,j]],Compile[Evaluate@({#,_Real}&/@xx),Evaluate[res[[i,j]]],CompilationTarget->"C",CompilationOptions->"InlineExternalDefinitions"->True]],{i,n},{j,i,n}];]; +(* Applying symmetries *) +Do[res[[i+1,j]]=res[[j,i+1]];,{i,n-1},{j,i}]; + +simpl@res] + + +Options[MagneticTensor3p1Dev]=Options[ChristoffelSymbolDev]; +MagneticTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]:=Block[{compile,gup,Ks,Ktup,Ric,res,rescov,n,perti,simpl,\[Epsilon]}, +perti=OptionValue["PerturbationIndex"]; +compile=OptionValue["Compile"]; +simpl=OptionValue["SimplifyFunction"]; + +n=Length@xx; +Ric=RicciTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +gup=InverseMetric[g]; +\[Epsilon]=Det[gup]^(-1/2)LeviCivitaTensor[n]; +\[Epsilon]=Table[Sum[g[[s,i]]\[Epsilon][[s,j,k]],{s,n}],{i,n},{j,n},{k,n}]; + +rescov=ConstantArray[0,{n,n,n}]; +Do[rescov[[k,i,j]]=CovDer[xx,g,Kt,{k,i,j},"Valence"->"Covariant"],{k,n},{i,n},{j,i,n}]; +Do[rescov[[k,i+1,j]]=rescov[[k,j,i+1]];,{k,n},{i,n-1},{j,i}]; + +res=ConstantArray[0,{n,n}]; +If[NumericQ[pert], Do[res[[i,j]]=Sum[\[Epsilon][[i,m,k]]rescov[[m,k,j]],{m,n},{k,n}],{i,n},{j,i,n}], + Do[res[[i,j]]=Normal@Series[Sum[\[Epsilon][[i,m,k]]rescov[[m,k,j]],{m,n},{k,n}],{pert,0,perti}],{i,n},{j,i,n}]]; + +If[compile, Do[res[[i,j]]=If[NumberQ[res[[i,j]]],res[[i,j]],Compile[Evaluate@({#,_Real}&/@xx),Evaluate[res[[i,j]]],CompilationTarget->"C",CompilationOptions->"InlineExternalDefinitions"->True]],{i,n},{j,i,n}];]; +(* Applying symmetries *) +Do[res[[i+1,j]]=res[[j,i+1]];,{i,n-1},{j,i}]; + +simpl@res] + + +Options[RicciScalarDev]=Options[ChristoffelSymbolDev]; +RicciScalarDev[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{Ricc,ig,res,n,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +n=Length@xx; + +Ricc=RicciTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +ig=InverseMetric[g,"SimplifyFunction"->simpl]; +res=If[NumericQ[pert],Sum[If[i==s,ig[[s,i]] Ricc[[s,i]],2 ig[[s,i]] Ricc[[s,i]]],{s,n},{i,s}], + Normal@Series[Sum[ig[[s,i]] Ricc[[s,i]],{s,1,n},{i,1,n}],{pert,0,perti}]]; +simpl@res] + + +Options[WeylTensorDev]=Options[ChristoffelSymbolDev]; +WeylTensorDev[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{n,Chr,riemann,riemanndown,ricciS,ricciT,res,perti,simpl,verbose}, +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +verbose=OptionValue["Verbose"]; +n=Length@xx; + +If[verbose,Print["Starting with RicciScalar..."]]; +ricciS=RicciScalarDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +If[verbose,Print["Following with RicciTensor..."]]; +ricciT=RicciTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +If[verbose,Print["Following with Riemann..."]]; +riemann=RiemannTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl,"IndexDown"->False]; + +res=Table[If[NumericQ[pert],riemann[[i,k,l,m]]+1/(n-2)(ricciT[[i,m]]g[[k,l]]-ricciT[[i,l]]g[[k,m]]+ricciT[[k,l]]g[[i,m]]-ricciT[[k,m]]g[[i,l]])+1/((n-1)(n-2))ricciS(g[[i,l]]g[[k,m]]-g[[i,m]]g[[k,l]]), + Normal@Series[riemann[[i,k,l,m]]+1/(n-2)(ricciT[[i,m]]g[[k,l]]-ricciT[[i,l]]g[[k,m]]+ricciT[[k,l]]g[[i,m]]-ricciT[[k,m]]g[[i,l]])+1/((n-1)(n-2))ricciS(g[[i,l]]g[[k,m]]-g[[i,m]]g[[k,l]]),{pert,0,perti}]],{i,1,n},{k,1,n},{l,1,n},{m,1,n}]; +(*Simplify[res]*) +simpl@res]; + + +Options[EinsteinfR]={{"Metric"->True},Join[Options[ChristoffelSymbol]]}; +EinsteinfR[xx_,g_,fR_,OptionsPattern[]]:=Block[{res,fRterm1,fRterm2,dalem,Global`R,riscal,riscalvars,simpl,Rc,fRc,dfRc,covterm1,covterm2,metric}, + +metric=OptionValue["Metric"]; +simpl=OptionValue["SimplifyFunction"]; + +riscal=simpl@RicciScalar[xx,g]; +riscalvars=Complement[xx,Complement[xx,AtomsList[riscal]]]; +Rc=Global`R@@riscalvars; +fRc=fR/.Global`R->Rc; +dfRc=D[fRc,Rc]; +dalem=DAlembert[xx,g,dfRc]; +fRterm1=Simplify[dfRc RicciTensor[xx,g]-1/2 g fRc]; +If[metric, + covterm1=Table[CovDer[xx,g,dfRc,{i},"Valence"->"Covariant","Verbose"->False],{i,Length@xx}]; + covterm2=Table[CovDer[xx,g,covterm1,{i,j},"Valence"->"Covariant","Verbose"->False],{i,Length@xx},{j,Length@xx}]; + fRterm2=covterm2-g*dalem; + res=(fRterm1-fRterm2); + Return[{covterm1}]; + , + res=(fRterm1); +]; + +Simplify@res +] + + +STensorT\[Psi][coor_,met_,\[Psi]potl_]:=Module[{a,b,l,m,g,xx,\[Psi],pot,gup}, +xx=coor; +g=met; +pot=\[Psi]potl[[2]]; +\[Psi]=\[Psi]potl[[1]]; +gup=Inverse@g; + +Table[D[\[Psi],xx[[a]]]D[\[Psi],xx[[b]]]-1/2g[[a,b]]Sum[gup[[l,m]]D[\[Psi],xx[[l]]]D[\[Psi],xx[[m]]],{l,4},{m,4}]-g[[a,b]] pot ,{a,Length@xx},{b,Length@xx}] +] + + +Options[TeffFR]=Join[{"Metric"->True},Options[ChristoffelSymbol]]; +TeffFR[xx_,g_,fR_,pert_:0,OptionsPattern[]]:=Block[{res,fRterm1,fRterm2,dalem,Global`R,riscal,riscalvars,Rc,fRc,dfRc,simpl,covterm1,covterm2,metric,perti}, +metric=OptionValue["Metric"]; +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; + +riscal=simpl@RicciScalar[xx,g,pert,"PerturbationIndex"->perti]; +riscalvars=Complement[xx,Complement[xx,AtomsList[riscal]]]; +Rc=Global`R@@riscalvars; +fRc=fR/.Global`R->Rc; +dfRc=D[fRc,Rc]; +dalem=DAlembert[xx,g,dfRc]; + +If[metric, + covterm1=Table[CovDer[xx,g,dfRc,{i},"Valence"->"Covariant","Verbose"->False],{i,Length@xx}]; + covterm2=Table[CovDer[xx,g,covterm1,{i,j},"Valence"->"Covariant","Verbose"->False],{i,Length@xx},{j,Length@xx}]; + fRterm2=covterm2-g*dalem; + res=If[Not@NumericQ@pert,Normal@Series[1/(8\[Pi])(fRterm2-dfRc/2 Rc g + 1/2 fRc g),{pert,0,perti}],1/(8\[Pi])(fRterm2-dfRc/2 Rc g + 1/2 fRc g)]; + , + res=If[Not@NumericQ@pert,Normal@Series[(fRterm1),{pert,0,perti}],(fRterm1)]; +]; + +Simplify@res +] + + +Options[TeffST]=Join[{"Frame"->"Einstein"},Options[ChristoffelSymbol]]; +TeffST[xx_,g_,{V\[CurlyPhi]_,var\[CurlyPhi]_},pert_:0,OptionsPattern[]]:=Block[{covterm1,covterm2,dalem,der,gup,frame,perti,res,riscal,riscalvars,simpl,sumder,V\[CurlyPhi]c,\[CurlyPhi]c,\[Phi]term2}, +perti=OptionValue["PerturbationIndex"]; +frame=OptionValue["Frame"]; +simpl=OptionValue["SimplifyFunction"]; + +riscal=simpl@RicciScalar[xx,g,pert,"PerturbationIndex"->perti]; +riscalvars=Complement[xx,Complement[xx,AtomsList[riscal]]]; +gup=Inverse[g]; +\[CurlyPhi]c=var\[CurlyPhi]@@riscalvars; +V\[CurlyPhi]c=V\[CurlyPhi]/.var\[CurlyPhi]->\[CurlyPhi]c; + +Which[frame=="Einstein", + der=Table[D[\[CurlyPhi]c,xx[[a]]]D[\[CurlyPhi]c,xx[[b]]],{a,Length@xx},{b,Length@xx}]; + sumder=Sum[ gup[[a,b]](der[[a,b]]),{a,Length@xx},{b,Length@xx}]; + res=1/(8\[Pi]) (2 der-g sumder -1/2 g V\[CurlyPhi]c);, + frame=="Jordan", + dalem=DAlembert[xx,g,\[CurlyPhi]c]; + covterm1=Table[CovDer[xx,g,\[CurlyPhi]c,{i},"Valence"->"Covariant","Verbose"->False],{i,Length@xx}]; + covterm2=Table[CovDer[xx,g,covterm1,{i,j},"Valence"->"Covariant","Verbose"->False],{i,Length@xx},{j,Length@xx}]; + \[Phi]term2=covterm2-g*dalem; + res=If[Not@NumericQ@pert,Normal@Series[1/(8\[Pi])(\[Phi]term2-V\[CurlyPhi]c/2 g),{pert,0,perti}],1/(8\[Pi])(\[Phi]term2-V\[CurlyPhi]c/2 g)];, + True, + Print["Wrong option for Frame"];Return[]; +]; +If[NumberQ@pert,Simplify@res,Simplify@Normal@Series[res,{pert,0,perti}]] +] + + +(* Are you sure this is right??? *) +EinsteinST[xx_,g_,V\[Phi]_]:=Block[{res,fRterm1,fRterm2,dalem,R,riscal,riscalvars,\[Phi]c,fRc,dfRc,covterm1,covterm2}, + +riscal=Simplify@RicciScalar[xx,g]; +riscalvars=Complement[xx,Complement[xx,AtomsList[V\[Phi]]]]; + +\[Phi]c=\[Phi]@@riscalvars; +dalem=DAlembert[xx,g,\[Phi]c]; +fRterm1=Simplify[RicciTensor[xx,g]-1/2 g D[V\[Phi],\[Phi]c]+ 1/2 g V\[Phi]/(2 \[Phi]c )]; + +covterm1=Table[CovDer[xx,g,dfRc,{i},"Valence"->"Covariant","Verbose"->False],{i,Length@xx}]; +covterm2=Table[CovDer[xx,g,covterm1,{i,j},"Valence"->"Covariant","Verbose"->False],{i,Length@xx},{j,Length@xx}]; +fRterm2=-(1/\[Phi]c) (covterm2-g*dalem); + +res=(fRterm1-fRterm2); + +Simplify@res +] + + +Options[STTOV]=Join[{"Signature"->1},Options[TeffST]]; +STTOV[coors_,met_,{V\[CurlyPhi]_,var\[CurlyPhi]_},metvars_,pert_:0,OptionsPattern[]]:=Block[{Global`x,Aa,\[Alpha]a,dV\[CurlyPhi]c,dpc,d\[Phi]c,d\[Phi]\[CurlyPhi]c,eq,eqaux,eqKG,eqp,eval,ET,eq2,frame,g,gup,perti,riscal,riscalvars,sign,simpl,T,TEF,Teff,Ttot,T\[Mu]\[Nu],T\[Mu]\[Nu]up,V\[CurlyPhi]c,\[CurlyPhi]c,\[CurlyPhi]2c,Global`r,Global`\[Rho],\[Rho]c,Global`p,pc,Global`\[Phi],\[Phi]c,\[Phi]\[CurlyPhi]c,Global`\[CurlyPhi]}, +sign=OptionValue["Signature"]; +frame=OptionValue["Frame"]; +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +Which[frame!= "Einstein" && frame!="Jordan",Return[];]; + +Print["Variables must be given as: {p,Var_gtt,Var_grr,\[CurlyPhi]}"]; +g=met; +gup=Inverse[g]; +riscal=simpl@RicciScalar[coors,g,pert,"PerturbationIndex"->perti]; + +riscalvars=Complement[coors,Complement[coors,AtomsList[riscal]]]; +\[CurlyPhi]c=var\[CurlyPhi]@@riscalvars; +V\[CurlyPhi]c=V\[CurlyPhi]/.var\[CurlyPhi]->\[CurlyPhi]c; +dV\[CurlyPhi]c=D[V\[CurlyPhi]c,\[CurlyPhi]c]; +\[CurlyPhi]2c=(var\[CurlyPhi]'')@@riscalvars; +pc=Global`p@@riscalvars; +\[Rho]c=Global`\[Rho]@@riscalvars; +\[Phi]c=Global`\[Phi]@@riscalvars; +dpc=D[pc,riscalvars]; +d\[Phi]c=D[\[Phi]c,riscalvars]; +(* Define the coupling of the scalar field with matter *) +\[Phi]\[CurlyPhi]c[\[CurlyPhi]_]:=Exp[2/Sqrt[3]\[CurlyPhi]]; +d\[Phi]\[CurlyPhi]c=D[\[Phi]\[CurlyPhi]c,Global`r]; + +eval[x_]:=Evaluate[x]; +(* Computation of the matter energy-momentum tensor *) +T\[Mu]\[Nu]=ETensor[coors,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +T\[Mu]\[Nu]up=Normal@Series[(gup.T\[Mu]\[Nu])gup,{pert,0,perti}]; +T=Normal@Series[Sum[(g.T\[Mu]\[Nu]up)[[i,i]],{i,Length@coors}],{pert,0,perti}]; +If[frame=="Einstein", + TEF=(T* Exp[-4/Sqrt[3]\[CurlyPhi]c]);, + TEF=(T)]; + +(* Computation of the effective energy-momentum tensor. Aa converts matter quantities to the Jordan-Frame. *) +Teff=TeffST[coors,g,{V\[CurlyPhi],var\[CurlyPhi]},pert,"Frame"->frame,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +If[frame=="Einstein", + Aa[\[CurlyPhi]_]:=Exp[-\[CurlyPhi]/Sqrt[3]]; + \[Alpha]a[\[CurlyPhi]_]:=D[Log[Aa[\[CurlyPhi]]],\[CurlyPhi]]; + Ttot=FullSimplify[8\[Pi](T\[Mu]\[Nu] Aa[\[CurlyPhi]c]^4 +Teff)]; + ;, + Aa[\[CurlyPhi]_]:=1; + \[Alpha]a[\[CurlyPhi]_]:=1; + Ttot=FullSimplify[8\[Pi]/\[CurlyPhi]c(T\[Mu]\[Nu] +Teff)];]; + +(* Einstein tensor *) +ET=Einstein[coors,g,pert,"PerturbationIndex"->perti]; + +(* Solving the equations *) +eq=ET-Ttot; +eq2=Simplify[{Solve[eq[[1]]==0,metvars[[3]]'@@riscalvars][[1,1]],Solve[eq[[2]]==0,metvars[[2]]'@@riscalvars][[1,1]]}]; + +(* Continuity equation and conversion to EF if frame\[Rule]Einstein *) +eqp=Flatten[Solve[Table[Sum[CovDer[coors,g,T\[Mu]\[Nu]up,{i,i,j},"Valence"->"Contravariant"],{i,Length@coors}],{j,Length@coors}]=={0,0,0,0},metvars[[1]]'@@riscalvars]]; +If[frame=="Einstein", + eqaux=Table[T*\[Alpha]a[\[CurlyPhi]c] Sum[gup[[a,b]]D[\[CurlyPhi]c,coors[[a]]],{a,4}],{b,4}]; + eqp=Equal@@@Flatten[Solve[Table[Sum[CovDer[coors,g,T\[Mu]\[Nu]up,{i,i,j},"Valence"->"Contravariant"],{i,Length@coors}],{j,Length@coors}]==eqaux,dpc]]; + eqp=Simplify@Solve[eqp/.metvars[[1]]->Function[r,Global`\[Phi][r]^(-2)*metvars[[1]][r]]/.\[Rho]c->(\[Rho]c \[Phi]c^(-2))/.Global`\[Phi]->Function[r,Evaluate[\[Phi]\[CurlyPhi]c[Global`\[CurlyPhi][r]]]],dpc]; + eqp=Simplify@Normal@Series[Flatten[eqp],{pert,0,perti}];, + + eqp=Simplify[eqp];]; + +(* KG equation *) +If[frame=="Einstein", + eqKG=Solve[DAlembert[coors,g,\[CurlyPhi]c]==-4\[Pi] \[Alpha]a[\[CurlyPhi]c]TEF+1/4 dV\[CurlyPhi]c, \[CurlyPhi]2c];, + eqKG=Solve[3DAlembert[coors,g,\[CurlyPhi]c]==8\[Pi] \[Alpha]a[\[CurlyPhi]c]TEF+ \[CurlyPhi]c dV\[CurlyPhi]c -2 V\[CurlyPhi]c, \[CurlyPhi]2c];]; + +Normal@Series[Equal@@@Flatten[Join[eqp,eq2,eqKG]],{pert,0,perti}] +] + + +Options[FRTOV]=Join[{"Signature"->1},Options[TeffST]]; +FRTOV[coors_,met_,fR_,metvars_,pert_,OptionsPattern[]]:=Block[{Global`R,teff,perti,sign,u,udown,g,gup,simpl,T\[Mu]\[Nu]up,T\[Mu]\[Nu],T,Teff,Ttot,ET,riscal,riscalvars,Rc,fRc,dfRc,eq,eq2,eqp,eqKG,R2c}, +sign=OptionValue["Signature"]; +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; + +Print["Variables must be given as: {p,Var_gtt,Var_grr,R}"]; +g=met; +gup=Inverse[g]; +riscal=RicciScalar[coors,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +riscalvars=Complement[coors,Complement[coors,AtomsList[riscal]]]; +Rc=Global`R@@riscalvars; +R2c=(Global`R'')@@riscalvars; +fRc=fR/.Global`R->Rc; +dfRc=D[fRc,Rc]; + +(* Computation of the matter energy-momentum tensor *) +T\[Mu]\[Nu]=ETensor[coors,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; +T\[Mu]\[Nu]up=(gup.T\[Mu]\[Nu])gup; +T=Sum[(g.T\[Mu]\[Nu]up)[[i,i]],{i,Length@coors}]; + +(* Computation of the effective energy-momentum tensor *) +Teff=TeffFR[coors,g,fR,pert,"PerturbationIndex"->perti]; +Ttot=FullSimplify[8\[Pi]/dfRc(T\[Mu]\[Nu]+Teff)]; + +(* Einstein tensor *) +ET=Einstein[coors,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; + +(* Solving the equations *) +eq=ET-Ttot; +eq2=Simplify[{Solve[eq[[1]]==0,metvars[[3]]'@@riscalvars][[1,1]],Solve[eq[[2]]==0,metvars[[2]]'@@riscalvars][[1,1]]}]; + +(* Continuity equation *) +eqp=Flatten[Solve[Table[Sum[CovDer[coors,g,T\[Mu]\[Nu]up,{i,i,j},"Valence"->"Contravariant"],{i,Length@coors}],{j,Length@coors}]=={0,0,0,0},metvars[[1]]'@@riscalvars]]; + +(* KG equation *) +eqKG=Solve[(3DAlembert[coors,g,dfRc]+dfRc Rc-2fRc)==8\[Pi] T,R2c]; + +Equal@@@Flatten[Join[eqp,eq2,eqKG]] +] + + +fR2Pot[fR_,\[Phi]\[CurlyPhi]_:1]:=Block[{dfRc,fRc,fun,Rc,uc,Global`R,Global`\[Phi],\[Phi]c,Rc\[Phi]}, + +Rc=Global`R; +\[Phi]c=Global`\[Phi]; +fRc=fR/.Global`R->Rc; +dfRc=D[fRc,Rc]; + +Rc\[Phi]=(Rc/.Solve[\[Phi]c==dfRc,Rc]); +uc=Simplify[Rc\[Phi] \[Phi]c - (fRc/.Rc->Rc\[Phi])]; +(* pot=1 gives the JF potential else gives the SF *) +$Assumptions = _ \[Element] Reals; +If[NumericQ@\[Phi]\[CurlyPhi],fun=uc,fun=FullSimplify[(uc/\[Phi]c^2)/.\[Phi]c->\[Phi]\[CurlyPhi]];]; +fun +]; + + +Pot2fR[V\[CurlyPhi]_,\[Phi]\[CurlyPhi]_]:=Block[{dfRc,fRc,fun,Rc,uc,Global`R,Global`\[Phi],Global`\[CurlyPhi],\[Phi]c,Rc\[Phi],\[CurlyPhi]c}, + + + +Rc=Global`R; +\[Phi]c=Global`\[Phi]; +\[CurlyPhi]c=Global`\[CurlyPhi]; +fRc=fR/.Global`R->Rc; +dfRc=D[fRc,Rc]; + +Return[Solve[\[Phi]\[CurlyPhi]==\[Phi]c,\[CurlyPhi]c]]; + +Rc\[Phi]=(Rc/.Solve[\[Phi]c==dfRc,Rc])[[1]]; +uc=Simplify[Rc\[Phi] \[Phi]c - (fRc/.Rc->Rc\[Phi])]; +(* pot=1 gives the JF potential else gives the SF *) +$Assumptions = _ \[Element] Reals; +If[NumericQ@\[Phi]\[CurlyPhi],fun=uc,fun=FullSimplify[(uc/\[Phi]c^2)/.\[Phi]c->\[Phi]\[CurlyPhi]];]; +fun +]; + + +EoSCallParsBSks[model_]:= +Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,table,pars}, + +table={{a1,3.916`,4.078`,4.857`},{a2,7.701`,7.587`,6.981`},{a3,0.00858`,0.00839`,0.00706`},{a4,0.22114`,0.21695`,0.19351`},{a5,3.269`,3.614`,4.085`},{a6,11.964`,11.942`,12.065`},{a7,13.349`,13.751`,10.521`},{a8,1.3683`,1.3373`,1.5905`},{a9,3.254`,3.606`,4.104`},{a10,-12.953`,-22.996`,-28.726`},{a11,0.9237`,1.6229`,2.0845`},{a12,6.2`,4.88`,4.89`},{a13,14.383`,14.274`,14.302`},{a14,16.693`,23.56`,22.881`},{a15,-1.0514`,-1.5564`,-1.769`},{a16,2.486`,2.095`,0.989`},{a17,15.362`,15.294`,15.313`},{a18,0.085`,0.084`,0.091`},{a19,6.23`,6.36`,4.68`},{a20,11.68`,11.67`,11.65`},{a21,-0.029`,-0.042`,-0.086`},{a22,20.1`,14.8`,10.`},{a23,14.19`,14.18`,14.15`}}; + +pars=Table[table[[i,1]]->table[[i,model+1]],{i,Length@table}] +] + + +EoSCallParsSly[model_]:= +Block[{a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20,a21,a22,a23,a24,table,pars}, + +table={{a1, 6.22},{a10,11.4950}, +{a2,6.121},{a11,-22.775}, +{a3,0.005925},{a12,1.5707}, +{a4,0.16326},{a13,4.3 }, +{a5,6.48},{a14,14.08 }, +{a6,11.4971},{a15,27.80 }, +{a7,19.105},{a16,-1.653}, +{a8,0.8938},{a17,1.50}, +{a9,6.54},{a18,14.67}}; + +pars=Table[table[[i,1]]->table[[i,model+1]],{i,Length@table}] +] + + +EoSBSks[model_]:=Block[{\[Zeta],\[Rho],pars}, +pars=EoSCallParsBSks[model]; + +\[Zeta]=(a1+a2 \[Rho] +a3 \[Rho]^3)/(1+a4 \[Rho]) (Exp[a5(\[Rho]-a6)]+1)^(-1)+(a7+a8 \[Rho])(Exp[a9(a6-\[Rho])]+1)^(-1) ++(a10+a11 \[Rho])(Exp[a12(a13-\[Rho])]+1)^(-1)+(a14+a15 \[Rho])(Exp[a16(a17-\[Rho])]+1)^(-1) ++a18/(1+(a19(\[Rho]-a20))^2)+a21/(1+(a22(\[Rho]-a20))^2); +\[Zeta]/.pars + +] + + +EoSSly[model_]:=Block[{\[Zeta],\[Rho],pars,x,f0}, + +pars=EoSCallParsSly[model]; +f0[x_]:=1/(Exp[x]+1); + +\[Zeta]=(a1+a2 \[Rho] +a3 \[Rho]^3)/(1+a4 \[Rho]) f0[a5(\[Rho]-a6)]+ +(a7+a8 \[Rho])f0[(a9(a10-\[Rho]))]+ +(a11+a12 \[Rho])f0[(a13(a14-\[Rho]))]+ +(a15+a16 \[Rho])f0[(a17(a18-\[Rho]))]; +\[Zeta]/.pars + +] + + +SlyInner={{0.00020905`,3.4951`*^11,6.214999999999999`*^29,1.177`,0.0099795`,1.6774`*^13,3.072`*^31,1.342`},{0.00022059000000000003`,3.6883`*^11,6.4304`*^29,0.527`,0.012513000000000002`,2.1042`*^13,4.1574`*^31,1.332`},{0.00023114`,3.865`*^11,6.5813`*^29,0.476`,0.016547`,2.7844000000000004`*^13,6.023399999999999`*^31,1.322`},{0.00026426`,4.4199`*^11,6.9945`*^29,0.447`,0.021405`,3.6043`*^13,8.461299999999999`*^31,1.32`},{0.00030533000000000003`,5.1079999999999994`*^11,7.4685`*^29,0.466`,0.024157`,4.068800000000001`*^13,9.928599999999999`*^31,1.325`},{0.00035331`,5.9119`*^11,8.0149`*^29,0.504`,0.027894000000000002`,4.7001`*^13,1.2022999999999999`*^32,1.338`},{0.00040763999999999997`,6.8224`*^11,8.644299999999999`*^29,0.554`,0.031941000000000004`,5.3843`*^13,1.4430000000000001`*^32,1.358`},{0.000468`,7.8339`*^11,9.3667`*^29,0.61`,0.036264`,6.115300000000001`*^13,1.7175`*^32,1.387`},{0.00053414`,8.9426`*^11,1.0190999999999999`*^30,0.668`,0.039888`,6.7284`*^13,1.9626`*^32,1.416`},{0.00060594`,1.0146`*^12,1.1128`*^30,0.726`,0.044578`,7.5224`*^13,2.3024`*^32,1.458`},{0.00076608`,1.2831`*^12,1.337`*^30,0.84`,0.048425`,8.1738`*^13,2.6018`*^32,1.496`},{0.0010471`,1.7543`*^12,1.7792`*^30,0.987`,0.052327000000000005`,8.835000000000002`*^13,2.9261000000000002`*^32,1.536`},{0.0012616`,2.1141`*^12,2.1547000000000002`*^30,1.067`,0.056264`,9.5022`*^13,3.2756`*^32,1.576`},{0.0016246000000000001`,2.7232`*^12,2.8565000000000003`*^30,1.16`,0.060218999999999995`,1.0173000000000002`*^14,3.6505000000000004`*^32,1.615`},{0.0020384`,3.4178`*^12,3.7461000000000004`*^30,1.227`,0.064183`,1.0845`*^14,4.0509000000000005`*^32,1.65`},{0.0026726000000000002`,4.4827`*^12,5.2679`*^30,1.286`,0.067163`,1.1351`*^14,4.3681`*^32,1.672`},{0.0034064`,5.7153`*^12,7.230400000000001`*^30,1.322`,0.070154`,1.1859`*^14,4.6998`*^32,1.686`},{0.0044746`,7.5106`*^12,1.0404999999999999`*^31,1.344`,0.073174`,1.2372`*^14,5.0462`*^32,1.685`},{0.005726`,9.6148`*^12,1.4513`*^31,1.353`,0.075226`,1.272`*^14,5.2856`*^32,1.662`},{0.0074963`,1.2593`*^13,2.0894`*^31,1.351`,0.075959`,1.2845`*^14,5.3739`*^32,1.644`}}; + + +SlyLCore={{0.0771`,1.3038`*^14,5.3739`*^32,2.159`,0.49`,8.850899999999999`*^14,1.0315`*^35,2.953`},{0.08`,1.3531`*^14,5.8259999999999996`*^32,2.217`,0.52`,9.4695`*^14,1.2289`*^35,2.943`},{0.085`,1.4381`*^14,6.6828`*^32,2.309`,0.55`,1.0102`*^15,1.4491`*^35,2.933`},{0.09`,1.5232`*^14,7.6443`*^32,2.394`,0.58`,1.0748`*^15,1.693`*^35,2.924`},{0.1`,1.6935`*^14,9.9146`*^32,2.539`,0.61`,1.1408`*^15,1.9616`*^35,2.916`},{0.11`,1.8641`*^14,1.2700999999999999`*^33,2.655`,0.64`,1.2085`*^15,2.2558999999999998`*^35,2.908`},{0.12`,2.035`*^14,1.6063`*^33,2.708`,0.67`,1.2777`*^15,2.5769`*^35,2.9`},{0.13`,2.2063`*^14,1.9971`*^33,2.746`,0.7`,1.3486`*^15,2.9255`*^35,2.893`},{0.16`,2.7223000000000003`*^14,3.5926999999999995`*^33,2.905`,0.75`,1.4706`*^15,3.5702`*^35,2.881`},{0.19`,3.2424`*^14,5.9667`*^33,2.99`,0.8`,1.5977`*^15,4.2981`*^35,2.869`},{0.22`,3.7675`*^14,9.2766`*^33,3.025`,0.85`,1.7302`*^15,5.1128999999999996`*^35,2.858`},{0.25`,4.2983`*^14,1.3668`*^34,3.035`,0.9`,1.8683`*^15,6.0183`*^35,2.847`},{0.28`,4.8358`*^14,1.9276999999999999`*^34,3.032`,0.95`,2.0123000000000002`*^15,7.0176`*^35,2.836`},{0.31`,5.3808`*^14,2.6234999999999996`*^34,3.023`,1.`,2.1624`*^15,8.113899999999998`*^35,2.824`},{0.34`,5.934`*^14,3.467`*^34,3.012`,1.1`,2.482`*^15,1.0609`*^36,2.801`},{0.37`,6.4963`*^14,4.4702`*^34,2.999`,1.2`,2.8289`*^15,1.3524`*^36,2.778`},{0.4`,7.0684`*^14,5.6451`*^34,2.987`,1.3`,3.2048`*^15,1.6876`*^36,2.754`},{0.43`,7.651`*^14,7.0033`*^34,2.975`,1.4`,3.6113`*^15,2.0678999999999998`*^36,2.731`},{0.46`,8.244999999999999`*^14,8.5561`*^34,2.964`,1.5`,4.0498000000000005`*^15,2.4947`*^36,2.708`}}; + + +SlyLCoreAll=Join[TakeColumn[SlyLCore,{2,3}],TakeColumn[SlyLCore,{6,7}]]/.{zz_,yy_}->{Log[10,zz],Log[10,yy]}; + + +SlyInnerAll=Join[TakeColumn[SlyInner,{2,3}],TakeColumn[SlyInner,{6,7}]]/.{zz_,yy_}->{Log[10,zz],Log[10,yy]}; + + +EoSFitsPars[model_,verbose_:False]:=Module[{eostable}, +eostable={{"PAL6",34.38`,2.227`,2.189`,2.159`,0.0011`,0.693`,1.37`,1.477`,-0.47`,0.374`,-0.51`,1660,-0.97`,1.051`,-2.03`,10.547`,-0.54`},{"SLy",34.384`,3.005`,2.988`,2.851`,0.002`,0.989`,1.41`,2.049`,0.02`,0.592`,0.81`,1810,0.1`,1.288`,-0.08`,11.736`,-0.21`},{"APR1",33.943`,2.442`,3.256`,2.908`,0.019`,0.924`,9.94`,1.683`,-1.6`,0.581`,2.79`,2240,1.05`,0.908`,-2.57`,9.361`,-1.85`},{"APR2",34.126`,2.643`,3.014`,2.945`,0.0089`,1.032`,0.42`,1.808`,-1.5`,0.605`,0.33`,2110,-0.02`,1.024`,-2.34`,10.179`,-1.57`},{"APR3",34.392`,3.166`,3.573`,3.281`,0.0091`,1.134`,2.72`,2.39`,-1.`,0.704`,0.57`,1810,-0.14`,1.375`,-1.59`,12.094`,-0.96`},{"APR4",34.269`,2.83`,3.445`,3.348`,0.0068`,1.16`,1.45`,2.213`,-1.08`,0.696`,0.22`,1940,0.05`,1.243`,-1.36`,11.428`,-0.9`},{"FPS",34.283`,2.985`,2.863`,2.6`,0.005`,0.883`,2.29`,1.799`,-0.03`,0.53`,0.67`,1880,0.11`,1.137`,0.03`,10.85`,0.12`},{"WFF1",34.031`,2.519`,3.791`,3.66`,0.018`,1.185`,7.86`,2.133`,-0.29`,0.739`,2.21`,2040,0.3`,1.085`,0.1`,10.414`,0.02`},{"WFF2",34.233`,2.888`,3.475`,3.517`,0.017`,1.139`,7.93`,2.198`,-0.14`,0.717`,0.71`,1990,0.03`,1.204`,-0.59`,11.159`,-0.28`},{"WFF3",34.283`,3.329`,2.952`,2.589`,0.017`,0.835`,8.11`,1.844`,-0.48`,0.53`,2.26`,1860,0.59`,1.16`,-0.25`,10.926`,-0.12`},{"BBB2",34.331`,3.418`,2.835`,2.832`,0.0055`,0.914`,7.75`,1.918`,0.1`,0.574`,0.97`,1900,0.47`,1.188`,0.17`,11.139`,-0.29`},{"BPAL12",34.358`,2.209`,2.201`,2.176`,0.001`,0.708`,1.03`,1.452`,-0.18`,0.382`,-0.29`,1700,-1.03`,0.974`,0.2`,10.024`,0.67`},{"ENG",34.437`,3.514`,3.13`,3.168`,0.015`,1.`,10.71`,2.24`,-0.05`,0.654`,0.39`,1820,-0.44`,1.372`,-0.97`,12.059`,-0.69`},{"MPA1",34.495`,3.446`,3.572`,2.887`,0.0081`,0.994`,4.91`,2.461`,-0.16`,0.67`,-0.05`,1700,-0.18`,1.455`,-0.41`,12.473`,-0.26`},{"MS1",34.858`,3.224`,3.033`,1.325`,0.019`,0.888`,12.44`,2.767`,-0.54`,0.606`,-0.52`,1400,1.67`,1.944`,-0.09`,14.918`,0.06`},{"MS2",34.605`,2.447`,2.184`,1.855`,0.003`,0.582`,3.96`,1.806`,-0.42`,0.343`,2.57`,1250,2.25`,1.658`,0.46`,14.464`,-2.69`},{"MS1b",34.855`,3.456`,3.011`,1.425`,0.015`,0.889`,11.38`,2.776`,-1.03`,0.614`,-0.56`,1420,1.38`,1.888`,-0.64`,14.583`,-0.32`},{"PS",34.671`,2.216`,1.64`,2.365`,0.028`,0.691`,7.36`,1.755`,-1.53`,0.355`,-1.45`,1300,-2.39`,2.067`,-3.06`,15.472`,3.72`},{"GS1",34.504`,2.35`,1.267`,2.421`,0.018`,0.695`,0.49`,1.382`,-1.`,0.395`,-0.64`,1660,9.05`,0.766`,-3.13`,Null},{"GS2",34.642`,2.519`,1.571`,2.314`,0.026`,0.592`,16.1`,1.653`,-0.3`,0.339`,7.71`,1340,3.77`,1.795`,-3.33`,14.299`,0.07`},{"BGN1H1",34.623`,3.258`,1.472`,2.464`,0.029`,0.878`,-7.42`,1.628`,0.39`,0.437`,-3.55`,1670,-2.08`,1.504`,0.56`,12.901`,-1.96`},{"GNH3",34.648`,2.664`,2.194`,2.304`,0.0045`,0.75`,2.04`,1.962`,0.13`,0.427`,0.37`,1410,-0.04`,1.713`,0.38`,14.203`,-0.28`},{"H1",34.564`,2.595`,1.845`,1.897`,0.0019`,0.561`,2.81`,1.555`,-0.92`,0.311`,-1.47`,1320,-1.46`,1.488`,-1.45`,12.861`,-0.03`},{"H2",34.617`,2.775`,1.855`,1.858`,0.0028`,0.565`,1.38`,1.666`,-0.77`,0.322`,-0.55`,1280,-1.29`,1.623`,-0.82`,13.479`,0.29`},{"H3",34.646`,2.787`,1.951`,1.901`,0.007`,0.564`,7.05`,1.788`,-0.79`,0.343`,1.07`,1290,-0.88`,1.702`,-1.18`,13.84`,0.31`},{"H4",34.669`,2.909`,2.246`,2.144`,0.0028`,0.685`,4.52`,2.032`,-0.85`,0.428`,-1.01`,1400,-1.28`,1.729`,-1.18`,13.774`,1.34`},{"H5",34.609`,2.793`,1.974`,1.915`,0.005`,0.596`,1.65`,1.727`,-1.`,0.347`,-0.82`,1340,-1.55`,1.615`,-1.31`,13.348`,0.68`},{"H6",34.593`,2.637`,2.121`,2.064`,0.0087`,0.598`,11.71`,1.778`,0.07`,0.346`,8.65`,1310,5.33`,1.623`,-2.19`,13.463`,0.37`},{"H7",34.559`,2.621`,2.048`,2.006`,0.0046`,0.63`,1.82`,1.683`,-1.12`,0.357`,-0.57`,1410,-1.52`,1.527`,-2.33`,12.992`,0.23`},{"PCL2",34.507`,2.554`,1.88`,1.977`,0.0069`,0.6`,1.74`,1.482`,-0.79`,0.326`,-2.25`,1440,-1.87`,1.291`,-3.27`,11.761`,-1.15`},{"ALF1",34.055`,2.013`,3.389`,2.033`,0.04`,0.565`,18.59`,1.495`,-0.53`,0.386`,3.52`,1730,2.44`,0.987`,-0.4`,9.896`,-0.22`},{"ALF2",34.616`,4.07`,2.411`,1.89`,0.043`,0.642`,1.5`,2.086`,-5.26`,0.436`,-0.62`,1440,1.01`,1.638`,-6.94`,13.188`,-3.66`},{"ALF3",34.283`,2.883`,2.653`,1.952`,0.017`,0.565`,11.29`,1.473`,-0.06`,0.358`,2.46`,1620,1.79`,1.041`,0.76`,10.314`,-0.25`},{"ALF4",34.314`,3.009`,3.438`,1.803`,0.023`,0.685`,14.78`,1.943`,-0.93`,0.454`,0.59`,1590,0.52`,1.297`,-2.38`,11.667`,-1.2`}}; +If[verbose,eostable[[All,1]],Flatten@Select[eostable,#[[1]]==model&]] +] + + +EoSSlyCrust[\[Rho]_]:=Module[{pol1,pol2,pol3,pol4,\[Rho]l1,\[Rho]l2,\[Rho]l3,k1,k2,k3,k4,\[CapitalGamma]1,\[CapitalGamma]2,\[CapitalGamma]3,\[CapitalGamma]4,c}, + +c=2.99792458 10^10; +\[Rho]l1=Log[10,2.44034 10^(07)]; +\[Rho]l2=Log[10,3.78358 10^(11)]; +\[Rho]l3=Log[10,2.62780 10^(12)]; + +k1=Log[10,(6.80110 10^(-9))*c^2]; +k2=Log[10,(1.06186 10^(-6))*c^2]; +k3=Log[10,(5.32697 10)*c^2]; +k4=Log[10,(3.99874 10^(-8))*c^2]; + +\[CapitalGamma]1=1.58425; +\[CapitalGamma]2=1.28733; +\[CapitalGamma]3=0.62223; +\[CapitalGamma]4=1.35692; + +pol1=k1+ \[CapitalGamma]1 \[Rho]; +pol2=k2+ \[CapitalGamma]2 \[Rho]; +pol3=k3+ \[CapitalGamma]3 \[Rho]; +pol4=k4+ \[CapitalGamma]4 \[Rho]; + +Piecewise[{{pol1,\[Rho]<=\[Rho]l1},{pol2,\[Rho]l1<\[Rho]<=\[Rho]l2},{pol3,\[Rho]l2<\[Rho]<=\[Rho]l3},{pol4,\[Rho]>\[Rho]l3}}] + +]; + + +EoSPol[model_:"PolR"]:=Block[{k,\[CapitalGamma],pol,Global`\[Rho],c,pol1,pol2,k2}, + +If[ListQ[model],k=Log10[model[[1]]];\[CapitalGamma]=model[[2]];pol=k+ \[CapitalGamma] Global`\[Rho], + +Which[model=="PolNR",k=Log[10,(3.3)];\[CapitalGamma]=2; pol=k+ \[CapitalGamma] Global`\[Rho];, + model=="PolR",k=Log[10,(1.98183*10^-6)];\[CapitalGamma]=2.75; pol=k+ \[CapitalGamma] Global`\[Rho];, + model=="PolMS",k=Log[10,3.849119840037`*^14];\[CapitalGamma]=4/3; pol= k +\[CapitalGamma] Global`\[Rho];, + model=="PolMSMix",k=Log[10,3.849119840037`*^14]; pol1=k+ 4/3 Global`\[Rho];k2=Log[10,1.2392481667219052`*^15];pol2= k2+ 5/3 Global`\[Rho]; pol=Piecewise[{{pol1,Global`\[Rho]>Log10[0.029964]},{pol2,Global`\[Rho]<=Log10[0.029964]}}];, + True,Return[]]; + ]; +pol +] + + +EoSPol\[Epsilon][model_:"PolR"]:=Block[{k,\[CapitalGamma],pol,Global`\[Rho],c,pol1,pol2,k2}, +c=2.99792458 10^10; + +If[ListQ[model],k=Log10[model[[1]]];\[CapitalGamma]=model[[2]];pol=k+ \[CapitalGamma] Global`\[Rho], + +Which[model=="PolNR",k=Log[10,(3.3)];\[CapitalGamma]=2; pol=k+ \[CapitalGamma] Global`\[Rho], + model=="PolR",k=Log[10,(1.98183*10^-6)];\[CapitalGamma]=2.75; pol=k+ \[CapitalGamma] Global`\[Rho], + model=="PolMS",k=Log[10,3.849119840037`*^14];\[CapitalGamma]=4/3; pol=k+ \[CapitalGamma] Global`\[Rho];]; + ]; +Global`\[Rho] +10^k/(c^2(\[CapitalGamma]-1))Global`\[Rho]^(\[CapitalGamma]) +] + + +Options[EoSFits]:={"PhysUnits"->False,"Verbose"->False} +EoSFits[model_,OptionsPattern[]]:=Block[{P0Sly=Log[10,5.37*10^(32)],\[Rho]0Sly=Log[10,1.2845 10^14],\[CapitalGamma]0=4/3,\[Rho]1=Log[10,10^(14.7)],\[Rho]2=Log[10,10^(15.)],fit0,fit1,fit2, +fit3,Global`\[Rho],p,pars,p1, \[CapitalGamma]1,\[CapitalGamma]2,\[CapitalGamma]3,K0,K1,K2,K3,\[Rho]0c,p2,verbose,picore,res,\[Rho]1c,\[Rho]2c,\[Rho]3c,k1c,k2c,k3c,k4c,\[CapitalGamma]1c,\[CapitalGamma]2c,\[CapitalGamma]3c,\[CapitalGamma]4c,fit1c,fit2c,fit3c,fit4c,physuns,c}, +verbose=OptionValue["Verbose"]; +physuns=OptionValue["PhysUnits"]; +If[verbose,Print[" EoS available "];Return[EoSFitsPars[model,True]]]; + +c=2.99792458 10^10; +(* values for the crust taken from SLy crust model *) +\[Rho]1c=Log[10,2.44034 10^(07)]; +\[Rho]2c=Log[10,3.78358 10^(11)]; +\[Rho]3c=Log[10,2.62780 10^(12)]; + +k1c=Log[10,(6.80110 10^(-9))*c^2]; +k2c=Log[10,(1.06186 10^(-6))*c^2]; +k3c=Log[10,(5.32697 10)*c^2]; +k4c=Log[10,(3.99874 10^(-8))*c^2]; + +\[CapitalGamma]1c=1.58425; +\[CapitalGamma]2c=1.28733; +\[CapitalGamma]3c=0.62223; +\[CapitalGamma]4c=1.35692; + +fit1c=k1c+ \[CapitalGamma]1c Global`\[Rho]; +fit2c=k2c+ \[CapitalGamma]2c Global`\[Rho]; +fit3c=k3c+ \[CapitalGamma]3c Global`\[Rho]; +fit4c=k4c+ \[CapitalGamma]4c Global`\[Rho]; + + +(* p1, \[CapitalGamma]1,\[CapitalGamma]2,\[CapitalGamma]3*) +{p1, \[CapitalGamma]1,\[CapitalGamma]2,\[CapitalGamma]3}=EoSFitsPars[model][[2;;5]]; + +(* Using a polytropic SLy for the crust *) +K1=(p1-(\[CapitalGamma]1 \[Rho]1)); +fit0=Piecewise[{{fit1c,Global`\[Rho]<=\[Rho]1c},{fit2c,\[Rho]1c<Global`\[Rho]<=\[Rho]2c},{fit3c,\[Rho]2c<Global`\[Rho]<=\[Rho]3c},{fit4c,Global`\[Rho]>\[Rho]3c}}]; +fit1=K1+(\[CapitalGamma]1 Global`\[Rho]); +\[Rho]0c=(Global`\[Rho]/.Solve[fit0==K1+\[CapitalGamma]1 Global`\[Rho],Global`\[Rho]])[[1]]; + +K2=p1-(\[CapitalGamma]2 \[Rho]1); +fit2=K2+(\[CapitalGamma]2 Global`\[Rho]); +p2=K2+(\[CapitalGamma]2 \[Rho]2); + +K3=p2-(\[CapitalGamma]3 \[Rho]2); +fit3=K3+(\[CapitalGamma]3 Global`\[Rho]); +If[Not@physuns, +res=Piecewise[{{fit1c,Global`\[Rho]<=\[Rho]1c},{fit2c,\[Rho]1c<Global`\[Rho]<=\[Rho]2c},{fit3c,\[Rho]2c<Global`\[Rho]<=\[Rho]3c},{fit4c,\[Rho]3c<Global`\[Rho]<=\[Rho]0c},{fit1,\[Rho]0c<Global`\[Rho]<=\[Rho]1},{fit2,\[Rho]1<Global`\[Rho]<=\[Rho]2},{fit3,Global`\[Rho]>\[Rho]2}}];, +res=Piecewise[{{10^(fit1c/.Global`\[Rho]->Log[10,Global`\[Rho]]),Global`\[Rho]<=10^\[Rho]1c},{10^(fit2c/.Global`\[Rho]->Log[10,Global`\[Rho]]),10^\[Rho]1c<Global`\[Rho]<=10^\[Rho]2c},{10^(fit3c/.Global`\[Rho]->Log[10,Global`\[Rho]]),10^\[Rho]2c<Global`\[Rho]<=10^\[Rho]3c},{10^(fit4c/.Global`\[Rho]->Log[10,Global`\[Rho]]),10^\[Rho]3c<Global`\[Rho]<=10^\[Rho]0c},{10^(fit1/.Global`\[Rho]->Log[10,Global`\[Rho]]),10^\[Rho]0c<Global`\[Rho]<=10^\[Rho]1},{10^(fit2/.Global`\[Rho]->Log[10,Global`\[Rho]]),10^\[Rho]1<Global`\[Rho]<=10^\[Rho]2},{10^(fit3/.Global`\[Rho]->Log[10,Global`\[Rho]]),Global`\[Rho]>10^\[Rho]2}}]; +]; +res +] + + +From\[Rho]To\[Epsilon]Fits[eos_]:=Block[{Global`\[Rho],ks,\[Gamma]s,pols,polsd,a,\[Rho]s,\[Epsilon],tab,k,k1,\[Gamma],\[Gamma]1,\[Rho]v,c}, +c=2.99792458 10^10; +If[eos=="PolMSMix",pols=EoSPol[eos][[1]],pols=EoSFits[eos][[1]]]; +{ks,\[Gamma]s}=Transpose[CoefficientList[#,Global`\[Rho]]&/@pols[[All,1]]]; +polsd=pols[[All,2]]; +\[Rho]s=DeleteDuplicates@polsd[[All,-1]]; +a=0; +\[Epsilon][Global`\[Rho]_,a_,k_,\[Gamma]_]:=(1+a)Global`\[Rho] + k/(c^2(\[Gamma]-1))Global`\[Rho]^(\[Gamma]); +polsd=Table[10^\[Rho]s[[i]]<Global`\[Rho]<=10^\[Rho]s[[i+1]],{i,Length@\[Rho]s-1}]; +polsd=Join[{Global`\[Rho]<=10^\[Rho]s[[1]]},polsd,{Global`\[Rho]>10^\[Rho]s[[-1]]}]; + +tab=Table[k=10^ks[[i]];\[Gamma]=\[Gamma]s[[i]];\[Rho]v=10^\[Rho]s[[i]];k1=10^ks[[i+1]];\[Gamma]1=\[Gamma]s[[i+1]]; + a=\[Epsilon][\[Rho]v,a,k,\[Gamma]]/\[Rho]v-1- k1/(c^2(\[Gamma]1-1))\[Rho]v^(\[Gamma]1-1); + {\[Epsilon][Global`\[Rho],a,k1,\[Gamma]1],polsd[[i+1]]} +,{i,1,Length@\[Rho]s}]; + +Simplify@Piecewise[Join[{{\[Epsilon][Global`\[Rho],0,10^ks[[1]],\[Gamma]s[[1]]],polsd[[1]]}},tab]] +] + + +RK4[func_?ListQ,vars_?ListQ,ivals_?ListQ,pars_?ListQ,step_]:=Module[{k1,k2,k3,k4,x2,f1,f2,x3,f3,x4,f4,dx,x,x0,sol}, + +dx=step; +{x,x0}={pars[[1]],pars[[2]]}; + +k1=dx ((func/.x->(x0))/.MapThread[Rule, {vars,ivals}]); +k2=dx ((func/.x->(x0+dx/2))/.MapThread[Rule, {vars,ivals +1/2 k1}]); +k3=dx ((func/.x->(x0+dx/2))/.MapThread[Rule, {vars,ivals +1/2 k2}]); +k4=dx ((func/.x->(x0+dx))/.MapThread[Rule, {vars,ivals + k3}]); + +ivals+1/6(k1+2k2+2k3+k4) +] + + +TestCode[eqs_,vars_,icond_,rlst_,drlst_]:=Module[{R1,R,v1,v,w1,w,\[Lambda]1,\[Lambda],p1,p,eqsrules,atomlst,atomlstaux,solvevars,varsp1,rvar,rval,drvar,drval}, +{rvar,rval}=rlst; +{drvar,drval}=drlst; +eqsrules=(Flatten[eqs/.MapThread[Rule, {vars,icond}]])/.drvar->drval/.rvar->rval; +varsp1=Flatten[eqs][[All,1]]; +eqsrules=Flatten@Solve[eqsrules,varsp1]; + +Return[varsp1/.eqsrules]; +] + + +Options[BracketingSTNStars]={"Tolerance"->10^(-8),"Verbose"->False,"MaxIteraton"->100,"NPoints"->1000,"AssymptoticMatch"->None,"AssymptoticValue"->10^-8}; +BracketingSTNStars[eqs_,eqsRg_,Global`r_,vars_,shtdInd_,varshtdRg_,OptionsPattern[]]:=Module[{dom,eqsht, +Sh0,Sh0m,posref,mean,tol,Sh\[Infinity],Sh\[Infinity]m,Sh\[Infinity]m2,Sh0m2,Sh0ref, +a,posreftest,verbose,begin,eqsRga,brack,varshtdRga,varsa,varshta,varshtalw,dvarshta,out,ShtStr,raux,np,i,amax,assymptotic, +Rs,r,datab,datfit,a0,m,y1,y2,A3,assval,threshold,Sh\[Infinity]maux}, + +(* Loading options *) +tol=OptionValue["Tolerance"]; +verbose=OptionValue["Verbose"]; +amax=OptionValue["MaxIteraton"]; +assymptotic=OptionValue["AssymptoticMatch"]; +np=OptionValue["NPoints"]; +assval=OptionValue["AssymptoticValue"]; + +(* Some auxiliary variables *) +eqsRga=eqsRg; +varshtdRga=varshtdRg; +varsa=ToExpression[(ToString[#]<>"a")&/@vars]; +varshta=Join[varshtdRga,{Mean[varshtdRga]}]; +ShtStr=ToString[varsa[[shtdInd]]]; +a=0 (* auxiliary counter *) ; +i=0 (* auxiliary counter *) ; +dvarshta=(varshta[[2]]-varshta[[1]])/np; +(* In case 'bracketing' is activated, we split [varshta[[1]], varshta[[2]]] in np points *) + + Sh\[Infinity]m=1.1; + If[assval>=1,threshold=assval,threshold=0]; + While[Sh\[Infinity]m>threshold&&i< np, + i=i+1; + Sh\[Infinity]maux=Sh\[Infinity]m; + varshtalw=varshtdRg[[2]] - i*dvarshta; + If[verbose, Print["n: ",i," Redefining upper limit as: ",varshtalw]]; + eqsht={vars[[shtdInd]][eqsRga[[1]]]==varshtalw}; + eqsht=Join[eqs,eqsht]; + varsa=vars/.Flatten[NDSolve[eqsht,vars,{Global`r,eqsRga[[1]],eqsRga[[2]]},AccuracyGoal->15,PrecisionGoal->15,WorkingPrecision->30,MaxSteps->Infinity]]; + dom=InterpolationDomain[varsa[[1]]]; + Sh\[Infinity]m=varsa[[shtdInd]]@dom[[2]]; + ]; + + Return[{varshtalw,varshtalw + dvarshta,i}] + (* The - is to avoid varshta[[1]]=varshta[[2]] *) + (*varshta[[2]]=varshtalw + dvarshta; + If[verbose, Print[" New upper limit: ",varshta[[2]]]]; + Sh\[Infinity]m=-0.1; + i=0; + varshtalw=varshta[[1]]; + If[assval\[GreaterEqual]1,threshold=assval,threshold=0]; + While[Sh\[Infinity]m<threshold && i<np, + i=i+1; + varshtalw=varshtdRg[[1]] +i*dvarshta; + eqsht={vars[[shtdInd]][eqsRga[[1]]]\[Equal]varshtalw}; + eqsht=Join[eqs,eqsht]; + varsa=vars/.Flatten[NDSolve[eqsht,vars,{Global`r,eqsRga[[1]],eqsRga[[2]]},AccuracyGoal\[Rule]15,PrecisionGoal\[Rule]15,WorkingPrecision\[Rule]30,MaxSteps->Infinity]]; + dom=InterpolationDomain[varsa[[1]]]; + Sh\[Infinity]m=varsa[[shtdInd]]@dom[[2]]; + varshta[[1]]=varshtalw; + If[verbose, Print["n: ",i,". Redefining lower limit as: ",varshta[[1]]]]; + ]; + varshta[[1]]=varshtalw - dvarshta; + Return[Flatten[Join[varshta[[1;;2]],{i}]]]; +*)]; + + +Options[ShootingNStars]={"Tolerance"->10^(-8),"Verbose"->True,"Bracketing"->False,"MaxIteraton"->100,"NPoints"->1000,"AssymptoticMatch"->None,"AssymptoticValue"->10^-8}; +ShootingNStars[eqs_,eqsRg_,Global`r_,vars_,shtdInd_,varshtdRg_,optNDS__,OptionsPattern[]]:=Module[{dom,eqsht, +Sh0,Sh0m,posref,mean,tol,Sh\[Infinity],Sh\[Infinity]m,Sh\[Infinity]m2,Sh0m2,Sh0ref, +a,posreftest,verbose,begin,eqsRga,brack,varshtdRga,varsa,varshta,varshtalw,dvarshta,out,ShtStr,raux,np,i,amax,assymptotic, +Rs,r,datab,datfit,a0,m,y1,y2,A3,assval,threshold}, + +(* Loading options *) +tol=OptionValue["Tolerance"]; +verbose=OptionValue["Verbose"]; +brack=OptionValue["Bracketing"]; +amax=OptionValue["MaxIteraton"]; +assymptotic=OptionValue["AssymptoticMatch"]; +np=OptionValue["NPoints"]; +assval=OptionValue["AssymptoticValue"]; + +(* Some auxiliary variables *) +eqsRga=eqsRg; +varshtdRga=varshtdRg; +varsa=ToExpression[(ToString[#]<>"a")&/@vars]; +varshta=Join[varshtdRga,{Mean[varshtdRga]}]; +ShtStr=ToString[varsa[[shtdInd]]]; +a=0 (* auxiliary counter *) ; +i=0 (* auxiliary counter *) ; +dvarshta=(varshta[[2]]-varshta[[1]])/np;(* In case 'bracketing' is activated, we split [varshta[[1]], varshta[[2]]] in np points *) + +(* In case shooting is not required *) +If[Length@varshtdRga==1, +eqsht={vars[[shtdInd]][eqsRga[[1]]]==(varshta[[1]])}; +eqsht=Join[eqs,eqsht]; +varsa=vars/.Flatten[NDSolve[Chop[eqsht],vars,{Global`r,eqsRga[[1]],eqsRga[[2]]},AccuracyGoal->15,PrecisionGoal->15,WorkingPrecision->30,MaxSteps->Infinity]]; +out=Join[varsa,{a,Rationalize[varsa[[shtdInd]]@eqsRga[[1]]],0}]; +Return[out]; +]; +(* We also include provide a 'bracketing' option in case the bracketing on the shooting variable is required *) +If[brack, + varshtalw=Chop[varshta[[2]]]; + eqsht={vars[[shtdInd]][eqsRga[[1]]]==varshtalw}; + eqsht=Join[eqs,eqsht]; + + varsa=vars/.Flatten[NDSolve[Chop[eqsht],vars,{Global`r,eqsRga[[1]],eqsRga[[2]]},AccuracyGoal->15,PrecisionGoal->15,WorkingPrecision->30,MaxSteps->Infinity]]; + dom=InterpolationDomain[varsa[[1]]][[1]]; + (*If[dom[[2]]<eqsRga[[2]],eqsRga[[2]]=Rationalize[0.9*eqsRga[[2]],1];If[verbose,Print[Style[" Breakup found. Changing rfin to ",Red],eqsRga[[2]]] ];Goto[begin];];*) + Which[Sh\[Infinity]m<0&&assval<= 1, Print[Style[" Upper value of the shooted variable is not positive at rmax: Redefine the brackets !",Red]]; Return[];, + Sh\[Infinity]m<1&&assval>= 1, Print[Style[" Upper value of the shooted variable is <1 at rmax: Redefine the brackets !",Red]]; Return[];]; + + Sh\[Infinity]m=-0.1; + i=0; + If[assval>=1,threshold=assval,threshold=0]; + While[Sh\[Infinity]m<threshold && i< np, + i=i+1; + varshtalw=varshtdRg[[1]] +i*dvarshta; + eqsht={vars[[shtdInd]][eqsRga[[1]]]==varshtalw}; + eqsht=Join[eqs,eqsht]; + varsa=vars/.Flatten[NDSolve[eqsht,vars,{Global`r,eqsRga[[1]],eqsRga[[2]]},AccuracyGoal->15,PrecisionGoal->15,WorkingPrecision->30,MaxSteps->Infinity]]; + dom=InterpolationDomain[varsa[[1]]][[1]]; + Sh\[Infinity]m=Chop[varsa[[shtdInd]]@dom[[2]]]; + varshta[[1]]=Chop[varshtalw]; + If[verbose, Print["n: ",i,". Redefining lower limit as: ",varshta[[1]]]]; + ]; + Return[Flatten[Join[varshta[[1;;2]],{i}]]]; +]; + +(* First estimates on the value of the shooted variable at eqsRg1[[2]]. There is a goto to correct possible breakups on the equations. We also include provide a 'bracketing' option in case the bracketing on the unknown variable is needed*) +Label[begin]; + Sh\[Infinity]=Table[ + eqsht={vars[[shtdInd]][eqsRga[[1]]]==(varshta[[i]])}; + eqsht=Join[eqs,eqsht]; + varsa=vars/.Flatten[NDSolve[eqsht,vars,{Global`r,eqsRga[[1]],eqsRga[[2]]},AccuracyGoal->15,PrecisionGoal->15,WorkingPrecision->30,MaxSteps->Infinity]]; + dom=InterpolationDomain[varsa[[1]]][[1]]; + (*If[dom[[2]]<eqsRga[[2]],eqsRga[[2]]=Rationalize[0.9*eqsRga[[2]],1];If[verbose,Print[Style[" Breakup found. Changing rfin to ",Red],eqsRga[[2]]] ];Goto[begin];];*) + Sh\[Infinity]m=varsa[[shtdInd]]@dom[[2]] + ,{i,3}]; +Sh\[Infinity]m=Sh\[Infinity][[3]]; +Sh0m=varshta[[3]]; +posref=Position[{Abs[Sh\[Infinity][[1]]],Abs[Sh\[Infinity][[2]]]},_?(#==Min[{Abs[Sh\[Infinity][[1]]],Abs[Sh\[Infinity][[2]]]}] &)][[1]]; +Sh\[Infinity]m2=Sh\[Infinity][[posref]][[1]]; +Sh0m2=varshtdRga[[posref]]; +Sh0ref=Flatten[{Sh0m,Sh0m2}]; +mean=Mean[Sh0ref]; + +(* Starts the shooting loop. *) +If[verbose,Print["Output: vars, a, "<>ShtStr<>" variable at \[Infinity], Error"]]; +If[verbose,Print["Intermediate prints: iteration, "<>ShtStr<>" at \[Infinity], Error"]]; + +While[ Abs[Sh\[Infinity]m]>assval &&Abs[1-Sh\[Infinity]m/Sh\[Infinity]m2]>tol && Length@posref>0 && a<= amax, +a=a+1; +If[verbose,Print[{a,Round[mean,10^-16],varsa[[shtdInd]]@dom[[2]],Abs[1-Sh\[Infinity]m/Sh\[Infinity]m2]}]]; +eqsht={vars[[shtdInd]][eqsRga[[1]]]==mean}; +eqsht=Join[eqs,eqsht]; +varsa=vars/.Flatten[NDSolve[eqsht,vars,{Global`r,eqsRga[[1]],eqsRga[[2]]}, +AccuracyGoal->15,PrecisionGoal->15,WorkingPrecision->30,MaxSteps->Infinity]]; +(*If[dom[[2]]<eqsRga[[2]],eqsRga[[2]]=Rationalize[0.9*eqsRga[[2]],1];If[verbose,Print[Style[" Breakup found. Changing rfin to ",Red],eqsRga[[2]] ]];Goto[begin];];*) +dom=InterpolationDomain[varsa[[1]]][[1]]; +Which[assymptotic=="Exponential"&&dom[[2]]==eqsRga[[2]], + Rs=0.95(r/.FindRoot[varsa[[1]]@r,{r,6}]);datab=Table[{r,varsa[[shtdInd]]@r},{r,Rs,dom[[2]],0.01}]; + y1=varsa[[shtdInd]]@Rs;y2=(D[varsa[[shtdInd]]@r,r]/.r->Rs);m=(-y1-Rs^2 y2)/(Rs y1);a0= y1; + datfit=NonlinearModelFit[datab,A3 + a0 Exp[-r m],{A3},r];Print[{a0,m,datfit["BestFitParameters"]}]]; + +posreftest=Quiet@Position[{Abs[Sh\[Infinity]m],Abs[varsa[[shtdInd]]@dom[[2]]]},_?(#==Min[{Abs@Sh\[Infinity]m,Abs[varsa[[shtdInd]]@dom[[2]]]}] &)]; +If[Length@posreftest>0,posref=posreftest[[1]],posref={};]; +Sh0ref={mean,Sh0ref[[posref]][[1]]}; +mean=Mean[Sh0ref]; +Sh\[Infinity]m2={Sh\[Infinity]m,Sh\[Infinity]m2}[[posref[[1]]]]; +Sh\[Infinity]m=varsa[[shtdInd]]@dom[[2]]; +]; +If[verbose,Print["Output: vars, a, Shooted variable at \[Infinity]"]]; +out=Join[varsa,{a,Round[mean,10^-8],Sh\[Infinity]m}]; +Return[out] +] + + +ComputeEdges[pts_]:=Module[{ptsx,auxvar,auxvar2,nears,i}, +ptsx=SortBy[pts,First]; +auxvar={}; +i=1; +AppendTo[auxvar,{ptsx[[i]]}]; +While[i<= Length@ptsx-1, +If[ptsx[[i+1,1]]==ptsx[[i,1]],i=i+1,AppendTo[auxvar,{ptsx[[i]]}];i=i+1] +]; +AppendTo[auxvar,{ptsx[[i]]}]; +auxvar=Flatten[auxvar,1]; + +i=Length@ptsx-1; +While[i> 1, +If[ptsx[[i+1,1]]==ptsx[[i,1]],i=i-1,AppendTo[auxvar,ptsx[[i+1]]];i=i-1] +]; +AppendTo[auxvar,ptsx[[i]]]; +Do[auxvar=AppendTo[auxvar,0.5auxvar[[1]]+0.5auxvar[[-1]]],{i,3}]; +auxvar +] + + +CredibleRegion[data_,level_]:=Module[{datasrt,prob,cumprob,pbound}, +(* Last column must be the PDF *) +datasrt=SortBy[data,Last]; +prob=TakeColumn[datasrt,-1]; +cumprob=Accumulate[prob]; + +pbound=Quiet@Position[cumprob,_?(#>= (1-level) cumprob[[-1]]& ),1][[1,1]]; + +ComputeEdges[datasrt[[pbound-1;;-1]]][[All,1;;-2]] +] + + +LoveNumber[eos_,mtot_]:=Module[{y,r,p,\[Epsilon],m,eqy,\[CapitalGamma],eqsGR,listeos,yy,zz,eqEoS,\[Rho]int,pint,rin,\[Rho]c,pc,eqsIC,rMax,alleqs,alleqsnd,Pr,mr,yr,Rm,Mm,Cc,G,c,m0,rg,P0,\[Rho]0,R0}, + +G=6.67428 10^-8; +c=2.99792458 10^10; +m0=1.989 10^33; +rg= G m0/c^2; +P0=m0 c^2/rg^3; +\[Rho]0=m0/rg^3; +R0=1/rg^2; + +eqEoS={p[r]==(10^EoSFits[eos]/.\[Rho]->Log[10,\[Rho]0 \[Rho][r]])/P0}; +listeos=Table[{(EoSFits[eos]/.\[Rho]->x),(From\[Rho]To\[Epsilon]Fits[eos]/.\[Rho]->10^x)},{x,1,16,0.01}]; +\[Rho]int=Interpolation[listeos/.{yy_,zz_}->{(10^yy)/P0,(zz)/( \[Rho]0)}]; +pint=Interpolation[listeos/.{yy_,zz_}->{(zz)/( \[Rho]0),(10^yy)/P0}]; + +(* Equations 1-2 GR ToVs. Equation 3 k2 eq. *) +eqsGR={((m[r]+4 \[Pi] r^3 p[r]) (p[r]+\[Rho][r]))/(r^2-2 r m[r])+Derivative[1][p][r]==0,4 \[Pi] r^2 \[Rho][r]-Derivative[1][m][r]==0}; +eqy={y'[r]==-(y[r]^2/r)-(r+4\[Pi] r^3 (p[r]-\[Rho][r]))/(r(r-2m[r])) y[r]+(4(m[r] +4\[Pi] r^3 p[r])^2)/(r(r-2m[r]))+6/(r-2m[r])-(4\[Pi] r^2)/(r-2m[r]) (5\[Rho][r]+9p[r]+(\[Rho][r] +p[r])/D[pint@\[Rho][r],\[Rho][r]])}; +alleqs=Join[eqsGR,eqy]; + +(* --------*) + +(* Solve the system *) +\[Rho]c=\[Rho]max[[1]]0.76; +rin=10^-5; +pc=eqEoS[[1,2]]/.\[Rho][r]->\[Rho]c; + +eqsIC={p[rin]==pc,m[rin]==0,y[rin]==2,WhenEvent[p[r]/pc<10^(-12),rMax=r;"StopIntegration"]}; +alleqsnd=alleqs/.\[Rho][r]->\[Rho]int[p[r]]/.p[r]->Max[p[r],0]; +{Pr,mr,yr}={p,m,y}/.Flatten[NDSolve[Flatten@Join[alleqsnd,Join[eqsIC]],{p,m,y},{r,rin,100},Method->{"ExplicitRungeKutta","DifferenceOrder"->8},AccuracyGoal->16,PrecisionGoal->13]]; +Rm=InterpolationDomain[Pr][[2]]; +Mm=(mr@Rm); +Cc=Mm/(Rm); + +(2/3((c^2/G)(rg Rm)/(Mm*m0))^5)k2[Cc,yr[Rm]] + +]; + + +k2[c_,y_]:=(8 c^5)/5 (1-2c)^2(2+2c(y-1)-y)(2c(6-3y +3c(5y-8))+4c^3(13-11y+c(3y-2)+2c^2(1+y)) ++3(1-2c)^2(2-y+2c(y-1))Log[1-2c])^(-1) + + +(* ::Code::Initialization:: *) +AtomsList[expr_]:=Union@Select[Level[expr,{0,Infinity}],AtomQ]; +InterpolationDomain[fun_]:=Module[{min,max},fun[[1]]]; +TakeColumn[list1_?ListQ,list2_?ListQ]:=Map[Part[#,list2]&,list1]; +TakeColumn[list1_?ListQ,n_?IntegerQ]:=(list1//Transpose)[[n]]; + + +(* ::Code::Initialization:: *) +End[]; +EndPackage[]; + + +Options[RiemannTensorDev2]=Join[Options[ChristoffelSymbolDev],{"IndexDown"->False}]; +RiemannTensorDev2[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{n,Chr,compile,index,res,perti,simpl,verbose}, +index=OptionValue["IndexDown"]; +perti=OptionValue["PerturbationIndex"]; +simpl=OptionValue["SimplifyFunction"]; +compile=OptionValue["Compile"]; +verbose=OptionValue["Verbose"]; + +n=Length@xx; +If[verbose,Print["Starting with Christoffel symbols..."]]; +Chr=ChristoffelSymbolDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl,"Compile"->False]; +If[verbose,Print["Christoffel symbols computed. Starting with Riemann..."]]; + +res=ConstantArray[0,{n,n,n,n}]; +If[index, + If[NumericQ[pert], Do[res[[i,k,l,m]]=Sum[g[[i,p]](D[Chr[[p,k,m]],xx[[l]]]-D[Chr[[p,k,l]],xx[[m]]]+Sum[Chr[[p,s,l]]*Chr[[s,k,m]]-Chr[[p,s,m]]*Chr[[s,k,l]],{s,n}]),{p,n}],{i,n},{k,n},{l,n},{m,n}], + Do[res[[i,k,l,m]]=Sum[g[[i,p]](Normal@Series[D[Chr[[p,k,m]],xx[[l]]]-D[Chr[[p,k,l]],xx[[m]]]+Sum[Chr[[p,s,l]]*Chr[[s,k,m]],{s,n}]-Sum[Chr[[p,s,m]]*Chr[[s,k,l]],{s,n}],{pert,0,perti}]),{p,n}],{i,n},{k,n},{l,n},{m,n}]]; + + If[compile, Do[res[[i,k,l,m]]=If[NumberQ[res[[i,k,l,m]]],res[[i,k,l,m]],Compile[Evaluate@({#,_Real}&/@xx),Evaluate[res[[i,k,l,m]]],CompilationTarget->"C",CompilationOptions->"InlineExternalDefinitions"->True]],{i,n},{k,n},{l,n},{m,n}];]; + (* Applying simmetries *) + , + If[NumericQ[pert], Do[res[[i,k,l,m]]=(D[Chr[[i,k,m]],xx[[l]]]-D[Chr[[i,k,l]],xx[[m]]]+Sum[Chr[[i,s,l]]*Chr[[s,k,m]]-Chr[[i,s,m]]*Chr[[s,k,l]],{s,n}]),{i,n},{k,n},{l,n},{m,n}], + Do[res[[i,k,l,m]]=(Normal@Series[D[Chr[[i,k,m]],xx[[l]]]-D[Chr[[i,k,l]],xx[[m]]]+Sum[Chr[[i,s,l]]*Chr[[s,k,m]],{s,n}]-Sum[Chr[[i,s,m]]*Chr[[s,k,l]],{s,n}],{pert,0,perti}]),{i,n},{k,n},{l,n},{m,n}]]; + ]; + + +If[verbose,Print["...Riemann computed"]]; +simpl@res]; + + +Options[RicciTensorDev]=Options[ChristoffelSymbolDev]; +RicciTensorDev[xx_,g_,pert_:0,OptionsPattern[]]:=Block[{compile,Rie,res,n,perti,simpl}, +perti=OptionValue["PerturbationIndex"]; +compile=OptionValue["Compile"]; +simpl=OptionValue["SimplifyFunction"]; + +n=Length@xx; +Rie=RiemannTensorDev[xx,g,pert,"PerturbationIndex"->perti,"SimplifyFunction"->simpl]; + +res=ConstantArray[0,{n,n}]; +If[NumericQ[pert], Do[res[[i,j]]=Sum[Rie[[s,i,s,j]],{s,n}],{i,n},{j,n}], + Do[res[[i,j]]=Normal@Series[Sum[Rie[[s,i,s,j]],{s,n}],{pert,0,perti}],{i,n},{j,i,n}]]; + +If[compile, Do[res[[i,j]]=If[NumberQ[res[[i,j]]],res[[i,j]],Compile[Evaluate@({#,_Real}&/@xx),Evaluate[res[[i,j]]],CompilationTarget->"C",CompilationOptions->"InlineExternalDefinitions"->True]],{i,n},{j,i,n}];] ; +(* Applying symmetries *) +Do[res[[i+1,j]]=res[[j,i+1]];,{i,n-1},{j,i}]; + +simpl@res] + + + diff --git a/code/GRTensor.nb b/code/GRTensor.nb new file mode 100644 index 0000000000000000000000000000000000000000..b5af1945cfdfa497fb3b32e629809fcea8fcaf02 --- /dev/null +++ b/code/GRTensor.nb @@ -0,0 +1,41811 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 11.3' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 1798327, 41803] +NotebookOptionsPosition[ 1718831, 40553] +NotebookOutlinePosition[ 1719426, 40575] +CellTagsIndexPosition[ 1719335, 40570] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["BGR Tensor", "Title", + CellChangeTimes->{{3.747969475841448*^9, 3.747969478495125*^9}, + 3.7479695552006407`*^9},ExpressionUUID->"412e446d-949d-4a39-ab8f-\ +2e74aab963be"], + +Cell["XJ 2018", "Subtitle", + CellChangeTimes->{{3.523020346046398*^9, 3.523020387550603*^9}, { + 3.7479695097873077`*^9, 3.747969513767797*^9}}, + FontSize->18,ExpressionUUID->"03c7a68d-9296-477d-858e-f28f41a96ef7"], + +Cell["\<\ +Provide functions to compute tensor-related quantities in GR and BGR:\ +\>", "Subsubtitle", + CellChangeTimes->{{3.5230204030134068`*^9, 3.523020425030308*^9}, { + 3.5230265395509644`*^9, 3.523026547108094*^9}, {3.747969524970929*^9, + 3.747969552823316*^9}},ExpressionUUID->"1dd49449-a8ac-466f-9155-\ +195dee63ff9f"], + +Cell[CellGroupData[{ + +Cell["Compute Christoffel, Riemann,Ricci, KrScalar.. ", "Item", + CellChangeTimes->{{3.522998382463629*^9, 3.5229984147045593`*^9}, { + 3.523020439792676*^9, 3.523020517729113*^9}, {3.747969559579624*^9, + 3.7479695758881598`*^9}, {3.747969685164095*^9, + 3.7479697066498737`*^9}},ExpressionUUID->"5790c103-deb7-4616-bb6c-\ +3201fb52dcfe"], + +Cell["Equations for FR and scalar-tensor.", "Item", + CellChangeTimes->{{3.522998382463629*^9, 3.5229984147045593`*^9}, + 3.523020439792676*^9, {3.523020524113278*^9, 3.523020543890162*^9}, { + 3.747969712073694*^9, + 3.7479697210241117`*^9}},ExpressionUUID->"44de3030-71f6-405b-999e-\ +75aa76f5f611"], + +Cell["Tensor notation for curl, cross product...", "Item", + CellChangeTimes->{{3.523020552541416*^9, 3.523020617429453*^9}, { + 3.7479697237742*^9, + 3.747969740689835*^9}},ExpressionUUID->"f9419d5d-d441-4601-b5f7-\ +a8f1d5919af9"] +}, Open ]], + +Cell["still incomplete", "Text", + CellChangeTimes->{{3.5230265802866173`*^9, 3.5230265869424953`*^9}}, + FontWeight->"Bold",ExpressionUUID->"9611da95-c63f-4174-ad5e-d05a8caf1d44"], + +Cell["TODO: Improve and improve", "Text", + CellChangeTimes->{{3.525272085056192*^9, 3.52527217803032*^9}, { + 3.747969747116612*^9, + 3.7479697512991533`*^9}},ExpressionUUID->"d61a9f74-a8b4-4661-9a96-\ +0aec3ba57e56"], + +Cell[CellGroupData[{ + +Cell["Conventions", "Subsubtitle", + CellChangeTimes->{{3.5230204030134068`*^9, 3.523020425030308*^9}, { + 3.5230265395509644`*^9, 3.523026547108094*^9}, {3.747969524970929*^9, + 3.747969552823316*^9}, {3.747969783487075*^9, + 3.747969785619598*^9}},ExpressionUUID->"7485f0c1-9446-4d71-bc0d-\ +dc62c290ca04"], + +Cell[CellGroupData[{ + +Cell["\<\ +Conventions following Misner et al., that is, [S2] = 1, [S3] = 1. \ +\>", "Item", + CellChangeTimes->{{3.522998382463629*^9, 3.5229984147045593`*^9}, { + 3.523020439792676*^9, 3.523020517729113*^9}, {3.747969559579624*^9, + 3.7479695758881598`*^9}, {3.747969685164095*^9, 3.7479697066498737`*^9}, { + 3.747969811652556*^9, + 3.7479698389527483`*^9}},ExpressionUUID->"f364ad21-6a79-461f-82fd-\ +266664ee0eaf"], + +Cell["\<\ +The Christoffel symbols are sorted such the upper index corresponds to the \ +first nested array. \ +\>", "Item", + CellChangeTimes->{{3.522998382463629*^9, 3.5229984147045593`*^9}, { + 3.523020439792676*^9, 3.523020517729113*^9}, {3.747969559579624*^9, + 3.7479695758881598`*^9}, {3.747969685164095*^9, 3.7479697066498737`*^9}, { + 3.747969811652556*^9, + 3.747969851912013*^9}},ExpressionUUID->"f7c3d670-7f49-4cad-8b0c-\ +e1d6554e2404"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Warnings . Read this please !!!!", "Subsubtitle", + CellChangeTimes->{{3.5230204030134068`*^9, 3.523020425030308*^9}, { + 3.5230265395509644`*^9, 3.523026547108094*^9}, {3.747969524970929*^9, + 3.747969552823316*^9}, {3.747969783487075*^9, 3.747969785619598*^9}, { + 3.798348746657403*^9, + 3.7983487564812803`*^9}},ExpressionUUID->"d6086976-b2f7-4c24-9bad-\ +2785b986bc0f"], + +Cell["\<\ +Never, ever, ever use looping indices in your do, for, Table, statements that \ +match any of your symbolic variables as: coordinates, arguments and so on so \ +forth!!!\ +\>", "Item", + CellChangeTimes->{{3.522998382463629*^9, 3.5229984147045593`*^9}, { + 3.523020439792676*^9, 3.523020517729113*^9}, {3.747969559579624*^9, + 3.7479695758881598`*^9}, {3.747969685164095*^9, 3.7479697066498737`*^9}, { + 3.747969811652556*^9, 3.7479698389527483`*^9}, {3.798348763991745*^9, + 3.798348856622266*^9}},ExpressionUUID->"923f22e3-6a74-48ed-910c-\ +a2cf0077f928"], + +Cell[BoxData[ + RowBox[{"Quit", "[", "]"}]], "Input", + CellChangeTimes->{{3.782627600896647*^9, 3.782627602035941*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"556b9938-0d87-43c7-9c74-092950e517a4"], + +Cell[CellGroupData[{ + +Cell["Begin Package", "Section", + CellChangeTimes->{{3.526304277369893*^9, + 3.526304293712488*^9}},ExpressionUUID->"d1f4fc7b-0fc3-4dfa-87e1-\ +5cab3334f1ef"], + +Cell[BoxData[ + RowBox[{"\n", + RowBox[{"(*", " ", + RowBox[{ + "Probably", " ", "not", " ", "all", " ", "the", " ", "extra", " ", + "packages", " ", "are", " ", "really", " ", "needed"}], " ", "*)"}], "\n", + RowBox[{ + RowBox[{"BeginPackage", "[", "\"\<GRTensor`\>\"", "]"}], ";"}]}]], "Code", + CellChangeTimes->{{3.526314579837529*^9, 3.526314746283765*^9}, { + 3.526314906743479*^9, 3.526314927567987*^9}, {3.5265719878947163`*^9, + 3.526571995104267*^9}, {3.7479693011702957`*^9, 3.7479693395418663`*^9}, { + 3.751977582079381*^9, 3.7519775867970133`*^9}, {3.795343151330058*^9, + 3.795343151662513*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"73646baf-e1d8-48be-b891-b1d31c1d0092"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Definitions", "Section", + CellChangeTimes->{{3.797832428103478*^9, + 3.797832433936167*^9}},ExpressionUUID->"62bc7e4c-e5f8-44b8-8aaf-\ +b650c91c7ebe"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"MetDet", "::", "usage"}], "=", + "\"\<MetDet[g_]. Compute the determinant of the metric\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"InverseMetric", "::", "usage"}], "=", + "\"\<InverseMetric[g_]. Compute the inverse of the metric\>\""}], + ";"}]}], "Code", + CellChangeTimes->{{3.5263160755721893`*^9, 3.526316084683058*^9}, { + 3.526536060416284*^9, 3.5265361261157913`*^9}, {3.747969948778027*^9, + 3.747970023012105*^9}}, + CellLabel-> + "In[175]:=",ExpressionUUID->"9454ca91-4990-42d1-a52b-e9f7ea7c4763"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"ChristoffelSymbol", "::", "usage"}], "=", + "\"\<ChristoffelSymbol[coords_,g_,pert_:0]. Compute Christoffel symbols. \ +Default for perturbation variabel pert is 0.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"WeylTensor", "::", "usage"}], "=", + "\"\<WeylTensor[coords_,g_,pert_:0]. Compute Weyl tensor following the \ +convention of Misner et al., that is, [S2] = 1, [S3] = 1. Default for \ +perturbation variabel pert is 0. \>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RiemannTensor", "::", "usage"}], "=", + "\"\<RiemannTensor[coords_,g_,pert_:0]. Compute Riemann tensor following \ +the convention of Misner et al., that is, [S2] = 1, [S3] = 1 .Default for \ +perturbation variabel pert is 0. \>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RicciTensor", "::", "usage"}], "=", + "\"\<RicciTensor[coords_,g_,pert_:0]. Compute Riemann tensor following the \ +convention of Misner et al., that is, [S2] = 1, [S3] = 1. Default for \ +perturbation variabel pert is 0. \>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RicciScalar", "::", "usage"}], "=", + "\"\<RicciScalar[coords_,g_,pert_:0]. Compute RicciScalar scalar. Default \ +for perturbation variabel pert is 0. \>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"KrScalar", "::", "usage"}], "=", + "\"\<KrScalar[coords_,g_]. Compute Kretschmann scalar\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"WeylTrace", "::", "usage"}], + "\"\<WeylTrace[coords_,g_]: Compute Weyl Tensor trace\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Einstein", "::", "usage"}], "=", + "\"\<Einstein[coords_,g_,\[Epsilon]p:]. Compute Einstein tensor following \ +the convention of Misner et al., that is, [S2] = 1, [S3] = 1 with \ +perturbation index \[Epsilon]p\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ETensor", "::", "usage"}], "=", + "\"\<ETensor[coords_,g_,\[Epsilon]p_]. Compute the energy momentum tensor \ +with perturbation index \[Epsilon]p.\>\""}], ";"}]}], "Code", + CellChangeTimes->{{3.5263160755721893`*^9, 3.526316084683058*^9}, { + 3.526536060416284*^9, 3.5265361261157913`*^9}, {3.747969948778027*^9, + 3.747970199453802*^9}, {3.7479702450571823`*^9, 3.7479702809117517`*^9}, { + 3.768297594917066*^9, 3.768297629160459*^9}, {3.7711299838460913`*^9, + 3.771130004399973*^9}, {3.782197205762834*^9, 3.782197336471706*^9}, { + 3.78220545888186*^9, 3.7822054927193613`*^9}, {3.798360480637487*^9, + 3.798360480876276*^9}}, + CellLabel-> + "In[177]:=",ExpressionUUID->"7d90f080-84f2-4094-b473-738b2b7cd239"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"DAlembert", "::", "usage"}], "=", + "\"\<DAlembert[coords_,g_,func_]. Compute D'Alembert operator for \ +func[coords]\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"CovDer", "::", "usage"}], "=", + "\"\<CovDer[coords_,metric_,tensor_,comps_]. Compute the covariant \ +derivative (default covariant version) for scalar and 1-2 forms. The \ +components are given in a list as: {a},{a,b},{a,b,c}\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"NonZeroChristoffel", "::", "usage"}], "=", + "\"\<NonZeroChristoffel[\[CapitalGamma]]. Show the nonzero Christoffel \ +components.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"NonZeroMetricComp", "::", "usage"}], "=", + "\"\<NonZeroMetricComp[g]. Show the nonzero metric components.\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"NonZeroTensorComp", "::", "usage"}], "=", + "\"\<NonZeroTensorComp[T]. Show the nonzero Tensor components. It works \ +with any symmetric m xmxmxmx... tensor\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"LeviCivitaTensorCurv", "::", "usage"}], "=", + "\"\<LeviCivitaTensorCurv[coords_,g_]. Compute the Levi-Civita \ +antisymmetric tensor for curvilinear coordinates. For cartesian xx recovers \ +the usual \[Epsilon]_(abc).\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"CheckTetrad", "::", "usage"}], "=", + "\"\<[gab_,nullv_]. Check whether the 4 null tetrad vectors satisfy \ +orthonormality conditions.\>\""}], ";"}]}], "Code", + CellChangeTimes->{{3.7479703063831244`*^9, 3.7479703650470047`*^9}, { + 3.747970414731077*^9, 3.7479705120335617`*^9}, {3.747970595785676*^9, + 3.747970742161409*^9}, {3.747971234897049*^9, 3.7479713376055613`*^9}, { + 3.782213306135426*^9, 3.7822133474704943`*^9}, {3.7828117423392982`*^9, + 3.782811807523222*^9}}, + CellLabel-> + "In[186]:=",ExpressionUUID->"82584a06-f2ae-482e-8ccd-35105c0ab1d3"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"EinsteinfR", "::", "usage"}], "=", + "\"\<EinsteinfR[coords_,g_,fR_]. Compute fR Einstein equations following \ +the convention of Misner et al., that is, [S2] = 1, [S3] = 1 \>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EinsteinST", "::", "usage"}], "=", + "\"\<EinsteinST[coords_,g_,v\[Phi]_]. Compute scalar-tensor Einstein \ +equations following the convention of Misner et al., that is, [S2] = 1, [S3] \ += 1 \>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"STensorT\[Psi]", "::", "usage"}], "=", + "\"\<STensorT\[Psi][coords_,g_,v\[Phi]_]. Compute scalar-tensor Energy \ +momentum tensor following the convention of Misner et al., that is, [S2] = 1, \ +[S3] = 1 \>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"TeffFR", "::", "usage"}], "=", + "\"\<TeffFR[coords_,g_,fR_]. Compute fR Teff tensor such \ +Gab=8\[Pi]/f'[R](Tab + Teff) following the convention of Misner et al., that \ +is, [S2] = 1, [S3] = 1\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"TeffST", "::", "usage"}], "=", + "\"\<TeffST[coords_,g_,{V\[CurlyPhi],\[CurlyPhi]}]. Compute ST-EF/JF Teff \ +tensor such Gab=8\[Pi] (Tab + Teff) following the convention of Misner et \ +al., that is, [S2] = 1, [S3] = 1. Allowed options for the Frame are Einstein, \ +Jordan\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"FRTOV", "::", "usage"}], "=", + "\"\<FRTOV[coords_,g_,fR_,vars_]. Compute fR TOV eqs such \ +Gab=8\[Pi]/f'[R](Tab + Teff) following the convention of Misner et al., that \ +is, [S2] = 1, [S3] = 1\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"STTOV", "::", "usage"}], "=", + "\"\<STTOV[coords_,g_,{V\[CurlyPhi]_,var\[CurlyPhi]_},vars_]. Compute \ +ST-EF/JF TOV eqs such Gab=8\[Pi](Tab + Teff) following the convention of \ +Misner et al., that is, [S2] = 1, [S3] = 1\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"fR2Pot", "::", "usage"}], "=", + "\"\<fR2UJF[fR_]. From fR model to the ST potential \ +U(\[Phi])-V(\[Phi])\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"CurlCurvilinear", "::", "usage"}], + "\"\<CurlCurvilinear[xx,g,vec]. It computes the curl tensor in curvilinear \ +coordinates\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ElectricTensor3p1Dev", "::", "usage"}], "=", + "\"\<ElectricTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{"MagneticTensor3p1Dev", "::", "usage"}], "=", + "\"\<MagneticTensor3p1Dev[xx_,g_,Kt_,pert_:0,OptionsPattern[]]\>\""}]}], \ +"Code", + CellChangeTimes->{{3.747970993808878*^9, 3.7479711118743763`*^9}, { + 3.748156602007926*^9, 3.748156684794271*^9}, {3.752314545386385*^9, + 3.7523145959278383`*^9}, {3.768295502479499*^9, 3.7682955291138887`*^9}, { + 3.768300470532792*^9, 3.7683005970500593`*^9}, {3.7683007469144773`*^9, + 3.768300794601935*^9}, {3.768302645014124*^9, 3.768302691243593*^9}, { + 3.768449715584486*^9, 3.7684497837920017`*^9}, 3.768450008701399*^9, { + 3.768450554190308*^9, 3.7684505657910852`*^9}, {3.770785411873918*^9, + 3.770785421057427*^9}, {3.770785522363158*^9, 3.770785555373324*^9}, { + 3.77078872181496*^9, 3.770788747540772*^9}, {3.799562507377907*^9, + 3.7995625670344133`*^9}},ExpressionUUID->"1315b459-a688-49d3-a2a3-\ +f7299b9bb0d8"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"EoSCallParsBSks", "::", "usage"}], "=", + "\"\<EoSCallParsBSks[model_]: Parameters for BSK1-3 EOS for the matter \ +density.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSCallParsSly", "::", "usage"}], "=", + "\"\<EoSCallParsSly[model_]: Parameters for SLy1 EOS for the matter \ +density.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSBSks", "::", "usage"}], "=", + "\"\<EoSBSks[model_]: Analytic EOS for BSK1-3for BSK1-3 EOS for the matter \ +density.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSSly", "::", "usage"}], "=", + "\"\<EoSSly[model_]: Analytic EOS for SLy1 EOS for the matter \ +density.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"SlyInner", "::", "usage"}], "=", "\"\<\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"SlyLCore", "::", "usage"}], "=", "\"\<\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"SlyLCoreAll", "::", "usage"}], "=", "\"\<\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"SlyInnerAll", "::", "usage"}], "=", "\"\<\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSFitsPars", "::", "usage"}], "=", + "\"\<EoSFitsPars[model_,verbose_:False]. Parameters for the \ +JRead(arxiv:0812.2163) parameters.\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSSlyCrust", "::", "usage"}], "=", + "\"\<EoSSlyCrust[\[Rho]_]. Crust model for the NS of \ +JRead(arxiv:0812.2163)\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSFits", "::", "usage"}], "=", + "\"\<EoSFits[model_,OptionsPattern[]]. NS EOS of \ +JRead(arxiv:0812.2163)\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSPol", "::", "usage"}], "=", + "\"\<EoSPol[model_]. NS EOS for a non-relativistic (NR) and relativistic \ +(R, default) NS respectively\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"EoSPol\[Epsilon]", "::", "usage"}], "=", + "\"\<EoSPol\[Epsilon][model_]. NS EOS for a non-relativistic (NR) and \ +relativistic (R, default) NS respectively\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"From\[Rho]To\[Epsilon]Fits", "::", "usage"}], + "\"\<From\[Rho]To\[Epsilon]Fits[eos_]. NS EOS of JRead(arxiv:0812.2163) \ +for the energy density.\>\""}], ";"}]}], "Code", + CellChangeTimes->{{3.751961163876066*^9, 3.751961434642273*^9}, { + 3.7519614734872217`*^9, 3.7519615256170692`*^9}, {3.751961643713148*^9, + 3.751961788773878*^9}, {3.7519619116591673`*^9, 3.7519619220130167`*^9}, { + 3.7569598563385887`*^9, 3.756959919455595*^9}, {3.756960941916218*^9, + 3.756960960336451*^9}}, + CellLabel-> + "In[202]:=",ExpressionUUID->"520e0231-cf67-4615-b6d3-aa9e39113b53"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"ShootingNStars", "::", "usage"}], "=", + "\"\<ShootingNStars[eqs_,eqsRg_,rvar_,vars_,shtdInd_,varshtdRg_]. Shooting \ +function of the index var shtdInd for a set of eqs integrated in eqsRg on the \ +variables vars ;\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"BracketingSTNStars", "::", "usage"}], "=", + "\"\<BracketingSTNStars[eqs_,eqsRg_,rvar_,vars_,shtdInd_,varshtdRg_]. \ +Shooting function of the index var shtdInd for a set of eqs integrated in \ +eqsRg on the variables vars ;\>\""}], ";"}]}], "Code", + CellChangeTimes->{{3.751960790410697*^9, 3.7519609062944317`*^9}, + 3.752314532840685*^9, {3.756626252837673*^9, 3.7566262774063053`*^9}, { + 3.756626414434925*^9, 3.756626426912628*^9}}, + CellLabel-> + "In[216]:=",ExpressionUUID->"d972da8c-a6b7-43c1-84fb-64ef450f9578"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"RK4", "::", "usage"}], "=", + "\"\<RK4[func_?ListQ,vars_?ListQ,ivals_?ListQ,pars_?ListQ,step_]\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"TestCode", "::", "usage"}], + "\"\<TestCode[eqs_,vars_,icond_,rlst_,drlst_]\>\""}], ";"}]}], "Code", + CellChangeTimes->{{3.757861786506209*^9, 3.757861802484889*^9}, { + 3.761376389352297*^9, 3.761376413643672*^9}}, + CellLabel-> + "In[218]:=",ExpressionUUID->"6ddfba02-94cc-4966-9292-4bbe0118b6b0"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"AtomsList", "::", "usage"}], "=", + "\"\<Take the coefficients out\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"InterpolationDomain", "::", "usage"}], "=", + "\"\<InterpolationDomain[interpolatedfunction]. It outputs the domain in a \ +format {tmin,tmax}\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"TakeColumn", "::", "usage"}], "=", + "\"\<TakeColumn[list1_,list2_] extracts columns list2 from list1, i.e. it \ +gives the functionality of the pre-Mathematica 6 Column function.\>\""}], + ";"}]}], "Code", + CellChangeTimes->{{3.795343587685458*^9, 3.795343587944865*^9}, { + 3.795343666406015*^9, 3.795343667370092*^9}}, + CellLabel-> + "In[220]:=",ExpressionUUID->"4bab27d3-7c5c-459f-a370-3f3c92b37de2"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"All", " ", "here", " ", "below", " ", "are", " ", + RowBox[{"dev", ".", " ", "versions", ".", " ", "Replace"}], " ", "them", + " ", "when", " ", "they", " ", "are", " ", "sufficiently", " ", + RowBox[{"tested", "."}]}], " ", "*)"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"ChristoffelSymbolDev", "::", "usage"}], "=", + "\"\<ChristoffelSymbolDev[coords_,g_,pert_:0]. Compute Christoffel \ +symbols. Default for perturbation variabel pert is 0.\>\""}], "\n", + RowBox[{ + RowBox[{"RiemannTensorDev", "::", "usage"}], "=", + "\"\<RiemannTensor[coords_,g_,pert_:0]. Compute Riemann tensor following \ +the convention of Misner et al., that is, [S2] = 1, [S3] = 1 .Default for \ +perturbation variabel pert is 0. \>\""}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RicciTensorDev", "::", "usage"}], "=", + "\"\<RicciTensorDev[coords_,g_,pert_:0]. Compute Riemann tensor \ +following the convention of Misner et al., that is, [S2] = 1, [S3] = 1 \ +.Default for perturbation variabel pert is 0. \>\""}], ";"}]}]}]], "Code", + CellChangeTimes->{{3.798360489797933*^9, + 3.798360575891243*^9}},ExpressionUUID->"d9d11a3a-5579-4cf1-92f4-\ +5b6dcdb004da"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Begin", "[", "\"\<`Private`\>\"", "]"}], ";"}]], "Code", + CellLabel-> + "In[223]:=",ExpressionUUID->"ee552dc2-de40-46d1-94d7-658affe7b6fa"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Einstein tensor and general GR computations", "Section", + CellChangeTimes->{{3.718440602298374*^9, 3.718440612890011*^9}, { + 3.724070943686637*^9, + 3.7240709467569942`*^9}},ExpressionUUID->"05ea9761-368f-4d05-b1d3-\ +336913441ec9"], + +Cell[BoxData[ + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"Conventions", " ", "following", " ", "Misner", " ", "et", " ", + RowBox[{"al", "."}]}], ",", " ", + RowBox[{"that", " ", "is"}], ",", " ", + RowBox[{ + RowBox[{"[", "S2", "]"}], " ", "=", " ", "1"}], ",", " ", + RowBox[{ + RowBox[{"[", "S3", "]"}], " ", "=", " ", "1"}]}], " ", "*)"}]], "Input", + CellChangeTimes->{{3.7246545239510727`*^9, 3.724654534922943*^9}, { + 3.724944260340417*^9, 3.7249442747881737`*^9}, {3.724944335411549*^9, + 3.724944347571026*^9}}, + CellLabel-> + "In[224]:=",ExpressionUUID->"2071ebcb-965b-4656-95d6-762b9c1b4191"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "MetDet", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "1"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "}"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"MetDet", "[", + RowBox[{"g_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", "simpl", "}"}], ",", + RowBox[{ + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + " ", + RowBox[{"simpl", "@", + RowBox[{"Det", "[", "g", "]"}]}]}]}], "]"}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "InverseMetric", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "1"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "}"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"InverseMetric", "[", + RowBox[{"g_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", "simpl", "}"}], ",", + RowBox[{ + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + " ", + RowBox[{"simpl", "@", + RowBox[{"Inverse", "[", "g", "]"}]}]}]}], "]"}]}]}], "Code", + CellChangeTimes->{ + 3.747970761569037*^9, {3.782629327029777*^9, 3.7826294069754887`*^9}, { + 3.7826304144248533`*^9, 3.78263043342875*^9}, {3.782630507268795*^9, + 3.782630509987056*^9}, {3.782630562955225*^9, 3.782630567473515*^9}}, + CellLabel-> + "In[225]:=",ExpressionUUID->"5f09e08c-85d0-4db4-af75-8f85ac788de8"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "1"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "n", ",", "ig", ",", "res", ",", "perti", ",", "simpl", ",", + "verbose"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", + "\[IndentingNewLine]", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"ig", "=", + RowBox[{"InverseMetric", "[", "g", "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"res", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "/", "2"}], ")"}], "*", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"i", ",", "s"}], "]"}], "]"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "s", "]"}], "]"}]}], "]"}]}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "s"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"s", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"i", ",", "s"}], "]"}], "]"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "s", "]"}], "]"}]}], "]"}]}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "s"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"s", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RiemannTensor", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"RiemannTensor", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "n", ",", "Chr", ",", "res", ",", "perti", ",", "simpl", ",", + "verbose"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", "\"\<Starting with Christoffel symbols...\>\"", + "]"}]}], "]"}], ";", "\n", + RowBox[{"Chr", "=", + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", + "\"\<Christoffel symbols computed. Starting with Riemann...\>\"", + "]"}]}], "]"}], ";", "\n", + RowBox[{"res", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ",", + "\n", " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<...Riemann computed\>\"", "]"}]}], "]"}], + ";", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "WeylTensor", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"WeylTensor", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "n", ",", "Chr", ",", "riemann", ",", "riemanndown", ",", "ricciS", + ",", "ricciT", ",", "res", ",", "perti", ",", "simpl", ",", + "verbose"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", "\"\<Starting with RicciScalar...\>\"", "]"}]}], "]"}], + ";", "\n", + RowBox[{"ricciS", "=", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", "\"\<Following with RicciTensor...\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"ricciT", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<Following with Riemann...\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"riemanndown", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"a", ",", "\[Alpha]"}], "]"}], "]"}], + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"\[Alpha]", ",", "b", ",", "c", ",", "d"}], "]"}], + "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"a", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"c", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"res", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{ + RowBox[{"riemanndown", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], ")"}]}], "ricciS", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}]}], ")"}]}]}], ",", + "\n", " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"riemanndown", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], ")"}]}], "ricciS", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}]}], ")"}]}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Simplify", "[", "res", "]"}], "*)"}], "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], ";"}], "\n", + "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RicciTensor", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RicciTensor", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Rie", ",", "res", ",", "n", ",", "perti", ",", "simpl"}], + "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"Rie", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"res", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"s", ",", "i", ",", "s", ",", "j"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"s", ",", "i", ",", "s", ",", "j"}], "]"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Simplify", "[", "res", "]"}], "*)"}], "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RicciScalar", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RicciScalar", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Ricc", ",", "ig", ",", "res", ",", "n", ",", "perti", ",", "simpl"}], + "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", "\n", + RowBox[{"Ricc", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"ig", "=", + RowBox[{"InverseMetric", "[", + RowBox[{"g", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"res", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}], " ", + RowBox[{"Ricc", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}], " ", + RowBox[{"Ricc", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}]}], ";", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "KrScalar", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"KrScalar", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Rie", ",", "res", ",", "n", ",", "Ried", ",", "Rieup", ",", "gup", + ",", "perti", ",", "simpl"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", "\n", + RowBox[{"Rie", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"gup", "=", + RowBox[{"Inverse", "@", "g"}]}], ";", "\n", + RowBox[{"Ried", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "k"}], "]"}], "]"}], " ", + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "m", ",", "l"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"Rieup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"j", ",", "k"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Mu]"}], "]"}], "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], " ", + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "m", ",", "l"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Mu]", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"res", "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Ried", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "m", ",", "l"}], "]"}], "]"}], " ", + RowBox[{"Rieup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "m", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"simpl", "@", "res"}], ",", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"simpl", "@", "res"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}]}]}], "]"}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "WeylTrace", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"WeylTrace", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Chr", ",", "ig", ",", "n", ",", "riemann", ",", "Rieup", ",", + "ricciS", ",", "ricciT", ",", "res", ",", "perti", ",", "simpl", ",", + "weylT", ",", "weylTup"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"ig", "=", + RowBox[{"InverseMetric", "[", + RowBox[{"g", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", "\n", + RowBox[{"weylT", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"weylTup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"a", ",", "\[Alpha]"}], "]"}], "]"}], " ", + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"b", ",", "\[Beta]"}], "]"}], "]"}], " ", + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"c", ",", "\[Gamma]"}], "]"}], "]"}], " ", + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"d", ",", "\[Delta]"}], "]"}], "]"}], " ", + RowBox[{"weylT", "[", + RowBox[{"[", + RowBox[{ + "\[Alpha]", ",", "\[Beta]", ",", "\[Gamma]", ",", "\[Delta]"}], + "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Beta]", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Gamma]", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Delta]", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"a", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"c", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"res", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"weylT", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + RowBox[{"weylTup", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"weylT", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + RowBox[{"weylTup", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], ";"}], "\n"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "Einstein", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"Einstein", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"res", ",", "perti", ",", "simpl"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"res", "=", + RowBox[{ + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}], "-", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}], " ", + "g"}]}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"simpl", "@", "res"}], ",", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"simpl", "@", "res"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}]}]}], "\n", "]"}]}]}], "Code", + CellChangeTimes->{{3.641881374820434*^9, 3.641881374822165*^9}, { + 3.641882848750834*^9, 3.641882848763466*^9}, {3.641883128368373*^9, + 3.6418831352114763`*^9}, {3.641883294020028*^9, 3.64188330016356*^9}, { + 3.6566744109873466`*^9, 3.656674419779984*^9}, {3.656674473707486*^9, + 3.656674542689953*^9}, {3.708161937234585*^9, 3.7081619379866056`*^9}, { + 3.71741672358785*^9, 3.717416780492721*^9}, 3.717416855144506*^9, { + 3.7177451481343193`*^9, 3.717745224198668*^9}, {3.717764231337758*^9, + 3.717764257169631*^9}, {3.7246462395123663`*^9, 3.724646287207852*^9}, { + 3.72464635085569*^9, 3.724646351710986*^9}, {3.724647546382801*^9, + 3.724647783916054*^9}, {3.724647907674429*^9, 3.724647935681088*^9}, { + 3.72464808465769*^9, 3.724648099054977*^9}, 3.724654377293252*^9, { + 3.72493512694532*^9, 3.724935132366665*^9}, {3.724939000432618*^9, + 3.7249390013415413`*^9}, {3.7249442307248898`*^9, 3.724944280475565*^9}, { + 3.724944330467605*^9, 3.7249443336192837`*^9}, {3.7275965059422207`*^9, + 3.727596530777363*^9}, {3.727596642964692*^9, 3.727596777898533*^9}, { + 3.727596899568015*^9, 3.727597180101912*^9}, {3.727597291925323*^9, + 3.72759730100296*^9}, {3.7275978520695477`*^9, 3.727597861500965*^9}, { + 3.747970254014577*^9, 3.747970254499402*^9}, {3.7479707562951517`*^9, + 3.747970810480811*^9}, {3.748164682765679*^9, 3.748164703429923*^9}, { + 3.748164861228725*^9, 3.748164862953665*^9}, {3.757766018871112*^9, + 3.757766028217842*^9}, {3.7682975004698267`*^9, 3.768297501008401*^9}, { + 3.768297731623784*^9, 3.7682977915010242`*^9}, {3.768297826284233*^9, + 3.768297850698557*^9}, {3.7682978854912043`*^9, 3.7682979255893993`*^9}, { + 3.7682979883133593`*^9, 3.7682980095297003`*^9}, {3.7682983459847717`*^9, + 3.768298347698084*^9}, {3.768298426980094*^9, 3.768298435460054*^9}, { + 3.768298525377759*^9, 3.7682985341950197`*^9}, {3.768298723970024*^9, + 3.768298725696434*^9}, {3.768298821598518*^9, 3.768298822037739*^9}, { + 3.77046188295376*^9, 3.770461894124071*^9}, {3.770461926183464*^9, + 3.770461984427977*^9}, {3.770462030715246*^9, 3.770462053871707*^9}, { + 3.7704624762285957`*^9, 3.7704624881657257`*^9}, {3.770462560858678*^9, + 3.7704629620198507`*^9}, {3.7704631687939262`*^9, 3.770463392914324*^9}, + 3.7704634291885366`*^9, {3.782196591259694*^9, 3.7821966476364403`*^9}, { + 3.782196895501017*^9, 3.782196905867714*^9}, {3.782197053552808*^9, + 3.782197192161675*^9}, {3.782197743001953*^9, 3.782197767436512*^9}, { + 3.782198180293537*^9, 3.78219821530903*^9}, {3.78219830581889*^9, + 3.782198367007297*^9}, {3.7821984577119017`*^9, 3.782198670978107*^9}, { + 3.782199305346581*^9, 3.782199324688929*^9}, {3.7821994089978437`*^9, + 3.7821994390319557`*^9}, {3.782200118746462*^9, 3.782200299278453*^9}, { + 3.782200584488165*^9, 3.782200590802178*^9}, {3.782205379235524*^9, + 3.782205435273844*^9}, {3.7822056067612257`*^9, 3.782205616297183*^9}, { + 3.7822056697211018`*^9, 3.782205703269176*^9}, 3.782208269519236*^9, { + 3.782217673355048*^9, 3.7822176973777933`*^9}, {3.7822178491654043`*^9, + 3.7822178691166058`*^9}, 3.782218031411852*^9, {3.782218077488614*^9, + 3.7822183146418667`*^9}, {3.782554217283923*^9, 3.782554310315332*^9}, { + 3.7825543700568657`*^9, 3.782554390561351*^9}, {3.78262947189929*^9, + 3.7826295331140633`*^9}, {3.7826296849993963`*^9, 3.782629706272595*^9}, { + 3.782630961301841*^9, 3.782631105219252*^9}, {3.782631347428708*^9, + 3.782631394685158*^9}}, + CellLabel-> + "In[229]:=",ExpressionUUID->"d02d65d5-6fda-4d39-872e-5145e565b67b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"DAlembert", "[", + RowBox[{"xx_", ",", "metric_", ",", "scalfun_"}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"metdet", ",", "dal", ",", "metup", ",", "sqrtdet"}], "}"}], ",", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"metup", "=", + RowBox[{"Inverse", "[", "metric", "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"metdet", "=", + RowBox[{"MetDet", "[", "metric", "]"}]}], ";", "\n", + RowBox[{"sqrtdet", "=", + RowBox[{"Sqrt", "[", + RowBox[{"-", "metdet"}], "]"}]}], ";", "\n", "\[IndentingNewLine]", + RowBox[{"dal", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "/", "sqrtdet"}], ")"}], " ", + RowBox[{"Sum", "[", "\n", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"sqrtdet", " ", + RowBox[{"metup", "[", + RowBox[{"[", + RowBox[{"\[Nu]", ",", "\[Mu]"}], "]"}], "]"}], " ", + RowBox[{"D", "[", + RowBox[{"scalfun", ",", + RowBox[{"xx", "[", + RowBox[{"[", "\[Mu]", "]"}], "]"}]}], "]"}]}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "\[Nu]", "]"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Mu]", ",", "4"}], "}"}]}], "]"}]}], "]"}]}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.717764147835895*^9, 3.717764197124276*^9}, { + 3.7177643557019787`*^9, 3.7177644902173347`*^9}, {3.717764807234664*^9, + 3.717764824697377*^9}, {3.7177648581597347`*^9, 3.717764931687396*^9}, { + 3.717764991485989*^9, 3.717764992933175*^9}, {3.7177657857068644`*^9, + 3.717765814981923*^9}, {3.717765911798058*^9, 3.717765937672873*^9}, { + 3.7177663123156977`*^9, 3.717766462065151*^9}, {3.717767662187694*^9, + 3.717767662971264*^9}, {3.717767701069643*^9, 3.7177677013387623`*^9}, + 3.717767863582922*^9, {3.7177680195625277`*^9, 3.717768023586151*^9}, { + 3.71780054067974*^9, 3.717800542908545*^9}, {3.719843771044149*^9, + 3.719843889103924*^9}, {3.719843919444406*^9, 3.719843934226091*^9}, + 3.7198440676520243`*^9, {3.719844117047738*^9, 3.7198441239769087`*^9}, { + 3.720090647533627*^9, 3.720090648146304*^9}, {3.747970820033203*^9, + 3.747970824104192*^9}}, + CellLabel-> + "In[245]:=",ExpressionUUID->"73a83525-2b6f-4121-ad3f-acd5ae34221f"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "ETensor", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Signature\>\"", "\[Rule]", "1"}], "}"}], ",", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], "]"}]}], ";"}], + "\n"}], "\n", + RowBox[{ + RowBox[{"ETensor", "[", + RowBox[{"coors_", ",", "met_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "g", ",", "gup", ",", "Global`\[Rho]", ",", "\[Rho]c", ",", "Global`p", + ",", "perti", ",", "pc", ",", "riscal", ",", "riscalvars", ",", "sign", + ",", "simpl", ",", "T\[Mu]\[Nu]", ",", "T\[Mu]\[Nu]up", ",", "u", ",", + "udown", ",", "\[CapitalOmega]"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"sign", "=", + RowBox[{"OptionValue", "[", "\"\<Signature\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"g", "=", "met"}], ";", "\n", + RowBox[{"riscal", "=", + RowBox[{"RicciScalar", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"coors", ",", + RowBox[{"Complement", "[", + RowBox[{"coors", ",", + RowBox[{"AtomsList", "[", "riscal", "]"}]}], "]"}]}], "]"}]}], ";", + "\n", + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";", "\n", + RowBox[{"pc", "=", + RowBox[{"Global`p", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"\[Rho]c", "=", + RowBox[{"Global`\[Rho]", "@@", "riscalvars"}]}], ";", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"u", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"sign", "\[Equal]", "1"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"-", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "]"}]}], ",", "0", + ",", "0", ",", + RowBox[{"pert", " ", + RowBox[{"\[CapitalOmega]", "/", + RowBox[{"Sqrt", "[", + RowBox[{"-", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "]"}]}]}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], ",", "0", ",", + "0", ",", + RowBox[{"pert", " ", + RowBox[{"\[CapitalOmega]", "/", + RowBox[{"Sqrt", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}]}]}], "}"}]}], + "]"}]}], ";", " ", "\[IndentingNewLine]", + RowBox[{"u", "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{"u", ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], ";", + "\n", + RowBox[{"udown", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"udown", "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{"udown", ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], ";", + "\n", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"u", ".", "udown"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}], + "\[NotEqual]", + RowBox[{"-", "1"}]}], ",", + RowBox[{"Return", "[", "\"\<Wrong normalization\>\"", "]"}]}], "]"}], + ";", "\n", "\[IndentingNewLine]", + RowBox[{"T\[Mu]\[Nu]up", "=", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"sign", "\[Equal]", "1"}], ",", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"pc", "+", "\[Rho]c"}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "+", + RowBox[{"pc", " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}], ",", + "\n", " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"pc", "+", "\[Rho]c"}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "-", + RowBox[{"pc", " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}], "//", "Simplify"}]}], ";", "\[IndentingNewLine]", + RowBox[{"T\[Mu]\[Nu]", "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"g", + RowBox[{"(", + RowBox[{"T\[Mu]\[Nu]up", ".", "g"}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "1"}], "}"}]}], "]"}]}]}]}]}], "\n", + "]"}]}]}], "Code", + CellChangeTimes->{{3.771128976902225*^9, 3.771129332204486*^9}, { + 3.771129436083987*^9, 3.7711294515154753`*^9}, {3.771129717331287*^9, + 3.7711297671896753`*^9}, {3.7825634800657463`*^9, 3.782563508635702*^9}, + 3.7991217887928877`*^9}, + CellLabel-> + "In[246]:=",ExpressionUUID->"2f5465f0-0bc1-464c-8946-61bf0688605c"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "NonZeroTensorComp", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<TensorString\>\"", "\[Rule]", "\"\<T\>\""}]}], "}"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"NonZeroTensorComp", "[", + RowBox[{"gamma_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "dimension", ",", "ii", ",", "nonzerpos", ",", "tstring", ",", "verbose", + ",", "\n", "allpos", ",", "zerpos"}], "}"}], ",", "\n", "\n", + RowBox[{ + RowBox[{"tstring", "=", + RowBox[{"OptionValue", "[", "\"\<TensorString\>\"", "]"}]}], ";", "\n", + + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + "set", " ", "dimensions", " ", "and", " ", "total", " ", "number", " ", + "or", " ", "elements"}], " ", "*)"}], "\n", + RowBox[{"dimension", "=", + RowBox[{"Dimensions", "[", "gamma", "]"}]}], ";", "\n", + RowBox[{"(*", + RowBox[{ + RowBox[{"allpos", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"i", ",", "j", ",", "k"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"dimension", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"dimension", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"dimension", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}], ",", "1"}], + "]"}]}], ";"}], "*)"}], "\n", + RowBox[{"allpos", "=", + RowBox[{"Tuples", "[", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{"i", ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"dimension", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}], ",", + RowBox[{"Length", "@", "dimension"}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"zerpos", "=", + RowBox[{"Position", "[", + RowBox[{"gamma", ",", + RowBox[{"_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{"#", "\[Equal]", " ", "0"}], " ", "&"}], ")"}]}]}], + "]"}]}], ";", "\n", + RowBox[{"nonzerpos", "=", + RowBox[{"Complement", "[", + RowBox[{"allpos", ",", "zerpos"}], "]"}]}], ";", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{ + RowBox[{"ToString", "[", + RowBox[{ + SubscriptBox["tstring", + RowBox[{"StringJoin", "[", + RowBox[{"ToString", "/@", + RowBox[{"(", + RowBox[{ + RowBox[{"nonzerpos", "[", + RowBox[{"[", + RowBox[{"i", ",", + RowBox[{"1", ";;", + RowBox[{"Length", "@", "dimension"}]}]}], "]"}], "]"}], + "-", "1"}], ")"}]}], "]"}]], ",", "StandardForm"}], "]"}], + "<>", "\"\< = \>\"", "<>", + RowBox[{"ToString", "[", + RowBox[{ + RowBox[{"Extract", "[", + RowBox[{"gamma", ",", + RowBox[{"nonzerpos", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "]"}], ",", + "StandardForm"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "nonzerpos"}]}], "}"}]}], "]"}]}], "]"}], + ";", "\n", "nonzerpos"}]}], "\[IndentingNewLine]", "]"}]}]}], "Code", + CellChangeTimes->{{3.716900236593028*^9, 3.716900366038496*^9}, { + 3.716900571202292*^9, 3.716900637252408*^9}, {3.716900668536751*^9, + 3.716900809845201*^9}, {3.716900840454775*^9, 3.716900945830474*^9}, { + 3.7169010228170967`*^9, 3.7169011109062*^9}, {3.7169011854730864`*^9, + 3.716901196336534*^9}, {3.7169012380410767`*^9, 3.7169012949290857`*^9}, { + 3.716901368014069*^9, 3.716901465565796*^9}, {3.716901530182221*^9, + 3.716901711881098*^9}, {3.716901748506475*^9, 3.716901762216508*^9}, { + 3.716902614206215*^9, 3.716902620796609*^9}, {3.71690266701899*^9, + 3.7169027209785023`*^9}, {3.716903029559869*^9, 3.716903035592605*^9}, { + 3.716903252546584*^9, 3.716903254201976*^9}, {3.716903403306201*^9, + 3.716903522026678*^9}, {3.716903903665159*^9, 3.71690392048986*^9}, { + 3.716903993103567*^9, 3.716904091594118*^9}, {3.716904164230247*^9, + 3.7169042975629663`*^9}, {3.716904366272208*^9, 3.7169043666735897`*^9}, { + 3.782207956635901*^9, 3.782207957518927*^9}, {3.7822082264055233`*^9, + 3.782208251850849*^9}, {3.782208395682209*^9, 3.7822084327101994`*^9}, + 3.782208506736524*^9, {3.782208549153216*^9, 3.782208569066574*^9}, { + 3.782208602267496*^9, 3.782208667390147*^9}, {3.782209455969129*^9, + 3.782209471300178*^9}, {3.7822108200705853`*^9, 3.782210823435101*^9}, { + 3.782210858079101*^9, 3.7822108841361637`*^9}, {3.782210922317994*^9, + 3.782210954562052*^9}, {3.782211034030156*^9, 3.7822111314069557`*^9}, { + 3.782211377096323*^9, 3.782211382707436*^9}, {3.782211620730598*^9, + 3.782211685503545*^9}, {3.782211843853441*^9, 3.782211941534233*^9}, { + 3.782211998905094*^9, 3.7822120731072693`*^9}, {3.78221222271119*^9, + 3.78221224735672*^9}, {3.78221228254959*^9, 3.782212340243206*^9}, { + 3.7822126078508663`*^9, 3.7822126997068777`*^9}, 3.782212760085548*^9, { + 3.7822131607404823`*^9, 3.782213175919828*^9}, {3.782213209189878*^9, + 3.782213254697237*^9}, {3.782213560326689*^9, 3.782213613094482*^9}, + 3.782213707633905*^9, {3.7822137406121693`*^9, 3.782213760038059*^9}}, + CellLabel-> + "In[248]:=",ExpressionUUID->"c688a0ee-0df1-44b0-9257-c8f4045fc5c7"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "NonZeroMetricComp", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<TensorString\>\"", "\[Rule]", "\"\<T\>\""}]}], "}"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"NonZeroMetricComp", "[", + RowBox[{"gamma_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "allpos", ",", "dimension", ",", "\n", "n", ",", "nonzerpos", ",", + "tstring", ",", "verbose", ",", "zerpos"}], "}"}], ",", "\n", "\n", + RowBox[{ + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"tstring", "=", + RowBox[{"OptionValue", "[", "\"\<TensorString\>\"", "]"}]}], ";", "\n", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "gamma"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + "set", " ", "dimensions", " ", "and", " ", "total", " ", "number", " ", + "or", " ", "elements"}], " ", "*)"}], "\n", + RowBox[{"dimension", "=", + RowBox[{ + RowBox[{"Dimensions", "[", "gamma", "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", + RowBox[{"allpos", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"i", ",", "j"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "dimension"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "dimension"}], "}"}]}], "]"}], ",", "1"}], + "]"}]}], ";", "\n", "\[IndentingNewLine]", + RowBox[{"zerpos", "=", + RowBox[{"Position", "[", + RowBox[{"gamma", ",", + RowBox[{"_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{"#", "\[Equal]", " ", "0"}], " ", "&"}], ")"}]}]}], + "]"}]}], ";", "\n", + RowBox[{"nonzerpos", "=", + RowBox[{"Complement", "[", + RowBox[{"allpos", ",", "zerpos"}], "]"}]}], ";", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{ + RowBox[{"ToString", "[", + RowBox[{"tstring", ",", "StandardForm"}], "]"}], "<>", + "\"\< = \>\"", "<>", + RowBox[{"ToString", "[", + RowBox[{ + RowBox[{"gamma", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"nonzerpos", "[", + RowBox[{"[", + RowBox[{"i", ",", "1"}], "]"}], "]"}], ",", + RowBox[{"nonzerpos", "[", + RowBox[{"[", + RowBox[{"i", ",", "2"}], "]"}], "]"}]}], "]"}], "]"}], ",", + "StandardForm"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "nonzerpos"}]}], "}"}]}], "]"}]}], "]"}], + ";", "\n", "nonzerpos"}]}], "\[IndentingNewLine]", "]"}]}]}], "Code", + CellChangeTimes->{{3.716900236593028*^9, 3.716900366038496*^9}, { + 3.716900571202292*^9, 3.716900637252408*^9}, {3.716900668536751*^9, + 3.716900809845201*^9}, {3.716900840454775*^9, 3.716900945830474*^9}, { + 3.7169010228170967`*^9, 3.7169011109062*^9}, {3.7169011854730864`*^9, + 3.716901196336534*^9}, {3.7169012380410767`*^9, 3.7169012949290857`*^9}, { + 3.716901368014069*^9, 3.716901465565796*^9}, {3.716901530182221*^9, + 3.716901711881098*^9}, {3.716901748506475*^9, 3.716901762216508*^9}, { + 3.716902614206215*^9, 3.716902620796609*^9}, {3.71690266701899*^9, + 3.7169027209785023`*^9}, {3.716903029559869*^9, 3.716903035592605*^9}, { + 3.716903252546584*^9, 3.716903254201976*^9}, {3.716903403306201*^9, + 3.716903522026678*^9}, {3.716903903665159*^9, 3.71690392048986*^9}, { + 3.716903993103567*^9, 3.716904091594118*^9}, {3.716904164230247*^9, + 3.7169042975629663`*^9}, {3.716904366272208*^9, 3.7169043666735897`*^9}, { + 3.782208274733176*^9, 3.782208302750588*^9}, {3.782208336937624*^9, + 3.782208366978108*^9}, {3.782213389024846*^9, 3.782213419878358*^9}, { + 3.7822134502667828`*^9, 3.782213521150797*^9}, 3.7822136998852882`*^9}, + CellLabel-> + "In[250]:=",ExpressionUUID->"119a8d40-ec9b-4beb-bbe6-56f668b9d13f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"coords_", ",", "metric_", ",", "tensor_", ",", "index_", ",", + RowBox[{"OptionsPattern", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "}"}], "]"}]}], + "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Crhistoffel", ",", "g", ",", "xx", ",", "n", ",", "h\[Eta]\[Nu]", ",", + "rank", ",", "cov", ",", "valence", ",", "verbose", ",", "c", ",", "b", + ",", "a"}], "}"}], ",", "\n", + RowBox[{"(*", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{"\"\<It is wrong!\>\"", ",", "Red"}], "]"}], "]"}], ";"}], + "*)"}], "\n", + RowBox[{ + RowBox[{"valence", "=", + RowBox[{"OptionValue", "[", "\"\<Valence\>\"", "]"}]}], ";", "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "coords"}]}], ";", "\n", + RowBox[{"g", "=", "metric"}], ";", "\n", + RowBox[{"h\[Eta]\[Nu]", "=", "tensor"}], ";", "\n", + RowBox[{"xx", "=", "coords"}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"ListQ", "[", "h\[Eta]\[Nu]", "]"}], ",", "\n", "\t\t\t", + RowBox[{ + RowBox[{"rank", "=", + RowBox[{"Length", "@", + RowBox[{"Dimensions", "@", "tensor"}]}]}], ";", "\n", "\t\t\t", + RowBox[{"Crhistoffel", "=", + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ",", "\n", "\t\t\t", + RowBox[{ + RowBox[{"rank", "=", "0"}], ";"}]}], "\n", "\t\t\t", "]"}], ";", "\n", + "\n", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"rank", "\[Equal]", "0"}], ",", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + RowBox[{"Print", "[", "\"\<Scalar , \>\"", "]"}], ";", + RowBox[{"Print", "[", "valence", "]"}], ";"}]}], "]"}], ";", " ", + "\n", " ", + RowBox[{ + RowBox[{"{", "a", "}"}], "=", "index"}], ";", "\n", + " ", + RowBox[{"cov", "=", + RowBox[{"D", "[", + RowBox[{"h\[Eta]\[Nu]", ",", + RowBox[{"xx", "[", + RowBox[{"[", "index", "]"}], "]"}]}], "]"}]}], ";"}], " ", ",", + "\n", "\t ", + RowBox[{"rank", "\[Equal]", "1"}], ",", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + RowBox[{"Print", "[", "\"\<Vector , \>\"", "]"}], ";", + RowBox[{"Print", "[", "valence", "]"}], ";"}]}], "]"}], ";", "\n", + "\t \t ", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b"}], "}"}], "=", "index"}], ";", " ", "\n", + "\t ", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"valence", "\[Equal]", "\"\<Covariant\>\""}], ",", " ", + "\n", "\t ", + RowBox[{ + RowBox[{"cov", "=", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", "b", "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"\[Rho]", ",", "a", ",", "b"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", "\[Rho]", "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Rho]", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]}], ";"}], + ",", "\n", "\t ", + RowBox[{"valence", "\[Equal]", "\"\<Contravariant\>\""}], ",", "\n", + "\t ", + RowBox[{ + RowBox[{"cov", "=", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", "b", "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"\[Rho]", ",", "a", ",", "b"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", "\[Rho]", "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Rho]", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]}], ";"}]}], + " ", "\n", "\t ", "]"}], ";"}], ",", "\n", "\t ", + RowBox[{"rank", "\[Equal]", "2"}], ",", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + RowBox[{"Print", "[", "\"\<Tensor , \>\"", "]"}], ";", + RowBox[{"Print", "[", "valence", "]"}], ";"}]}], "]"}], ";", " ", + "\n", "\t ", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], "=", "index"}], ";", "\n", + "\t ", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"valence", "\[Equal]", "\"\<Covariant\>\""}], ",", " ", + "\n", "\t ", + RowBox[{ + RowBox[{"cov", "=", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"b", ",", "c"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"d", ",", "a", ",", "b"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"c", ",", "d"}], "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"d", ",", "a", ",", "c"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"b", ",", "d"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"d", ",", "n"}], "}"}]}], "]"}]}]}], ";"}], ",", " ", + "\n", "\t\t\t\t ", + RowBox[{"valence", "\[Equal]", "\"\<Contravariant\>\""}], ",", "\n", + "\t\t\t\t ", + RowBox[{ + RowBox[{"cov", "=", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"b", ",", "c"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"b", ",", "a", ",", "d"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"c", ",", "d"}], "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"c", ",", "a", ",", "d"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"d", ",", "b"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"d", ",", "n"}], "}"}]}], "]"}]}]}], ";"}], ",", "\n", + "\t\t\t\t ", + RowBox[{"valence", "\[Equal]", "\"\<Mixed\>\""}], ",", "\n", + "\t\t\t\t ", + RowBox[{ + RowBox[{"cov", "=", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"b", ",", "c"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"b", ",", "a", ",", "d"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"c", ",", "d"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Crhistoffel", "[", + RowBox[{"[", + RowBox[{"c", ",", "a", ",", "d"}], "]"}], "]"}], + RowBox[{"h\[Eta]\[Nu]", "[", + RowBox[{"[", + RowBox[{"d", ",", "b"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"d", ",", "n"}], "}"}]}], "]"}]}]}], ";"}]}], "]"}], + ";"}], ",", "\n", " ", "True", ",", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<Rank not recognised\>\"", "]"}]}], "]"}], + ";", "\n", " ", + RowBox[{"Return", "[", "]"}], ";"}]}], "\t\t\t\t", "\n", "]"}], ";", + "\n", + RowBox[{"Simplify", "@", "cov"}]}]}], " ", "\[IndentingNewLine]", + "]"}]}]], "Code", + CellChangeTimes->{{3.716958151725273*^9, 3.7169583978991127`*^9}, { + 3.716958437277883*^9, 3.716958448810377*^9}, {3.716958563766862*^9, + 3.716958596473881*^9}, {3.716958665715267*^9, 3.716958732289363*^9}, { + 3.716958777690095*^9, 3.7169587874890423`*^9}, {3.71695884035926*^9, + 3.71695886933248*^9}, {3.7169589608770857`*^9, 3.716958965915368*^9}, { + 3.716959110922554*^9, 3.71695913829641*^9}, {3.716959200401162*^9, + 3.7169592015115623`*^9}, {3.716959311599819*^9, 3.7169593777808247`*^9}, { + 3.716959407829681*^9, 3.7169596273310757`*^9}, {3.7169596776212473`*^9, + 3.716959680793425*^9}, {3.7169597186156187`*^9, 3.716959732119049*^9}, { + 3.7169597911821547`*^9, 3.716959799790285*^9}, {3.716959877828841*^9, + 3.716959881532795*^9}, {3.7169599411482277`*^9, 3.716960171792747*^9}, { + 3.716960529373378*^9, 3.716960591235835*^9}, {3.716960622370409*^9, + 3.716960624906451*^9}, {3.716960655033724*^9, 3.716960738456862*^9}, { + 3.71696082927989*^9, 3.716960832631673*^9}, {3.7169609480233803`*^9, + 3.7169610038771544`*^9}, {3.716961043773007*^9, 3.716961133683503*^9}, { + 3.716961173964795*^9, 3.716961176109325*^9}, {3.716961214941975*^9, + 3.716961265132134*^9}, 3.716961364791875*^9, {3.716961623701221*^9, + 3.716961631434885*^9}, {3.7169618126900587`*^9, 3.7169618398100033`*^9}, { + 3.716962008231491*^9, 3.716962081204027*^9}, {3.716962173569161*^9, + 3.716962234987817*^9}, {3.716962306794786*^9, 3.7169623077407837`*^9}, { + 3.716962551469633*^9, 3.716962559108954*^9}, {3.716962801267487*^9, + 3.7169630915675364`*^9}, {3.716963288958702*^9, 3.7169632948286743`*^9}, { + 3.716963347405435*^9, 3.716963347474783*^9}, {3.716963419482785*^9, + 3.7169634208506823`*^9}, {3.716963464290103*^9, 3.716963485633626*^9}, { + 3.7169639487563763`*^9, 3.716964021210177*^9}, {3.71696467195216*^9, + 3.7169647303523273`*^9}, {3.716964769286487*^9, 3.7169647850231543`*^9}, { + 3.7169678649020653`*^9, 3.7169678971006308`*^9}, {3.716968003731184*^9, + 3.716968044592444*^9}, {3.7169680787838717`*^9, 3.716968108327353*^9}, { + 3.717422172511314*^9, 3.717422270655233*^9}, {3.7174225062298603`*^9, + 3.717422510860096*^9}, {3.717429857889625*^9, 3.7174298836210814`*^9}, { + 3.717430036165784*^9, 3.7174300554209433`*^9}, {3.717742994873782*^9, + 3.717742995441497*^9}, {3.71774304528869*^9, 3.717743217367523*^9}, { + 3.717743255790976*^9, 3.7177432590951653`*^9}, {3.717743929907378*^9, + 3.717743932691547*^9}, {3.717748676157947*^9, 3.717748682681328*^9}, { + 3.717748836211932*^9, 3.7177488428814583`*^9}, {3.717748894171052*^9, + 3.7177488943781967`*^9}, {3.71774900641063*^9, 3.717749063762991*^9}, { + 3.719844648102268*^9, 3.719844702475222*^9}, 3.719844733410307*^9, { + 3.71984480538925*^9, 3.719844893864911*^9}, {3.719844940427096*^9, + 3.719844955945498*^9}, {3.735549431853215*^9, 3.735549441727952*^9}, { + 3.735549483856206*^9, 3.73554952555838*^9}, {3.735550484305726*^9, + 3.7355505334532967`*^9}, {3.7355505772122917`*^9, 3.735550598306122*^9}, { + 3.73555965452418*^9, 3.735559660772254*^9}, {3.7355597085256557`*^9, + 3.7355597157899323`*^9}, {3.735559847298284*^9, 3.735559866672288*^9}, { + 3.735560150766432*^9, 3.735560150940805*^9}, 3.735561188131874*^9, { + 3.7355612801854553`*^9, 3.735561315639447*^9}, {3.735561385274592*^9, + 3.735561419031749*^9}, {3.735561487034822*^9, 3.735561488028627*^9}, { + 3.7355615362688313`*^9, 3.735561555298785*^9}, {3.735561645920278*^9, + 3.735561647201825*^9}, {3.7356260832165937`*^9, 3.7356260934972677`*^9}, { + 3.735990229610498*^9, 3.7359902443541527`*^9}, {3.735990327395894*^9, + 3.735990372976108*^9}, 3.735990442144567*^9, {3.7359914548606367`*^9, + 3.735991457728942*^9}, {3.73599165463449*^9, 3.735991674271563*^9}, { + 3.736037807022584*^9, 3.736037826709483*^9}, {3.73613830734103*^9, + 3.7361384019077682`*^9}, {3.736138624197188*^9, 3.736138669601768*^9}, { + 3.7361391136817017`*^9, 3.736139134465399*^9}, {3.7361391811999273`*^9, + 3.736139219271276*^9}, {3.736139288107958*^9, 3.73613934673378*^9}, { + 3.736139384805975*^9, 3.736139400662005*^9}, {3.7475464637924347`*^9, + 3.747546468417864*^9}, {3.74754656804249*^9, 3.7475465733959293`*^9}, { + 3.7475470183465*^9, 3.7475470539032593`*^9}, {3.747559403491639*^9, + 3.7475594042873497`*^9}, {3.7479705724194736`*^9, 3.747970573108122*^9}, { + 3.747970879089012*^9, 3.747970881609277*^9}, {3.748164756343375*^9, + 3.748164757662685*^9}, {3.748167014412612*^9, 3.748167301809575*^9}, { + 3.748167371778345*^9, 3.7481673720915318`*^9}, {3.7481675186246243`*^9, + 3.748167518870804*^9}, {3.748167663192347*^9, 3.748167699917927*^9}, { + 3.7481692871312227`*^9, 3.748169303289918*^9}, {3.748169348321314*^9, + 3.748169392540389*^9}, {3.748169492750543*^9, 3.7481694953320503`*^9}, { + 3.748169565440503*^9, 3.748169600290801*^9}, {3.74816963812173*^9, + 3.748169640710599*^9}, {3.748169686294422*^9, 3.7481696868050528`*^9}, { + 3.7481697359059963`*^9, 3.748169869097269*^9}, {3.748169943842535*^9, + 3.7481699558623667`*^9}, {3.748170146530601*^9, 3.748170157881694*^9}, { + 3.748170691140609*^9, 3.748170694032143*^9}, {3.748170731111718*^9, + 3.748170758655857*^9}, {3.748170798299234*^9, 3.7481708056830397`*^9}, { + 3.748170916924307*^9, 3.748170917555646*^9}, {3.748171229979322*^9, + 3.748171308369996*^9}, {3.7659791595038357`*^9, 3.7659791632015877`*^9}, { + 3.765979255609798*^9, 3.765979255782762*^9}}, + CellLabel-> + "In[252]:=",ExpressionUUID->"42d7e549-8322-428c-b63b-bf6095197569"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"LeviCivitaTensorCurv", "[", + RowBox[{"xx_", ",", "g_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", "dim", "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dim", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Sqrt", "[", + RowBox[{"Det", "[", "g", "]"}], "]"}], + RowBox[{"LeviCivitaTensor", "[", + RowBox[{"dim", ",", "List"}], "]"}]}]}]}], "\[IndentingNewLine]", + "]"}]}]], "Code", + CellChangeTimes->{{3.7479034087405777`*^9, 3.747903506189601*^9}, + 3.747903546937071*^9, {3.74797122162267*^9, 3.7479712247112427`*^9}}, + CellLabel-> + "In[253]:=",ExpressionUUID->"df2e70b3-e89e-4c7e-9199-272b7a4be691"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"CurlCurvilinear", "[", + RowBox[{"xx_", ",", "g_", ",", "vec_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "lv", ",", "vecb", ",", "DCov", ",", "lvup", ",", "gup", ",", "vecn"}], + "}"}], ",", "\n", + RowBox[{ + RowBox[{"lv", "=", + RowBox[{"LeviCivitaTensorCurv", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";", "\n", + RowBox[{"vecb", "=", + RowBox[{"Sqrt", "[", + RowBox[{"Diagonal", "[", "g", "]"}], "]"}]}], ";", "\n", + RowBox[{"vecn", "=", + RowBox[{"vec", "*", "vecb"}]}], ";", "\n", + RowBox[{"DCov", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "vecn", ",", + RowBox[{"{", + RowBox[{"a", ",", "b"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"gup", "=", + RowBox[{"InverseMetric", "[", "g", "]"}]}], ";", "\n", + RowBox[{"lvup", "=", + RowBox[{"Simplify", "[", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "a"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"j", ",", "b"}], "]"}], "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "c"}], "]"}], "]"}], " ", + RowBox[{"lv", "[", + RowBox[{"[", + RowBox[{"a", ",", "b", ",", "c"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"c", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], "]"}]}], ";", + "\n", "\n", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"lvup", "[", + RowBox[{"[", + RowBox[{"i", ",", "e", ",", "d"}], "]"}], "]"}], + RowBox[{"DCov", "[", + RowBox[{"[", + RowBox[{"e", ",", "d"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"e", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], "]"}], + RowBox[{"vecb", "[", + RowBox[{"[", "i", "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]}], "\n", + "]"}]}]], "Code", + CellChangeTimes->{{3.747971450136709*^9, 3.747971499546629*^9}, { + 3.747971543749538*^9, 3.74797166000423*^9}, {3.747971711877779*^9, + 3.7479718197152233`*^9}}, + CellLabel-> + "In[254]:=",ExpressionUUID->"85a87c7b-5448-48cf-b7ff-42ea3bc6b701"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "CheckTetrad", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"CheckTetrad", "[", + RowBox[{"gab_", ",", "nullv_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "l", ",", "n", ",", "m", ",", "mb", ",", "test", ",", "verbose"}], + "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"l", ",", "n", ",", "m", ",", "mb"}], "}"}], "=", "nullv"}], + ";", "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"test", "=", + RowBox[{"Chop", "@", + RowBox[{"Simplify", "@", + RowBox[{"{", + RowBox[{ + RowBox[{"l", ".", "gab", ".", "l"}], ",", "\[IndentingNewLine]", + RowBox[{"n", ".", "gab", ".", "n"}], ",", "\[IndentingNewLine]", + RowBox[{"m", ".", "gab", ".", "m"}], ",", "\[IndentingNewLine]", + RowBox[{"mb", ".", "gab", ".", "mb"}], ",", "\[IndentingNewLine]", + + RowBox[{"l", ".", "gab", ".", "m"}], ",", "\[IndentingNewLine]", + RowBox[{"l", ".", "gab", ".", "mb"}], ",", "\[IndentingNewLine]", + RowBox[{"n", ".", "gab", ".", "m"}], ",", "\[IndentingNewLine]", + RowBox[{"n", ".", "gab", ".", "mb"}], ",", "\[IndentingNewLine]", + RowBox[{"l", ".", "gab", ".", "n"}], ",", "\[IndentingNewLine]", + RowBox[{"m", ".", "gab", ".", "mb"}]}], "}"}]}]}]}], ";", + "\[IndentingNewLine]", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{ + "\"\<{l.l,n.n,m.m,mb.mb,l.m,l.mb,n.m,n.mb,l.n,m.mb} = \>\"", ",", + "test"}], "]"}]}], "]"}], ";", "\n", "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Total", "@", + RowBox[{"test", "[", + RowBox[{"[", + RowBox[{"1", ";;", "8"}], "]"}], "]"}]}], "\[Equal]", "0"}], "&&", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "9", "]"}], "]"}], "*", + RowBox[{"test", "[", + RowBox[{"[", "10", "]"}], "]"}]}], "\[Equal]", + RowBox[{"-", "1"}]}]}], ",", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{ + "\"\<Your tetrad satisfies the properties of orthonormality\>\"", + ",", "Blue"}], "]"}], "]"}], ";"}], ",", + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{"\"\<Your tetrad has some troubles\>\"", ",", "Blue"}], + "]"}], "]"}]}], "]"}]}]}], "]"}]}], ";"}]}], "Code", + CellChangeTimes->{{3.782810688023137*^9, 3.7828110130279903`*^9}, { + 3.7828112195882196`*^9, 3.7828112975285463`*^9}, {3.782811428847712*^9, + 3.7828114682409573`*^9}, {3.782811528591279*^9, 3.7828116837007513`*^9}, { + 3.782811941157217*^9, 3.782812020471404*^9}, {3.783060343969513*^9, + 3.78306050243454*^9}, {3.7830620822434464`*^9, 3.783062118269932*^9}}, + CellLabel-> + "In[255]:=",ExpressionUUID->"efc86dd5-ff62-4d68-8ccd-ec0fdaa23a1d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Einstein tensor and general GR computations: developer", "Section", + CellChangeTimes->{{3.718440602298374*^9, 3.718440612890011*^9}, { + 3.724070943686637*^9, 3.7240709467569942`*^9}, {3.797832442556991*^9, + 3.7978324504825583`*^9}},ExpressionUUID->"4a954fa8-5e65-4aa0-9dfb-\ +a2c2621cf75e"], + +Cell[BoxData[ + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"Conventions", " ", "following", " ", "Misner", " ", "et", " ", + RowBox[{"al", "."}]}], ",", " ", + RowBox[{"that", " ", "is"}], ",", " ", + RowBox[{ + RowBox[{"[", "S2", "]"}], " ", "=", " ", "1"}], ",", " ", + RowBox[{ + RowBox[{"[", "S3", "]"}], " ", "=", " ", + RowBox[{ + RowBox[{ + RowBox[{ + "1", " ", ".", "\[IndentingNewLine]", "\[IndentingNewLine]", + "Acknowledge"}], " ", + RowBox[{"http", ":"}]}], "//", + RowBox[{ + RowBox[{ + RowBox[{"kias", ".", "dyndns", ".", "org"}], "/", "crg"}], "/", + RowBox[{"tensors", ".", "html"}]}]}]}]}], "*)"}]], "Input", + CellChangeTimes->{{3.7246545239510727`*^9, 3.724654534922943*^9}, { + 3.724944260340417*^9, 3.7249442747881737`*^9}, {3.724944335411549*^9, + 3.724944347571026*^9}, {3.7978330199540663`*^9, 3.797833036605859*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"a0b580d6-2659-4ec5-a8c3-c296a9e08932"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "1"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}], ",", + RowBox[{"\"\<Compile\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<CompileCoordinateIndex\>\"", "\[Rule]", + RowBox[{"{", + RowBox[{"1", ",", "2", ",", "3", ",", "4"}], "}"}]}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "n", ",", "ig", ",", "compile", ",", "compilecind", ",", "coords", ",", + "res", ",", "perti", ",", "simpl", ",", "verbose"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"compilecind", "=", + RowBox[{"OptionValue", "[", "\"\<CompileCoordinateIndex\>\"", "]"}]}], + ";", "\[IndentingNewLine]", "\n", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"ig", "=", + RowBox[{"InverseMetric", "[", "g", "]"}]}], ";", "\[IndentingNewLine]", + + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n", ",", "n"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"i", ",", "s"}], "]"}], "]"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "s", "]"}], "]"}]}], "]"}]}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "s"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"s", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "j", ",", "n"}], "}"}]}], "]"}], ";"}], ",", + "\n", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "n"}], "]"}], "]"}], "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"i", ",", "s"}], "]"}], "]"}], "*", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "s", "]"}], "]"}]}], "]"}]}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"j", ",", "s"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "k", "]"}], "]"}]}], "]"}], "+", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"s", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "j", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", + "\n", + RowBox[{"res", "=", + RowBox[{"simpl", "[", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "res"}], "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", "Compile", " ", "*)"}], "\n", + RowBox[{"If", "[", + RowBox[{"compile", ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], "]"}], ",", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], ",", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", + RowBox[{"(", + RowBox[{"xx", "[", + RowBox[{"[", "compilecind", "]"}], "]"}], ")"}]}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k"}], "]"}], "]"}], "]"}], ",", + RowBox[{"CompilationTarget", "\[Rule]", "\"\<C\>\""}], ",", + RowBox[{"CompilationOptions", "\[Rule]", + RowBox[{ + "\"\<InlineExternalDefinitions\>\"", "\[Rule]", "True"}]}]}], + "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "j", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}], + ";", "\n", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "symmetries"}], " ", "*)"}], "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", + RowBox[{"j", "+", "1"}], ",", "k"}], "]"}], "]"}], "=", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", + RowBox[{"j", "+", "1"}]}], "]"}], "]"}]}], ";"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "j"}], "}"}]}], "]"}], ";", "\n", "\n", "res"}]}], + "\[IndentingNewLine]", "]"}]}]}], "Code", + CellChangeTimes->{ + 3.7978330469663*^9, {3.7978330791032743`*^9, 3.797833085487215*^9}, { + 3.7978333819471416`*^9, 3.797833384553617*^9}, {3.797833418863377*^9, + 3.7978334287596617`*^9}, {3.797833535743575*^9, 3.797833612851973*^9}, { + 3.7978336520263033`*^9, 3.7978337135325937`*^9}, {3.7978337717024527`*^9, + 3.79783381141481*^9}, {3.79783436546485*^9, 3.797834390297051*^9}, { + 3.797834467958973*^9, 3.7978344681385727`*^9}, {3.797835086331999*^9, + 3.797835105974365*^9}, 3.797835397904895*^9, {3.797835430114091*^9, + 3.797835475164529*^9}, {3.797835540573142*^9, 3.7978355519810963`*^9}, { + 3.7978355883891993`*^9, 3.797835659879631*^9}, {3.79783569921635*^9, + 3.7978358357996893`*^9}, 3.7978362159565573`*^9, {3.797836259084791*^9, + 3.7978362715348*^9}, {3.797912958028482*^9, 3.797913049625235*^9}, { + 3.797913167953149*^9, 3.797913168105837*^9}, {3.797913371589005*^9, + 3.7979134233956947`*^9}, {3.797913486247561*^9, 3.797913489077076*^9}, { + 3.7979135220845327`*^9, 3.797913626392641*^9}, {3.797913763805188*^9, + 3.797913765217051*^9}, {3.797915063360507*^9, 3.7979150738481407`*^9}, { + 3.797915220555603*^9, 3.797915260767672*^9}, {3.797915382237934*^9, + 3.797915480283585*^9}, {3.797915529044695*^9, 3.797915565825739*^9}, { + 3.79791565031358*^9, 3.797915665699099*^9}, {3.797915696112783*^9, + 3.797915703738511*^9}, {3.797915753295558*^9, 3.797915755566876*^9}, + 3.79791578962567*^9, {3.7979158308888807`*^9, 3.797915831113716*^9}, + 3.7979158625478277`*^9, {3.797915894017071*^9, 3.7979160072723427`*^9}, { + 3.7979160943240423`*^9, 3.797916179442398*^9}, {3.79791621051729*^9, + 3.797916271385435*^9}, {3.797916668621242*^9, 3.797916710062166*^9}, { + 3.797916769249278*^9, 3.797916806526216*^9}, 3.797916894023691*^9, { + 3.79791692751882*^9, 3.797917097540579*^9}, {3.797917613878068*^9, + 3.7979176674537973`*^9}, {3.7979177164140863`*^9, + 3.7979177709715643`*^9}, {3.797917808382588*^9, 3.797917899107602*^9}, { + 3.797917931192135*^9, 3.797917985872579*^9}, {3.797918108393672*^9, + 3.7979181710453444`*^9}, {3.79791820491171*^9, 3.797918217629637*^9}, { + 3.797918312615646*^9, 3.797918361399005*^9}, {3.797918408925951*^9, + 3.79791841752269*^9}, 3.797918449478552*^9, {3.797920766991625*^9, + 3.797920774019799*^9}, {3.7979208135703707`*^9, 3.797920918261492*^9}, { + 3.797920968127347*^9, 3.797920971638546*^9}, {3.798200416448701*^9, + 3.798200436408285*^9}, {3.7982005295358543`*^9, 3.7982005448114223`*^9}, { + 3.798200689182094*^9, 3.798200720858914*^9}, {3.798200796470461*^9, + 3.798200815115171*^9}, {3.798200846980116*^9, 3.798200856203682*^9}, { + 3.798200887828321*^9, 3.798200917667572*^9}, {3.798200971455227*^9, + 3.798200992386558*^9}, {3.798201212911075*^9, 3.79820122753242*^9}, { + 3.798367411588543*^9, 3.7983674831942377`*^9}, 3.79843400105247*^9}, + CellLabel-> + "In[122]:=",ExpressionUUID->"bdffc080-9d05-49d3-8851-81b168c7f40f"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RiemannTensorDev", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}], ",", + RowBox[{"{", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "False"}], "}"}]}], "]"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "caux", ",", "n", ",", "Chr", ",", "compile", ",", "compilecind", ",", + "index", ",", "res", ",", "perti", ",", "simpl", ",", "time", ",", + "verbose"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"index", "=", + RowBox[{"OptionValue", "[", "\"\<IndexDown\>\"", "]"}]}], ";", "\n", + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"compilecind", "=", + RowBox[{"OptionValue", "[", "\"\<CompileCoordinateIndex\>\"", "]"}]}], + ";", "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", "\"\<Starting with Christoffel symbols...\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"Chr", "=", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}], ",", + RowBox[{"\"\<Compile\>\"", "\[Rule]", "False"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", + "\"\<Christoffel symbols computed. Starting with Riemann...\>\"", + "]"}]}], "]"}], ";", "\n", "\n", + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n", ",", "n", ",", "n"}], "}"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"index", ",", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "p"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}]}], ",", + + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "l", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "p"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], + "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", "\n", + " ", "\n", " ", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "simmetries"}], " ", "*)"}], "\n", + " ", + RowBox[{"(*", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "k", ",", "l", ",", "m"}], + "]"}], "]"}], "=", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"l", ",", "k", ",", + RowBox[{"i", "+", "1"}], ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "i"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";"}], "*)"}], "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", + RowBox[{"l", "+", "1"}], ",", "m"}], "]"}], "]"}], "=", + RowBox[{"-", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m", ",", + RowBox[{"l", "+", "1"}]}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "l"}], "}"}]}], "]"}], ";", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "k", ",", "l", ",", "m"}], "]"}], + "]"}], "=", + RowBox[{"-", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"k", ",", + RowBox[{"i", "+", "1"}], ",", "l", ",", "m"}], "]"}], + "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "i"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";", "\n", + " ", + RowBox[{"If", "[", + RowBox[{"compile", ",", + RowBox[{ + RowBox[{"caux", "=", "0"}], ";", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"time", "=", + RowBox[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", + RowBox[{"(", + RowBox[{"xx", "[", + RowBox[{"[", "compilecind", "]"}], "]"}], ")"}]}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "]"}], ",", + RowBox[{"RuntimeOptions", "\[Rule]", "\"\<Speed\>\""}]}], + "]"}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{"\"\<compiling: \>\"", ",", + RowBox[{"{", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "}"}], ",", + "\"\< \>\"", ",", "time", ",", "\"\< s\>\""}], "]"}]}], + "]"}], ";"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}]}], + "\n", " ", ",", + " ", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}]}], ",", + + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"(", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}], + ")"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";"}]}], "\n", + " ", "]"}], ";", "\n", "\n", "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<...Riemann computed\>\"", "]"}]}], "]"}], + ";", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], ";"}]}], "Code", + CellChangeTimes->{{3.798201761796755*^9, 3.798201778478615*^9}, { + 3.7982019426048517`*^9, 3.7982020885463676`*^9}, {3.798202188469666*^9, + 3.798202188752832*^9}, {3.798202235213434*^9, 3.7982022357380667`*^9}, + 3.798258168874947*^9, {3.7982582120531693`*^9, 3.798258215584395*^9}, { + 3.798258262930125*^9, 3.798258302777269*^9}, {3.7982583442770777`*^9, + 3.798258456880644*^9}, {3.798258610943906*^9, 3.798258611147222*^9}, + 3.7982595549072323`*^9, {3.7982595940162573`*^9, 3.798259595257298*^9}, { + 3.798260413439714*^9, 3.7982604575218897`*^9}, {3.798260507032803*^9, + 3.798260513839057*^9}, {3.7982616128595667`*^9, 3.798261675437492*^9}, { + 3.798270325445936*^9, 3.7982703721049747`*^9}, {3.798270419687889*^9, + 3.798270429981975*^9}, {3.798270464872583*^9, 3.79827046501184*^9}, { + 3.7982705239495277`*^9, 3.798270539044157*^9}, {3.798273323499441*^9, + 3.798273323761797*^9}, {3.798347314779356*^9, 3.7983473288683662`*^9}, { + 3.7983474966959352`*^9, 3.798347500360285*^9}, {3.798347683734331*^9, + 3.7983477685354013`*^9}, {3.798347952699193*^9, 3.798348046250648*^9}, { + 3.798348091503224*^9, 3.79834811612291*^9}, {3.798348199523498*^9, + 3.798348226693466*^9}, {3.798348325664906*^9, 3.798348381624979*^9}, { + 3.7983484656883698`*^9, 3.7983485978555183`*^9}, {3.79834897114116*^9, + 3.798348983540642*^9}, {3.7983490571025753`*^9, 3.798349239958953*^9}, { + 3.798349376285989*^9, 3.798349401841381*^9}, {3.798349439234774*^9, + 3.798349462105866*^9}, {3.798349824332347*^9, 3.798349826124508*^9}, { + 3.798350825548751*^9, 3.798350825777767*^9}, {3.7983514446295223`*^9, + 3.798351477759396*^9}, {3.7983515766824503`*^9, 3.798351603658345*^9}, { + 3.798351638961677*^9, 3.798351907861167*^9}, {3.798351942471902*^9, + 3.798351945408573*^9}, {3.798351980416534*^9, 3.79835202195184*^9}, { + 3.7983522230691633`*^9, 3.798352242907681*^9}, {3.7983522861833878`*^9, + 3.798352315458262*^9}, {3.798352375739766*^9, 3.7983523975806313`*^9}, { + 3.798352435687175*^9, 3.7983524413802958`*^9}, {3.798352473201661*^9, + 3.798352599136998*^9}, {3.7983574888368063`*^9, 3.798357538699814*^9}, { + 3.79835763349463*^9, 3.7983576963693743`*^9}, {3.798357732197682*^9, + 3.7983577991957903`*^9}, {3.7983578664443913`*^9, + 3.7983579534268093`*^9}, {3.7983581047424707`*^9, 3.798358107550373*^9}, { + 3.798358189869671*^9, 3.798358190104258*^9}, {3.798358866040083*^9, + 3.798358917074216*^9}, {3.7983590474901752`*^9, 3.798359098770191*^9}, { + 3.7983593633069267`*^9, 3.798359369893713*^9}, {3.7983602454883747`*^9, + 3.798360247685865*^9}, {3.7983602922297697`*^9, 3.79836032323831*^9}, { + 3.798361800738165*^9, 3.798361815481246*^9}, {3.7983649455664597`*^9, + 3.798364990465555*^9}, {3.79836502599538*^9, 3.798365048527315*^9}, { + 3.798365690993224*^9, 3.798365697080127*^9}, {3.798365789570702*^9, + 3.798365790306757*^9}, 3.798365865823691*^9, {3.798367504980557*^9, + 3.798367524817175*^9}, {3.7984335952460833`*^9, 3.798433710636409*^9}, { + 3.798433741957892*^9, 3.7984338319571247`*^9}, 3.798433934578313*^9, { + 3.798433984211995*^9, 3.79843400581882*^9}, {3.798451519547391*^9, + 3.798451542034133*^9}, {3.7984517212826777`*^9, 3.798451725674974*^9}}, + CellLabel-> + "In[193]:=",ExpressionUUID->"44cea7c1-7692-4677-87f1-7b447cd20893"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RicciTensorDev", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "compile", ",", "Rie", ",", "res", ",", "n", ",", "perti", ",", + "simpl"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"Rie", "=", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", "\n", + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"s", ",", "i", ",", "s", ",", "j"}], "]"}], "]"}], ",", + + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"s", ",", "i", ",", "s", ",", "j"}], "]"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", + " ", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"compile", ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], ",", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", "xx"}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"CompilationTarget", "\[Rule]", "\"\<C\>\""}], ",", + RowBox[{"CompilationOptions", "\[Rule]", + RowBox[{ + "\"\<InlineExternalDefinitions\>\"", "\[Rule]", "True"}]}]}], + "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}], + " ", ";", " ", "\n", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "symmetries"}], " ", "*)"}], "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "j"}], "]"}], "]"}], "=", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"j", ",", + RowBox[{"i", "+", "1"}]}], "]"}], "]"}]}], ";"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}], ";", " ", + "\[IndentingNewLine]", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}]}], "Code", + CellChangeTimes->{{3.799563218282297*^9, 3.799563224666071*^9}, { + 3.799563285612954*^9, 3.799563312405682*^9}}, + CellLabel-> + "In[143]:=",ExpressionUUID->"dba59494-d6bd-455c-9583-739496b4e8fb"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "ElectricTensor3p1Dev", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ElectricTensor3p1Dev", "[", + RowBox[{"xx_", ",", "g_", ",", "Kt_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "compile", ",", "gup", ",", "Ks", ",", "Ktup", ",", "Ric", ",", "res", + ",", "n", ",", "perti", ",", "simpl"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"Ric", "=", + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"gup", "=", + RowBox[{"InverseMetric", "[", "g", "]"}]}], ";", "\n", + RowBox[{"Ktup", "=", + RowBox[{"(", + RowBox[{"gup", ".", "gup", ".", "Kt"}], ")"}]}], ";", "\n", + RowBox[{"Ks", "=", + RowBox[{"(", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}], + RowBox[{"Kt", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"a", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", "n"}], "}"}]}], "]"}], ")"}]}], ";", "\n", "\n", + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{ + RowBox[{"Ric", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "+", + RowBox[{"Ks", " ", + RowBox[{"Kt", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Kt", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"Ktup", "[", + RowBox[{"[", + RowBox[{"m", ",", "j"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"Ric", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "+", + RowBox[{"Ks", " ", + RowBox[{"Kt", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Kt", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"Ktup", "[", + RowBox[{"[", + RowBox[{"m", ",", "j"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", + " ", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"compile", ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], ",", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", "xx"}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"CompilationTarget", "\[Rule]", "\"\<C\>\""}], ",", + RowBox[{"CompilationOptions", "\[Rule]", + RowBox[{ + "\"\<InlineExternalDefinitions\>\"", "\[Rule]", "True"}]}]}], + "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}], + ";", " ", "\n", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "symmetries"}], " ", "*)"}], "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "j"}], "]"}], "]"}], "=", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"j", ",", + RowBox[{"i", "+", "1"}]}], "]"}], "]"}]}], ";"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}], ";", " ", + "\n", "\[IndentingNewLine]", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}]}], "Code", + CellChangeTimes->{{3.798202691045713*^9, 3.7982027188195963`*^9}, { + 3.798202825154427*^9, 3.798202961899489*^9}, {3.79820299299233*^9, + 3.798203087732658*^9}, {3.798207066617684*^9, 3.798207068772373*^9}, { + 3.798257016849008*^9, 3.7982570709057302`*^9}, {3.7994865709770308`*^9, + 3.799486626621677*^9}, {3.799486657279244*^9, 3.799486808706011*^9}, + 3.7994868514477177`*^9, {3.7994869354627523`*^9, 3.799487072774328*^9}, { + 3.7994872822483463`*^9, 3.7994873311437197`*^9}, {3.799487546649116*^9, + 3.799487566519989*^9}, {3.799487688841255*^9, 3.799487689718524*^9}, { + 3.7994884030361557`*^9, 3.799488403789013*^9}, {3.79956351336692*^9, + 3.799563562487341*^9}, {3.799563595383112*^9, 3.7995636210997133`*^9}, { + 3.799563701602379*^9, 3.799563705427062*^9}, {3.799563748496242*^9, + 3.7995638362814093`*^9}, {3.7995638787842903`*^9, 3.799563908902081*^9}, { + 3.799564007923357*^9, 3.799564011941689*^9}, {3.799564049114851*^9, + 3.7995640775487413`*^9}, {3.799564202023446*^9, 3.799564251787826*^9}}, + CellLabel-> + "In[232]:=",ExpressionUUID->"fa764fc9-41f0-4909-a706-d2e927a6951e"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "MagneticTensor3p1Dev", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"MagneticTensor3p1Dev", "[", + RowBox[{"xx_", ",", "g_", ",", "Kt_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "compile", ",", "gup", ",", "Ks", ",", "Ktup", ",", "Ric", ",", "res", + ",", "rescov", ",", "n", ",", "perti", ",", "simpl", ",", + "\[Epsilon]"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"Ric", "=", + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"gup", "=", + RowBox[{"InverseMetric", "[", "g", "]"}]}], ";", "\n", + RowBox[{"\[Epsilon]", "=", + RowBox[{ + RowBox[{ + RowBox[{"Det", "[", "gup", "]"}], "^", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "/", "2"}], ")"}]}], + RowBox[{"LeviCivitaTensor", "[", "n", "]"}]}]}], ";", "\n", + RowBox[{"\[Epsilon]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}], + RowBox[{"\[Epsilon]", "[", + RowBox[{"[", + RowBox[{"s", ",", "j", ",", "k"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"rescov", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"rescov", "[", + RowBox[{"[", + RowBox[{"k", ",", "i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "Kt", ",", + RowBox[{"{", + RowBox[{"k", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}]}], + "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ";", "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"rescov", "[", + RowBox[{"[", + RowBox[{"k", ",", + RowBox[{"i", "+", "1"}], ",", "j"}], "]"}], "]"}], "=", + RowBox[{"rescov", "[", + RowBox[{"[", + RowBox[{"k", ",", "j", ",", + RowBox[{"i", "+", "1"}]}], "]"}], "]"}]}], ";"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}], ";", "\n", "\n", + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{"[", + RowBox[{"i", ",", "m", ",", "k"}], "]"}], "]"}], + RowBox[{"rescov", "[", + RowBox[{"[", + RowBox[{"m", ",", "k", ",", "j"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{"[", + RowBox[{"i", ",", "m", ",", "k"}], "]"}], "]"}], + RowBox[{"rescov", "[", + RowBox[{"[", + RowBox[{"m", ",", "k", ",", "j"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", + " ", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"compile", ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], ",", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", "xx"}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"CompilationTarget", "\[Rule]", "\"\<C\>\""}], ",", + RowBox[{"CompilationOptions", "\[Rule]", + RowBox[{ + "\"\<InlineExternalDefinitions\>\"", "\[Rule]", "True"}]}]}], + "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}], + ";", " ", "\n", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "symmetries"}], " ", "*)"}], "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "j"}], "]"}], "]"}], "=", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"j", ",", + RowBox[{"i", "+", "1"}]}], "]"}], "]"}]}], ";"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}], ";", " ", + "\n", "\[IndentingNewLine]", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}]}], "Code", + CellChangeTimes->{{3.798202691045713*^9, 3.7982027188195963`*^9}, { + 3.798202825154427*^9, 3.798202961899489*^9}, {3.79820299299233*^9, + 3.798203087732658*^9}, {3.798207066617684*^9, 3.798207068772373*^9}, { + 3.798257016849008*^9, 3.7982570709057302`*^9}, {3.7994865709770308`*^9, + 3.799486626621677*^9}, {3.799486657279244*^9, 3.799486808706011*^9}, + 3.7994868514477177`*^9, {3.7994869354627523`*^9, 3.799487072774328*^9}, { + 3.7994872822483463`*^9, 3.7994873311437197`*^9}, {3.799487365620409*^9, + 3.799487369566452*^9}, {3.799487428855254*^9, 3.7994874393863277`*^9}, { + 3.799487485525126*^9, 3.7994875243582172`*^9}, {3.799487585073964*^9, + 3.79948762161836*^9}, {3.7994876996787577`*^9, 3.799487704889798*^9}, { + 3.799487869835937*^9, 3.799487929856941*^9}, {3.799487993401038*^9, + 3.799488119570137*^9}, {3.79948816229708*^9, 3.799488291406418*^9}, { + 3.799488335326962*^9, 3.7994883770302877`*^9}, {3.7994884119572153`*^9, + 3.7994884122345753`*^9}, {3.799564311706853*^9, 3.799564330448781*^9}, { + 3.799564605409058*^9, 3.7995646057112494`*^9}, {3.799568070964974*^9, + 3.799568074938635*^9}, {3.799568452695898*^9, 3.7995684667351503`*^9}, { + 3.799569501096163*^9, 3.799569516911134*^9}, 3.799569669201373*^9, { + 3.799569745084032*^9, 3.799569753251093*^9}, {3.799569789703627*^9, + 3.799569809511631*^9}, {3.7995698624707747`*^9, 3.799569898270534*^9}}, + CellLabel-> + "In[308]:=",ExpressionUUID->"98ad7356-c122-4b87-ae57-e23ba604a55b"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RicciScalarDev", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Ricc", ",", "ig", ",", "res", ",", "n", ",", "perti", ",", "simpl"}], + "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", "\n", + RowBox[{"Ricc", "=", + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"ig", "=", + RowBox[{"InverseMetric", "[", + RowBox[{"g", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"res", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"i", "\[Equal]", "s"}], ",", + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}], " ", + RowBox[{"Ricc", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}]}], ",", + RowBox[{"2", " ", + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}], " ", + RowBox[{"Ricc", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}]}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "s"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"ig", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}], " ", + RowBox[{"Ricc", "[", + RowBox[{"[", + RowBox[{"s", ",", "i"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}]}], ";", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}]}], "Code", + CellChangeTimes->{{3.798202655589386*^9, 3.7982026709041557`*^9}, { + 3.798204669829777*^9, 3.7982047329873867`*^9}}, + CellLabel->"In[12]:=",ExpressionUUID->"24d9f81a-3685-47b8-a92f-d7ecdcf3bf79"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "WeylTensorDev", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"WeylTensorDev", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "n", ",", "Chr", ",", "riemann", ",", "riemanndown", ",", "ricciS", ",", + "ricciT", ",", "res", ",", "perti", ",", "simpl", ",", "verbose"}], + "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<Starting with RicciScalar...\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"ricciS", "=", + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", "\"\<Following with RicciTensor...\>\"", "]"}]}], "]"}], + ";", "\n", + RowBox[{"ricciT", "=", + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<Following with Riemann...\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"riemann", "=", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}], ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "False"}]}], "]"}]}], ";", + "\n", "\n", + RowBox[{"res", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", + RowBox[{ + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], "+", + + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], ")"}]}], "ricciS", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}]}], ")"}]}]}], ",", + "\n", " ", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"ricciT", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"n", "-", "1"}], ")"}], + RowBox[{"(", + RowBox[{"n", "-", "2"}], ")"}]}], ")"}]}], "ricciS", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "m"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"k", ",", "l"}], "]"}], "]"}]}]}], ")"}]}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "1", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "1", ",", "n"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{"Simplify", "[", "res", "]"}], "*)"}], "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], ";"}]}], "Code", + CellChangeTimes->{{3.798202464339652*^9, 3.7982024807011766`*^9}, { + 3.798202735633894*^9, 3.798202739381678*^9}, {3.798254443192902*^9, + 3.798254443543215*^9}, {3.798360422404688*^9, + 3.7983604493092318`*^9}},ExpressionUUID->"0aef8794-2831-4e8f-b5be-\ +e7e9ca87ecbc"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Alternative theories: FR, ST", "Section", + CellChangeTimes->{{3.747970935053893*^9, + 3.747970945742977*^9}},ExpressionUUID->"bd470b28-5f15-4c9c-a58c-\ +810cdfefdac1"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "EinsteinfR", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Metric\>\"", "\[Rule]", "True"}], "}"}], ",", + RowBox[{"Join", "[", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}], "]"}]}], "}"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"EinsteinfR", "[", + RowBox[{"xx_", ",", "g_", ",", "fR_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "res", ",", "fRterm1", ",", "fRterm2", ",", "dalem", ",", "Global`R", + ",", "riscal", ",", "riscalvars", ",", "simpl", ",", "Rc", ",", "fRc", + ",", "dfRc", ",", "covterm1", ",", "covterm2", ",", "metric"}], "}"}], + ",", "\n", "\n", + RowBox[{ + RowBox[{"metric", "=", + RowBox[{"OptionValue", "[", "\"\<Metric\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"riscal", "=", + RowBox[{"simpl", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ";", "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"AtomsList", "[", "riscal", "]"}]}], "]"}]}], "]"}]}], ";", + "\n", + RowBox[{"Rc", "=", + RowBox[{"Global`R", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"fRc", "=", + RowBox[{"fR", "/.", + RowBox[{"Global`R", "\[Rule]", "Rc"}]}]}], ";", "\n", + RowBox[{"dfRc", "=", + RowBox[{"D", "[", + RowBox[{"fRc", ",", "Rc"}], "]"}]}], ";", "\n", + RowBox[{"dalem", "=", + RowBox[{"DAlembert", "[", + RowBox[{"xx", ",", "g", ",", "dfRc"}], "]"}]}], ";", "\n", + RowBox[{"fRterm1", "=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"dfRc", " ", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], "-", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "g", " ", "fRc"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"metric", ",", "\n", " ", + RowBox[{ + RowBox[{"covterm1", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "dfRc", ",", + RowBox[{"{", "i", "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"covterm2", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "covterm1", ",", + RowBox[{"{", + RowBox[{"i", ",", "j"}], "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"fRterm2", "=", + RowBox[{"covterm2", "-", + RowBox[{"g", "*", "dalem"}]}]}], ";", "\n", " ", + RowBox[{"res", "=", + RowBox[{"(", + RowBox[{"fRterm1", "-", "fRterm2"}], ")"}]}], ";", "\n", " ", + + RowBox[{"Return", "[", + RowBox[{"{", "covterm1", "}"}], "]"}], ";"}], "\n", " ", ",", + "\n", " ", + RowBox[{ + RowBox[{"res", "=", + RowBox[{"(", "fRterm1", ")"}]}], ";"}]}], "\n", "]"}], ";", "\n", + "\n", + RowBox[{"Simplify", "@", "res"}]}]}], "\n", "]"}]}]}], "Code", + CellChangeTimes->{{3.717768180617588*^9, 3.717768201181761*^9}, { + 3.7177682430829973`*^9, 3.7177683859762573`*^9}, {3.717768453158977*^9, + 3.717768585548099*^9}, {3.717768616317445*^9, 3.717768646569281*^9}, { + 3.717768737006611*^9, 3.717768741862134*^9}, {3.717768789502527*^9, + 3.71776878965257*^9}, {3.71776882318865*^9, 3.717768824820692*^9}, { + 3.717768868101454*^9, 3.71776886963402*^9}, {3.7177689696611013`*^9, + 3.717768969819309*^9}, {3.717769001740911*^9, 3.717769084466112*^9}, { + 3.717769157789559*^9, 3.71776916306141*^9}, {3.717769221610914*^9, + 3.7177692241126747`*^9}, {3.717769259680992*^9, 3.717769285803253*^9}, { + 3.717769329979512*^9, 3.717769441835341*^9}, {3.7177970644939737`*^9, + 3.717797072079617*^9}, 3.7177971544166527`*^9, {3.717797397750383*^9, + 3.717797418636133*^9}, {3.7177975119004717`*^9, 3.717797568611217*^9}, { + 3.717798337313163*^9, 3.7177983592879953`*^9}, {3.7177983894556723`*^9, + 3.717798401535268*^9}, 3.7177984436106653`*^9, {3.717798535529196*^9, + 3.7177985428706017`*^9}, {3.717798612183751*^9, 3.7177986630786533`*^9}, { + 3.717798695226246*^9, 3.717798743022421*^9}, {3.7177987837276087`*^9, + 3.71779886680474*^9}, {3.717798916372867*^9, 3.717799000772546*^9}, { + 3.7177990513582478`*^9, 3.7177991101240664`*^9}, {3.717799197900185*^9, + 3.717799199147318*^9}, {3.717799236406498*^9, 3.71779928184373*^9}, { + 3.717799361692026*^9, 3.71779936558708*^9}, {3.717799413556937*^9, + 3.717799414802883*^9}, {3.7177994940822363`*^9, 3.717799521554123*^9}, { + 3.717799557209655*^9, 3.717799578716764*^9}, {3.717799615722102*^9, + 3.7177996278043613`*^9}, {3.717799690491502*^9, 3.7177996967218323`*^9}, { + 3.7177997572585983`*^9, 3.717799765217243*^9}, {3.717800395391507*^9, + 3.717800478613056*^9}, {3.717800530166663*^9, 3.71780053478891*^9}, { + 3.7178006093181753`*^9, 3.7178006161406*^9}, {3.717800821038286*^9, + 3.717800883334612*^9}, 3.717800915670727*^9, {3.717800968613109*^9, + 3.7178009725227547`*^9}, {3.7178010065725946`*^9, 3.7178010139305*^9}, { + 3.717801075955647*^9, 3.717801077362804*^9}, 3.717801220996582*^9, { + 3.717801345506919*^9, 3.717801353874536*^9}, {3.717801470592519*^9, + 3.717801486603312*^9}, 3.717801644138688*^9, {3.717802116247375*^9, + 3.717802151021349*^9}, {3.717802192244123*^9, 3.7178021951812077`*^9}, { + 3.717802226214551*^9, 3.717802240822077*^9}, {3.7178251061705847`*^9, + 3.717825112830308*^9}, {3.717825163652924*^9, 3.717825167499608*^9}, { + 3.7178252140449743`*^9, 3.717825260492008*^9}, {3.717825532563571*^9, + 3.717825534922947*^9}, {3.717825590284336*^9, 3.717825635448584*^9}, { + 3.717825724858296*^9, 3.717825738769619*^9}, {3.717825810889159*^9, + 3.71782582427501*^9}, {3.7178258779860907`*^9, 3.717825899225943*^9}, { + 3.720090747956254*^9, 3.720090825192881*^9}, {3.720092038443247*^9, + 3.720092038938081*^9}, 3.7200938426779413`*^9, {3.726554800191674*^9, + 3.726554922516274*^9}, {3.74797096277031*^9, 3.747970965556885*^9}, { + 3.748166110519499*^9, 3.748166148292921*^9}, {3.748166715847687*^9, + 3.74816674531961*^9}, {3.752315230999085*^9, 3.752315470510895*^9}, { + 3.7523155128416147`*^9, 3.752315541942113*^9}, {3.799730475576785*^9, + 3.799730543009513*^9}},ExpressionUUID->"6d54e73d-1c50-4cc0-aad4-\ +ff74dd80442b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"STensorT\[Psi]", "[", + RowBox[{"coor_", ",", "met_", ",", "\[Psi]potl_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "a", ",", "b", ",", "l", ",", "m", ",", "g", ",", "xx", ",", "\[Psi]", + ",", "pot", ",", "gup"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"xx", "=", "coor"}], ";", "\[IndentingNewLine]", + RowBox[{"g", "=", "met"}], ";", "\[IndentingNewLine]", + RowBox[{"pot", "=", + RowBox[{"\[Psi]potl", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"\[Psi]", "=", + RowBox[{"\[Psi]potl", "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", + RowBox[{"gup", "=", + RowBox[{"Inverse", "@", "g"}]}], ";", "\n", "\[IndentingNewLine]", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{"\[Psi]", ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], + RowBox[{"D", "[", + RowBox[{"\[Psi]", ",", + RowBox[{"xx", "[", + RowBox[{"[", "b", "]"}], "]"}]}], "]"}]}], "-", + RowBox[{ + RowBox[{"1", "/", "2"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}], + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "m"}], "]"}], "]"}], + RowBox[{"D", "[", + RowBox[{"\[Psi]", ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], + RowBox[{"D", "[", + RowBox[{"\[Psi]", ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], "-", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}], " ", "pot"}]}], " ", ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.726401794214621*^9, 3.726401892839143*^9}, { + 3.726401971705843*^9, 3.7264021814217453`*^9}, {3.726402361932404*^9, + 3.72640247396281*^9}, {3.7264025520055103`*^9, 3.726402597496461*^9}, { + 3.726402636830553*^9, 3.72640264059293*^9}, {3.7264026737950277`*^9, + 3.7264026739999533`*^9}, {3.726402960093457*^9, 3.726402962596958*^9}, { + 3.747970968064391*^9, 3.747970970228874*^9}, {3.748166699563682*^9, + 3.748166709448728*^9}}, + CellLabel-> + "In[299]:=",ExpressionUUID->"f79c22c1-362f-458d-82a2-1f3465aadc06"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "TeffFR", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Metric\>\"", "\[Rule]", "True"}], "}"}], ",", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"TeffFR", "[", + RowBox[{"xx_", ",", "g_", ",", "fR_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "res", ",", "fRterm1", ",", "fRterm2", ",", "dalem", ",", "Global`R", + ",", "riscal", ",", "riscalvars", ",", "Rc", ",", "fRc", ",", "dfRc", + ",", "simpl", ",", "covterm1", ",", "covterm2", ",", "metric", ",", + "perti"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"metric", "=", + RowBox[{"OptionValue", "[", "\"\<Metric\>\"", "]"}]}], ";", "\n", + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"riscal", "=", + RowBox[{"simpl", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}]}], + "]"}]}]}], ";", "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"AtomsList", "[", "riscal", "]"}]}], "]"}]}], "]"}]}], ";", + "\n", + RowBox[{"Rc", "=", + RowBox[{"Global`R", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"fRc", "=", + RowBox[{"fR", "/.", + RowBox[{"Global`R", "\[Rule]", "Rc"}]}]}], ";", "\n", + RowBox[{"dfRc", "=", + RowBox[{"D", "[", + RowBox[{"fRc", ",", "Rc"}], "]"}]}], ";", "\n", + RowBox[{"dalem", "=", + RowBox[{"DAlembert", "[", + RowBox[{"xx", ",", "g", ",", "dfRc"}], "]"}]}], ";", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"metric", ",", "\n", " ", + RowBox[{ + RowBox[{"covterm1", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "dfRc", ",", + RowBox[{"{", "i", "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"covterm2", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "covterm1", ",", + RowBox[{"{", + RowBox[{"i", ",", "j"}], "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"fRterm2", "=", + RowBox[{"covterm2", "-", + RowBox[{"g", "*", "dalem"}]}]}], ";", "\n", " ", + RowBox[{"res", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"Not", "@", + RowBox[{"NumericQ", "@", "pert"}]}], ",", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"8", "\[Pi]"}], ")"}]}], + RowBox[{"(", + RowBox[{"fRterm2", "-", + RowBox[{ + RowBox[{"dfRc", "/", "2"}], " ", "Rc", " ", "g"}], " ", "+", + " ", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "fRc", " ", "g"}]}], ")"}]}], + ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}], + ",", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"8", "\[Pi]"}], ")"}]}], + RowBox[{"(", + RowBox[{"fRterm2", "-", + RowBox[{ + RowBox[{"dfRc", "/", "2"}], " ", "Rc", " ", "g"}], " ", "+", + " ", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "fRc", " ", "g"}]}], ")"}]}]}], + "]"}]}], ";"}], "\n", " ", ",", "\n", " ", + RowBox[{ + RowBox[{"res", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"Not", "@", + RowBox[{"NumericQ", "@", "pert"}]}], ",", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"(", "fRterm1", ")"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}], + ",", + RowBox[{"(", "fRterm1", ")"}]}], "]"}]}], ";"}]}], "\n", "]"}], + ";", "\n", "\n", + RowBox[{"Simplify", "@", "res"}]}]}], "\n", "]"}]}]}], "Code", + CellChangeTimes->{{3.748154306382333*^9, 3.748154342254348*^9}, { + 3.7481543729883204`*^9, 3.748154425286625*^9}, {3.74815447149557*^9, + 3.748154501249371*^9}, {3.7481545323125362`*^9, 3.748154545430482*^9}, + 3.748154606754107*^9, {3.748154641355502*^9, 3.748154649489853*^9}, { + 3.7481547304681883`*^9, 3.748154801909973*^9}, {3.7481549219619837`*^9, + 3.748154927411788*^9}, 3.7481549797972918`*^9, {3.748155612877985*^9, + 3.7481556381290207`*^9}, {3.7481558152039833`*^9, 3.748155819991068*^9}, { + 3.74815669572978*^9, 3.7481566975704327`*^9}, {3.748166155772621*^9, + 3.74816618969757*^9}, {3.7481664692026243`*^9, 3.7481664696499653`*^9}, { + 3.748166504752483*^9, 3.7481665334340878`*^9}, {3.748166581404728*^9, + 3.748166582712945*^9}, {3.752315561699087*^9, 3.752315566110036*^9}, { + 3.77060445512431*^9, 3.770604644141411*^9}, {3.770605276168578*^9, + 3.770605277713686*^9}, {3.7706054166108522`*^9, 3.770605420991745*^9}, { + 3.7706054717615557`*^9, 3.77060547556357*^9}, {3.7706059056388483`*^9, + 3.770605958549918*^9}, 3.772630417737788*^9, {3.77263080045022*^9, + 3.772630843699891*^9}, {3.799730557821373*^9, + 3.7997305669946127`*^9}},ExpressionUUID->"6b04f6d5-af97-4d0d-b866-\ +5998965061d8"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "TeffST", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Frame\>\"", "\[Rule]", "\"\<Einstein\>\""}], "}"}], ",", + RowBox[{"Options", "[", "ChristoffelSymbol", "]"}]}], "]"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"TeffST", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"{", + RowBox[{"V\[CurlyPhi]_", ",", "var\[CurlyPhi]_"}], "}"}], ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "covterm1", ",", "covterm2", ",", "dalem", ",", "der", ",", "gup", ",", + "frame", ",", "perti", ",", "res", ",", "riscal", ",", "riscalvars", + ",", "simpl", ",", "sumder", ",", "V\[CurlyPhi]c", ",", "\[CurlyPhi]c", + ",", "\[Phi]term2"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"frame", "=", + RowBox[{"OptionValue", "[", "\"\<Frame\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"riscal", "=", + RowBox[{"simpl", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}]}], + "]"}]}]}], ";", "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"AtomsList", "[", "riscal", "]"}]}], "]"}]}], "]"}]}], ";", + "\n", + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";", "\n", + RowBox[{"\[CurlyPhi]c", "=", + RowBox[{"var\[CurlyPhi]", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"V\[CurlyPhi]c", "=", + RowBox[{"V\[CurlyPhi]", "/.", + RowBox[{"var\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]c"}]}]}], ";", "\n", + "\n", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"frame", "\[Equal]", "\"\<Einstein\>\""}], ",", "\n", + " ", + RowBox[{ + RowBox[{"der", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{"\[CurlyPhi]c", ",", + RowBox[{"xx", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}], + RowBox[{"D", "[", + RowBox[{"\[CurlyPhi]c", ",", + RowBox[{"xx", "[", + RowBox[{"[", "b", "]"}], "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"sumder", "=", + RowBox[{"Sum", "[", " ", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{"der", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"res", "=", + RowBox[{ + FractionBox["1", + RowBox[{"8", "\[Pi]"}]], + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "der"}], "-", + RowBox[{"g", " ", "sumder"}], " ", "-", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "g", " ", "V\[CurlyPhi]c"}]}], + ")"}]}]}], ";"}], ",", "\n", " ", + RowBox[{"frame", "\[Equal]", "\"\<Jordan\>\""}], ",", " ", "\n", + " ", + RowBox[{ + RowBox[{"dalem", "=", + RowBox[{"DAlembert", "[", + RowBox[{"xx", ",", "g", ",", "\[CurlyPhi]c"}], "]"}]}], ";", "\n", + " ", + RowBox[{"covterm1", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "\[CurlyPhi]c", ",", + RowBox[{"{", "i", "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"covterm2", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "covterm1", ",", + RowBox[{"{", + RowBox[{"i", ",", "j"}], "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"\[Phi]term2", "=", + RowBox[{"covterm2", "-", + RowBox[{"g", "*", "dalem"}]}]}], ";", "\n", " ", + RowBox[{"res", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"Not", "@", + RowBox[{"NumericQ", "@", "pert"}]}], ",", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"8", "\[Pi]"}], ")"}]}], + RowBox[{"(", + RowBox[{"\[Phi]term2", "-", + RowBox[{ + RowBox[{"V\[CurlyPhi]c", "/", "2"}], " ", "g"}]}], ")"}]}], + ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}], + ",", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{"8", "\[Pi]"}], ")"}]}], + RowBox[{"(", + RowBox[{"\[Phi]term2", "-", + RowBox[{ + RowBox[{"V\[CurlyPhi]c", "/", "2"}], " ", "g"}]}], ")"}]}]}], + "]"}]}], ";"}], ",", "\n", " ", "True", ",", "\n", + " ", + RowBox[{ + RowBox[{"Print", "[", "\"\<Wrong option for Frame\>\"", "]"}], ";", + RowBox[{"Return", "[", "]"}], ";"}]}], "\n", "]"}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "@", "pert"}], ",", + RowBox[{"Simplify", "@", "res"}], ",", + RowBox[{"Simplify", "@", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{"res", ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}]}], + "]"}]}]}], "\n", "]"}]}]}], "Code", + CellChangeTimes->{ + 3.768300835527927*^9, 3.7683011105155497`*^9, {3.7683013964858637`*^9, + 3.768301435986734*^9}, {3.7683015121318398`*^9, 3.7683015288449306`*^9}, { + 3.7683016137940197`*^9, 3.768301633553568*^9}, {3.76830168559389*^9, + 3.768301690211801*^9}, {3.7683017483022127`*^9, 3.768301756557674*^9}, { + 3.768301812546567*^9, 3.76830184070329*^9}, {3.770613354974557*^9, + 3.7706134182222023`*^9}, {3.770613592004719*^9, 3.770613595735119*^9}, { + 3.770613655079608*^9, 3.7706136558798637`*^9}, {3.7706138223587418`*^9, + 3.770613822847872*^9}, 3.770613933108946*^9, {3.770618665835225*^9, + 3.770618703896995*^9}, {3.7707848249956417`*^9, 3.770784958969735*^9}, { + 3.770785015950115*^9, 3.77078504461196*^9}, {3.770785126515067*^9, + 3.770785210680381*^9}, {3.770785312568001*^9, 3.7707854005245247`*^9}, { + 3.770785766527484*^9, 3.7707857716134377`*^9}, {3.770785814225151*^9, + 3.770785847799657*^9}, {3.770785887707638*^9, 3.770785914365863*^9}, { + 3.799730572920567*^9, + 3.7997305852977657`*^9}},ExpressionUUID->"252d8729-785d-4dee-9670-\ +5d76098a3c72"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{ + "Are", " ", "you", " ", "sure", " ", "this", " ", "is", " ", "right", + RowBox[{"??", "?"}]}], " ", "*)"}], "\n", + RowBox[{ + RowBox[{"EinsteinST", "[", + RowBox[{"xx_", ",", "g_", ",", "V\[Phi]_"}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "res", ",", "fRterm1", ",", "fRterm2", ",", "dalem", ",", "R", ",", + "riscal", ",", "riscalvars", ",", "\[Phi]c", ",", "fRc", ",", "dfRc", + ",", "covterm1", ",", "covterm2"}], "}"}], ",", "\n", "\n", + RowBox[{ + RowBox[{"riscal", "=", + RowBox[{"Simplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ";", "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"Complement", "[", + RowBox[{"xx", ",", + RowBox[{"AtomsList", "[", "V\[Phi]", "]"}]}], "]"}]}], "]"}]}], + ";", "\n", "\n", + RowBox[{"\[Phi]c", "=", + RowBox[{"\[Phi]", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"dalem", "=", + RowBox[{"DAlembert", "[", + RowBox[{"xx", ",", "g", ",", "\[Phi]c"}], "]"}]}], ";", "\n", + RowBox[{"fRterm1", "=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}], "-", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "g", " ", + RowBox[{"D", "[", + RowBox[{"V\[Phi]", ",", "\[Phi]c"}], "]"}]}], "+", " ", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "g", " ", + FractionBox["V\[Phi]", + RowBox[{"2", " ", "\[Phi]c", " "}]]}]}], "]"}]}], ";", "\n", "\n", + + RowBox[{"covterm1", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "dfRc", ",", + RowBox[{"{", "i", "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"covterm2", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "covterm1", ",", + RowBox[{"{", + RowBox[{"i", ",", "j"}], "}"}], ",", + RowBox[{"\"\<Valence\>\"", "\[Rule]", "\"\<Covariant\>\""}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"fRterm2", "=", + RowBox[{ + RowBox[{"-", + FractionBox["1", "\[Phi]c"]}], " ", + RowBox[{"(", + RowBox[{"covterm2", "-", + RowBox[{"g", "*", "dalem"}]}], ")"}]}]}], ";", "\n", "\n", + RowBox[{"res", "=", + RowBox[{"(", + RowBox[{"fRterm1", "-", "fRterm2"}], ")"}]}], ";", "\n", "\n", + RowBox[{"Simplify", "@", "res"}]}]}], "\n", "]"}]}]}]], "Code", + CellChangeTimes->{{3.717768180617588*^9, 3.717768201181761*^9}, { + 3.7177682430829973`*^9, 3.7177683859762573`*^9}, {3.717768453158977*^9, + 3.717768585548099*^9}, {3.717768616317445*^9, 3.717768646569281*^9}, { + 3.717768737006611*^9, 3.717768741862134*^9}, {3.717768789502527*^9, + 3.71776878965257*^9}, {3.71776882318865*^9, 3.717768824820692*^9}, { + 3.717768868101454*^9, 3.71776886963402*^9}, {3.7177689696611013`*^9, + 3.717768969819309*^9}, {3.717769001740911*^9, 3.717769084466112*^9}, { + 3.717769157789559*^9, 3.71776916306141*^9}, {3.717769221610914*^9, + 3.7177692241126747`*^9}, {3.717769259680992*^9, 3.717769285803253*^9}, { + 3.717769329979512*^9, 3.717769441835341*^9}, {3.7177970644939737`*^9, + 3.717797072079617*^9}, 3.7177971544166527`*^9, {3.717797397750383*^9, + 3.717797418636133*^9}, {3.7177975119004717`*^9, 3.717797568611217*^9}, { + 3.717798337313163*^9, 3.7177983592879953`*^9}, {3.7177983894556723`*^9, + 3.717798401535268*^9}, 3.7177984436106653`*^9, {3.717798535529196*^9, + 3.7177985428706017`*^9}, {3.717798612183751*^9, 3.7177986630786533`*^9}, { + 3.717798695226246*^9, 3.717798743022421*^9}, {3.7177987837276087`*^9, + 3.71779886680474*^9}, {3.717798916372867*^9, 3.717799000772546*^9}, { + 3.7177990513582478`*^9, 3.7177991101240664`*^9}, {3.717799197900185*^9, + 3.717799199147318*^9}, {3.717799236406498*^9, 3.71779928184373*^9}, { + 3.717799361692026*^9, 3.71779936558708*^9}, {3.717799413556937*^9, + 3.717799414802883*^9}, {3.7177994940822363`*^9, 3.717799521554123*^9}, { + 3.717799557209655*^9, 3.717799578716764*^9}, {3.717799615722102*^9, + 3.7177996278043613`*^9}, {3.717799690491502*^9, 3.7177996967218323`*^9}, { + 3.7177997572585983`*^9, 3.717799765217243*^9}, {3.717800395391507*^9, + 3.717800478613056*^9}, {3.717800530166663*^9, 3.71780053478891*^9}, { + 3.7178006093181753`*^9, 3.7178006161406*^9}, {3.717800821038286*^9, + 3.717800883334612*^9}, 3.717800915670727*^9, {3.717800968613109*^9, + 3.7178009725227547`*^9}, {3.7178010065725946`*^9, 3.7178010139305*^9}, { + 3.717801075955647*^9, 3.717801077362804*^9}, 3.717801220996582*^9, { + 3.717801345506919*^9, 3.717801353874536*^9}, {3.717801470592519*^9, + 3.717801486603312*^9}, 3.717801644138688*^9, {3.717802116247375*^9, + 3.717802151021349*^9}, {3.717802192244123*^9, 3.7178021951812077`*^9}, { + 3.717802226214551*^9, 3.717802240822077*^9}, {3.7178251061705847`*^9, + 3.717825112830308*^9}, {3.717825163652924*^9, 3.717825167499608*^9}, { + 3.7178252140449743`*^9, 3.717825260492008*^9}, {3.717825532563571*^9, + 3.717825534922947*^9}, {3.717825590284336*^9, 3.717825635448584*^9}, { + 3.717825724858296*^9, 3.717825738769619*^9}, {3.717825810889159*^9, + 3.71782582427501*^9}, {3.7178258779860907`*^9, 3.717825899225943*^9}, { + 3.720090747956254*^9, 3.720090825192881*^9}, {3.720092038443247*^9, + 3.720092038938081*^9}, 3.7200938426779413`*^9, {3.722779753142013*^9, + 3.722779784494981*^9}, {3.722779876802121*^9, 3.72278015896231*^9}, { + 3.722780429148716*^9, 3.722780502772974*^9}, 3.722780591132682*^9, { + 3.7227807408167887`*^9, 3.722780864210927*^9}, 3.72278092658315*^9, { + 3.722780964291025*^9, 3.722780979555004*^9}, {3.726403118172242*^9, + 3.726403128243373*^9}, {3.747970972456465*^9, 3.747970976428269*^9}, { + 3.748166210567259*^9, 3.748166220513459*^9}, {3.748166666379361*^9, + 3.748166683432515*^9}, {3.799730594784977*^9, + 3.7997305991098013`*^9}},ExpressionUUID->"81ea0ed3-7099-4461-b9dc-\ +daf90d06d550"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "STTOV", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Signature\>\"", "\[Rule]", "1"}], "}"}], ",", + RowBox[{"Options", "[", "TeffST", "]"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"STTOV", "[", + RowBox[{"coors_", ",", "met_", ",", + RowBox[{"{", + RowBox[{"V\[CurlyPhi]_", ",", "var\[CurlyPhi]_"}], "}"}], ",", + "metvars_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Global`x", ",", "Aa", ",", "\[Alpha]a", ",", "dV\[CurlyPhi]c", ",", + "dpc", ",", "d\[Phi]c", ",", "d\[Phi]\[CurlyPhi]c", ",", "eq", ",", + "eqaux", ",", "eqKG", ",", "eqp", ",", "eval", ",", "ET", ",", "eq2", + ",", "frame", ",", "g", ",", "gup", ",", "perti", ",", "riscal", ",", + "riscalvars", ",", "sign", ",", "simpl", ",", "T", ",", "TEF", ",", + "Teff", ",", "Ttot", ",", "T\[Mu]\[Nu]", ",", "T\[Mu]\[Nu]up", ",", + "V\[CurlyPhi]c", ",", "\[CurlyPhi]c", ",", "\[CurlyPhi]2c", ",", + "Global`r", ",", "Global`\[Rho]", ",", "\[Rho]c", ",", "Global`p", ",", + "pc", ",", "Global`\[Phi]", ",", "\[Phi]c", ",", "\[Phi]\[CurlyPhi]c", + ",", "Global`\[CurlyPhi]"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"sign", "=", + RowBox[{"OptionValue", "[", "\"\<Signature\>\"", "]"}]}], ";", "\n", + RowBox[{"frame", "=", + RowBox[{"OptionValue", "[", "\"\<Frame\>\"", "]"}]}], ";", "\n", + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{ + RowBox[{"frame", "\[NotEqual]", " ", "\"\<Einstein\>\""}], " ", "&&", + " ", + RowBox[{"frame", "\[NotEqual]", "\"\<Jordan\>\""}]}], ",", + RowBox[{ + RowBox[{"Return", "[", "]"}], ";"}]}], "]"}], ";", "\n", + "\[IndentingNewLine]", + RowBox[{ + "Print", "[", + "\"\<Variables must be given as: {p,Var_gtt,Var_grr,\[CurlyPhi]}\>\"", + "]"}], ";", "\n", + RowBox[{"g", "=", "met"}], ";", "\n", + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"riscal", "=", + RowBox[{"simpl", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}]}], + "]"}]}]}], ";", "\n", "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"coors", ",", + RowBox[{"Complement", "[", + RowBox[{"coors", ",", + RowBox[{"AtomsList", "[", "riscal", "]"}]}], "]"}]}], "]"}]}], ";", + "\n", + RowBox[{"\[CurlyPhi]c", "=", + RowBox[{"var\[CurlyPhi]", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"V\[CurlyPhi]c", "=", + RowBox[{"V\[CurlyPhi]", "/.", + RowBox[{"var\[CurlyPhi]", "\[Rule]", "\[CurlyPhi]c"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"dV\[CurlyPhi]c", "=", + RowBox[{"D", "[", + RowBox[{"V\[CurlyPhi]c", ",", "\[CurlyPhi]c"}], "]"}]}], ";", "\n", + RowBox[{"\[CurlyPhi]2c", "=", + RowBox[{ + RowBox[{"(", + RowBox[{"var\[CurlyPhi]", "''"}], ")"}], "@@", "riscalvars"}]}], ";", + "\n", + RowBox[{"pc", "=", + RowBox[{"Global`p", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"\[Rho]c", "=", + RowBox[{"Global`\[Rho]", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"\[Phi]c", "=", + RowBox[{"Global`\[Phi]", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"dpc", "=", + RowBox[{"D", "[", + RowBox[{"pc", ",", "riscalvars"}], "]"}]}], ";", "\n", + RowBox[{"d\[Phi]c", "=", + RowBox[{"D", "[", + RowBox[{"\[Phi]c", ",", "riscalvars"}], "]"}]}], ";", "\n", + RowBox[{"(*", " ", + RowBox[{ + "Define", " ", "the", " ", "coupling", " ", "of", " ", "the", " ", + "scalar", " ", "field", " ", "with", " ", "matter"}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Phi]\[CurlyPhi]c", "[", "\[CurlyPhi]_", "]"}], ":=", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"2", "/", + RowBox[{"Sqrt", "[", "3", "]"}]}], "\[CurlyPhi]"}], "]"}]}], ";", + "\n", + RowBox[{"d\[Phi]\[CurlyPhi]c", "=", + RowBox[{"D", "[", + RowBox[{"\[Phi]\[CurlyPhi]c", ",", "Global`r"}], "]"}]}], ";", "\n", + "\n", + RowBox[{ + RowBox[{"eval", "[", "x_", "]"}], ":=", + RowBox[{"Evaluate", "[", "x", "]"}]}], ";", "\n", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{ + "Computation", " ", "of", " ", "the", " ", "matter", " ", "energy"}], + "-", + RowBox[{"momentum", " ", "tensor"}]}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{"T\[Mu]\[Nu]", "=", + RowBox[{"ETensor", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "simpl"}]}], "]"}]}], + ";", "\n", + RowBox[{"T\[Mu]\[Nu]up", "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"gup", ".", "T\[Mu]\[Nu]"}], ")"}], "gup"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], ";", + "\n", + RowBox[{"T", "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"g", ".", "T\[Mu]\[Nu]up"}], ")"}], "[", + RowBox[{"[", + RowBox[{"i", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"frame", "\[Equal]", "\"\<Einstein\>\""}], ",", "\n", + " ", + RowBox[{ + RowBox[{"TEF", "=", + RowBox[{"(", + RowBox[{"T", "*", " ", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], "/", + RowBox[{"Sqrt", "[", "3", "]"}]}], "\[CurlyPhi]c"}], "]"}]}], + ")"}]}], ";"}], ",", "\n", " ", + RowBox[{"TEF", "=", + RowBox[{"(", "T", ")"}]}]}], "]"}], ";", "\n", " ", "\n", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{ + "Computation", " ", "of", " ", "the", " ", "effective", " ", + "energy"}], "-", + RowBox[{"momentum", " ", + RowBox[{"tensor", ".", " ", "Aa"}], " ", "converts", " ", "matter", + " ", "quantities", " ", "to", " ", "the", " ", "Jordan"}], "-", + RowBox[{"Frame", "."}]}], " ", "*)"}], "\n", + RowBox[{"Teff", "=", + RowBox[{"TeffST", "[", + RowBox[{"coors", ",", "g", ",", + RowBox[{"{", + RowBox[{"V\[CurlyPhi]", ",", "var\[CurlyPhi]"}], "}"}], ",", "pert", + ",", + RowBox[{"\"\<Frame\>\"", "\[Rule]", "frame"}], ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "simpl"}]}], "]"}]}], + ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"frame", "\[Equal]", "\"\<Einstein\>\""}], ",", "\n", + " ", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Aa", "[", "\[CurlyPhi]_", "]"}], ":=", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "\[CurlyPhi]"}], "/", + RowBox[{"Sqrt", "[", "3", "]"}]}], "]"}]}], ";", "\n", " ", + + RowBox[{ + RowBox[{"\[Alpha]a", "[", "\[CurlyPhi]_", "]"}], ":=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Log", "[", + RowBox[{"Aa", "[", "\[CurlyPhi]", "]"}], "]"}], ",", + "\[CurlyPhi]"}], "]"}]}], ";", "\n", " ", + RowBox[{"Ttot", "=", + RowBox[{"FullSimplify", "[", + RowBox[{"8", "\[Pi]", + RowBox[{"(", + RowBox[{ + RowBox[{"T\[Mu]\[Nu]", " ", + RowBox[{ + RowBox[{"Aa", "[", "\[CurlyPhi]c", "]"}], "^", "4"}]}], " ", + "+", "Teff"}], ")"}]}], "]"}]}], ";"}], "\n", " ", ";"}], + ",", "\n", " ", + RowBox[{ + RowBox[{ + RowBox[{"Aa", "[", "\[CurlyPhi]_", "]"}], ":=", "1"}], ";", "\n", + " ", + RowBox[{ + RowBox[{"\[Alpha]a", "[", "\[CurlyPhi]_", "]"}], ":=", "1"}], ";", + " ", "\n", " ", + RowBox[{"Ttot", "=", + RowBox[{"FullSimplify", "[", + RowBox[{"8", + RowBox[{"\[Pi]", "/", "\[CurlyPhi]c"}], + RowBox[{"(", + RowBox[{"T\[Mu]\[Nu]", " ", "+", "Teff"}], ")"}]}], "]"}]}], + ";"}]}], "]"}], ";", "\[IndentingNewLine]", "\n", + RowBox[{"(*", " ", + RowBox[{"Einstein", " ", "tensor"}], " ", "*)"}], "\n", + RowBox[{"ET", "=", + RowBox[{"Einstein", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}]}], "]"}]}], + ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Solving", " ", "the", " ", "equations"}], " ", "*)"}], "\n", + RowBox[{"eq", "=", + RowBox[{"ET", "-", "Ttot"}]}], ";", "\n", + RowBox[{"eq2", "=", + RowBox[{"Simplify", "[", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"eq", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "3", "]"}], "]"}], "'"}], "@@", "riscalvars"}]}], + "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], ",", + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"eq", "[", + RowBox[{"[", "2", "]"}], "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "2", "]"}], "]"}], "'"}], "@@", "riscalvars"}]}], + "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "}"}], "]"}]}], ";", "\n", + "\[IndentingNewLine]", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{ + "Continuity", " ", "equation", " ", "and", " ", "conversion", " ", + "to", " ", "EF", " ", "if", " ", "frame"}], "\[Rule]", "Einstein"}], + " ", "*)"}], "\n", + RowBox[{"eqp", "=", + RowBox[{"Flatten", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"coors", ",", "g", ",", "T\[Mu]\[Nu]up", ",", + RowBox[{"{", + RowBox[{"i", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{ + "\"\<Valence\>\"", "\[Rule]", "\"\<Contravariant\>\""}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], "\[Equal]", + + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "1", "]"}], "]"}], "'"}], "@@", "riscalvars"}]}], + "]"}], "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"frame", "\[Equal]", "\"\<Einstein\>\""}], ",", "\n", + " ", + RowBox[{ + RowBox[{"eqaux", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"T", "*", + RowBox[{"\[Alpha]a", "[", "\[CurlyPhi]c", "]"}], " ", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"a", ",", "b"}], "]"}], "]"}], + RowBox[{"D", "[", + RowBox[{"\[CurlyPhi]c", ",", + RowBox[{"coors", "[", + RowBox[{"[", "a", "]"}], "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"a", ",", "4"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"b", ",", "4"}], "}"}]}], "]"}]}], ";", "\n", + " ", + RowBox[{"eqp", "=", + RowBox[{"Equal", "@@@", + RowBox[{"Flatten", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"coors", ",", "g", ",", "T\[Mu]\[Nu]up", ",", + RowBox[{"{", + RowBox[{"i", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{ + "\"\<Valence\>\"", "\[Rule]", "\"\<Contravariant\>\""}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], + "\[Equal]", "eqaux"}], ",", "dpc"}], "]"}], "]"}]}]}], ";", + "\n", " ", + RowBox[{"eqp", "=", + RowBox[{"Simplify", "@", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"eqp", "/.", + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Rule]", + RowBox[{"Function", "[", + RowBox[{"r", ",", + RowBox[{ + RowBox[{ + RowBox[{"Global`\[Phi]", "[", "r", "]"}], "^", + RowBox[{"(", + RowBox[{"-", "2"}], ")"}]}], "*", + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "1", "]"}], "]"}], "[", "r", "]"}]}]}], + "]"}]}]}], "/.", + RowBox[{"\[Rho]c", "\[Rule]", + RowBox[{"(", + RowBox[{"\[Rho]c", " ", + RowBox[{"\[Phi]c", "^", + RowBox[{"(", + RowBox[{"-", "2"}], ")"}]}]}], ")"}]}]}], "/.", + RowBox[{"Global`\[Phi]", "\[Rule]", + RowBox[{"Function", "[", + RowBox[{"r", ",", + RowBox[{"Evaluate", "[", + RowBox[{"\[Phi]\[CurlyPhi]c", "[", + RowBox[{"Global`\[CurlyPhi]", "[", "r", "]"}], "]"}], + "]"}]}], "]"}]}]}], ",", "dpc"}], "]"}]}]}], ";", "\n", + " ", + RowBox[{"eqp", "=", + RowBox[{"Simplify", "@", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Flatten", "[", "eqp", "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}]}], + ";"}], ",", "\n", " ", "\n", " ", + RowBox[{ + RowBox[{"eqp", "=", + RowBox[{"Simplify", "[", "eqp", "]"}]}], ";"}]}], "]"}], ";", "\n", + "\[IndentingNewLine]", + RowBox[{"(*", " ", + RowBox[{"KG", " ", "equation"}], " ", "*)"}], "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"frame", "\[Equal]", "\"\<Einstein\>\""}], ",", "\n", + " ", + RowBox[{ + RowBox[{"eqKG", "=", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"DAlembert", "[", + RowBox[{"coors", ",", "g", ",", "\[CurlyPhi]c"}], "]"}], + "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], "\[Pi]", " ", + RowBox[{"\[Alpha]a", "[", "\[CurlyPhi]c", "]"}], "TEF"}], "+", + RowBox[{ + RowBox[{"1", "/", "4"}], " ", "dV\[CurlyPhi]c"}]}]}], ",", " ", + "\[CurlyPhi]2c"}], "]"}]}], ";"}], ",", "\n", " ", + RowBox[{ + RowBox[{"eqKG", "=", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"3", + RowBox[{"DAlembert", "[", + RowBox[{"coors", ",", "g", ",", "\[CurlyPhi]c"}], "]"}]}], + "\[Equal]", + RowBox[{ + RowBox[{"8", "\[Pi]", " ", + RowBox[{"\[Alpha]a", "[", "\[CurlyPhi]c", "]"}], "TEF"}], "+", + " ", + RowBox[{"\[CurlyPhi]c", " ", "dV\[CurlyPhi]c"}], " ", "-", + RowBox[{"2", " ", "V\[CurlyPhi]c"}]}]}], ",", " ", + "\[CurlyPhi]2c"}], "]"}]}], ";"}]}], "]"}], ";", "\n", "\n", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Equal", "@@@", + RowBox[{"Flatten", "[", + RowBox[{"Join", "[", + RowBox[{"eqp", ",", "eq2", ",", "eqKG"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}]}], "\n", + "]"}]}]}], "Code", + CellChangeTimes->{{3.768286043693741*^9, 3.7682861016831617`*^9}, { + 3.768286177565136*^9, 3.768286300065702*^9}, {3.7682922252003*^9, + 3.768292251261231*^9}, {3.7682922859555483`*^9, 3.768292391084774*^9}, { + 3.7682924399175043`*^9, 3.7682924665080223`*^9}, {3.768292498015712*^9, + 3.7682926619199038`*^9}, {3.768292703342845*^9, 3.7682927180920753`*^9}, { + 3.7682927922938967`*^9, 3.768292843408577*^9}, {3.7682931008980103`*^9, + 3.7682931044064837`*^9}, {3.7682932230193443`*^9, + 3.7682932442437267`*^9}, {3.768293287990246*^9, 3.7682933456848097`*^9}, { + 3.768293376284012*^9, 3.7682935232143393`*^9}, {3.768294645882699*^9, + 3.768294728981201*^9}, {3.7682947895297613`*^9, 3.768294918822987*^9}, { + 3.7682949961939363`*^9, 3.768295125342228*^9}, {3.768295198907592*^9, + 3.768295338666996*^9}, {3.7682953725160913`*^9, 3.768295375809881*^9}, { + 3.768295406367578*^9, 3.7682954532861843`*^9}, {3.768295672689414*^9, + 3.768295726696642*^9}, {3.768295830902807*^9, 3.768295853867934*^9}, { + 3.768297117973008*^9, 3.768297180102229*^9}, {3.7682980238277683`*^9, + 3.7682980717989473`*^9}, {3.768298888032651*^9, 3.768298944947604*^9}, { + 3.768299079340296*^9, 3.768299084637109*^9}, {3.768299187324153*^9, + 3.768299211214273*^9}, {3.768299252319559*^9, 3.768299264027528*^9}, { + 3.7683009911861877`*^9, 3.768300991394665*^9}, {3.768301055236836*^9, + 3.7683010591676197`*^9}, {3.768302007856481*^9, 3.768302034351471*^9}, + 3.768302075865973*^9, {3.7683021383305483`*^9, 3.768302331534884*^9}, { + 3.768302371790996*^9, 3.7683024734539967`*^9}, {3.768302510408646*^9, + 3.7683026597891693`*^9}, {3.7683027671990957`*^9, 3.768302772504333*^9}, { + 3.768302824089941*^9, 3.7683028508246*^9}, 3.7683029030329037`*^9, { + 3.768302955209667*^9, 3.768302971680045*^9}, {3.768303897809602*^9, + 3.768303964366034*^9}, {3.768304016931592*^9, 3.76830405091859*^9}, { + 3.7683041642636538`*^9, 3.7683042133936663`*^9}, {3.768304520704022*^9, + 3.768304523045218*^9}, 3.768304554479727*^9, {3.768304601910163*^9, + 3.768304619839645*^9}, {3.768304690694625*^9, 3.7683047234157457`*^9}, + 3.768304754338459*^9, {3.768304812850038*^9, 3.7683048260491953`*^9}, { + 3.768304874513142*^9, 3.7683048784912367`*^9}, {3.768304925530835*^9, + 3.76830497719526*^9}, {3.768305018991791*^9, 3.768305084893395*^9}, { + 3.76830511982694*^9, 3.768305263725376*^9}, {3.768305339035722*^9, + 3.76830535986615*^9}, {3.768305441741992*^9, 3.768305445037253*^9}, { + 3.768305714234911*^9, 3.768305764738435*^9}, {3.768305876858232*^9, + 3.7683058842617693`*^9}, {3.768305921820682*^9, 3.7683059266965446`*^9}, { + 3.768305958759348*^9, 3.768305978444345*^9}, 3.7683060275432777`*^9, { + 3.768306073543371*^9, 3.768306182607038*^9}, {3.7683062175786123`*^9, + 3.768306217786437*^9}, {3.7683062815691757`*^9, 3.7683064050011263`*^9}, { + 3.76830643720341*^9, 3.7683064430767937`*^9}, {3.768306473835301*^9, + 3.768306518424123*^9}, {3.7683065613102837`*^9, 3.768306565099594*^9}, + 3.768306598099428*^9, 3.768306638579074*^9, {3.768306675248168*^9, + 3.768306712235889*^9}, {3.76830674526958*^9, 3.768306836988044*^9}, { + 3.7683069563553553`*^9, 3.7683070821621027`*^9}, {3.768307124892221*^9, + 3.768307189398511*^9}, 3.7683072216895943`*^9, 3.768307262864139*^9, { + 3.768307392102393*^9, 3.7683073953454123`*^9}, {3.768307442298812*^9, + 3.7683074454396553`*^9}, 3.7683074933300047`*^9, 3.7683075391540213`*^9, { + 3.768307746156109*^9, 3.76830780096706*^9}, {3.7683078473699827`*^9, + 3.768307998152399*^9}, {3.768308032045003*^9, 3.76830806726011*^9}, { + 3.768308111516686*^9, 3.7683082246613626`*^9}, 3.7683083354530487`*^9, { + 3.7683083807023478`*^9, 3.768308405775072*^9}, {3.768308444543239*^9, + 3.76830851251334*^9}, {3.768308594608139*^9, 3.7683086311486797`*^9}, { + 3.768308671246978*^9, 3.76830883267432*^9}, 3.768308899660317*^9, { + 3.768308975072472*^9, 3.768309005631831*^9}, {3.7683090624505587`*^9, + 3.768309087314838*^9}, {3.768446845294278*^9, 3.768446848613245*^9}, { + 3.768446887332675*^9, 3.768446962369276*^9}, {3.7684470147584476`*^9, + 3.7684470456203337`*^9}, {3.768447122706481*^9, 3.76844722446747*^9}, { + 3.768447283068047*^9, 3.7684472997190323`*^9}, {3.768447340443493*^9, + 3.768447359247634*^9}, {3.76844739526344*^9, 3.768447437596922*^9}, { + 3.76844751171803*^9, 3.768447536734747*^9}, {3.768447597910309*^9, + 3.768447787824823*^9}, {3.7684478265594387`*^9, 3.7684478271664457`*^9}, { + 3.768447869174205*^9, 3.7684478704342613`*^9}, {3.76844791844263*^9, + 3.7684480482143183`*^9}, {3.768448093718032*^9, 3.768448117686494*^9}, { + 3.768448185177968*^9, 3.7684482263986807`*^9}, {3.768448275764235*^9, + 3.768448309683461*^9}, {3.768448352945064*^9, 3.768448369918376*^9}, { + 3.768448408502521*^9, 3.768448440350157*^9}, 3.768448470520612*^9, { + 3.768448530399008*^9, 3.768448747751988*^9}, {3.768448778349134*^9, + 3.768448779969138*^9}, {3.768448833481038*^9, 3.768448939849053*^9}, { + 3.770024677135663*^9, 3.770024686763948*^9}, {3.770614083272015*^9, + 3.770614084470064*^9}, 3.770616316626381*^9, {3.77078599229218*^9, + 3.7707860350835876`*^9}, 3.770786065848425*^9, {3.770786166103442*^9, + 3.77078640012564*^9}, {3.770786518178605*^9, 3.7707866055656137`*^9}, { + 3.770786641449147*^9, 3.77078668098344*^9}, 3.770786841390422*^9, { + 3.7707868915211*^9, 3.77078689432551*^9}, {3.770787001867649*^9, + 3.7707870488332453`*^9}, {3.770787148528079*^9, 3.7707871537978077`*^9}, { + 3.770787183874754*^9, 3.770787190386532*^9}, {3.770787230164721*^9, + 3.770787262956778*^9}, {3.77078735386154*^9, 3.7707873958789787`*^9}, { + 3.770787557146203*^9, 3.770787563146265*^9}, {3.77078764265154*^9, + 3.770787642869013*^9}, {3.770787838093955*^9, 3.770787847669304*^9}, { + 3.770787914333383*^9, 3.77078797179918*^9}, 3.770788128924032*^9, { + 3.7707883371111813`*^9, 3.7707884001894617`*^9}, {3.7707885046623363`*^9, + 3.770788531696279*^9}, {3.7707886850690947`*^9, 3.770788690161327*^9}, { + 3.771129619768614*^9, 3.771129626229288*^9}, {3.7711297946986027`*^9, + 3.7711298407521563`*^9}, {3.771129935741413*^9, 3.771129943570326*^9}, { + 3.7711376635906773`*^9, 3.7711378111895638`*^9}, {3.771137844633956*^9, + 3.77113787831046*^9}, {3.7711379194108257`*^9, 3.771137947862589*^9}, { + 3.7711379862877502`*^9, 3.771138058903063*^9}, {3.7711381745865*^9, + 3.771138174706422*^9}, {3.7711382060491047`*^9, 3.771138241182229*^9}, { + 3.771138284644698*^9, 3.7711383287417727`*^9}, {3.771138370304311*^9, + 3.771138398158531*^9}, 3.7727699417830353`*^9, {3.79972927383171*^9, + 3.799729276552829*^9}, {3.799730606003778*^9, 3.799730616781118*^9}, { + 3.799730723930231*^9, 3.7997307271421547`*^9}, {3.799730772675123*^9, + 3.799730776065962*^9}, {3.799730820429969*^9, + 3.799730848017131*^9}},ExpressionUUID->"305f1da2-b619-471c-b193-\ +83c797e21b52"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "FRTOV", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\"\<Signature\>\"", "\[Rule]", "1"}], "}"}], ",", + RowBox[{"Options", "[", "TeffST", "]"}]}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"FRTOV", "[", + RowBox[{ + "coors_", ",", "met_", ",", "fR_", ",", "metvars_", ",", "pert_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Global`R", ",", "teff", ",", "perti", ",", "sign", ",", "u", ",", + "udown", ",", "g", ",", "gup", ",", "simpl", ",", "T\[Mu]\[Nu]up", ",", + "T\[Mu]\[Nu]", ",", "T", ",", "Teff", ",", "Ttot", ",", "ET", ",", + "riscal", ",", "riscalvars", ",", "Rc", ",", "fRc", ",", "dfRc", ",", + "eq", ",", "eq2", ",", "eqp", ",", "eqKG", ",", "R2c"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"sign", "=", + RowBox[{"OptionValue", "[", "\"\<Signature\>\"", "]"}]}], ";", "\n", + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\[IndentingNewLine]", + RowBox[{ + "Print", "[", + "\"\<Variables must be given as: {p,Var_gtt,Var_grr,R}\>\"", "]"}], ";", + "\[IndentingNewLine]", + RowBox[{"g", "=", "met"}], ";", "\[IndentingNewLine]", + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";", "\n", + RowBox[{"riscal", "=", + RowBox[{"RicciScalar", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"riscalvars", "=", + RowBox[{"Complement", "[", + RowBox[{"coors", ",", + RowBox[{"Complement", "[", + RowBox[{"coors", ",", + RowBox[{"AtomsList", "[", "riscal", "]"}]}], "]"}]}], "]"}]}], ";", + "\n", + RowBox[{"Rc", "=", + RowBox[{"Global`R", "@@", "riscalvars"}]}], ";", "\n", + RowBox[{"R2c", "=", + RowBox[{ + RowBox[{"(", + RowBox[{"Global`R", "''"}], ")"}], "@@", "riscalvars"}]}], ";", "\n", + + RowBox[{"fRc", "=", + RowBox[{"fR", "/.", + RowBox[{"Global`R", "\[Rule]", "Rc"}]}]}], ";", "\n", + RowBox[{"dfRc", "=", + RowBox[{"D", "[", + RowBox[{"fRc", ",", "Rc"}], "]"}]}], ";", "\[IndentingNewLine]", + "\[IndentingNewLine]", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{ + "Computation", " ", "of", " ", "the", " ", "matter", " ", "energy"}], + "-", + RowBox[{"momentum", " ", "tensor"}]}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{"T\[Mu]\[Nu]", "=", + RowBox[{"ETensor", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", + RowBox[{"T\[Mu]\[Nu]up", "=", + RowBox[{ + RowBox[{"(", + RowBox[{"gup", ".", "T\[Mu]\[Nu]"}], ")"}], "gup"}]}], ";", "\n", + RowBox[{"T", "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"g", ".", "T\[Mu]\[Nu]up"}], ")"}], "[", + RowBox[{"[", + RowBox[{"i", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{ + "Computation", " ", "of", " ", "the", " ", "effective", " ", + "energy"}], "-", + RowBox[{"momentum", " ", "tensor"}]}], " ", "*)"}], "\n", + RowBox[{"Teff", "=", + RowBox[{"TeffFR", "[", + RowBox[{"coors", ",", "g", ",", "fR", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}]}], "]"}]}], + ";", "\n", + RowBox[{"Ttot", "=", + RowBox[{"FullSimplify", "[", + RowBox[{"8", + RowBox[{"\[Pi]", "/", "dfRc"}], + RowBox[{"(", + RowBox[{"T\[Mu]\[Nu]", "+", "Teff"}], ")"}]}], "]"}]}], ";", "\n", + "\n", + RowBox[{"(*", " ", + RowBox[{"Einstein", " ", "tensor"}], " ", "*)"}], "\[IndentingNewLine]", + RowBox[{"ET", "=", + RowBox[{"Einstein", "[", + RowBox[{"coors", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Solving", " ", "the", " ", "equations"}], " ", "*)"}], "\n", + RowBox[{"eq", "=", + RowBox[{"ET", "-", "Ttot"}]}], ";", "\n", + RowBox[{"eq2", "=", + RowBox[{"Simplify", "[", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"eq", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "3", "]"}], "]"}], "'"}], "@@", "riscalvars"}]}], + "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], ",", + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"eq", "[", + RowBox[{"[", "2", "]"}], "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "2", "]"}], "]"}], "'"}], "@@", "riscalvars"}]}], + "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "}"}], "]"}]}], ";", "\n", + "\n", + RowBox[{"(*", " ", + RowBox[{"Continuity", " ", "equation"}], " ", "*)"}], "\n", + RowBox[{"eqp", "=", + RowBox[{"Flatten", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"coors", ",", "g", ",", "T\[Mu]\[Nu]up", ",", + RowBox[{"{", + RowBox[{"i", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{ + "\"\<Valence\>\"", "\[Rule]", "\"\<Contravariant\>\""}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "coors"}]}], "}"}]}], "]"}], "\[Equal]", + + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"metvars", "[", + RowBox[{"[", "1", "]"}], "]"}], "'"}], "@@", "riscalvars"}]}], + "]"}], "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"KG", " ", "equation"}], " ", "*)"}], "\[IndentingNewLine]", + RowBox[{"eqKG", "=", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"3", + RowBox[{"DAlembert", "[", + RowBox[{"coors", ",", "g", ",", "dfRc"}], "]"}]}], "+", + RowBox[{"dfRc", " ", "Rc"}], "-", + RowBox[{"2", "fRc"}]}], ")"}], "\[Equal]", + RowBox[{"8", "\[Pi]", " ", "T"}]}], ",", "R2c"}], "]"}]}], ";", "\n", + "\n", + RowBox[{"Equal", "@@@", + RowBox[{"Flatten", "[", + RowBox[{"Join", "[", + RowBox[{"eqp", ",", "eq2", ",", "eqKG"}], "]"}], "]"}]}]}]}], "\n", + "]"}]}]}], "Code", + CellChangeTimes->{{3.768286043693741*^9, 3.7682861016831617`*^9}, { + 3.768286177565136*^9, 3.768286300065702*^9}, {3.7682922252003*^9, + 3.768292251261231*^9}, {3.7682922859555483`*^9, 3.768292391084774*^9}, { + 3.7682924399175043`*^9, 3.7682924665080223`*^9}, {3.768292498015712*^9, + 3.7682926619199038`*^9}, {3.768292703342845*^9, 3.7682927180920753`*^9}, { + 3.7682927922938967`*^9, 3.768292843408577*^9}, {3.7682931008980103`*^9, + 3.7682931044064837`*^9}, {3.7682932230193443`*^9, + 3.7682932442437267`*^9}, {3.768293287990246*^9, 3.7682933456848097`*^9}, { + 3.768293376284012*^9, 3.7682935232143393`*^9}, {3.768294645882699*^9, + 3.768294728981201*^9}, {3.7682947895297613`*^9, 3.768294918822987*^9}, { + 3.7682949961939363`*^9, 3.768295125342228*^9}, {3.768295198907592*^9, + 3.768295338666996*^9}, {3.7682953725160913`*^9, 3.768295375809881*^9}, { + 3.768295406367578*^9, 3.7682954532861843`*^9}, {3.768295672689414*^9, + 3.768295726696642*^9}, {3.768295830902807*^9, 3.768295853867934*^9}, { + 3.768297117973008*^9, 3.768297180102229*^9}, {3.7682980238277683`*^9, + 3.7682980717989473`*^9}, {3.768298888032651*^9, 3.768298944947604*^9}, { + 3.768299079340296*^9, 3.768299084637109*^9}, {3.768299187324153*^9, + 3.768299211214273*^9}, 3.768302057345272*^9, {3.768302089201294*^9, + 3.7683021128210983`*^9}, {3.77002427423114*^9, 3.770024278742632*^9}, { + 3.770024309319435*^9, 3.770024392383926*^9}, {3.7700244568745937`*^9, + 3.7700244619485188`*^9}, 3.7700245897858133`*^9, {3.7700246434243*^9, + 3.770024656040967*^9}, {3.770605735004178*^9, 3.770605788806601*^9}, { + 3.7706058246612883`*^9, 3.770605831059289*^9}, {3.7717272488491907`*^9, + 3.771727321608251*^9}, {3.771727354819839*^9, 3.77172742281852*^9}, { + 3.7717274589179573`*^9, 3.771727468983535*^9}, {3.782563237395153*^9, + 3.782563260541533*^9}, {3.782563305971879*^9, 3.782563306291113*^9}, { + 3.782563353585987*^9, 3.7825634157561417`*^9}, {3.78256345848636*^9, + 3.78256345879601*^9}, 3.7825635339647827`*^9, {3.78256357538962*^9, + 3.782563583579157*^9}, {3.782563680661182*^9, 3.782563714394992*^9}, { + 3.782563775073283*^9, 3.782563781261217*^9}, {3.782563911895391*^9, + 3.782563995095764*^9}}, + CellLabel-> + "In[307]:=",ExpressionUUID->"bd6a6fb4-49a6-4c2b-90a7-61e4c321ab53"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"fR2Pot", "[", + RowBox[{"fR_", ",", + RowBox[{"\[Phi]\[CurlyPhi]_:", "1"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "dfRc", ",", "fRc", ",", "fun", ",", "Rc", ",", "uc", ",", "Global`R", + ",", "Global`\[Phi]", ",", "\[Phi]c", ",", "Rc\[Phi]"}], "}"}], ",", + "\n", "\n", + RowBox[{ + RowBox[{"Rc", "=", "Global`R"}], ";", "\n", + RowBox[{"\[Phi]c", "=", "Global`\[Phi]"}], ";", "\n", + RowBox[{"fRc", "=", + RowBox[{"fR", "/.", + RowBox[{"Global`R", "\[Rule]", "Rc"}]}]}], ";", "\n", + RowBox[{"dfRc", "=", + RowBox[{"D", "[", + RowBox[{"fRc", ",", "Rc"}], "]"}]}], ";", "\n", "\n", + RowBox[{"Rc\[Phi]", "=", + RowBox[{"(", + RowBox[{"Rc", "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"\[Phi]c", "==", "dfRc"}], ",", "Rc"}], "]"}]}], ")"}]}], + ";", "\n", + RowBox[{"uc", "=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"Rc\[Phi]", " ", "\[Phi]c"}], " ", "-", " ", + RowBox[{"(", + RowBox[{"fRc", "/.", + RowBox[{"Rc", "->", "Rc\[Phi]"}]}], ")"}]}], "]"}]}], ";", "\n", + RowBox[{"(*", " ", + RowBox[{"pot", "=", + RowBox[{ + "1", " ", "gives", " ", "the", " ", "JF", " ", "potential", " ", + "else", " ", "gives", " ", "the", " ", "SF"}]}], " ", "*)"}], "\n", + + RowBox[{"$Assumptions", " ", "=", " ", + RowBox[{"_", " ", "\[Element]", " ", "Reals"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "@", "\[Phi]\[CurlyPhi]"}], ",", + RowBox[{"fun", "=", "uc"}], ",", + RowBox[{ + RowBox[{"fun", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"uc", "/", + RowBox[{"\[Phi]c", "^", "2"}]}], ")"}], "/.", + RowBox[{"\[Phi]c", "\[Rule]", "\[Phi]\[CurlyPhi]"}]}], "]"}]}], + ";"}]}], "]"}], ";", "\n", "fun"}]}], "\n", "]"}]}], ";"}]], "Code", + CellChangeTimes->{{3.768449191732234*^9, 3.768449372676139*^9}, { + 3.7684496353758707`*^9, 3.768449700022399*^9}, 3.768449788900222*^9, { + 3.768449825824396*^9, 3.768449845025877*^9}, {3.768449877765267*^9, + 3.768449973578076*^9}, {3.76845000370557*^9, 3.768450136928383*^9}, { + 3.7684504625839987`*^9, 3.7684505127832823`*^9}, {3.768451890834218*^9, + 3.768452087379361*^9}, {3.768452129775681*^9, 3.768452137521492*^9}, { + 3.768452218745614*^9, 3.76845223572503*^9}, {3.768452317286131*^9, + 3.7684523542706347`*^9}, 3.7684524117346373`*^9, 3.768452508236752*^9, { + 3.7684527696136417`*^9, 3.7684527765420313`*^9}, 3.768452807212551*^9, { + 3.768452843803595*^9, 3.768452848736969*^9}, {3.768452981344008*^9, + 3.768452988116334*^9}, {3.768453022440714*^9, 3.768453048265162*^9}, { + 3.768536320285986*^9, 3.768536332458561*^9}, {3.7997434608908653`*^9, + 3.79974346100607*^9}, 3.7997437795268097`*^9, 3.799743819129264*^9}, + CellLabel->"In[71]:=",ExpressionUUID->"277e5d59-180f-4ff2-9d11-83708193aa16"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Pot2fR", "[", + RowBox[{"V\[CurlyPhi]_", ",", "\[Phi]\[CurlyPhi]_"}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "dfRc", ",", "fRc", ",", "fun", ",", "Rc", ",", "uc", ",", "Global`R", + ",", "Global`\[Phi]", ",", "Global`\[CurlyPhi]", ",", "\[Phi]c", ",", + "Rc\[Phi]", ",", "\[CurlyPhi]c"}], "}"}], ",", "\n", "\n", "\n", "\n", + + RowBox[{ + RowBox[{"Rc", "=", "Global`R"}], ";", "\n", + RowBox[{"\[Phi]c", "=", "Global`\[Phi]"}], ";", "\n", + RowBox[{"\[CurlyPhi]c", "=", "Global`\[CurlyPhi]"}], ";", "\n", + RowBox[{"fRc", "=", + RowBox[{"fR", "/.", + RowBox[{"Global`R", "\[Rule]", "Rc"}]}]}], ";", "\n", + RowBox[{"dfRc", "=", + RowBox[{"D", "[", + RowBox[{"fRc", ",", "Rc"}], "]"}]}], ";", "\n", "\n", + RowBox[{"Return", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"\[Phi]\[CurlyPhi]", "==", "\[Phi]c"}], ",", + "\[CurlyPhi]c"}], "]"}], "]"}], ";", "\n", "\n", + RowBox[{"Rc\[Phi]", "=", + RowBox[{ + RowBox[{"(", + RowBox[{"Rc", "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"\[Phi]c", "==", "dfRc"}], ",", "Rc"}], "]"}]}], ")"}], + "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", + RowBox[{"uc", "=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"Rc\[Phi]", " ", "\[Phi]c"}], " ", "-", " ", + RowBox[{"(", + RowBox[{"fRc", "/.", + RowBox[{"Rc", "->", "Rc\[Phi]"}]}], ")"}]}], "]"}]}], ";", "\n", + RowBox[{"(*", " ", + RowBox[{"pot", "=", + RowBox[{ + "1", " ", "gives", " ", "the", " ", "JF", " ", "potential", " ", + "else", " ", "gives", " ", "the", " ", "SF"}]}], " ", "*)"}], "\n", + + RowBox[{"$Assumptions", " ", "=", " ", + RowBox[{"_", " ", "\[Element]", " ", "Reals"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "@", "\[Phi]\[CurlyPhi]"}], ",", + RowBox[{"fun", "=", "uc"}], ",", + RowBox[{ + RowBox[{"fun", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"(", + RowBox[{"uc", "/", + RowBox[{"\[Phi]c", "^", "2"}]}], ")"}], "/.", + RowBox[{"\[Phi]c", "\[Rule]", "\[Phi]\[CurlyPhi]"}]}], "]"}]}], + ";"}]}], "]"}], ";", "\n", "fun"}]}], "\n", "]"}]}], ";"}]], "Code", + CellChangeTimes->{{3.768449191732234*^9, 3.768449372676139*^9}, { + 3.7684496353758707`*^9, 3.768449700022399*^9}, 3.768449788900222*^9, { + 3.768449825824396*^9, 3.768449845025877*^9}, {3.768449877765267*^9, + 3.768449973578076*^9}, {3.76845000370557*^9, 3.768450136928383*^9}, { + 3.7684504625839987`*^9, 3.7684505127832823`*^9}, {3.768451890834218*^9, + 3.768452087379361*^9}, {3.768452129775681*^9, 3.768452137521492*^9}, { + 3.768452218745614*^9, 3.76845223572503*^9}, {3.768452317286131*^9, + 3.7684523542706347`*^9}, 3.7684524117346373`*^9, 3.768452508236752*^9, { + 3.7684527696136417`*^9, 3.7684527765420313`*^9}, 3.768452807212551*^9, { + 3.768452843803595*^9, 3.768452848736969*^9}, {3.768452981344008*^9, + 3.768452988116334*^9}, {3.768453022440714*^9, 3.768453048265162*^9}, { + 3.768535969256428*^9, 3.7685359842081137`*^9}, {3.7685361921699877`*^9, + 3.7685361923321247`*^9}, {3.768536225646884*^9, 3.76853636647115*^9}, + 3.799743775863894*^9}, + CellLabel-> + "In[310]:=",ExpressionUUID->"273d8dfe-f22d-4001-a888-645b21900533"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["EOS", "Section", + CellChangeTimes->{{3.7519610765724993`*^9, + 3.751961078740552*^9}},ExpressionUUID->"037c7342-04ce-4060-832e-\ +9a862d770c59"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSCallParsBSks", "[", "model_", "]"}], ":=", + "\[IndentingNewLine]", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "a1", ",", "a2", ",", "a3", ",", "a4", ",", "a5", ",", "a6", ",", "a7", + ",", "a8", ",", "a9", ",", "a10", ",", "a11", ",", "a12", ",", "a13", + ",", "a14", ",", "a15", ",", "a16", ",", "a17", ",", "a18", ",", "a19", + ",", "a20", ",", "a21", ",", "a22", ",", "a23", ",", "a24", ",", + "table", ",", "pars"}], "}"}], ",", "\[IndentingNewLine]", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"table", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"a1", ",", "3.916`", ",", "4.078`", ",", "4.857`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a2", ",", "7.701`", ",", "7.587`", ",", "6.981`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a3", ",", "0.00858`", ",", "0.00839`", ",", "0.00706`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a4", ",", "0.22114`", ",", "0.21695`", ",", "0.19351`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a5", ",", "3.269`", ",", "3.614`", ",", "4.085`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a6", ",", "11.964`", ",", "11.942`", ",", "12.065`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a7", ",", "13.349`", ",", "13.751`", ",", "10.521`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a8", ",", "1.3683`", ",", "1.3373`", ",", "1.5905`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a9", ",", "3.254`", ",", "3.606`", ",", "4.104`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a10", ",", + RowBox[{"-", "12.953`"}], ",", + RowBox[{"-", "22.996`"}], ",", + RowBox[{"-", "28.726`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"a11", ",", "0.9237`", ",", "1.6229`", ",", "2.0845`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a12", ",", "6.2`", ",", "4.88`", ",", "4.89`"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a13", ",", "14.383`", ",", "14.274`", ",", "14.302`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a14", ",", "16.693`", ",", "23.56`", ",", "22.881`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a15", ",", + RowBox[{"-", "1.0514`"}], ",", + RowBox[{"-", "1.5564`"}], ",", + RowBox[{"-", "1.769`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"a16", ",", "2.486`", ",", "2.095`", ",", "0.989`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a17", ",", "15.362`", ",", "15.294`", ",", "15.313`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"a18", ",", "0.085`", ",", "0.084`", ",", "0.091`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a19", ",", "6.23`", ",", "6.36`", ",", "4.68`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a20", ",", "11.68`", ",", "11.67`", ",", "11.65`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"a21", ",", + RowBox[{"-", "0.029`"}], ",", + RowBox[{"-", "0.042`"}], ",", + RowBox[{"-", "0.086`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"a22", ",", "20.1`", ",", "14.8`", ",", "10.`"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a23", ",", "14.19`", ",", "14.18`", ",", "14.15`"}], + "}"}]}], "}"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]", + + RowBox[{"pars", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"i", ",", "1"}], "]"}], "]"}], "->", + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"i", ",", + RowBox[{"model", "+", "1"}]}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "table"}]}], "}"}]}], "]"}]}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.71775768599763*^9, 3.71775774008239*^9}, { + 3.717757935604946*^9, 3.717757950042429*^9}, {3.717758383977809*^9, + 3.717758694703594*^9}, {3.717758812888652*^9, 3.717758813456283*^9}, { + 3.717760509484172*^9, 3.717760511871131*^9}, 3.7184392257692327`*^9, + 3.718440690796077*^9, 3.751961196867652*^9}, + CellLabel-> + "In[311]:=",ExpressionUUID->"dd47b130-3e35-4d07-b77e-3ca9d835e052"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSCallParsSly", "[", "model_", "]"}], ":=", "\[IndentingNewLine]", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "a1", ",", "a2", ",", "a3", ",", "a4", ",", "a5", ",", "a6", ",", "a7", + ",", "a8", ",", "a9", ",", "a10", ",", "a11", ",", "a12", ",", "a13", + ",", "a14", ",", "a15", ",", "a16", ",", "a17", ",", "a18", ",", "a19", + ",", "a20", ",", "a21", ",", "a22", ",", "a23", ",", "a24", ",", + "table", ",", "pars"}], "}"}], ",", "\[IndentingNewLine]", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"table", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"a1", ",", " ", "6.22"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a10", ",", "11.4950"}], "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a2", ",", "6.121"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a11", ",", + RowBox[{"-", "22.775"}]}], "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a3", ",", "0.005925"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a12", ",", "1.5707"}], "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a4", ",", "0.16326"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a13", ",", "4.3"}], " ", "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a5", ",", "6.48"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a14", ",", "14.08"}], " ", "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a6", ",", "11.4971"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a15", ",", "27.80"}], " ", "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a7", ",", "19.105"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a16", ",", + RowBox[{"-", "1.653"}]}], "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a8", ",", "0.8938"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a17", ",", "1.50"}], "}"}], ",", "\n", + RowBox[{"{", + RowBox[{"a9", ",", "6.54"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a18", ",", "14.67"}], "}"}]}], "}"}]}], ";", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"pars", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"i", ",", "1"}], "]"}], "]"}], "->", + RowBox[{"table", "[", + RowBox[{"[", + RowBox[{"i", ",", + RowBox[{"model", "+", "1"}]}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "table"}]}], "}"}]}], "]"}]}]}]}], + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.71775768599763*^9, 3.71775774008239*^9}, { + 3.717757935604946*^9, 3.717757950042429*^9}, {3.717758383977809*^9, + 3.717758694703594*^9}, {3.717758812888652*^9, 3.717758813456283*^9}, { + 3.717760509484172*^9, 3.717760511871131*^9}, {3.717762449681579*^9, + 3.7177624517538843`*^9}, {3.717762951815937*^9, 3.717763011226334*^9}, { + 3.724067955916505*^9, 3.724067970780342*^9}}, + CellLabel-> + "In[312]:=",ExpressionUUID->"b17e086c-ab31-48d0-8d5b-b0b3abee85e8"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSBSks", "[", "model_", "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Zeta]", ",", "\[Rho]", ",", "pars"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pars", "=", + RowBox[{"EoSCallParsBSks", "[", "model", "]"}]}], ";", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{"\[Zeta]", "=", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"a1", "+", + RowBox[{"a2", " ", "\[Rho]"}], " ", "+", + RowBox[{"a3", " ", + RowBox[{"\[Rho]", "^", "3"}]}]}], + RowBox[{"1", "+", + RowBox[{"a4", " ", "\[Rho]"}]}]], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"a5", + RowBox[{"(", + RowBox[{"\[Rho]", "-", "a6"}], ")"}]}], "]"}], "+", "1"}], + ")"}], "^", + RowBox[{"(", + RowBox[{"-", "1"}], ")"}]}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"a7", "+", + RowBox[{"a8", " ", "\[Rho]"}]}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"a9", + RowBox[{"(", + RowBox[{"a6", "-", "\[Rho]"}], ")"}]}], "]"}], "+", "1"}], + ")"}], "^", + RowBox[{"(", + RowBox[{"-", "1"}], ")"}]}]}], "\[IndentingNewLine]", "+", + RowBox[{ + RowBox[{"(", + RowBox[{"a10", "+", + RowBox[{"a11", " ", "\[Rho]"}]}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"a12", + RowBox[{"(", + RowBox[{"a13", "-", "\[Rho]"}], ")"}]}], "]"}], "+", "1"}], + ")"}], "^", + RowBox[{"(", + RowBox[{"-", "1"}], ")"}]}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"a14", "+", + RowBox[{"a15", " ", "\[Rho]"}]}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"a16", + RowBox[{"(", + RowBox[{"a17", "-", "\[Rho]"}], ")"}]}], "]"}], "+", "1"}], + ")"}], "^", + RowBox[{"(", + RowBox[{"-", "1"}], ")"}]}]}], "\[IndentingNewLine]", "+", + FractionBox["a18", + RowBox[{"1", "+", + RowBox[{ + RowBox[{"(", + RowBox[{"a19", + RowBox[{"(", + RowBox[{"\[Rho]", "-", "a20"}], ")"}]}], ")"}], "^", "2"}]}]], + "+", + FractionBox["a21", + RowBox[{"1", "+", + RowBox[{ + RowBox[{"(", + RowBox[{"a22", + RowBox[{"(", + RowBox[{"\[Rho]", "-", "a20"}], ")"}]}], ")"}], "^", + "2"}]}]]}]}], ";", "\[IndentingNewLine]", + RowBox[{"\[Zeta]", "/.", "pars"}]}]}], "\[IndentingNewLine]", + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.71775738862143*^9, 3.717757389408216*^9}, { + 3.717757482346178*^9, 3.717757679445237*^9}, {3.717757901424719*^9, + 3.717757911629273*^9}, {3.717758735795946*^9, 3.717758744170471*^9}, + 3.717758833032639*^9, {3.717760514215025*^9, 3.717760516951446*^9}, { + 3.717762352627295*^9, 3.717762354304845*^9}, 3.718008999796598*^9, { + 3.718442778107766*^9, 3.71844280373*^9}, {3.727003702160531*^9, + 3.727003732116997*^9}}, + CellLabel-> + "In[313]:=",ExpressionUUID->"d5e13794-b213-405d-a895-be3f3cdac4ca"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSSly", "[", "model_", "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Zeta]", ",", "\[Rho]", ",", "pars", ",", "x", ",", "f0"}], + "}"}], ",", "\n", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pars", "=", + RowBox[{"EoSCallParsSly", "[", "model", "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"f0", "[", "x_", "]"}], ":=", + RowBox[{"1", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"Exp", "[", "x", "]"}], "+", "1"}], ")"}]}]}], ";", + "\[IndentingNewLine]", "\n", + RowBox[{"\[Zeta]", "=", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"a1", "+", + RowBox[{"a2", " ", "\[Rho]"}], " ", "+", + RowBox[{"a3", " ", + RowBox[{"\[Rho]", "^", "3"}]}]}], + RowBox[{"1", "+", + RowBox[{"a4", " ", "\[Rho]"}]}]], + RowBox[{"f0", "[", + RowBox[{"a5", + RowBox[{"(", + RowBox[{"\[Rho]", "-", "a6"}], ")"}]}], "]"}]}], "+", "\n", + RowBox[{ + RowBox[{"(", + RowBox[{"a7", "+", + RowBox[{"a8", " ", "\[Rho]"}]}], ")"}], + RowBox[{"f0", "[", + RowBox[{"(", + RowBox[{"a9", + RowBox[{"(", + RowBox[{"a10", "-", "\[Rho]"}], ")"}]}], ")"}], "]"}]}], "+", + "\n", + RowBox[{ + RowBox[{"(", + RowBox[{"a11", "+", + RowBox[{"a12", " ", "\[Rho]"}]}], ")"}], + RowBox[{"f0", "[", + RowBox[{"(", + RowBox[{"a13", + RowBox[{"(", + RowBox[{"a14", "-", "\[Rho]"}], ")"}]}], ")"}], "]"}]}], "+", + "\n", + RowBox[{ + RowBox[{"(", + RowBox[{"a15", "+", + RowBox[{"a16", " ", "\[Rho]"}]}], ")"}], + RowBox[{"f0", "[", + RowBox[{"(", + RowBox[{"a17", + RowBox[{"(", + RowBox[{"a18", "-", "\[Rho]"}], ")"}]}], ")"}], "]"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Zeta]", "/.", "pars"}]}]}], "\[IndentingNewLine]", + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.71775738862143*^9, 3.717757389408216*^9}, { + 3.717757482346178*^9, 3.717757679445237*^9}, {3.717757901424719*^9, + 3.717757911629273*^9}, {3.717758735795946*^9, 3.717758744170471*^9}, + 3.717758833032639*^9, {3.717760514215025*^9, 3.717760516951446*^9}, { + 3.717762352627295*^9, 3.717762354304845*^9}, {3.7177623894930973`*^9, + 3.7177624103233*^9}, {3.717763409582844*^9, 3.717763482459618*^9}, { + 3.7177637202773123`*^9, 3.7177637331559134`*^9}, {3.7177637702342587`*^9, + 3.717763770480865*^9}, {3.71776381291693*^9, 3.7177638242443666`*^9}, { + 3.7177638648975153`*^9, 3.717763870185418*^9}, {3.7177639025947933`*^9, + 3.717763904881434*^9}, {3.7240679894171257`*^9, 3.724068117243245*^9}, { + 3.727002715348076*^9, 3.7270027349734*^9}}, + CellLabel-> + "In[314]:=",ExpressionUUID->"8d0dd1e2-e736-49c5-83c5-315e177e4d78"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SlyInner", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + "0.00020905`", ",", "3.4951`*^11", ",", "6.214999999999999`*^29", ",", + "1.177`", ",", "0.0099795`", ",", "1.6774`*^13", ",", "3.072`*^31", + ",", "1.342`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00022059000000000003`", ",", "3.6883`*^11", ",", "6.4304`*^29", ",", + "0.527`", ",", "0.012513000000000002`", ",", "2.1042`*^13", ",", + "4.1574`*^31", ",", "1.332`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00023114`", ",", "3.865`*^11", ",", "6.5813`*^29", ",", "0.476`", + ",", "0.016547`", ",", "2.7844000000000004`*^13", ",", + "6.023399999999999`*^31", ",", "1.322`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00026426`", ",", "4.4199`*^11", ",", "6.9945`*^29", ",", "0.447`", + ",", "0.021405`", ",", "3.6043`*^13", ",", "8.461299999999999`*^31", + ",", "1.32`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00030533000000000003`", ",", "5.1079999999999994`*^11", ",", + "7.4685`*^29", ",", "0.466`", ",", "0.024157`", ",", + "4.068800000000001`*^13", ",", "9.928599999999999`*^31", ",", + "1.325`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00035331`", ",", "5.9119`*^11", ",", "8.0149`*^29", ",", "0.504`", + ",", "0.027894000000000002`", ",", "4.7001`*^13", ",", + "1.2022999999999999`*^32", ",", "1.338`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00040763999999999997`", ",", "6.8224`*^11", ",", + "8.644299999999999`*^29", ",", "0.554`", ",", "0.031941000000000004`", + ",", "5.3843`*^13", ",", "1.4430000000000001`*^32", ",", "1.358`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.000468`", ",", "7.8339`*^11", ",", "9.3667`*^29", ",", "0.61`", ",", + "0.036264`", ",", "6.115300000000001`*^13", ",", "1.7175`*^32", ",", + "1.387`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00053414`", ",", "8.9426`*^11", ",", "1.0190999999999999`*^30", ",", + "0.668`", ",", "0.039888`", ",", "6.7284`*^13", ",", "1.9626`*^32", + ",", "1.416`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00060594`", ",", "1.0146`*^12", ",", "1.1128`*^30", ",", "0.726`", + ",", "0.044578`", ",", "7.5224`*^13", ",", "2.3024`*^32", ",", + "1.458`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.00076608`", ",", "1.2831`*^12", ",", "1.337`*^30", ",", "0.84`", ",", + "0.048425`", ",", "8.1738`*^13", ",", "2.6018`*^32", ",", "1.496`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0010471`", ",", "1.7543`*^12", ",", "1.7792`*^30", ",", "0.987`", + ",", "0.052327000000000005`", ",", "8.835000000000002`*^13", ",", + "2.9261000000000002`*^32", ",", "1.536`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0012616`", ",", "2.1141`*^12", ",", "2.1547000000000002`*^30", ",", + "1.067`", ",", "0.056264`", ",", "9.5022`*^13", ",", "3.2756`*^32", + ",", "1.576`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0016246000000000001`", ",", "2.7232`*^12", ",", + "2.8565000000000003`*^30", ",", "1.16`", ",", "0.060218999999999995`", + ",", "1.0173000000000002`*^14", ",", "3.6505000000000004`*^32", ",", + "1.615`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0020384`", ",", "3.4178`*^12", ",", "3.7461000000000004`*^30", ",", + "1.227`", ",", "0.064183`", ",", "1.0845`*^14", ",", + "4.0509000000000005`*^32", ",", "1.65`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0026726000000000002`", ",", "4.4827`*^12", ",", "5.2679`*^30", ",", + "1.286`", ",", "0.067163`", ",", "1.1351`*^14", ",", "4.3681`*^32", + ",", "1.672`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0034064`", ",", "5.7153`*^12", ",", "7.230400000000001`*^30", ",", + "1.322`", ",", "0.070154`", ",", "1.1859`*^14", ",", "4.6998`*^32", + ",", "1.686`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0044746`", ",", "7.5106`*^12", ",", "1.0404999999999999`*^31", ",", + "1.344`", ",", "0.073174`", ",", "1.2372`*^14", ",", "5.0462`*^32", + ",", "1.685`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.005726`", ",", "9.6148`*^12", ",", "1.4513`*^31", ",", "1.353`", ",", + "0.075226`", ",", "1.272`*^14", ",", "5.2856`*^32", ",", "1.662`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.0074963`", ",", "1.2593`*^13", ",", "2.0894`*^31", ",", "1.351`", + ",", "0.075959`", ",", "1.2845`*^14", ",", "5.3739`*^32", ",", + "1.644`"}], "}"}]}], "}"}]}], ";"}]], "Code", + CellChangeTimes->{{3.717760787041917*^9, 3.717760879416108*^9}, { + 3.71776142256112*^9, 3.717761428481743*^9}}, + CellLabel-> + "In[315]:=",ExpressionUUID->"1542b99a-38a7-4efc-a7dd-67f37e0b738f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SlyLCore", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + "0.0771`", ",", "1.3038`*^14", ",", "5.3739`*^32", ",", "2.159`", ",", + "0.49`", ",", "8.850899999999999`*^14", ",", "1.0315`*^35", ",", + "2.953`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.08`", ",", "1.3531`*^14", ",", "5.8259999999999996`*^32", ",", + "2.217`", ",", "0.52`", ",", "9.4695`*^14", ",", "1.2289`*^35", ",", + "2.943`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.085`", ",", "1.4381`*^14", ",", "6.6828`*^32", ",", "2.309`", ",", + "0.55`", ",", "1.0102`*^15", ",", "1.4491`*^35", ",", "2.933`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.09`", ",", "1.5232`*^14", ",", "7.6443`*^32", ",", "2.394`", ",", + "0.58`", ",", "1.0748`*^15", ",", "1.693`*^35", ",", "2.924`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.1`", ",", "1.6935`*^14", ",", "9.9146`*^32", ",", "2.539`", ",", + "0.61`", ",", "1.1408`*^15", ",", "1.9616`*^35", ",", "2.916`"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.11`", ",", "1.8641`*^14", ",", "1.2700999999999999`*^33", ",", + "2.655`", ",", "0.64`", ",", "1.2085`*^15", ",", + "2.2558999999999998`*^35", ",", "2.908`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.12`", ",", "2.035`*^14", ",", "1.6063`*^33", ",", "2.708`", ",", + "0.67`", ",", "1.2777`*^15", ",", "2.5769`*^35", ",", "2.9`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.13`", ",", "2.2063`*^14", ",", "1.9971`*^33", ",", "2.746`", ",", + "0.7`", ",", "1.3486`*^15", ",", "2.9255`*^35", ",", "2.893`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.16`", ",", "2.7223000000000003`*^14", ",", "3.5926999999999995`*^33", + ",", "2.905`", ",", "0.75`", ",", "1.4706`*^15", ",", "3.5702`*^35", + ",", "2.881`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.19`", ",", "3.2424`*^14", ",", "5.9667`*^33", ",", "2.99`", ",", + "0.8`", ",", "1.5977`*^15", ",", "4.2981`*^35", ",", "2.869`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.22`", ",", "3.7675`*^14", ",", "9.2766`*^33", ",", "3.025`", ",", + "0.85`", ",", "1.7302`*^15", ",", "5.1128999999999996`*^35", ",", + "2.858`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.25`", ",", "4.2983`*^14", ",", "1.3668`*^34", ",", "3.035`", ",", + "0.9`", ",", "1.8683`*^15", ",", "6.0183`*^35", ",", "2.847`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.28`", ",", "4.8358`*^14", ",", "1.9276999999999999`*^34", ",", + "3.032`", ",", "0.95`", ",", "2.0123000000000002`*^15", ",", + "7.0176`*^35", ",", "2.836`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.31`", ",", "5.3808`*^14", ",", "2.6234999999999996`*^34", ",", + "3.023`", ",", "1.`", ",", "2.1624`*^15", ",", + "8.113899999999998`*^35", ",", "2.824`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.34`", ",", "5.934`*^14", ",", "3.467`*^34", ",", "3.012`", ",", + "1.1`", ",", "2.482`*^15", ",", "1.0609`*^36", ",", "2.801`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.37`", ",", "6.4963`*^14", ",", "4.4702`*^34", ",", "2.999`", ",", + "1.2`", ",", "2.8289`*^15", ",", "1.3524`*^36", ",", "2.778`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.4`", ",", "7.0684`*^14", ",", "5.6451`*^34", ",", "2.987`", ",", + "1.3`", ",", "3.2048`*^15", ",", "1.6876`*^36", ",", "2.754`"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + "0.43`", ",", "7.651`*^14", ",", "7.0033`*^34", ",", "2.975`", ",", + "1.4`", ",", "3.6113`*^15", ",", "2.0678999999999998`*^36", ",", + "2.731`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.46`", ",", "8.244999999999999`*^14", ",", "8.5561`*^34", ",", + "2.964`", ",", "1.5`", ",", "4.0498000000000005`*^15", ",", + "2.4947`*^36", ",", "2.708`"}], "}"}]}], "}"}]}], ";"}]], "Code", + CellChangeTimes->{{3.7177610490609503`*^9, 3.71776108216689*^9}}, + CellLabel-> + "In[316]:=",ExpressionUUID->"3bdf7311-6a93-42b9-806f-fc1fb7d2dbc8"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SlyLCoreAll", "=", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"TakeColumn", "[", + RowBox[{"SlyLCore", ",", + RowBox[{"{", + RowBox[{"2", ",", "3"}], "}"}]}], "]"}], ",", + RowBox[{"TakeColumn", "[", + RowBox[{"SlyLCore", ",", + RowBox[{"{", + RowBox[{"6", ",", "7"}], "}"}]}], "]"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"zz_", ",", "yy_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Log", "[", + RowBox[{"10", ",", "zz"}], "]"}], ",", + RowBox[{"Log", "[", + RowBox[{"10", ",", "yy"}], "]"}]}], "}"}]}]}]}], ";"}]], "Code", + CellChangeTimes->{{3.717761497272765*^9, 3.71776153184719*^9}, { + 3.717761588368452*^9, 3.7177615938630753`*^9}}, + CellLabel-> + "In[317]:=",ExpressionUUID->"c79d9e93-4c26-45bb-93fc-bae5d0655d34"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SlyInnerAll", "=", + RowBox[{ + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"TakeColumn", "[", + RowBox[{"SlyInner", ",", + RowBox[{"{", + RowBox[{"2", ",", "3"}], "}"}]}], "]"}], ",", + RowBox[{"TakeColumn", "[", + RowBox[{"SlyInner", ",", + RowBox[{"{", + RowBox[{"6", ",", "7"}], "}"}]}], "]"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"zz_", ",", "yy_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"Log", "[", + RowBox[{"10", ",", "zz"}], "]"}], ",", + RowBox[{"Log", "[", + RowBox[{"10", ",", "yy"}], "]"}]}], "}"}]}]}]}], ";"}]], "Code", + CellChangeTimes->{{3.717761497272765*^9, 3.7177615583064537`*^9}, { + 3.7177615896002007`*^9, 3.7177615919818087`*^9}}, + CellLabel-> + "In[318]:=",ExpressionUUID->"6ec71da7-0574-492c-a70f-a8c94c288a31"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSFitsPars", "[", + RowBox[{"model_", ",", + RowBox[{"verbose_:", "False"}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", "eostable", "}"}], ",", "\n", + RowBox[{ + RowBox[{"eostable", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + "\"\<PAL6\>\"", ",", "34.38`", ",", "2.227`", ",", "2.189`", ",", + "2.159`", ",", "0.0011`", ",", "0.693`", ",", "1.37`", ",", + "1.477`", ",", + RowBox[{"-", "0.47`"}], ",", "0.374`", ",", + RowBox[{"-", "0.51`"}], ",", "1660", ",", + RowBox[{"-", "0.97`"}], ",", "1.051`", ",", + RowBox[{"-", "2.03`"}], ",", "10.547`", ",", + RowBox[{"-", "0.54`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<SLy\>\"", ",", "34.384`", ",", "3.005`", ",", "2.988`", ",", + "2.851`", ",", "0.002`", ",", "0.989`", ",", "1.41`", ",", "2.049`", + ",", "0.02`", ",", "0.592`", ",", "0.81`", ",", "1810", ",", + "0.1`", ",", "1.288`", ",", + RowBox[{"-", "0.08`"}], ",", "11.736`", ",", + RowBox[{"-", "0.21`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<APR1\>\"", ",", "33.943`", ",", "2.442`", ",", "3.256`", ",", + "2.908`", ",", "0.019`", ",", "0.924`", ",", "9.94`", ",", "1.683`", + ",", + RowBox[{"-", "1.6`"}], ",", "0.581`", ",", "2.79`", ",", "2240", + ",", "1.05`", ",", "0.908`", ",", + RowBox[{"-", "2.57`"}], ",", "9.361`", ",", + RowBox[{"-", "1.85`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<APR2\>\"", ",", "34.126`", ",", "2.643`", ",", "3.014`", ",", + "2.945`", ",", "0.0089`", ",", "1.032`", ",", "0.42`", ",", + "1.808`", ",", + RowBox[{"-", "1.5`"}], ",", "0.605`", ",", "0.33`", ",", "2110", + ",", + RowBox[{"-", "0.02`"}], ",", "1.024`", ",", + RowBox[{"-", "2.34`"}], ",", "10.179`", ",", + RowBox[{"-", "1.57`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<APR3\>\"", ",", "34.392`", ",", "3.166`", ",", "3.573`", ",", + "3.281`", ",", "0.0091`", ",", "1.134`", ",", "2.72`", ",", "2.39`", + ",", + RowBox[{"-", "1.`"}], ",", "0.704`", ",", "0.57`", ",", "1810", ",", + RowBox[{"-", "0.14`"}], ",", "1.375`", ",", + RowBox[{"-", "1.59`"}], ",", "12.094`", ",", + RowBox[{"-", "0.96`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<APR4\>\"", ",", "34.269`", ",", "2.83`", ",", "3.445`", ",", + "3.348`", ",", "0.0068`", ",", "1.16`", ",", "1.45`", ",", "2.213`", + ",", + RowBox[{"-", "1.08`"}], ",", "0.696`", ",", "0.22`", ",", "1940", + ",", "0.05`", ",", "1.243`", ",", + RowBox[{"-", "1.36`"}], ",", "11.428`", ",", + RowBox[{"-", "0.9`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<FPS\>\"", ",", "34.283`", ",", "2.985`", ",", "2.863`", ",", + "2.6`", ",", "0.005`", ",", "0.883`", ",", "2.29`", ",", "1.799`", + ",", + RowBox[{"-", "0.03`"}], ",", "0.53`", ",", "0.67`", ",", "1880", + ",", "0.11`", ",", "1.137`", ",", "0.03`", ",", "10.85`", ",", + "0.12`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<WFF1\>\"", ",", "34.031`", ",", "2.519`", ",", "3.791`", ",", + "3.66`", ",", "0.018`", ",", "1.185`", ",", "7.86`", ",", "2.133`", + ",", + RowBox[{"-", "0.29`"}], ",", "0.739`", ",", "2.21`", ",", "2040", + ",", "0.3`", ",", "1.085`", ",", "0.1`", ",", "10.414`", ",", + "0.02`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<WFF2\>\"", ",", "34.233`", ",", "2.888`", ",", "3.475`", ",", + "3.517`", ",", "0.017`", ",", "1.139`", ",", "7.93`", ",", "2.198`", + ",", + RowBox[{"-", "0.14`"}], ",", "0.717`", ",", "0.71`", ",", "1990", + ",", "0.03`", ",", "1.204`", ",", + RowBox[{"-", "0.59`"}], ",", "11.159`", ",", + RowBox[{"-", "0.28`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<WFF3\>\"", ",", "34.283`", ",", "3.329`", ",", "2.952`", ",", + "2.589`", ",", "0.017`", ",", "0.835`", ",", "8.11`", ",", "1.844`", + ",", + RowBox[{"-", "0.48`"}], ",", "0.53`", ",", "2.26`", ",", "1860", + ",", "0.59`", ",", "1.16`", ",", + RowBox[{"-", "0.25`"}], ",", "10.926`", ",", + RowBox[{"-", "0.12`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<BBB2\>\"", ",", "34.331`", ",", "3.418`", ",", "2.835`", ",", + "2.832`", ",", "0.0055`", ",", "0.914`", ",", "7.75`", ",", + "1.918`", ",", "0.1`", ",", "0.574`", ",", "0.97`", ",", "1900", + ",", "0.47`", ",", "1.188`", ",", "0.17`", ",", "11.139`", ",", + RowBox[{"-", "0.29`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<BPAL12\>\"", ",", "34.358`", ",", "2.209`", ",", "2.201`", ",", + "2.176`", ",", "0.001`", ",", "0.708`", ",", "1.03`", ",", "1.452`", + ",", + RowBox[{"-", "0.18`"}], ",", "0.382`", ",", + RowBox[{"-", "0.29`"}], ",", "1700", ",", + RowBox[{"-", "1.03`"}], ",", "0.974`", ",", "0.2`", ",", "10.024`", + ",", "0.67`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<ENG\>\"", ",", "34.437`", ",", "3.514`", ",", "3.13`", ",", + "3.168`", ",", "0.015`", ",", "1.`", ",", "10.71`", ",", "2.24`", + ",", + RowBox[{"-", "0.05`"}], ",", "0.654`", ",", "0.39`", ",", "1820", + ",", + RowBox[{"-", "0.44`"}], ",", "1.372`", ",", + RowBox[{"-", "0.97`"}], ",", "12.059`", ",", + RowBox[{"-", "0.69`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<MPA1\>\"", ",", "34.495`", ",", "3.446`", ",", "3.572`", ",", + "2.887`", ",", "0.0081`", ",", "0.994`", ",", "4.91`", ",", + "2.461`", ",", + RowBox[{"-", "0.16`"}], ",", "0.67`", ",", + RowBox[{"-", "0.05`"}], ",", "1700", ",", + RowBox[{"-", "0.18`"}], ",", "1.455`", ",", + RowBox[{"-", "0.41`"}], ",", "12.473`", ",", + RowBox[{"-", "0.26`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<MS1\>\"", ",", "34.858`", ",", "3.224`", ",", "3.033`", ",", + "1.325`", ",", "0.019`", ",", "0.888`", ",", "12.44`", ",", + "2.767`", ",", + RowBox[{"-", "0.54`"}], ",", "0.606`", ",", + RowBox[{"-", "0.52`"}], ",", "1400", ",", "1.67`", ",", "1.944`", + ",", + RowBox[{"-", "0.09`"}], ",", "14.918`", ",", "0.06`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<MS2\>\"", ",", "34.605`", ",", "2.447`", ",", "2.184`", ",", + "1.855`", ",", "0.003`", ",", "0.582`", ",", "3.96`", ",", "1.806`", + ",", + RowBox[{"-", "0.42`"}], ",", "0.343`", ",", "2.57`", ",", "1250", + ",", "2.25`", ",", "1.658`", ",", "0.46`", ",", "14.464`", ",", + RowBox[{"-", "2.69`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<MS1b\>\"", ",", "34.855`", ",", "3.456`", ",", "3.011`", ",", + "1.425`", ",", "0.015`", ",", "0.889`", ",", "11.38`", ",", + "2.776`", ",", + RowBox[{"-", "1.03`"}], ",", "0.614`", ",", + RowBox[{"-", "0.56`"}], ",", "1420", ",", "1.38`", ",", "1.888`", + ",", + RowBox[{"-", "0.64`"}], ",", "14.583`", ",", + RowBox[{"-", "0.32`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<PS\>\"", ",", "34.671`", ",", "2.216`", ",", "1.64`", ",", + "2.365`", ",", "0.028`", ",", "0.691`", ",", "7.36`", ",", "1.755`", + ",", + RowBox[{"-", "1.53`"}], ",", "0.355`", ",", + RowBox[{"-", "1.45`"}], ",", "1300", ",", + RowBox[{"-", "2.39`"}], ",", "2.067`", ",", + RowBox[{"-", "3.06`"}], ",", "15.472`", ",", "3.72`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<GS1\>\"", ",", "34.504`", ",", "2.35`", ",", "1.267`", ",", + "2.421`", ",", "0.018`", ",", "0.695`", ",", "0.49`", ",", "1.382`", + ",", + RowBox[{"-", "1.`"}], ",", "0.395`", ",", + RowBox[{"-", "0.64`"}], ",", "1660", ",", "9.05`", ",", "0.766`", + ",", + RowBox[{"-", "3.13`"}], ",", "Null"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<GS2\>\"", ",", "34.642`", ",", "2.519`", ",", "1.571`", ",", + "2.314`", ",", "0.026`", ",", "0.592`", ",", "16.1`", ",", "1.653`", + ",", + RowBox[{"-", "0.3`"}], ",", "0.339`", ",", "7.71`", ",", "1340", + ",", "3.77`", ",", "1.795`", ",", + RowBox[{"-", "3.33`"}], ",", "14.299`", ",", "0.07`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<BGN1H1\>\"", ",", "34.623`", ",", "3.258`", ",", "1.472`", ",", + "2.464`", ",", "0.029`", ",", "0.878`", ",", + RowBox[{"-", "7.42`"}], ",", "1.628`", ",", "0.39`", ",", "0.437`", + ",", + RowBox[{"-", "3.55`"}], ",", "1670", ",", + RowBox[{"-", "2.08`"}], ",", "1.504`", ",", "0.56`", ",", "12.901`", + ",", + RowBox[{"-", "1.96`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<GNH3\>\"", ",", "34.648`", ",", "2.664`", ",", "2.194`", ",", + "2.304`", ",", "0.0045`", ",", "0.75`", ",", "2.04`", ",", "1.962`", + ",", "0.13`", ",", "0.427`", ",", "0.37`", ",", "1410", ",", + RowBox[{"-", "0.04`"}], ",", "1.713`", ",", "0.38`", ",", "14.203`", + ",", + RowBox[{"-", "0.28`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<H1\>\"", ",", "34.564`", ",", "2.595`", ",", "1.845`", ",", + "1.897`", ",", "0.0019`", ",", "0.561`", ",", "2.81`", ",", + "1.555`", ",", + RowBox[{"-", "0.92`"}], ",", "0.311`", ",", + RowBox[{"-", "1.47`"}], ",", "1320", ",", + RowBox[{"-", "1.46`"}], ",", "1.488`", ",", + RowBox[{"-", "1.45`"}], ",", "12.861`", ",", + RowBox[{"-", "0.03`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<H2\>\"", ",", "34.617`", ",", "2.775`", ",", "1.855`", ",", + "1.858`", ",", "0.0028`", ",", "0.565`", ",", "1.38`", ",", + "1.666`", ",", + RowBox[{"-", "0.77`"}], ",", "0.322`", ",", + RowBox[{"-", "0.55`"}], ",", "1280", ",", + RowBox[{"-", "1.29`"}], ",", "1.623`", ",", + RowBox[{"-", "0.82`"}], ",", "13.479`", ",", "0.29`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<H3\>\"", ",", "34.646`", ",", "2.787`", ",", "1.951`", ",", + "1.901`", ",", "0.007`", ",", "0.564`", ",", "7.05`", ",", "1.788`", + ",", + RowBox[{"-", "0.79`"}], ",", "0.343`", ",", "1.07`", ",", "1290", + ",", + RowBox[{"-", "0.88`"}], ",", "1.702`", ",", + RowBox[{"-", "1.18`"}], ",", "13.84`", ",", "0.31`"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<H4\>\"", ",", "34.669`", ",", "2.909`", ",", "2.246`", ",", + "2.144`", ",", "0.0028`", ",", "0.685`", ",", "4.52`", ",", + "2.032`", ",", + RowBox[{"-", "0.85`"}], ",", "0.428`", ",", + RowBox[{"-", "1.01`"}], ",", "1400", ",", + RowBox[{"-", "1.28`"}], ",", "1.729`", ",", + RowBox[{"-", "1.18`"}], ",", "13.774`", ",", "1.34`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<H5\>\"", ",", "34.609`", ",", "2.793`", ",", "1.974`", ",", + "1.915`", ",", "0.005`", ",", "0.596`", ",", "1.65`", ",", "1.727`", + ",", + RowBox[{"-", "1.`"}], ",", "0.347`", ",", + RowBox[{"-", "0.82`"}], ",", "1340", ",", + RowBox[{"-", "1.55`"}], ",", "1.615`", ",", + RowBox[{"-", "1.31`"}], ",", "13.348`", ",", "0.68`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<H6\>\"", ",", "34.593`", ",", "2.637`", ",", "2.121`", ",", + "2.064`", ",", "0.0087`", ",", "0.598`", ",", "11.71`", ",", + "1.778`", ",", "0.07`", ",", "0.346`", ",", "8.65`", ",", "1310", + ",", "5.33`", ",", "1.623`", ",", + RowBox[{"-", "2.19`"}], ",", "13.463`", ",", "0.37`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<H7\>\"", ",", "34.559`", ",", "2.621`", ",", "2.048`", ",", + "2.006`", ",", "0.0046`", ",", "0.63`", ",", "1.82`", ",", "1.683`", + ",", + RowBox[{"-", "1.12`"}], ",", "0.357`", ",", + RowBox[{"-", "0.57`"}], ",", "1410", ",", + RowBox[{"-", "1.52`"}], ",", "1.527`", ",", + RowBox[{"-", "2.33`"}], ",", "12.992`", ",", "0.23`"}], "}"}], ",", + + RowBox[{"{", + RowBox[{ + "\"\<PCL2\>\"", ",", "34.507`", ",", "2.554`", ",", "1.88`", ",", + "1.977`", ",", "0.0069`", ",", "0.6`", ",", "1.74`", ",", "1.482`", + ",", + RowBox[{"-", "0.79`"}], ",", "0.326`", ",", + RowBox[{"-", "2.25`"}], ",", "1440", ",", + RowBox[{"-", "1.87`"}], ",", "1.291`", ",", + RowBox[{"-", "3.27`"}], ",", "11.761`", ",", + RowBox[{"-", "1.15`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<ALF1\>\"", ",", "34.055`", ",", "2.013`", ",", "3.389`", ",", + "2.033`", ",", "0.04`", ",", "0.565`", ",", "18.59`", ",", "1.495`", + ",", + RowBox[{"-", "0.53`"}], ",", "0.386`", ",", "3.52`", ",", "1730", + ",", "2.44`", ",", "0.987`", ",", + RowBox[{"-", "0.4`"}], ",", "9.896`", ",", + RowBox[{"-", "0.22`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<ALF2\>\"", ",", "34.616`", ",", "4.07`", ",", "2.411`", ",", + "1.89`", ",", "0.043`", ",", "0.642`", ",", "1.5`", ",", "2.086`", + ",", + RowBox[{"-", "5.26`"}], ",", "0.436`", ",", + RowBox[{"-", "0.62`"}], ",", "1440", ",", "1.01`", ",", "1.638`", + ",", + RowBox[{"-", "6.94`"}], ",", "13.188`", ",", + RowBox[{"-", "3.66`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<ALF3\>\"", ",", "34.283`", ",", "2.883`", ",", "2.653`", ",", + "1.952`", ",", "0.017`", ",", "0.565`", ",", "11.29`", ",", + "1.473`", ",", + RowBox[{"-", "0.06`"}], ",", "0.358`", ",", "2.46`", ",", "1620", + ",", "1.79`", ",", "1.041`", ",", "0.76`", ",", "10.314`", ",", + RowBox[{"-", "0.25`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "\"\<ALF4\>\"", ",", "34.314`", ",", "3.009`", ",", "3.438`", ",", + "1.803`", ",", "0.023`", ",", "0.685`", ",", "14.78`", ",", + "1.943`", ",", + RowBox[{"-", "0.93`"}], ",", "0.454`", ",", "0.59`", ",", "1590", + ",", "0.52`", ",", "1.297`", ",", + RowBox[{"-", "2.38`"}], ",", "11.667`", ",", + RowBox[{"-", "1.2`"}]}], "}"}]}], "}"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"eostable", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", + RowBox[{"Flatten", "@", + RowBox[{"Select", "[", + RowBox[{"eostable", ",", + RowBox[{ + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Equal]", "model"}], "&"}]}], + "]"}]}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.7270003623435583`*^9, 3.727000375021758*^9}, { + 3.72700130989832*^9, 3.7270013883835287`*^9}, {3.727001496580738*^9, + 3.7270014973363028`*^9}, {3.727001669015664*^9, 3.7270016705584583`*^9}, { + 3.727003085015476*^9, 3.72700314107194*^9}, {3.727003197119124*^9, + 3.727003208717188*^9}, {3.727003241765259*^9, 3.727003248524081*^9}, { + 3.727073009833282*^9, 3.727073029534666*^9}, {3.738227016100469*^9, + 3.738227026836084*^9}}, + CellLabel-> + "In[319]:=",ExpressionUUID->"94aaf09f-e66c-408a-9c44-b910ab5d14a5"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"EoSSlyCrust", "[", "\[Rho]_", "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "pol1", ",", "pol2", ",", "pol3", ",", "pol4", ",", "\[Rho]l1", ",", + "\[Rho]l2", ",", "\[Rho]l3", ",", "k1", ",", "k2", ",", "k3", ",", + "k4", ",", "\[CapitalGamma]1", ",", "\[CapitalGamma]2", ",", + "\[CapitalGamma]3", ",", "\[CapitalGamma]4", ",", "c"}], "}"}], ",", + "\n", "\n", + RowBox[{ + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";", "\n", + RowBox[{"\[Rho]l1", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"2.44034", " ", + RowBox[{"10", "^", + RowBox[{"(", "07", ")"}]}]}]}], "]"}]}], ";", "\n", + RowBox[{"\[Rho]l2", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"3.78358", " ", + RowBox[{"10", "^", + RowBox[{"(", "11", ")"}]}]}]}], "]"}]}], ";", "\n", + RowBox[{"\[Rho]l3", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"2.62780", " ", + RowBox[{"10", "^", + RowBox[{"(", "12", ")"}]}]}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"k1", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"6.80110", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "9"}], ")"}]}]}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", + RowBox[{"k2", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"1.06186", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "6"}], ")"}]}]}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", + RowBox[{"k3", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"5.32697", " ", "10"}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", + RowBox[{"k4", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"3.99874", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "8"}], ")"}]}]}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"\[CapitalGamma]1", "=", "1.58425"}], ";", "\n", + RowBox[{"\[CapitalGamma]2", "=", "1.28733"}], ";", "\n", + RowBox[{"\[CapitalGamma]3", "=", "0.62223"}], ";", "\n", + RowBox[{"\[CapitalGamma]4", "=", "1.35692"}], ";", "\n", "\n", + RowBox[{"pol1", "=", + RowBox[{"k1", "+", " ", + RowBox[{"\[CapitalGamma]1", " ", "\[Rho]"}]}]}], ";", "\n", + RowBox[{"pol2", "=", + RowBox[{"k2", "+", " ", + RowBox[{"\[CapitalGamma]2", " ", "\[Rho]"}]}]}], ";", "\n", + RowBox[{"pol3", "=", + RowBox[{"k3", "+", " ", + RowBox[{"\[CapitalGamma]3", " ", "\[Rho]"}]}]}], ";", "\n", + RowBox[{"pol4", "=", + RowBox[{"k4", "+", " ", + RowBox[{"\[CapitalGamma]4", " ", "\[Rho]"}]}]}], ";", "\n", "\n", + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"pol1", ",", + RowBox[{"\[Rho]", "\[LessEqual]", "\[Rho]l1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"pol2", ",", + RowBox[{"\[Rho]l1", "<", "\[Rho]", "\[LessEqual]", "\[Rho]l2"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"pol3", ",", + RowBox[{"\[Rho]l2", "<", "\[Rho]", "\[LessEqual]", "\[Rho]l3"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"pol4", ",", + RowBox[{"\[Rho]", ">", "\[Rho]l3"}]}], "}"}]}], "}"}], "]"}]}]}], + "\n", "\n", "]"}]}], ";"}]], "Code", + CellChangeTimes->{{3.731222482430871*^9, 3.731222515017756*^9}, { + 3.7312227756283913`*^9, 3.731222989687776*^9}, {3.731223259430863*^9, + 3.731223270280017*^9}, {3.7312233068452053`*^9, 3.731223324171681*^9}, + 3.7312234681106052`*^9, {3.731223533010606*^9, 3.7312236711982594`*^9}, { + 3.731223720934964*^9, 3.731223755990274*^9}, {3.731223912972632*^9, + 3.731223944572007*^9}, {3.7312239973686533`*^9, 3.731224000823002*^9}, { + 3.731224175676585*^9, 3.731224198426861*^9}, {3.731224258566051*^9, + 3.731224297505787*^9}, 3.731224329086371*^9, {3.7312297684121037`*^9, + 3.731229926543757*^9}, {3.731230275229718*^9, 3.7312303037305307`*^9}, { + 3.7312303743552933`*^9, 3.7312303752354183`*^9}, {3.7312304116889753`*^9, + 3.731230413217012*^9}, {3.731230711031252*^9, 3.731230762709496*^9}, { + 3.7312308844890547`*^9, 3.731230891079521*^9}, {3.733815890507553*^9, + 3.7338159005474577`*^9}, {3.7338160001695004`*^9, 3.733816002608041*^9}, + 3.733816132851262*^9, {3.751961630623782*^9, 3.7519616312365837`*^9}, { + 3.7519696174030323`*^9, 3.751969648311232*^9}, 3.751972354653983*^9}, + CellLabel-> + "In[320]:=",ExpressionUUID->"3f1e4a76-6936-4740-8096-cea6b4942aee"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSPol", "[", + RowBox[{"model_:", "\"\<PolR\>\""}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "k", ",", "\[CapitalGamma]", ",", "pol", ",", "Global`\[Rho]", ",", "c", + ",", "pol1", ",", "pol2", ",", "k2"}], "}"}], ",", "\n", "\n", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"ListQ", "[", "model", "]"}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log10", "[", + RowBox[{"model", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", + RowBox[{"model", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ";", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}]}], ",", "\n", + "\n", + RowBox[{ + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"model", "\[Equal]", "\"\<PolNR\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"(", "3.3", ")"}]}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", "2"}], ";", " ", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}], ";"}], + ",", "\n", "\t ", + RowBox[{"model", "\[Equal]", "\"\<PolR\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"(", + RowBox[{"1.98183", "\[Times]", + RowBox[{"10", "^", + RowBox[{"-", "6"}]}]}], ")"}]}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", "2.75"}], ";", " ", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}], ";"}], + ",", "\n", "\t ", + RowBox[{"model", "\[Equal]", "\"\<PolMS\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", "3.849119840037`*^14"}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", + RowBox[{"4", "/", "3"}]}], ";", " ", + RowBox[{"pol", "=", " ", + RowBox[{"k", " ", "+", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}], ";"}], + ",", "\n", "\t ", + RowBox[{"model", "\[Equal]", "\"\<PolMSMix\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", "3.849119840037`*^14"}], "]"}]}], ";", " ", + RowBox[{"pol1", "=", + RowBox[{"k", "+", " ", + RowBox[{ + RowBox[{"4", "/", "3"}], " ", "Global`\[Rho]"}]}]}], ";", + RowBox[{"k2", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", "1.2392481667219052`*^15"}], "]"}]}], ";", + RowBox[{"pol2", "=", " ", + RowBox[{"k2", "+", " ", + RowBox[{ + RowBox[{"5", "/", "3"}], " ", "Global`\[Rho]"}]}]}], ";", " ", + RowBox[{"pol", "=", + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"pol1", ",", + RowBox[{"Global`\[Rho]", ">", + RowBox[{"Log10", "[", "0.029964", "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"pol2", ",", + RowBox[{"Global`\[Rho]", "\[LessEqual]", + RowBox[{"Log10", "[", "0.029964", "]"}]}]}], "}"}]}], "}"}], + "]"}]}], ";"}], ",", "\n", "\t ", "True", ",", + RowBox[{"Return", "[", "]"}]}], "]"}], ";"}]}], "\n", "\t ", "]"}], + ";", "\n", "pol"}]}], "\t ", "\n", "]"}]}]], "Code", + CellChangeTimes->{{3.7569590421449347`*^9, 3.756959056759836*^9}, { + 3.7569590939563847`*^9, 3.756959196661928*^9}, {3.756959244806036*^9, + 3.756959258534059*^9}, {3.756959298484774*^9, 3.756959400835812*^9}, { + 3.756959436577495*^9, 3.756959471861858*^9}, {3.756960126468206*^9, + 3.756960189060364*^9}, {3.756960779119398*^9, 3.756960801993754*^9}, { + 3.756961437681965*^9, 3.756961442554385*^9}, {3.7569630760315847`*^9, + 3.756963088461892*^9}, {3.757042602883998*^9, 3.757042620520862*^9}, + 3.757042854373377*^9, 3.75704300932376*^9, {3.757043162012258*^9, + 3.757043172801984*^9}, 3.757043240815583*^9, {3.761321287070737*^9, + 3.761321367032235*^9}, 3.761321612609375*^9, {3.761321868843401*^9, + 3.761321877425599*^9}, 3.7613220284672403`*^9, 3.761322246695215*^9, { + 3.761322399284906*^9, 3.761322494378705*^9}, 3.761322538237445*^9, { + 3.761322570236898*^9, 3.761322692523314*^9}, {3.7613228605379133`*^9, + 3.76132286516712*^9}, {3.761323297136744*^9, 3.761323340296085*^9}, { + 3.761323473047052*^9, 3.761323473548015*^9}, 3.761323629821877*^9, { + 3.7613793023474617`*^9, 3.761379303014505*^9}, 3.7613866771506243`*^9, + 3.761386719867794*^9, 3.76138689335102*^9, {3.761388715769421*^9, + 3.761388765345047*^9}, 3.761388817367548*^9, {3.7613897867807198`*^9, + 3.7613898130447283`*^9}, 3.7613902833751287`*^9, 3.76139039280529*^9, { + 3.761390445288949*^9, 3.76139045814264*^9}, {3.7613905622049294`*^9, + 3.7613905770641413`*^9}, {3.761724667495555*^9, 3.761724769655336*^9}, { + 3.761724923281592*^9, 3.761724981940386*^9}, {3.761725015560029*^9, + 3.761725020988454*^9}}, + CellLabel-> + "In[321]:=",ExpressionUUID->"8dd4f842-5fdd-4a04-82ab-4547468b75ba"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"EoSPol\[Epsilon]", "[", + RowBox[{"model_:", "\"\<PolR\>\""}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "k", ",", "\[CapitalGamma]", ",", "pol", ",", "Global`\[Rho]", ",", "c", + ",", "pol1", ",", "pol2", ",", "k2"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";", "\n", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"ListQ", "[", "model", "]"}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log10", "[", + RowBox[{"model", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", + RowBox[{"model", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ";", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}]}], ",", "\n", + "\n", + RowBox[{ + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"model", "\[Equal]", "\"\<PolNR\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"(", "3.3", ")"}]}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", "2"}], ";", " ", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}]}], ",", + "\n", "\t ", + RowBox[{"model", "\[Equal]", "\"\<PolR\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"(", + RowBox[{"1.98183", "\[Times]", + RowBox[{"10", "^", + RowBox[{"-", "6"}]}]}], ")"}]}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", "2.75"}], ";", " ", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}]}], ",", + "\n", "\t ", + RowBox[{"model", "\[Equal]", "\"\<PolMS\>\""}], ",", + RowBox[{ + RowBox[{"k", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", "3.849119840037`*^14"}], "]"}]}], ";", + RowBox[{"\[CapitalGamma]", "=", + RowBox[{"4", "/", "3"}]}], ";", " ", + RowBox[{"pol", "=", + RowBox[{"k", "+", " ", + RowBox[{"\[CapitalGamma]", " ", "Global`\[Rho]"}]}]}], ";"}]}], + "]"}], ";"}]}], "\n", "\t ", "]"}], ";", "\n", + RowBox[{"Global`\[Rho]", " ", "+", + RowBox[{ + RowBox[{ + RowBox[{"10", "^", "k"}], "/", + RowBox[{"(", + RowBox[{ + RowBox[{"c", "^", "2"}], + RowBox[{"(", + RowBox[{"\[CapitalGamma]", "-", "1"}], ")"}]}], ")"}]}], + RowBox[{"Global`\[Rho]", "^", + RowBox[{"(", "\[CapitalGamma]", ")"}]}]}]}]}]}], "\n", + "]"}]}]], "Code", + CellChangeTimes->{{3.7569590421449347`*^9, 3.756959056759836*^9}, { + 3.7569590939563847`*^9, 3.756959196661928*^9}, {3.756959244806036*^9, + 3.756959258534059*^9}, {3.756959298484774*^9, 3.756959400835812*^9}, { + 3.756959436577495*^9, 3.756959471861858*^9}, {3.756960126468206*^9, + 3.756960189060364*^9}, {3.756960779119398*^9, 3.7569608398237886`*^9}, { + 3.7569608774208193`*^9, 3.7569609053208*^9}, {3.756960972934886*^9, + 3.7569609882913103`*^9}, {3.756961419639895*^9, 3.756961432806065*^9}, { + 3.756962293207109*^9, 3.756962296830258*^9}, {3.756962481270506*^9, + 3.756962481821725*^9}, {3.756963091706534*^9, 3.7569631020133266`*^9}, + 3.757042635136732*^9, 3.757042876622821*^9, {3.7570429962673693`*^9, + 3.757043001299357*^9}, 3.757043175354354*^9, {3.757043231429183*^9, + 3.757043234616881*^9}, {3.761321778308692*^9, 3.761321818127928*^9}, { + 3.761321866130287*^9, 3.761321880442601*^9}, {3.761321926377698*^9, + 3.761321929541605*^9}, {3.761322092371698*^9, 3.761322095926509*^9}, { + 3.761322248883423*^9, 3.761322250667335*^9}, {3.761376630965852*^9, + 3.761376631448855*^9}, 3.761386673698472*^9, {3.761386712565918*^9, + 3.7613867154141893`*^9}, 3.761386891346058*^9, 3.761387385480556*^9, { + 3.761388475067836*^9, 3.761388670572237*^9}, {3.7613887685949593`*^9, + 3.7613887724339657`*^9}, 3.76138881929385*^9, {3.761388902198596*^9, + 3.761388906752117*^9}, {3.7613897429238358`*^9, 3.761389765585903*^9}, { + 3.761389805661398*^9, 3.761389815185001*^9}, 3.761390276950077*^9, { + 3.761390455479744*^9, 3.761390456804483*^9}, {3.761390557399411*^9, + 3.761390582303163*^9}, {3.761725056869389*^9, 3.761725073199231*^9}, { + 3.761725189643548*^9, 3.761725193581211*^9}, {3.7617252974178057`*^9, + 3.761725300482733*^9}, {3.761725358950759*^9, 3.761725367249312*^9}, { + 3.761725989506209*^9, 3.7617260277584047`*^9}, {3.761726102498954*^9, + 3.761726160687715*^9}, {3.761893118046009*^9, 3.761893129800077*^9}, { + 3.761893297782488*^9, 3.761893415455956*^9}, {3.761893979728853*^9, + 3.7618939806046047`*^9}, {3.7618942926875763`*^9, 3.761894296154763*^9}, { + 3.76189435886061*^9, 3.761894359174197*^9}}, + CellLabel-> + "In[322]:=",ExpressionUUID->"774c58d4-e7e8-4b84-bdca-45613152c035"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"Options", "[", "EoSFits", "]"}], ":=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<PhysUnits\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}]}], "}"}]}], "\n", + RowBox[{ + RowBox[{"EoSFits", "[", + RowBox[{"model_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"P0Sly", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"5.37", "\[Times]", + RowBox[{"10", "^", + RowBox[{"(", "32", ")"}]}]}]}], "]"}]}], ",", + RowBox[{"\[Rho]0Sly", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"1.2845", " ", + RowBox[{"10", "^", "14"}]}]}], "]"}]}], ",", + RowBox[{"\[CapitalGamma]0", "=", + RowBox[{"4", "/", "3"}]}], ",", + RowBox[{"\[Rho]1", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"10", "^", + RowBox[{"(", "14.7", ")"}]}]}], "]"}]}], ",", + RowBox[{"\[Rho]2", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"10", "^", + RowBox[{"(", "15.", ")"}]}]}], "]"}]}], ",", "fit0", ",", "fit1", + ",", "fit2", ",", "\n", "fit3", ",", "Global`\[Rho]", ",", "p", ",", + "pars", ",", "p1", ",", " ", "\[CapitalGamma]1", ",", + "\[CapitalGamma]2", ",", "\[CapitalGamma]3", ",", "K0", ",", "K1", ",", + "K2", ",", "K3", ",", "\[Rho]0c", ",", "p2", ",", "verbose", ",", + "picore", ",", "res", ",", "\[Rho]1c", ",", "\[Rho]2c", ",", "\[Rho]3c", + ",", "k1c", ",", "k2c", ",", "k3c", ",", "k4c", ",", + "\[CapitalGamma]1c", ",", "\[CapitalGamma]2c", ",", "\[CapitalGamma]3c", + ",", "\[CapitalGamma]4c", ",", "fit1c", ",", "fit2c", ",", "fit3c", + ",", "fit4c", ",", "physuns", ",", "c"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"physuns", "=", + RowBox[{"OptionValue", "[", "\"\<PhysUnits\>\"", "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + RowBox[{"Print", "[", "\"\< EoS available \>\"", "]"}], ";", + RowBox[{"Return", "[", + RowBox[{"EoSFitsPars", "[", + RowBox[{"model", ",", "True"}], "]"}], "]"}]}]}], "]"}], ";", + "\[IndentingNewLine]", "\n", + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";", "\n", + RowBox[{"(*", " ", + RowBox[{ + "values", " ", "for", " ", "the", " ", "crust", " ", "taken", " ", + "from", " ", "SLy", " ", "crust", " ", "model"}], " ", "*)"}], "\n", + RowBox[{"\[Rho]1c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"2.44034", " ", + RowBox[{"10", "^", + RowBox[{"(", "07", ")"}]}]}]}], "]"}]}], ";", "\n", + RowBox[{"\[Rho]2c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"3.78358", " ", + RowBox[{"10", "^", + RowBox[{"(", "11", ")"}]}]}]}], "]"}]}], ";", "\n", + RowBox[{"\[Rho]3c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"2.62780", " ", + RowBox[{"10", "^", + RowBox[{"(", "12", ")"}]}]}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"k1c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"6.80110", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "9"}], ")"}]}]}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", + RowBox[{"k2c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"1.06186", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "6"}], ")"}]}]}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", + RowBox[{"k3c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"5.32697", " ", "10"}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", + RowBox[{"k4c", "=", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{ + RowBox[{"(", + RowBox[{"3.99874", " ", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "8"}], ")"}]}]}], ")"}], "*", + RowBox[{"c", "^", "2"}]}]}], "]"}]}], ";", "\n", "\n", + RowBox[{"\[CapitalGamma]1c", "=", "1.58425"}], ";", "\n", + RowBox[{"\[CapitalGamma]2c", "=", "1.28733"}], ";", "\n", + RowBox[{"\[CapitalGamma]3c", "=", "0.62223"}], ";", "\n", + RowBox[{"\[CapitalGamma]4c", "=", "1.35692"}], ";", "\n", "\n", + RowBox[{"fit1c", "=", + RowBox[{"k1c", "+", " ", + RowBox[{"\[CapitalGamma]1c", " ", "Global`\[Rho]"}]}]}], ";", "\n", + RowBox[{"fit2c", "=", + RowBox[{"k2c", "+", " ", + RowBox[{"\[CapitalGamma]2c", " ", "Global`\[Rho]"}]}]}], ";", "\n", + RowBox[{"fit3c", "=", + RowBox[{"k3c", "+", " ", + RowBox[{"\[CapitalGamma]3c", " ", "Global`\[Rho]"}]}]}], ";", "\n", + RowBox[{"fit4c", "=", + RowBox[{"k4c", "+", " ", + RowBox[{"\[CapitalGamma]4c", " ", "Global`\[Rho]"}]}]}], ";", "\n", + "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + "p1", ",", " ", "\[CapitalGamma]1", ",", "\[CapitalGamma]2", ",", + "\[CapitalGamma]3"}], "*)"}], "\n", + RowBox[{ + RowBox[{"{", + RowBox[{ + "p1", ",", " ", "\[CapitalGamma]1", ",", "\[CapitalGamma]2", ",", + "\[CapitalGamma]3"}], "}"}], "=", + RowBox[{ + RowBox[{"EoSFitsPars", "[", "model", "]"}], "[", + RowBox[{"[", + RowBox[{"2", ";;", "5"}], "]"}], "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + "Using", " ", "a", " ", "polytropic", " ", "SLy", " ", "for", " ", + "the", " ", "crust"}], " ", "*)"}], "\n", + RowBox[{"K1", "=", + RowBox[{"(", + RowBox[{"p1", "-", + RowBox[{"(", + RowBox[{"\[CapitalGamma]1", " ", "\[Rho]1"}], ")"}]}], ")"}]}], ";", + "\n", + RowBox[{"fit0", "=", + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"fit1c", ",", + RowBox[{"Global`\[Rho]", "\[LessEqual]", "\[Rho]1c"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{"fit2c", ",", + RowBox[{ + "\[Rho]1c", "<", "Global`\[Rho]", "\[LessEqual]", "\[Rho]2c"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"fit3c", ",", + RowBox[{ + "\[Rho]2c", "<", "Global`\[Rho]", "\[LessEqual]", "\[Rho]3c"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"fit4c", ",", + RowBox[{"Global`\[Rho]", ">", "\[Rho]3c"}]}], "}"}]}], "}"}], + "]"}]}], ";", "\n", + RowBox[{"fit1", "=", + RowBox[{"K1", "+", + RowBox[{"(", + RowBox[{"\[CapitalGamma]1", " ", "Global`\[Rho]"}], ")"}]}]}], ";", + "\n", + RowBox[{"\[Rho]0c", "=", + RowBox[{ + RowBox[{"(", + RowBox[{"Global`\[Rho]", "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"fit0", "\[Equal]", + RowBox[{"K1", "+", + RowBox[{"\[CapitalGamma]1", " ", "Global`\[Rho]"}]}]}], ",", + "Global`\[Rho]"}], "]"}]}], ")"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", "\n", + RowBox[{"K2", "=", + RowBox[{"p1", "-", + RowBox[{"(", + RowBox[{"\[CapitalGamma]2", " ", "\[Rho]1"}], ")"}]}]}], ";", "\n", + RowBox[{"fit2", "=", + RowBox[{"K2", "+", + RowBox[{"(", + RowBox[{"\[CapitalGamma]2", " ", "Global`\[Rho]"}], ")"}]}]}], ";", + "\n", + RowBox[{"p2", "=", + RowBox[{"K2", "+", + RowBox[{"(", + RowBox[{"\[CapitalGamma]2", " ", "\[Rho]2"}], ")"}]}]}], ";", "\n", + "\n", + RowBox[{"K3", "=", + RowBox[{"p2", "-", + RowBox[{"(", + RowBox[{"\[CapitalGamma]3", " ", "\[Rho]2"}], ")"}]}]}], ";", "\n", + RowBox[{"fit3", "=", + RowBox[{"K3", "+", + RowBox[{"(", + RowBox[{"\[CapitalGamma]3", " ", "Global`\[Rho]"}], ")"}]}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"Not", "@", "physuns"}], ",", "\n", + RowBox[{ + RowBox[{"res", "=", + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"fit1c", ",", + RowBox[{"Global`\[Rho]", "\[LessEqual]", "\[Rho]1c"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{"fit2c", ",", + RowBox[{ + "\[Rho]1c", "<", "Global`\[Rho]", "\[LessEqual]", + "\[Rho]2c"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"fit3c", ",", + RowBox[{ + "\[Rho]2c", "<", "Global`\[Rho]", "\[LessEqual]", + "\[Rho]3c"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"fit4c", ",", + RowBox[{ + "\[Rho]3c", "<", "Global`\[Rho]", "\[LessEqual]", + "\[Rho]0c"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"fit1", ",", + RowBox[{ + "\[Rho]0c", "<", "Global`\[Rho]", "\[LessEqual]", "\[Rho]1"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"fit2", ",", + RowBox[{ + "\[Rho]1", "<", "Global`\[Rho]", "\[LessEqual]", "\[Rho]2"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"fit3", ",", + RowBox[{"Global`\[Rho]", ">", "\[Rho]2"}]}], "}"}]}], "}"}], + "]"}]}], ";"}], ",", "\n", + RowBox[{ + RowBox[{"res", "=", + RowBox[{"Piecewise", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit1c", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{"Global`\[Rho]", "\[LessEqual]", + RowBox[{"10", "^", "\[Rho]1c"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit2c", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{ + RowBox[{"10", "^", "\[Rho]1c"}], "<", "Global`\[Rho]", + "\[LessEqual]", + RowBox[{"10", "^", "\[Rho]2c"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit3c", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{ + RowBox[{"10", "^", "\[Rho]2c"}], "<", "Global`\[Rho]", + "\[LessEqual]", + RowBox[{"10", "^", "\[Rho]3c"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit4c", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{ + RowBox[{"10", "^", "\[Rho]3c"}], "<", "Global`\[Rho]", + "\[LessEqual]", + RowBox[{"10", "^", "\[Rho]0c"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit1", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{ + RowBox[{"10", "^", "\[Rho]0c"}], "<", "Global`\[Rho]", + "\[LessEqual]", + RowBox[{"10", "^", "\[Rho]1"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit2", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{ + RowBox[{"10", "^", "\[Rho]1"}], "<", "Global`\[Rho]", + "\[LessEqual]", + RowBox[{"10", "^", "\[Rho]2"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"fit3", "/.", + RowBox[{"Global`\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", "Global`\[Rho]"}], "]"}]}]}], ")"}]}], + ",", + RowBox[{"Global`\[Rho]", ">", + RowBox[{"10", "^", "\[Rho]2"}]}]}], "}"}]}], "}"}], "]"}]}], + ";"}]}], "\n", "]"}], ";", "\n", "res"}]}], "\[IndentingNewLine]", + "]"}]}]}], "Code", + CellChangeTimes->{{3.726999965927401*^9, 3.7270000560643177`*^9}, { + 3.727000143008749*^9, 3.7270001434084167`*^9}, {3.727000180269309*^9, + 3.727000180882962*^9}, {3.727000223976344*^9, 3.727000355078717*^9}, { + 3.72700141644901*^9, 3.727001471422144*^9}, {3.727001511511115*^9, + 3.727001538576734*^9}, {3.727001594626852*^9, 3.727001607494438*^9}, { + 3.7270016528674507`*^9, 3.727001656730401*^9}, {3.727001688875834*^9, + 3.72700197377059*^9}, {3.7270021175864687`*^9, 3.727002120329812*^9}, { + 3.7270021556176662`*^9, 3.72700215579963*^9}, {3.727002221431964*^9, + 3.727002258456427*^9}, {3.727002400132546*^9, 3.727002457204352*^9}, { + 3.727002508169973*^9, 3.727002641967149*^9}, {3.727003018672317*^9, + 3.727003058799601*^9}, {3.727003166671432*^9, 3.7270031699411163`*^9}, { + 3.727003254473968*^9, 3.727003266689158*^9}, {3.727003309249691*^9, + 3.727003343497841*^9}, {3.7270731267622013`*^9, 3.7270731276014557`*^9}, { + 3.72819668162881*^9, 3.728196681786951*^9}, {3.728285056950694*^9, + 3.728285188754035*^9}, {3.728285302169886*^9, 3.728285308319529*^9}, { + 3.728285978067767*^9, 3.7282859784705763`*^9}, {3.728286785166251*^9, + 3.728286867067231*^9}, {3.731223157468122*^9, 3.7312231778177347`*^9}, { + 3.7312309426151943`*^9, 3.7312309863459578`*^9}, {3.731231048507821*^9, + 3.7312310764538317`*^9}, {3.731231144984675*^9, 3.731231204727673*^9}, { + 3.731231386381085*^9, 3.731231396067101*^9}, {3.7312314582194967`*^9, + 3.731231490803018*^9}, {3.7312316152308292`*^9, 3.731231618837924*^9}, { + 3.7312316610700274`*^9, 3.7312316898841867`*^9}, {3.7312319259205437`*^9, + 3.731231928557549*^9}, {3.73123199746346*^9, 3.731232049885665*^9}, { + 3.731232174239554*^9, 3.73123217441506*^9}, {3.731232254141769*^9, + 3.731232297005245*^9}, {3.731232646622579*^9, 3.731232684261876*^9}, { + 3.7312327483511667`*^9, 3.731232806294476*^9}, {3.731232859324823*^9, + 3.731232884625581*^9}, {3.733815704431856*^9, 3.733815755061613*^9}, + 3.733815801915045*^9, {3.733815857874194*^9, 3.733815859441815*^9}, { + 3.733815973323176*^9, 3.733815987210639*^9}, {3.73381602779392*^9, + 3.733816051666565*^9}, {3.733816140146234*^9, 3.733816240917348*^9}, { + 3.733822412422152*^9, 3.733822428554715*^9}, {3.7338224769634657`*^9, + 3.733822518194765*^9}, {3.733822554107644*^9, 3.733822681568377*^9}, { + 3.733822748503215*^9, 3.733822770406065*^9}, {3.7338228897902946`*^9, + 3.733822909252109*^9}, 3.7338229475833197`*^9, {3.7340878174304667`*^9, + 3.734087950918627*^9}, {3.734092472330904*^9, 3.73409254747019*^9}, + 3.7519727782577868`*^9, {3.75197281012533*^9, 3.7519730447834463`*^9}, { + 3.7519731296527987`*^9, 3.751973135388118*^9}, {3.7519735552643843`*^9, + 3.7519736312932*^9}}, + CellLabel-> + "In[323]:=",ExpressionUUID->"fdd59681-5dbb-43cc-bf20-61b9df02c596"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"From\[Rho]To\[Epsilon]Fits", "[", "eos_", "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "Global`\[Rho]", ",", "ks", ",", "\[Gamma]s", ",", "pols", ",", "polsd", + ",", "a", ",", "\[Rho]s", ",", "\[Epsilon]", ",", "tab", ",", "k", ",", + "k1", ",", "\[Gamma]", ",", "\[Gamma]1", ",", "\[Rho]v", ",", "c"}], + "}"}], ",", "\n", + RowBox[{ + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"eos", "\[Equal]", "\"\<PolMSMix\>\""}], ",", + RowBox[{"pols", "=", + RowBox[{ + RowBox[{"EoSPol", "[", "eos", "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ",", + RowBox[{"pols", "=", + RowBox[{ + RowBox[{"EoSFits", "[", "eos", "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}], ";", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{"ks", ",", "\[Gamma]s"}], "}"}], "=", + RowBox[{"Transpose", "[", + RowBox[{ + RowBox[{ + RowBox[{"CoefficientList", "[", + RowBox[{"#", ",", "Global`\[Rho]"}], "]"}], "&"}], "/@", + RowBox[{"pols", "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}]}], "]"}]}], ";", "\n", + RowBox[{"polsd", "=", + RowBox[{"pols", "[", + RowBox[{"[", + RowBox[{"All", ",", "2"}], "]"}], "]"}]}], ";", "\n", + RowBox[{"\[Rho]s", "=", + RowBox[{"DeleteDuplicates", "@", + RowBox[{"polsd", "[", + RowBox[{"[", + RowBox[{"All", ",", + RowBox[{"-", "1"}]}], "]"}], "]"}]}]}], ";", "\n", + RowBox[{"a", "=", "0"}], ";", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{"Global`\[Rho]_", ",", "a_", ",", "k_", ",", "\[Gamma]_"}], + "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", "a"}], ")"}], "Global`\[Rho]"}], " ", "+", " ", + RowBox[{ + RowBox[{"k", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"c", "^", "2"}], + RowBox[{"(", + RowBox[{"\[Gamma]", "-", "1"}], ")"}]}], ")"}]}], + RowBox[{"Global`\[Rho]", "^", + RowBox[{"(", "\[Gamma]", ")"}]}]}]}]}], ";", "\n", + RowBox[{"polsd", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"10", "^", + RowBox[{"\[Rho]s", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "<", "Global`\[Rho]", + "\[LessEqual]", + RowBox[{"10", "^", + RowBox[{"\[Rho]s", "[", + RowBox[{"[", + RowBox[{"i", "+", "1"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{ + RowBox[{"Length", "@", "\[Rho]s"}], "-", "1"}]}], "}"}]}], "]"}]}], + ";", "\n", + RowBox[{"polsd", "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"Global`\[Rho]", "\[LessEqual]", + RowBox[{"10", "^", + RowBox[{"\[Rho]s", "[", + RowBox[{"[", "1", "]"}], "]"}]}]}], "}"}], ",", "polsd", ",", + RowBox[{"{", + RowBox[{"Global`\[Rho]", ">", + RowBox[{"10", "^", + RowBox[{"\[Rho]s", "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}]}]}], "}"}]}], "]"}]}], ";", + "\n", "\n", + RowBox[{"tab", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"k", "=", + RowBox[{"10", "^", + RowBox[{"ks", "[", + RowBox[{"[", "i", "]"}], "]"}]}]}], ";", + RowBox[{"\[Gamma]", "=", + RowBox[{"\[Gamma]s", "[", + RowBox[{"[", "i", "]"}], "]"}]}], ";", + RowBox[{"\[Rho]v", "=", + RowBox[{"10", "^", + RowBox[{"\[Rho]s", "[", + RowBox[{"[", "i", "]"}], "]"}]}]}], ";", + RowBox[{"k1", "=", + RowBox[{"10", "^", + RowBox[{"ks", "[", + RowBox[{"[", + RowBox[{"i", "+", "1"}], "]"}], "]"}]}]}], ";", + RowBox[{"\[Gamma]1", "=", + RowBox[{"\[Gamma]s", "[", + RowBox[{"[", + RowBox[{"i", "+", "1"}], "]"}], "]"}]}], ";", "\n", " ", + RowBox[{"a", "=", + RowBox[{ + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{"\[Rho]v", ",", "a", ",", "k", ",", "\[Gamma]"}], "]"}], + "/", "\[Rho]v"}], "-", "1", "-", " ", + RowBox[{ + RowBox[{"k1", "/", + RowBox[{"(", + RowBox[{ + RowBox[{"c", "^", "2"}], + RowBox[{"(", + RowBox[{"\[Gamma]1", "-", "1"}], ")"}]}], ")"}]}], + RowBox[{"\[Rho]v", "^", + RowBox[{"(", + RowBox[{"\[Gamma]1", "-", "1"}], ")"}]}]}]}]}], ";", "\n", + "\t\t ", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{"Global`\[Rho]", ",", "a", ",", "k1", ",", "\[Gamma]1"}], + "]"}], ",", + RowBox[{"polsd", "[", + RowBox[{"[", + RowBox[{"i", "+", "1"}], "]"}], "]"}]}], "}"}]}], "\n", ",", + RowBox[{"{", + RowBox[{"i", ",", "1", ",", + RowBox[{"Length", "@", "\[Rho]s"}]}], "}"}]}], "]"}]}], ";", "\n", + "\[IndentingNewLine]", + RowBox[{"Simplify", "@", + RowBox[{"Piecewise", "[", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Epsilon]", "[", + RowBox[{"Global`\[Rho]", ",", "0", ",", + RowBox[{"10", "^", + RowBox[{"ks", "[", + RowBox[{"[", "1", "]"}], "]"}]}], ",", + RowBox[{"\[Gamma]s", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", + RowBox[{"polsd", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}], "}"}], ",", "tab"}], + "]"}], "]"}]}]}]}], "\n", "]"}]}]], "Code", + CellChangeTimes->{{3.733823046456291*^9, 3.7338230691657553`*^9}, { + 3.733824131814012*^9, 3.73382423427032*^9}, {3.733824296061494*^9, + 3.7338244201006117`*^9}, {3.733825543210451*^9, 3.73382554458947*^9}, { + 3.733825632877883*^9, 3.7338256412194757`*^9}, {3.733826176710697*^9, + 3.7338263559400682`*^9}, {3.733826546534893*^9, 3.733826625257965*^9}, { + 3.733826688135625*^9, 3.7338266882082577`*^9}, {3.733826724386257*^9, + 3.733826852670308*^9}, {3.73382689335935*^9, 3.733826941132819*^9}, { + 3.733827020941071*^9, 3.7338271837059526`*^9}, {3.733827239603655*^9, + 3.7338272486960497`*^9}, 3.7338272879940968`*^9, {3.733827330417488*^9, + 3.7338273334314003`*^9}, {3.7338273843108397`*^9, 3.73382741603892*^9}, { + 3.7338276605177393`*^9, 3.7338276617286997`*^9}, {3.733827718080194*^9, + 3.733827742146161*^9}, {3.733881902589757*^9, 3.733881913072439*^9}, { + 3.73388195177744*^9, 3.733881957635982*^9}, {3.733882000460088*^9, + 3.733882040890749*^9}, 3.733882078789053*^9, {3.733882113466824*^9, + 3.7338821242222643`*^9}, {3.733882181447678*^9, 3.73388218874981*^9}, { + 3.733882313698021*^9, 3.733882409371114*^9}, {3.7338825919059134`*^9, + 3.7338826031599503`*^9}, {3.733882662946354*^9, 3.7338826658401327`*^9}, { + 3.733882725481662*^9, 3.733882739894917*^9}, {3.7338829365744553`*^9, + 3.7338830570501947`*^9}, {3.733883169705538*^9, 3.733883239412828*^9}, { + 3.733884187641214*^9, 3.733884257854871*^9}, {3.733884366918598*^9, + 3.733884396556073*^9}, {3.7338844295573*^9, 3.733884452789423*^9}, { + 3.733884500700309*^9, 3.733884525734254*^9}, {3.733884732561365*^9, + 3.7338847343596582`*^9}, {3.733884859029119*^9, 3.733884885843701*^9}, { + 3.733884922061243*^9, 3.733884924035822*^9}, {3.7338849927866917`*^9, + 3.733884996147394*^9}, 3.7338850505723124`*^9, {3.733885123874305*^9, + 3.733885442114826*^9}, {3.734088785777603*^9, 3.734088788341172*^9}, { + 3.734088854727375*^9, 3.73408885499795*^9}, {3.7340888852692423`*^9, + 3.734088889924355*^9}, {3.734089043702003*^9, 3.7340891002888927`*^9}, { + 3.7340891432490396`*^9, 3.734089143520755*^9}, {3.7340891935968857`*^9, + 3.734089213994335*^9}, {3.734089244909115*^9, 3.7340892510199614`*^9}, { + 3.7340892871963863`*^9, 3.7340893019734097`*^9}, {3.7340893773287983`*^9, + 3.7340893776476507`*^9}, {3.734089413030986*^9, 3.734089416885776*^9}, { + 3.734089462019704*^9, 3.734089487525824*^9}, {3.7340895864378767`*^9, + 3.734089587421865*^9}, {3.734089670132556*^9, 3.734089694697172*^9}, { + 3.734089768844058*^9, 3.734089773403701*^9}, {3.7340898987093287`*^9, + 3.734089899373542*^9}, {3.734090253007333*^9, 3.734090310211011*^9}, { + 3.734090355824491*^9, 3.7340903849641542`*^9}, {3.7340905387649593`*^9, + 3.734090543697991*^9}, {3.73409058739137*^9, 3.734090633987514*^9}, { + 3.7340907565643377`*^9, 3.7340907663019047`*^9}, {3.7340911742680387`*^9, + 3.7340912563162327`*^9}, {3.734091441974814*^9, 3.7340914544388437`*^9}, { + 3.734091521912054*^9, 3.734091531168804*^9}, {3.7340915782688723`*^9, + 3.7340916686907063`*^9}, {3.734091742356702*^9, 3.734091742531228*^9}, { + 3.751970551841021*^9, 3.751970601946912*^9}, {3.761389040203492*^9, + 3.761389081151778*^9}}, + CellLabel-> + "In[325]:=",ExpressionUUID->"7eccf728-6635-4259-85d7-e352f2b5bf87"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Shooting and functions for computing credible intervals", "Section", + CellChangeTimes->{{3.75196074859128*^9, 3.7519607559246187`*^9}, { + 3.7519610674600973`*^9, 3.751961070512369*^9}, {3.75196111475299*^9, + 3.751961125544568*^9}},ExpressionUUID->"3be93c08-4ba9-4bf3-b94b-\ +30eff061949f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"RK4", "[", + RowBox[{ + RowBox[{"func_", "?", "ListQ"}], ",", + RowBox[{"vars_", "?", "ListQ"}], ",", + RowBox[{"ivals_", "?", "ListQ"}], ",", + RowBox[{"pars_", "?", "ListQ"}], ",", "step_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "k1", ",", "k2", ",", "k3", ",", "k4", ",", "x2", ",", "f1", ",", "f2", + ",", "x3", ",", "f3", ",", "x4", ",", "f4", ",", "dx", ",", "x", ",", + "x0", ",", "sol"}], "}"}], ",", "\n", "\n", + RowBox[{ + RowBox[{"dx", "=", "step"}], ";", "\n", + RowBox[{ + RowBox[{"{", + RowBox[{"x", ",", "x0"}], "}"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"pars", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"pars", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}]}], ";", "\n", "\n", + RowBox[{"k1", "=", + RowBox[{"dx", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"func", "/.", + RowBox[{"x", "\[Rule]", + RowBox[{"(", "x0", ")"}]}]}], ")"}], "/.", + RowBox[{"MapThread", "[", + RowBox[{"Rule", ",", " ", + RowBox[{"{", + RowBox[{"vars", ",", "ivals"}], "}"}]}], "]"}]}], ")"}]}]}], ";", + "\n", + RowBox[{"k2", "=", + RowBox[{"dx", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"func", "/.", + RowBox[{"x", "\[Rule]", + RowBox[{"(", + RowBox[{"x0", "+", + RowBox[{"dx", "/", "2"}]}], ")"}]}]}], ")"}], "/.", + RowBox[{"MapThread", "[", + RowBox[{"Rule", ",", " ", + RowBox[{"{", + RowBox[{"vars", ",", + RowBox[{"ivals", " ", "+", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "k1"}]}]}], "}"}]}], "]"}]}], + ")"}]}]}], ";", "\[IndentingNewLine]", + RowBox[{"k3", "=", + RowBox[{"dx", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"func", "/.", + RowBox[{"x", "\[Rule]", + RowBox[{"(", + RowBox[{"x0", "+", + RowBox[{"dx", "/", "2"}]}], ")"}]}]}], ")"}], "/.", + RowBox[{"MapThread", "[", + RowBox[{"Rule", ",", " ", + RowBox[{"{", + RowBox[{"vars", ",", + RowBox[{"ivals", " ", "+", + RowBox[{ + RowBox[{"1", "/", "2"}], " ", "k2"}]}]}], "}"}]}], "]"}]}], + ")"}]}]}], ";", "\n", + RowBox[{"k4", "=", + RowBox[{"dx", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{"func", "/.", + RowBox[{"x", "\[Rule]", + RowBox[{"(", + RowBox[{"x0", "+", "dx"}], ")"}]}]}], ")"}], "/.", + RowBox[{"MapThread", "[", + RowBox[{"Rule", ",", " ", + RowBox[{"{", + RowBox[{"vars", ",", + RowBox[{"ivals", " ", "+", " ", "k3"}]}], "}"}]}], "]"}]}], + ")"}]}]}], ";", "\n", "\n", + RowBox[{"ivals", "+", + RowBox[{ + RowBox[{"1", "/", "6"}], + RowBox[{"(", + RowBox[{"k1", "+", + RowBox[{"2", "k2"}], "+", + RowBox[{"2", "k3"}], "+", "k4"}], ")"}]}]}]}]}], "\n", + "]"}]}]], "Code", + CellChangeTimes->{{3.718024437334443*^9, 3.718024529235983*^9}, { + 3.718024597197151*^9, 3.7180245986772833`*^9}, {3.718024831867444*^9, + 3.718024836545999*^9}, {3.718024959420086*^9, 3.7180251735857267`*^9}, { + 3.718025351055107*^9, 3.718025355918919*^9}, {3.718025658077623*^9, + 3.718025726496904*^9}, {3.718025884589555*^9, 3.718025903700222*^9}, + 3.718025952109474*^9, {3.71802598415567*^9, 3.718026027291142*^9}, { + 3.7183758183012743`*^9, 3.718375963413252*^9}, {3.718376010047482*^9, + 3.718376247275988*^9}, {3.718376402537713*^9, 3.7183764119733686`*^9}, { + 3.7183764492530403`*^9, 3.7183768744487953`*^9}, {3.718427954260064*^9, + 3.718427963408498*^9}, {3.718428072305179*^9, 3.7184281186537437`*^9}, + 3.718428615549181*^9, {3.718527786662306*^9, 3.718527815396883*^9}, { + 3.718527891437985*^9, 3.7185279051473722`*^9}}, + CellLabel-> + "In[326]:=",ExpressionUUID->"4ab9691d-8b97-4823-b93d-ea823bb2cac2"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"TestCode", "[", + RowBox[{"eqs_", ",", "vars_", ",", "icond_", ",", "rlst_", ",", "drlst_"}], + "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "R1", ",", "R", ",", "v1", ",", "v", ",", "w1", ",", "w", ",", + "\[Lambda]1", ",", "\[Lambda]", ",", "p1", ",", "p", ",", "eqsrules", + ",", "atomlst", ",", "atomlstaux", ",", "solvevars", ",", "varsp1", ",", + "rvar", ",", "rval", ",", "drvar", ",", "drval"}], "}"}], ",", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"rvar", ",", "rval"}], "}"}], "=", "rlst"}], ";", "\n", + RowBox[{ + RowBox[{"{", + RowBox[{"drvar", ",", "drval"}], "}"}], "=", "drlst"}], ";", + "\[IndentingNewLine]", + RowBox[{"eqsrules", "=", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"Flatten", "[", + RowBox[{"eqs", "/.", + RowBox[{"MapThread", "[", + RowBox[{"Rule", ",", " ", + RowBox[{"{", + RowBox[{"vars", ",", "icond"}], "}"}]}], "]"}]}], "]"}], ")"}], + "/.", + RowBox[{"drvar", "\[Rule]", "drval"}]}], "/.", + RowBox[{"rvar", "->", "rval"}]}]}], ";", "\n", + RowBox[{"varsp1", "=", + RowBox[{ + RowBox[{"Flatten", "[", "eqs", "]"}], "[", + RowBox[{"[", + RowBox[{"All", ",", "1"}], "]"}], "]"}]}], ";", "\n", + RowBox[{"eqsrules", "=", + RowBox[{"Flatten", "@", + RowBox[{"Solve", "[", + RowBox[{"eqsrules", ",", "varsp1"}], "]"}]}]}], ";", "\n", "\n", + RowBox[{"Return", "[", + RowBox[{"varsp1", "/.", "eqsrules"}], "]"}], ";"}]}], + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.7209533706426764`*^9, 3.720953565236683*^9}, { + 3.720953709327879*^9, 3.720953716734827*^9}, {3.720953787410613*^9, + 3.720954069363674*^9}, {3.720967990013736*^9, 3.720967992350972*^9}, { + 3.720968067731927*^9, 3.720968070981515*^9}, {3.720968191202482*^9, + 3.720968191995029*^9}, {3.720968899350851*^9, 3.72096890099102*^9}, { + 3.720968936445901*^9, 3.720969226035326*^9}, {3.720969325083343*^9, + 3.720969344537969*^9}, {3.720969393712679*^9, 3.720969433510112*^9}, { + 3.7209695219960833`*^9, 3.720969700866089*^9}, {3.720969739339038*^9, + 3.720969763436041*^9}, {3.720969849256946*^9, 3.7209699689977083`*^9}, { + 3.720970005791581*^9, 3.720970063430794*^9}, {3.720970094566566*^9, + 3.720970112120479*^9}, {3.7209758177738132`*^9, 3.720975833069417*^9}, { + 3.7209758767249823`*^9, 3.720975886403585*^9}, {3.7209759737779303`*^9, + 3.720975980534768*^9}, 3.721812460691559*^9, {3.757684037167789*^9, + 3.7576840403525743`*^9}, {3.7576840746902523`*^9, 3.757684079797699*^9}, { + 3.757684218073572*^9, 3.757684221018465*^9}}, + CellLabel-> + "In[327]:=",ExpressionUUID->"9aaa7a15-f5b4-48ca-92df-2cd798ba0032"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "BracketingSTNStars", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Tolerance\>\"", "\[Rule]", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "8"}], ")"}]}]}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<MaxIteraton\>\"", "\[Rule]", "100"}], ",", + RowBox[{"\"\<NPoints\>\"", "\[Rule]", "1000"}], ",", + RowBox[{"\"\<AssymptoticMatch\>\"", "\[Rule]", "None"}], ",", + RowBox[{"\"\<AssymptoticValue\>\"", "\[Rule]", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}]}], "}"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"BracketingSTNStars", "[", + RowBox[{ + "eqs_", ",", "eqsRg_", ",", "Global`r_", ",", "vars_", ",", "shtdInd_", + ",", "varshtdRg_", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "dom", ",", "eqsht", ",", "\n", "Sh0", ",", "Sh0m", ",", "posref", ",", + "mean", ",", "tol", ",", "Sh\[Infinity]", ",", "Sh\[Infinity]m", ",", + "Sh\[Infinity]m2", ",", "Sh0m2", ",", "Sh0ref", ",", "\n", "a", ",", + "posreftest", ",", "verbose", ",", "begin", ",", "eqsRga", ",", + "brack", ",", "varshtdRga", ",", "varsa", ",", "varshta", ",", + "varshtalw", ",", "dvarshta", ",", "out", ",", "ShtStr", ",", "raux", + ",", "np", ",", "i", ",", "amax", ",", "assymptotic", ",", "\n", "Rs", + ",", "r", ",", "datab", ",", "datfit", ",", "a0", ",", "m", ",", "y1", + ",", "y2", ",", "A3", ",", "assval", ",", "threshold", ",", + "Sh\[Infinity]maux"}], "}"}], ",", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Loading", " ", "options"}], " ", "*)"}], "\n", + RowBox[{ + RowBox[{"tol", "=", + RowBox[{"OptionValue", "[", "\"\<Tolerance\>\"", "]"}]}], ";", "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"amax", "=", + RowBox[{"OptionValue", "[", "\"\<MaxIteraton\>\"", "]"}]}], ";", "\n", + + RowBox[{"assymptotic", "=", + RowBox[{"OptionValue", "[", "\"\<AssymptoticMatch\>\"", "]"}]}], ";", + "\n", + RowBox[{"np", "=", + RowBox[{"OptionValue", "[", "\"\<NPoints\>\"", "]"}]}], ";", "\n", + RowBox[{"assval", "=", + RowBox[{"OptionValue", "[", "\"\<AssymptoticValue\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Some", " ", "auxiliary", " ", "variables"}], " ", "*)"}], + "\n", + RowBox[{"eqsRga", "=", "eqsRg"}], ";", "\n", + RowBox[{"varshtdRga", "=", "varshtdRg"}], ";", "\n", + RowBox[{"varsa", "=", + RowBox[{"ToExpression", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"ToString", "[", "#", "]"}], "<>", "\"\<a\>\""}], ")"}], + "&"}], "/@", "vars"}], "]"}]}], ";", "\n", + RowBox[{"varshta", "=", + RowBox[{"Join", "[", + RowBox[{"varshtdRga", ",", + RowBox[{"{", + RowBox[{"Mean", "[", "varshtdRga", "]"}], "}"}]}], "]"}]}], ";", + "\n", + RowBox[{"ShtStr", "=", + RowBox[{"ToString", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "]"}]}], ";", "\n", + RowBox[{"a", "=", "0"}], " ", + RowBox[{"(*", " ", + RowBox[{"auxiliary", " ", "counter"}], " ", "*)"}], " ", ";", "\n", + RowBox[{"i", "=", "0"}], " ", + RowBox[{"(*", " ", + RowBox[{"auxiliary", " ", "counter"}], " ", "*)"}], " ", ";", " ", + "\n", + RowBox[{"dvarshta", "=", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}], "-", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "/", "np"}]}], ";", "\n", + + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"In", " ", + RowBox[{"case", " ", "'"}], + RowBox[{"bracketing", "'"}], " ", "is", " ", "activated"}], ",", " ", + RowBox[{"we", " ", + RowBox[{"split", " ", "[", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", " ", + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}], " ", "in", " ", "np", + " ", "points"}]}], " ", "*)"}], "\n", "\n", " ", + RowBox[{"Sh\[Infinity]m", "=", "1.1"}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"assval", "\[GreaterEqual]", "1"}], ",", + RowBox[{"threshold", "=", "assval"}], ",", + RowBox[{"threshold", "=", "0"}]}], "]"}], ";", "\n", " ", + RowBox[{"While", "[", + RowBox[{ + RowBox[{ + RowBox[{"Sh\[Infinity]m", ">", "threshold"}], "&&", + RowBox[{"i", "<", " ", "np"}]}], ",", "\n", " ", + RowBox[{ + RowBox[{"i", "=", + RowBox[{"i", "+", "1"}]}], ";", "\n", " ", + RowBox[{"Sh\[Infinity]maux", "=", "Sh\[Infinity]m"}], ";", "\n", + " ", + RowBox[{"varshtalw", "=", + RowBox[{ + RowBox[{"varshtdRg", "[", + RowBox[{"[", "2", "]"}], "]"}], " ", "-", " ", + RowBox[{"i", "*", "dvarshta"}]}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{"verbose", ",", " ", + RowBox[{"Print", "[", + RowBox[{ + "\"\<n: \>\"", ",", "i", ",", + "\"\< Redefining upper limit as: \>\"", ",", "varshtalw"}], + "]"}]}], "]"}], ";", "\n", " \t", + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", + "varshtalw"}], "}"}]}], ";", "\n", " \t", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", " \t", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{"eqsht", ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], ";", + "\n", " \t", + RowBox[{"dom", "=", + RowBox[{"InterpolationDomain", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ";", "\n", "\t ", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}]}], ";"}]}], "\n", "\t", "]"}], + ";", "\n", "\t", "\n", "\t", + RowBox[{"Return", "[", + RowBox[{"{", + RowBox[{"varshtalw", ",", + RowBox[{"varshtalw", " ", "+", " ", "dvarshta"}], ",", "i"}], "}"}], + "]"}]}]}], "\n", "\t", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"The", " ", "-", " ", + RowBox[{"is", " ", "to", " ", "avoid", " ", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}]}]}], "=", + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}]}], " ", "*)"}], "\n", "\t", + RowBox[{"(*", + RowBox[{ + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}], "=", + RowBox[{"varshtalw", " ", "+", " ", "dvarshta"}]}], ";", "\t\t", "\n", + "\t", + RowBox[{"If", "[", + RowBox[{"verbose", ",", " ", + RowBox[{"Print", "[", + RowBox[{"\"\< New upper limit: \>\"", ",", + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], "]"}], ";", "\n", + " ", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{"-", "0.1"}]}], ";", " ", "\n", " ", + RowBox[{"i", "=", "0"}], ";", "\n", " ", + RowBox[{"varshtalw", "=", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"assval", "\[GreaterEqual]", "1"}], ",", + RowBox[{"threshold", "=", "assval"}], ",", + RowBox[{"threshold", "=", "0"}]}], "]"}], ";", "\n", "\t", + RowBox[{"While", "[", + RowBox[{ + RowBox[{ + RowBox[{"Sh\[Infinity]m", "<", "threshold"}], " ", "&&", " ", + RowBox[{"i", "<", "np"}]}], ",", "\n", "\t\t\t", + RowBox[{ + RowBox[{"i", "=", + RowBox[{"i", "+", "1"}]}], ";", "\n", "\t\t\t", + RowBox[{"varshtalw", "=", + RowBox[{ + RowBox[{"varshtdRg", "[", + RowBox[{"[", "1", "]"}], "]"}], " ", "+", + RowBox[{"i", "*", "dvarshta"}]}]}], ";", "\n", "\t\t\t", + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", + "varshtalw"}], "}"}]}], ";", "\n", "\t\t\t", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{"eqsht", ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], ";", + "\n", "\t\t\t", + RowBox[{"dom", "=", + RowBox[{"InterpolationDomain", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}]}], ";", "\n", "\t\t\t", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}], "=", "varshtalw"}], ";", "\n", + "\t\t\t", + RowBox[{"If", "[", + RowBox[{"verbose", ",", " ", + RowBox[{"Print", "[", + RowBox[{ + "\"\<n: \>\"", ",", "i", ",", + "\"\<. Redefining lower limit as: \>\"", ",", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "]"}], ";"}]}], "\n", + "\t\t\t", "]"}], ";", "\n", "\t\t\t", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}], "=", + RowBox[{"varshtalw", " ", "-", " ", "dvarshta"}]}], ";", "\n", + "\t\t\t", + RowBox[{"Return", "[", + RowBox[{"Flatten", "[", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", + RowBox[{"1", ";;", "2"}], "]"}], "]"}], ",", + RowBox[{"{", "i", "}"}]}], "]"}], "]"}], "]"}], ";"}], "\n", "*)"}], + "]"}]}], ";"}]}], "Code", + CellChangeTimes->{{3.756108686021741*^9, 3.7561087257255487`*^9}, { + 3.756108765659975*^9, 3.756108817335472*^9}, 3.7566221960323277`*^9, { + 3.756622458833796*^9, 3.7566225094031076`*^9}, {3.756622644869564*^9, + 3.7566226670495577`*^9}, {3.756622702846457*^9, 3.756622746282222*^9}, { + 3.75662280125102*^9, 3.756622897708783*^9}, {3.7566259014121447`*^9, + 3.756625986664259*^9}, {3.7566260325504932`*^9, 3.7566261798391247`*^9}, { + 3.756626632803927*^9, 3.7566266585894957`*^9}, {3.756626991665101*^9, + 3.756627000708107*^9}, {3.756627071060359*^9, 3.75662707520603*^9}, { + 3.756627113594309*^9, 3.756627139992545*^9}, {3.756627172388412*^9, + 3.7566271735599937`*^9}, {3.7566272041607323`*^9, 3.756627212417534*^9}, { + 3.75662740433883*^9, 3.7566274079578114`*^9}, {3.756627506515497*^9, + 3.75662751096712*^9}, {3.756627754938942*^9, 3.756627796728538*^9}, { + 3.756628090306175*^9, 3.756628099348143*^9}, 3.756628374401834*^9, { + 3.756628669214087*^9, 3.756628671995166*^9}, {3.7566287070304937`*^9, + 3.756628776802051*^9}, {3.7566288503340673`*^9, 3.75662885989786*^9}, { + 3.756628936424811*^9, 3.7566289525156*^9}, {3.756629002968646*^9, + 3.75662900934132*^9}, {3.756629222033474*^9, 3.756629256257477*^9}, { + 3.756629598975377*^9, 3.756629604117942*^9}, {3.7566309043445873`*^9, + 3.756630956883482*^9}, {3.7566314079780912`*^9, 3.756631480078579*^9}, { + 3.7566315242087193`*^9, 3.7566315244916058`*^9}, {3.756631567968173*^9, + 3.756631603094048*^9}, {3.756631823868929*^9, 3.7566318795976543`*^9}, + 3.7566329223418083`*^9, {3.7566334845366163`*^9, 3.756633528462422*^9}, { + 3.7566335602481127`*^9, 3.756633560623721*^9}, {3.7584528730230923`*^9, + 3.758452884332016*^9}, {3.75870103263836*^9, 3.758701053741371*^9}, { + 3.758985852540753*^9, 3.7589858647563543`*^9}, {3.759381875876657*^9, + 3.759381898533043*^9}, {3.759381929885153*^9, 3.759381931889859*^9}, { + 3.759383227244246*^9, 3.759383230553035*^9}, {3.761474294981949*^9, + 3.761474305878443*^9}, {3.761476068456214*^9, 3.761476138560934*^9}, { + 3.761476176638414*^9, 3.76147621620511*^9}, {3.7614762943644238`*^9, + 3.76147630602817*^9}, {3.7614777114154453`*^9, 3.761477712245318*^9}, { + 3.761477801223834*^9, 3.7614778052886877`*^9}, {3.761544623260009*^9, + 3.7615446601233053`*^9}, {3.761544700452073*^9, 3.7615447008581333`*^9}, { + 3.761544760878562*^9, 3.7615447850082483`*^9}}, + CellLabel-> + "In[328]:=",ExpressionUUID->"7d87c83d-5730-4f9c-8f51-a1ed9ed56df2"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "ShootingNStars", "]"}], "=", + RowBox[{"{", + RowBox[{ + RowBox[{"\"\<Tolerance\>\"", "\[Rule]", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "8"}], ")"}]}]}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<MaxIteraton\>\"", "\[Rule]", "100"}], ",", + RowBox[{"\"\<NPoints\>\"", "\[Rule]", "1000"}], ",", + RowBox[{"\"\<AssymptoticMatch\>\"", "\[Rule]", "None"}], ",", + RowBox[{"\"\<AssymptoticValue\>\"", "\[Rule]", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}]}], "}"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"ShootingNStars", "[", + RowBox[{ + "eqs_", ",", "eqsRg_", ",", "Global`r_", ",", "vars_", ",", "shtdInd_", + ",", "varshtdRg_", ",", "optNDS__", ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "dom", ",", "eqsht", ",", "\n", "Sh0", ",", "Sh0m", ",", "posref", ",", + "mean", ",", "tol", ",", "Sh\[Infinity]", ",", "Sh\[Infinity]m", ",", + "Sh\[Infinity]m2", ",", "Sh0m2", ",", "Sh0ref", ",", "\n", "a", ",", + "posreftest", ",", "verbose", ",", "begin", ",", "eqsRga", ",", "brack", + ",", "varshtdRga", ",", "varsa", ",", "varshta", ",", "varshtalw", ",", + "dvarshta", ",", "out", ",", "ShtStr", ",", "raux", ",", "np", ",", + "i", ",", "amax", ",", "assymptotic", ",", "\n", "Rs", ",", "r", ",", + "datab", ",", "datfit", ",", "a0", ",", "m", ",", "y1", ",", "y2", ",", + "A3", ",", "assval", ",", "threshold"}], "}"}], ",", + "\[IndentingNewLine]", "\n", + RowBox[{"(*", " ", + RowBox[{"Loading", " ", "options"}], " ", "*)"}], "\n", + RowBox[{ + RowBox[{"tol", "=", + RowBox[{"OptionValue", "[", "\"\<Tolerance\>\"", "]"}]}], ";", "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + RowBox[{"brack", "=", + RowBox[{"OptionValue", "[", "\"\<Bracketing\>\"", "]"}]}], ";", "\n", + RowBox[{"amax", "=", + RowBox[{"OptionValue", "[", "\"\<MaxIteraton\>\"", "]"}]}], ";", "\n", + RowBox[{"assymptotic", "=", + RowBox[{"OptionValue", "[", "\"\<AssymptoticMatch\>\"", "]"}]}], ";", + "\n", + RowBox[{"np", "=", + RowBox[{"OptionValue", "[", "\"\<NPoints\>\"", "]"}]}], ";", "\n", + RowBox[{"assval", "=", + RowBox[{"OptionValue", "[", "\"\<AssymptoticValue\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Some", " ", "auxiliary", " ", "variables"}], " ", "*)"}], "\n", + RowBox[{"eqsRga", "=", "eqsRg"}], ";", "\n", + RowBox[{"varshtdRga", "=", "varshtdRg"}], ";", "\n", + RowBox[{"varsa", "=", + RowBox[{"ToExpression", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"ToString", "[", "#", "]"}], "<>", "\"\<a\>\""}], ")"}], + "&"}], "/@", "vars"}], "]"}]}], ";", "\n", + RowBox[{"varshta", "=", + RowBox[{"Join", "[", + RowBox[{"varshtdRga", ",", + RowBox[{"{", + RowBox[{"Mean", "[", "varshtdRga", "]"}], "}"}]}], "]"}]}], ";", + "\n", + RowBox[{"ShtStr", "=", + RowBox[{"ToString", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "]"}]}], ";", "\n", + RowBox[{"a", "=", "0"}], " ", + RowBox[{"(*", " ", + RowBox[{"auxiliary", " ", "counter"}], " ", "*)"}], " ", ";", "\n", + RowBox[{"i", "=", "0"}], " ", + RowBox[{"(*", " ", + RowBox[{"auxiliary", " ", "counter"}], " ", "*)"}], " ", ";", " ", "\n", + RowBox[{"dvarshta", "=", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}], "-", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "/", "np"}]}], ";", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"In", " ", + RowBox[{"case", " ", "'"}], + RowBox[{"bracketing", "'"}], " ", "is", " ", "activated"}], ",", " ", + + RowBox[{"we", " ", + RowBox[{"split", " ", "[", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", " ", + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}], " ", "in", " ", "np", " ", + "points"}]}], " ", "*)"}], "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + "In", " ", "case", " ", "shooting", " ", "is", " ", "not", " ", + "required"}], " ", "*)"}], "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Length", "@", "varshtdRga"}], "\[Equal]", "1"}], ",", "\n", + RowBox[{ + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", + RowBox[{"(", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}], ")"}]}], "}"}]}], ";", "\n", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"Chop", "[", "eqsht", "]"}], ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], ";", + "\n", + RowBox[{"out", "=", + RowBox[{"Join", "[", + RowBox[{"varsa", ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}], ",", "0"}], "}"}]}], + "]"}]}], ";", "\n", + RowBox[{"Return", "[", "out", "]"}], ";"}]}], "\n", "]"}], ";", "\n", + + RowBox[{"(*", " ", + RowBox[{"We", " ", "also", " ", "include", " ", "provide", " ", + RowBox[{"a", " ", "'"}], + RowBox[{"bracketing", "'"}], " ", "option", " ", "in", " ", "case", + " ", "the", " ", "bracketing", " ", "on", " ", "the", " ", "shooting", + " ", "variable", " ", "is", " ", "required"}], " ", "*)"}], "\n", + RowBox[{"If", "[", + RowBox[{"brack", ",", "\n", " ", + RowBox[{ + RowBox[{"varshtalw", "=", + RowBox[{"Chop", "[", + RowBox[{"varshta", "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}], ";", "\n", "\t", + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", "varshtalw"}], + "}"}]}], ";", "\n", "\t", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", "\n", "\t", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"Chop", "[", "eqsht", "]"}], ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], ";", + "\n", "\t", + RowBox[{"dom", "=", + RowBox[{ + RowBox[{"InterpolationDomain", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", "\t", + RowBox[{"(*", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], "<", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}], "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"0.9", "*", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", "1"}], "]"}]}], ";", + + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\< Breakup found. Changing rfin to \>\"", ",", "Red"}], + "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], " ", "]"}], ";", + + RowBox[{"Goto", "[", "begin", "]"}], ";"}]}], "]"}], ";"}], + "*)"}], "\n", "\t", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{ + RowBox[{"Sh\[Infinity]m", "<", "0"}], "&&", + RowBox[{"assval", "\[LessEqual]", " ", "1"}]}], ",", " ", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{ + "\"\< Upper value of the shooted variable is not positive at \ +rmax: Redefine the brackets !\>\"", ",", "Red"}], "]"}], "]"}], ";", " ", + RowBox[{"Return", "[", "]"}], ";"}], ",", "\n", "\t\t ", + RowBox[{ + RowBox[{"Sh\[Infinity]m", "<", "1"}], "&&", + RowBox[{"assval", "\[GreaterEqual]", " ", "1"}]}], ",", " ", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{ + "\"\< Upper value of the shooted variable is <1 at rmax: \ +Redefine the brackets !\>\"", ",", "Red"}], "]"}], "]"}], ";", " ", + RowBox[{"Return", "[", "]"}], ";"}]}], "]"}], ";", "\n", "\t\t\t", + "\n", " ", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{"-", "0.1"}]}], ";", " ", "\n", " ", + RowBox[{"i", "=", "0"}], ";", "\n", " ", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"assval", "\[GreaterEqual]", "1"}], ",", + RowBox[{"threshold", "=", "assval"}], ",", + RowBox[{"threshold", "=", "0"}]}], "]"}], ";", "\n", "\t", + RowBox[{"While", "[", + RowBox[{ + RowBox[{ + RowBox[{"Sh\[Infinity]m", "<", "threshold"}], " ", "&&", " ", + RowBox[{"i", "<", " ", "np"}]}], ",", "\n", "\t\t\t", + RowBox[{ + RowBox[{"i", "=", + RowBox[{"i", "+", "1"}]}], ";", "\n", "\t\t\t", + RowBox[{"varshtalw", "=", + RowBox[{ + RowBox[{"varshtdRg", "[", + RowBox[{"[", "1", "]"}], "]"}], " ", "+", + RowBox[{"i", "*", "dvarshta"}]}]}], ";", "\n", "\t\t\t", + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", + "varshtalw"}], "}"}]}], ";", "\n", "\t\t\t", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{"eqsht", ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], + ";", "\n", "\t\t\t", + RowBox[{"dom", "=", + RowBox[{ + RowBox[{"InterpolationDomain", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}], "=", + RowBox[{"Chop", "[", "varshtalw", "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"If", "[", + RowBox[{"verbose", ",", " ", + RowBox[{"Print", "[", + RowBox[{ + "\"\<n: \>\"", ",", "i", ",", + "\"\<. Redefining lower limit as: \>\"", ",", + RowBox[{"varshta", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], "]"}], ";"}]}], + "\n", "\t\t\t", "]"}], ";", "\n", "\t\t\t", + RowBox[{"Return", "[", + RowBox[{"Flatten", "[", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"varshta", "[", + RowBox[{"[", + RowBox[{"1", ";;", "2"}], "]"}], "]"}], ",", + RowBox[{"{", "i", "}"}]}], "]"}], "]"}], "]"}], ";"}]}], "\n", + "]"}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + "First", " ", "estimates", " ", "on", " ", "the", " ", "value", " ", + "of", " ", "the", " ", "shooted", " ", "variable", " ", "at", " ", + RowBox[{ + RowBox[{"eqsRg1", "[", + RowBox[{"[", "2", "]"}], "]"}], ".", " ", "There"}], " ", "is", " ", + "a", " ", "goto", " ", "to", " ", "correct", " ", "possible", " ", + "breakups", " ", "on", " ", "the", " ", + RowBox[{"equations", ".", " ", "We"}], " ", "also", " ", "include", + " ", "provide", " ", + RowBox[{"a", " ", "'"}], + RowBox[{"bracketing", "'"}], " ", "option", " ", "in", " ", "case", + " ", "the", " ", "bracketing", " ", "on", " ", "the", " ", "unknown", + " ", "variable", " ", "is", " ", "needed"}], "*)"}], "\n", + RowBox[{"Label", "[", "begin", "]"}], ";", "\n", "\t\t", + RowBox[{"Sh\[Infinity]", "=", + RowBox[{"Table", "[", "\n", "\t\t\t", + RowBox[{ + RowBox[{ + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", + RowBox[{"(", + RowBox[{"varshta", "[", + RowBox[{"[", "i", "]"}], "]"}], ")"}]}], "}"}]}], ";", "\n", + "\t\t\t", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{"eqsht", ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], ";", + "\n", "\t\t\t", + RowBox[{"dom", "=", + RowBox[{ + RowBox[{"InterpolationDomain", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", "\t\t\t", + RowBox[{"(*", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], "<", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}], "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"0.9", "*", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", "1"}], "]"}]}], ";", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\< Breakup found. Changing rfin to \>\"", ",", "Red"}], + "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], " ", "]"}], ";", + RowBox[{"Goto", "[", "begin", "]"}], ";"}]}], "]"}], ";"}], + "*)"}], "\n", "\t\t\t", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}]}]}], "\n", "\t\t\t", ",", + RowBox[{"{", + RowBox[{"i", ",", "3"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{"Sh\[Infinity]", "[", + RowBox[{"[", "3", "]"}], "]"}]}], ";", "\n", + RowBox[{"Sh0m", "=", + RowBox[{"varshta", "[", + RowBox[{"[", "3", "]"}], "]"}]}], ";", "\n", + RowBox[{"posref", "=", + RowBox[{ + RowBox[{"Position", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"Sh\[Infinity]", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], ",", + RowBox[{"Abs", "[", + RowBox[{"Sh\[Infinity]", "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "}"}], ",", + RowBox[{"_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{"#", "\[Equal]", + RowBox[{"Min", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"Sh\[Infinity]", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], ",", + RowBox[{"Abs", "[", + RowBox[{"Sh\[Infinity]", "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "}"}], "]"}]}], + " ", "&"}], ")"}]}]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", + RowBox[{"Sh\[Infinity]m2", "=", + RowBox[{ + RowBox[{"Sh\[Infinity]", "[", + RowBox[{"[", "posref", "]"}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", + RowBox[{"Sh0m2", "=", + RowBox[{"varshtdRga", "[", + RowBox[{"[", "posref", "]"}], "]"}]}], ";", "\n", + RowBox[{"Sh0ref", "=", + RowBox[{"Flatten", "[", + RowBox[{"{", + RowBox[{"Sh0m", ",", "Sh0m2"}], "}"}], "]"}]}], ";", "\n", + RowBox[{"mean", "=", + RowBox[{"Mean", "[", "Sh0ref", "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Starts", " ", "the", " ", "shooting", " ", + RowBox[{"loop", "."}]}], " ", "*)"}], "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{ + "\"\<Output: vars, a, \>\"", "<>", "ShtStr", "<>", + "\"\< variable at \[Infinity], Error\>\""}], "]"}]}], "]"}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{ + "\"\<Intermediate prints: iteration, \>\"", "<>", "ShtStr", "<>", + "\"\< at \[Infinity], Error\>\""}], "]"}]}], "]"}], ";", "\n", "\n", + + RowBox[{"While", "[", " ", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Abs", "[", "Sh\[Infinity]m", "]"}], ">", "assval"}], " ", "&&", + RowBox[{ + RowBox[{"Abs", "[", + RowBox[{"1", "-", + RowBox[{"Sh\[Infinity]m", "/", "Sh\[Infinity]m2"}]}], "]"}], ">", + "tol"}], " ", "&&", " ", + RowBox[{ + RowBox[{"Length", "@", "posref"}], ">", "0"}], " ", "&&", " ", + RowBox[{"a", "\[LessEqual]", " ", "amax"}]}], ",", "\n", + RowBox[{ + RowBox[{"a", "=", + RowBox[{"a", "+", "1"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Round", "[", + RowBox[{"mean", ",", + RowBox[{"10", "^", + RowBox[{"-", "16"}]}]}], "]"}], ",", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", + RowBox[{"Abs", "[", + RowBox[{"1", "-", + RowBox[{"Sh\[Infinity]m", "/", "Sh\[Infinity]m2"}]}], "]"}]}], + "}"}], "]"}]}], "]"}], ";", "\n", + RowBox[{"eqsht", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"vars", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "[", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "\[Equal]", "mean"}], + "}"}]}], ";", "\n", + RowBox[{"eqsht", "=", + RowBox[{"Join", "[", + RowBox[{"eqs", ",", "eqsht"}], "]"}]}], ";", "\n", + RowBox[{"varsa", "=", + RowBox[{"vars", "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{"eqsht", ",", "vars", ",", + RowBox[{"{", + RowBox[{"Global`r", ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", "\n", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}], "]"}]}]}], ";", + "\n", + RowBox[{"(*", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], "<", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}], "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"0.9", "*", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], ",", "1"}], "]"}]}], ";", + + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", + RowBox[{ + RowBox[{"Style", "[", + RowBox[{ + "\"\< Breakup found. Changing rfin to \>\"", ",", "Red"}], + "]"}], ",", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}], " ", "]"}]}], "]"}], ";", + + RowBox[{"Goto", "[", "begin", "]"}], ";"}]}], "]"}], ";"}], + "*)"}], "\[IndentingNewLine]", + RowBox[{"dom", "=", + RowBox[{ + RowBox[{"InterpolationDomain", "[", + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], ";", "\n", + RowBox[{"Which", "[", + RowBox[{ + RowBox[{ + RowBox[{"assymptotic", "==", "\"\<Exponential\>\""}], "&&", + RowBox[{ + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], "==", + RowBox[{"eqsRga", "[", + RowBox[{"[", "2", "]"}], "]"}]}]}], ",", "\n", "\t\t\t\t\t", + RowBox[{ + RowBox[{"Rs", "=", + RowBox[{"0.95", + RowBox[{"(", + RowBox[{"r", "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "1", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "6"}], "}"}]}], "]"}]}], ")"}]}]}], ";", + RowBox[{"datab", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"r", ",", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", "r"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{"r", ",", "Rs", ",", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], ",", "0.01"}], "}"}]}], + "]"}]}], ";", "\n", "\t\t\t\t\t", + RowBox[{"y1", "=", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", "Rs"}]}], ";", + RowBox[{"y2", "=", + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", "r"}], ",", + "r"}], "]"}], "/.", + RowBox[{"r", "\[Rule]", "Rs"}]}], ")"}]}], ";", + RowBox[{"m", "=", + FractionBox[ + RowBox[{ + RowBox[{"-", "y1"}], "-", + RowBox[{ + SuperscriptBox["Rs", "2"], " ", "y2"}]}], + RowBox[{"Rs", " ", "y1"}]]}], ";", + RowBox[{"a0", "=", " ", "y1"}], ";", " ", "\n", "\t\t\t\t\t", + RowBox[{"datfit", "=", + RowBox[{"NonlinearModelFit", "[", + RowBox[{"datab", ",", + RowBox[{"A3", " ", "+", " ", + RowBox[{"a0", " ", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "r"}], " ", "m"}], "]"}]}]}], ",", + RowBox[{"{", "A3", "}"}], ",", "r"}], "]"}]}], ";", + RowBox[{"Print", "[", + RowBox[{"{", + RowBox[{"a0", ",", "m", ",", + RowBox[{"datfit", "[", "\"\<BestFitParameters\>\"", "]"}]}], + "}"}], "]"}]}]}], "]"}], ";", "\n", "\n", + RowBox[{"posreftest", "=", + RowBox[{"Quiet", "@", + RowBox[{"Position", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "[", "Sh\[Infinity]m", "]"}], ",", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], "}"}], ",", + RowBox[{"_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{"#", "\[Equal]", + RowBox[{"Min", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"Abs", "@", "Sh\[Infinity]m"}], ",", + RowBox[{"Abs", "[", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}], "]"}]}], "}"}], "]"}]}], + " ", "&"}], ")"}]}]}], "]"}]}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"Length", "@", "posreftest"}], ">", "0"}], ",", + RowBox[{"posref", "=", + RowBox[{"posreftest", "[", + RowBox[{"[", "1", "]"}], "]"}]}], ",", + RowBox[{ + RowBox[{"posref", "=", + RowBox[{"{", "}"}]}], ";"}]}], "]"}], ";", "\n", + RowBox[{"Sh0ref", "=", + RowBox[{"{", + RowBox[{"mean", ",", + RowBox[{ + RowBox[{"Sh0ref", "[", + RowBox[{"[", "posref", "]"}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], ";", "\n", + RowBox[{"mean", "=", + RowBox[{"Mean", "[", "Sh0ref", "]"}]}], ";", "\n", + RowBox[{"Sh\[Infinity]m2", "=", + RowBox[{ + RowBox[{"{", + RowBox[{"Sh\[Infinity]m", ",", "Sh\[Infinity]m2"}], "}"}], "[", + RowBox[{"[", + RowBox[{"posref", "[", + RowBox[{"[", "1", "]"}], "]"}], "]"}], "]"}]}], ";", "\n", + RowBox[{"Sh\[Infinity]m", "=", + RowBox[{ + RowBox[{"varsa", "[", + RowBox[{"[", "shtdInd", "]"}], "]"}], "@", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}]}]}], ";"}]}], "\n", "]"}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", + "\"\<Output: vars, a, Shooted variable at \[Infinity]\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"out", "=", + RowBox[{"Join", "[", + RowBox[{"varsa", ",", + RowBox[{"{", + RowBox[{"a", ",", + RowBox[{"Round", "[", + RowBox[{"mean", ",", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}], "]"}], ",", "Sh\[Infinity]m"}], "}"}]}], + "]"}]}], ";", "\n", + RowBox[{"Return", "[", "out", "]"}]}]}], "\n", "]"}]}]}], "Code", + CellChangeTimes->{ + 3.79973132804825*^9, {3.799731462954661*^9, 3.799731711660716*^9}, { + 3.7997317498154182`*^9, 3.7997317681642523`*^9}, {3.79973188045234*^9, + 3.799731881873639*^9}, {3.7997319261085253`*^9, 3.799731946183775*^9}, { + 3.799732009726982*^9, 3.7997320366818933`*^9}, {3.799732111777755*^9, + 3.799732162777128*^9}, {3.799732591774303*^9, 3.7997327094297857`*^9}, { + 3.7997328252819777`*^9, 3.799732837220436*^9}, {3.799732878784581*^9, + 3.799732910613446*^9}, {3.799732941200338*^9, 3.799732944962673*^9}, { + 3.799733073032421*^9, 3.7997330746113033`*^9}, {3.79974077838758*^9, + 3.799740829259706*^9}, {3.7997408670443077`*^9, 3.799740894264741*^9}, { + 3.799740927096403*^9, 3.7997410369355392`*^9}, {3.799741070160769*^9, + 3.799741070337734*^9}, {3.7997416472544727`*^9, 3.799741652395482*^9}, { + 3.79974169347393*^9, 3.799741705481552*^9}, {3.799741738093545*^9, + 3.7997417439083357`*^9}, {3.7997418202668943`*^9, + 3.799741822715159*^9}},ExpressionUUID->"e1458f8c-3b97-46d7-89b5-\ +d99de78240e7"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"ComputeEdges", "[", "pts_", "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"ptsx", ",", "auxvar", ",", "auxvar2", ",", "nears", ",", "i"}], + "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"ptsx", "=", + RowBox[{"SortBy", "[", + RowBox[{"pts", ",", "First"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"auxvar", "=", + RowBox[{"{", "}"}]}], ";", "\[IndentingNewLine]", + RowBox[{"i", "=", "1"}], ";", "\[IndentingNewLine]", + RowBox[{"AppendTo", "[", + RowBox[{"auxvar", ",", + RowBox[{"{", + RowBox[{"ptsx", "[", + RowBox[{"[", "i", "]"}], "]"}], "}"}]}], "]"}], ";", + "\[IndentingNewLine]", + RowBox[{"While", "[", + RowBox[{ + RowBox[{"i", "\[LessEqual]", " ", + RowBox[{ + RowBox[{"Length", "@", "ptsx"}], "-", "1"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"ptsx", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "1"}], "]"}], "]"}], "\[Equal]", + RowBox[{"ptsx", "[", + RowBox[{"[", + RowBox[{"i", ",", "1"}], "]"}], "]"}]}], ",", + RowBox[{"i", "=", + RowBox[{"i", "+", "1"}]}], ",", + RowBox[{ + RowBox[{"AppendTo", "[", + RowBox[{"auxvar", ",", + RowBox[{"{", + RowBox[{"ptsx", "[", + RowBox[{"[", "i", "]"}], "]"}], "}"}]}], "]"}], ";", + RowBox[{"i", "=", + RowBox[{"i", "+", "1"}]}]}]}], "]"}]}], "\[IndentingNewLine]", + "]"}], ";", "\n", + RowBox[{"AppendTo", "[", + RowBox[{"auxvar", ",", + RowBox[{"{", + RowBox[{"ptsx", "[", + RowBox[{"[", "i", "]"}], "]"}], "}"}]}], "]"}], ";", + "\[IndentingNewLine]", + RowBox[{"auxvar", "=", + RowBox[{"Flatten", "[", + RowBox[{"auxvar", ",", "1"}], "]"}]}], ";", "\[IndentingNewLine]", + "\[IndentingNewLine]", + RowBox[{"i", "=", + RowBox[{ + RowBox[{"Length", "@", "ptsx"}], "-", "1"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"While", "[", + RowBox[{ + RowBox[{"i", ">", " ", "1"}], ",", "\[IndentingNewLine]", + RowBox[{"If", "[", + RowBox[{ + RowBox[{ + RowBox[{"ptsx", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "1"}], "]"}], "]"}], "\[Equal]", + RowBox[{"ptsx", "[", + RowBox[{"[", + RowBox[{"i", ",", "1"}], "]"}], "]"}]}], ",", + RowBox[{"i", "=", + RowBox[{"i", "-", "1"}]}], ",", + RowBox[{ + RowBox[{"AppendTo", "[", + RowBox[{"auxvar", ",", + RowBox[{"ptsx", "[", + RowBox[{"[", + RowBox[{"i", "+", "1"}], "]"}], "]"}]}], "]"}], ";", + RowBox[{"i", "=", + RowBox[{"i", "-", "1"}]}]}]}], "]"}]}], "\[IndentingNewLine]", + "]"}], ";", "\[IndentingNewLine]", + RowBox[{"AppendTo", "[", + RowBox[{"auxvar", ",", + RowBox[{"ptsx", "[", + RowBox[{"[", "i", "]"}], "]"}]}], "]"}], ";", "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"auxvar", "=", + RowBox[{"AppendTo", "[", + RowBox[{"auxvar", ",", + RowBox[{ + RowBox[{"0.5", + RowBox[{"auxvar", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "+", + RowBox[{"0.5", + RowBox[{"auxvar", "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}]}]}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "3"}], "}"}]}], "]"}], ";", "\n", "auxvar"}]}], + "\[IndentingNewLine]", "]"}]}]], "Code", + CellChangeTimes->{{3.7270780261808033`*^9, 3.727078367544442*^9}, { + 3.727078412718236*^9, 3.727078446148488*^9}, {3.7270788051632233`*^9, + 3.727078942744878*^9}, {3.727078972807558*^9, 3.727079009504081*^9}, { + 3.727079053357842*^9, 3.727079086716103*^9}, {3.727079119464673*^9, + 3.727079144011499*^9}, {3.727079192508121*^9, 3.7270791935701237`*^9}, { + 3.727079233075204*^9, 3.727079235298113*^9}, {3.7270792706696873`*^9, + 3.7270793541604652`*^9}, {3.72707944078446*^9, 3.727079545975816*^9}, { + 3.7270795801007843`*^9, 3.727079664676605*^9}, {3.727079737277177*^9, + 3.727079765874894*^9}, {3.727079800690583*^9, 3.727079917506434*^9}, + 3.727079950979056*^9, {3.727080144928927*^9, 3.727080237460853*^9}, { + 3.727086462169712*^9, 3.727086476564146*^9}, {3.727086719248723*^9, + 3.7270867241908417`*^9}, {3.727086755686036*^9, 3.727086783834373*^9}, { + 3.727086816368319*^9, 3.727086819224812*^9}, {3.727086858001993*^9, + 3.7270868598473787`*^9}, 3.727086912376411*^9, {3.727086968164791*^9, + 3.7270869829764547`*^9}, {3.727087029989292*^9, 3.727087081467873*^9}, { + 3.7270871220252647`*^9, 3.727087154983006*^9}}, + CellLabel-> + "In[332]:=",ExpressionUUID->"e6aac64f-ed9a-4985-a3a8-ab479f3330ca"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"CredibleRegion", "[", + RowBox[{"data_", ",", "level_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"datasrt", ",", "prob", ",", "cumprob", ",", "pbound"}], "}"}], + ",", "\[IndentingNewLine]", + RowBox[{"(*", " ", + RowBox[{ + "Last", " ", "column", " ", "must", " ", "be", " ", "the", " ", "PDF"}], + " ", "*)"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"datasrt", "=", + RowBox[{"SortBy", "[", + RowBox[{"data", ",", "Last"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"prob", "=", + RowBox[{"TakeColumn", "[", + RowBox[{"datasrt", ",", + RowBox[{"-", "1"}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"cumprob", "=", + RowBox[{"Accumulate", "[", "prob", "]"}]}], ";", "\[IndentingNewLine]", + "\[IndentingNewLine]", + RowBox[{"pbound", "=", + RowBox[{"Quiet", "@", + RowBox[{ + RowBox[{"Position", "[", + RowBox[{"cumprob", ",", + RowBox[{"_", "?", + RowBox[{"(", + RowBox[{ + RowBox[{"#", "\[GreaterEqual]", " ", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", "level"}], ")"}], " ", + RowBox[{"cumprob", "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}]}]}], "&"}], " ", ")"}]}], + ",", "1"}], "]"}], "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}]}], ";", + "\[IndentingNewLine]", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"ComputeEdges", "[", + RowBox[{"datasrt", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"pbound", "-", "1"}], ";;", + RowBox[{"-", "1"}]}], "]"}], "]"}], "]"}], "[", + RowBox[{"[", + RowBox[{"All", ",", + RowBox[{"1", ";;", + RowBox[{"-", "2"}]}]}], "]"}], "]"}]}]}], "\[IndentingNewLine]", + "]"}]}]], "Code", + CellChangeTimes->{{3.727085638710692*^9, 3.727086166871532*^9}, { + 3.727086350134569*^9, 3.727086354171822*^9}, {3.727086495579674*^9, + 3.727086500904457*^9}, {3.727087205977934*^9, 3.727087223249645*^9}, { + 3.7270872730889273`*^9, 3.727087293807783*^9}, {3.727087331307283*^9, + 3.727087369650372*^9}}, + CellLabel-> + "In[333]:=",ExpressionUUID->"7be546aa-ffdd-4c64-bb5a-8e664f9d3df8"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"LoveNumber", "[", + RowBox[{"eos_", ",", "mtot_"}], "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "y", ",", "r", ",", "p", ",", "\[Epsilon]", ",", "m", ",", "eqy", ",", + "\[CapitalGamma]", ",", "eqsGR", ",", "listeos", ",", "yy", ",", "zz", + ",", "eqEoS", ",", "\[Rho]int", ",", "pint", ",", "rin", ",", + "\[Rho]c", ",", "pc", ",", "eqsIC", ",", "rMax", ",", "alleqs", ",", + "alleqsnd", ",", "Pr", ",", "mr", ",", "yr", ",", "Rm", ",", "Mm", ",", + "Cc", ",", "G", ",", "c", ",", "m0", ",", "rg", ",", "P0", ",", + "\[Rho]0", ",", "R0"}], "}"}], ",", "\n", "\n", + RowBox[{ + RowBox[{"G", "=", + RowBox[{"6.67428", " ", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}]}], ";", "\n", + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";", "\n", + RowBox[{"m0", "=", + RowBox[{"1.989", " ", + RowBox[{"10", "^", "33"}]}]}], ";", "\[IndentingNewLine]", + RowBox[{"rg", "=", " ", + RowBox[{"G", " ", + RowBox[{"m0", "/", + RowBox[{"c", "^", "2"}]}]}]}], ";", "\n", + RowBox[{"P0", "=", + RowBox[{"m0", " ", + RowBox[{ + RowBox[{"c", "^", "2"}], "/", + RowBox[{"rg", "^", "3"}]}]}]}], ";", "\[IndentingNewLine]", + RowBox[{"\[Rho]0", "=", + RowBox[{"m0", "/", + RowBox[{"rg", "^", "3"}]}]}], ";", "\n", + RowBox[{"R0", "=", + RowBox[{"1", "/", + RowBox[{"rg", "^", "2"}]}]}], ";", "\n", "\n", + RowBox[{"eqEoS", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSFits", "[", "eos", "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";", "\n", + RowBox[{"listeos", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSFits", "[", "eos", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{"From\[Rho]To\[Epsilon]Fits", "[", "eos", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "1", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";", "\n", + RowBox[{"\[Rho]int", "=", + RowBox[{"Interpolation", "[", + RowBox[{"listeos", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}]}], "}"}]}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"pint", "=", + RowBox[{"Interpolation", "[", + RowBox[{"listeos", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"Equations", " ", "1"}], "-", + RowBox[{"2", " ", "GR", " ", + RowBox[{"ToVs", ".", " ", "Equation"}], " ", "3", " ", "k2", " ", + RowBox[{"eq", "."}]}]}], " ", "*)"}], "\n", + RowBox[{"eqsGR", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"m", "[", "r", "]"}], "+", + RowBox[{"4", " ", "\[Pi]", " ", + SuperscriptBox["r", "3"], " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "-", + RowBox[{"2", " ", "r", " ", + RowBox[{"m", "[", "r", "]"}]}]}]], "+", + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", "0"}], + ",", + RowBox[{ + RowBox[{ + RowBox[{"4", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["m", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", "0"}]}], + "}"}]}], ";", "\n", + RowBox[{"eqy", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"y", "'"}], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"-", + FractionBox[ + SuperscriptBox[ + RowBox[{"y", "[", "r", "]"}], "2"], "r"]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"r", "+", + RowBox[{"4", "\[Pi]", " ", + SuperscriptBox["r", "3"], + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}]}], + RowBox[{"r", + RowBox[{"(", + RowBox[{"r", "-", + RowBox[{"2", + RowBox[{"m", "[", "r", "]"}]}]}], ")"}]}]], + RowBox[{"y", "[", "r", "]"}]}], "+", + FractionBox[ + RowBox[{"4", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"m", "[", "r", "]"}], " ", "+", + RowBox[{"4", "\[Pi]", " ", + SuperscriptBox["r", "3"], + RowBox[{"p", "[", "r", "]"}]}]}], ")"}], "2"]}], + RowBox[{"r", + RowBox[{"(", + RowBox[{"r", "-", + RowBox[{"2", + RowBox[{"m", "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox["6", + RowBox[{"r", "-", + RowBox[{"2", + RowBox[{"m", "[", "r", "]"}]}]}]], "-", + RowBox[{ + FractionBox[ + RowBox[{"4", "\[Pi]", " ", + SuperscriptBox["r", "2"]}], + RowBox[{"r", "-", + RowBox[{"2", + RowBox[{"m", "[", "r", "]"}]}]}]], + RowBox[{"(", + RowBox[{ + RowBox[{"5", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"9", + RowBox[{"p", "[", "r", "]"}]}], "+", + FractionBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], " ", "+", + RowBox[{"p", "[", "r", "]"}]}], ")"}], + RowBox[{"D", "[", + RowBox[{ + RowBox[{"pint", "@", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ",", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "]"}]]}], ")"}]}]}]}], + "}"}]}], ";", "\n", + RowBox[{"alleqs", "=", + RowBox[{"Join", "[", + RowBox[{"eqsGR", ",", "eqy"}], "]"}]}], ";", "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"--", + RowBox[{"--", + RowBox[{"--", "--"}]}]}], "*)"}], "\n", "\n", + RowBox[{"(*", " ", + RowBox[{"Solve", " ", "the", " ", "system"}], " ", "*)"}], "\n", + RowBox[{"\[Rho]c", "=", + RowBox[{ + RowBox[{"\[Rho]max", "[", + RowBox[{"[", "1", "]"}], "]"}], "0.76"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"rin", "=", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}]}], ";", "\[IndentingNewLine]", + RowBox[{"pc", "=", + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}]}], ";", "\n", + "\[IndentingNewLine]", + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "\[Equal]", "pc"}], ",", + RowBox[{ + RowBox[{"m", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"y", "[", "rin", "]"}], "\[Equal]", "2"}], ",", + RowBox[{"WhenEvent", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "/", "pc"}], "<", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "12"}], ")"}]}]}], ",", + RowBox[{ + RowBox[{"rMax", "=", "r"}], ";", "\"\<StopIntegration\>\""}]}], + "]"}]}], "}"}]}], ";", "\[IndentingNewLine]", + RowBox[{"alleqsnd", "=", + RowBox[{ + RowBox[{"alleqs", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", "0"}], "]"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{"Pr", ",", "mr", ",", "yr"}], "}"}], "=", + RowBox[{ + RowBox[{"{", + RowBox[{"p", ",", "m", ",", "y"}], "}"}], "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"alleqsnd", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "m", ",", "y"}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "100"}], "}"}], ",", + RowBox[{"Method", "\[Rule]", + RowBox[{"{", + RowBox[{"\"\<ExplicitRungeKutta\>\"", ",", + RowBox[{"\"\<DifferenceOrder\>\"", "\[Rule]", "8"}]}], "}"}]}], + ",", + RowBox[{"AccuracyGoal", "\[Rule]", "16"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "13"}]}], "]"}], "]"}]}]}], + ";", "\n", + RowBox[{"Rm", "=", + RowBox[{ + RowBox[{"InterpolationDomain", "[", "Pr", "]"}], "[", + RowBox[{"[", "2", "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"Mm", "=", + RowBox[{"(", + RowBox[{"mr", "@", "Rm"}], ")"}]}], ";", "\[IndentingNewLine]", + RowBox[{"Cc", "=", + RowBox[{"Mm", "/", + RowBox[{"(", "Rm", ")"}]}]}], ";", "\n", "\n", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "/", "3"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"c", "^", "2"}], "/", "G"}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{"rg", " ", "Rm"}], ")"}], "/", + RowBox[{"(", + RowBox[{"Mm", "*", "m0"}], ")"}]}]}], ")"}], "^", "5"}]}], + ")"}], + RowBox[{"k2", "[", + RowBox[{"Cc", ",", + RowBox[{"yr", "[", "Rm", "]"}]}], "]"}]}]}]}], "\n", "\n", "]"}]}], + ";"}]], "Code", + CellChangeTimes->{{3.73417831598398*^9, 3.734178420681381*^9}, { + 3.734178463059918*^9, 3.734178967657915*^9}, {3.7341790475686417`*^9, + 3.734179190390414*^9}, {3.734179223182646*^9, 3.734179241367835*^9}, { + 3.734179273050569*^9, 3.7341793049761963`*^9}, {3.734179372822768*^9, + 3.73417943197971*^9}, {3.7341795658592243`*^9, 3.734179566561613*^9}, + 3.734179616994851*^9, {3.7341796503691998`*^9, 3.7341796570182323`*^9}, { + 3.7341796953523073`*^9, 3.73417975391054*^9}, {3.7341797871597977`*^9, + 3.734179826049204*^9}, 3.734179858906621*^9, {3.734180039857833*^9, + 3.734180067739147*^9}, 3.7341801783197527`*^9, {3.7341802554961443`*^9, + 3.734180273371263*^9}, {3.734180351582761*^9, 3.734180378835738*^9}, + 3.734180449780846*^9, {3.763181843016273*^9, 3.76318187260286*^9}}, + CellLabel-> + "In[334]:=",ExpressionUUID->"d6deea87-8b23-4703-b744-10e2878359aa"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"k2", "[", + RowBox[{"c_", ",", "y_"}], "]"}], ":=", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"8", " ", + RowBox[{"c", "^", "5"}]}], ")"}], "/", "5"}], " ", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", "c"}]}], ")"}], "^", "2"}], + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"2", "c", + RowBox[{"(", + RowBox[{"y", "-", "1"}], ")"}]}], "-", "y"}], ")"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "c", + RowBox[{"(", + RowBox[{"6", "-", + RowBox[{"3", "y"}], " ", "+", + RowBox[{"3", "c", + RowBox[{"(", + RowBox[{ + RowBox[{"5", "y"}], "-", "8"}], ")"}]}]}], ")"}]}], "+", + RowBox[{"4", + RowBox[{"c", "^", "3"}], + RowBox[{"(", + RowBox[{"13", "-", + RowBox[{"11", "y"}], "+", + RowBox[{"c", + RowBox[{"(", + RowBox[{ + RowBox[{"3", "y"}], "-", "2"}], ")"}]}], "+", + RowBox[{"2", + RowBox[{"c", "^", "2"}], + RowBox[{"(", + RowBox[{"1", "+", "y"}], ")"}]}]}], ")"}]}], "\n", "+", + RowBox[{"3", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", "c"}]}], ")"}], "^", "2"}], + RowBox[{"(", + RowBox[{"2", "-", "y", "+", + RowBox[{"2", "c", + RowBox[{"(", + RowBox[{"y", "-", "1"}], ")"}]}]}], ")"}], + RowBox[{"Log", "[", + RowBox[{"1", "-", + RowBox[{"2", "c"}]}], "]"}]}]}], ")"}], "^", + RowBox[{"(", + RowBox[{"-", "1"}], ")"}]}]}]}]], "Code", + CellLabel-> + "In[335]:=",ExpressionUUID->"bacae793-9bc9-412c-98f5-04742466300a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Other functions", "Section", + CellChangeTimes->{{3.795343495994857*^9, + 3.795343498538759*^9}},ExpressionUUID->"2607a84f-8136-4555-8578-\ +9ef48f892b15"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"AtomsList", "[", "expr_", "]"}], ":=", + RowBox[{"Union", "@", + RowBox[{"Select", "[", + RowBox[{ + RowBox[{"Level", "[", + RowBox[{"expr", ",", + RowBox[{"{", + RowBox[{"0", ",", "Infinity"}], "}"}]}], "]"}], ",", "AtomQ"}], + "]"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"InterpolationDomain", "[", "fun_", "]"}], ":=", + RowBox[{"Module", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"min", ",", "max"}], "}"}], ",", + RowBox[{"fun", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"TakeColumn", "[", + RowBox[{ + RowBox[{"list1_", "?", "ListQ"}], ",", + RowBox[{"list2_", "?", "ListQ"}]}], "]"}], ":=", + RowBox[{"Map", "[", + RowBox[{ + RowBox[{ + RowBox[{"Part", "[", + RowBox[{"#", ",", "list2"}], "]"}], "&"}], ",", "list1"}], "]"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"TakeColumn", "[", + RowBox[{ + RowBox[{"list1_", "?", "ListQ"}], ",", + RowBox[{"n_", "?", "IntegerQ"}]}], "]"}], ":=", + RowBox[{ + RowBox[{"(", + RowBox[{"list1", "//", "Transpose"}], ")"}], "[", + RowBox[{"[", "n", "]"}], "]"}]}], ";"}]}], "Code", + InitializationCell->True, + CellChangeTimes->{{3.44498826260142*^9, 3.44498826434814*^9}, + 3.658227791974455*^9, {3.7953436164167747`*^9, 3.795343616684309*^9}, { + 3.795343704168097*^9, 3.795343718396523*^9}}, + CellLabel-> + "In[171]:=",ExpressionUUID->"cf257478-3ef8-4582-84aa-71e3bc5840dc"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["End Package", "Section",ExpressionUUID->"f1741b14-531a-4442-958b-fde3bfdb7b10"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"End", "[", "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"EndPackage", "[", "]"}], ";"}]}], "Code", + InitializationCell->True, + CellLabel-> + "In[143]:=",ExpressionUUID->"c8870d35-e01d-4f7c-b081-273dc39f3a98"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Some Tests", "Section", + CellChangeTimes->{{3.748164573893894*^9, + 3.748164575825881*^9}},ExpressionUUID->"26d18d13-bbbe-4282-b00d-\ +49ab3fbd32ba"], + +Cell[BoxData[ + RowBox[{"<<", "GRTensor.m"}]], "Input", + CellChangeTimes->{{3.7821974723234587`*^9, 3.7821974757665052`*^9}}, + CellLabel-> + "In[181]:=",ExpressionUUID->"d5935d89-e8a4-4fa5-91c6-63cfd7830a66"], + +Cell[CellGroupData[{ + +Cell["\<\ +Curvature on Sphere \ +(http://einsteinrelativelyeasy.com/index.php/general-relativity/70-the-\ +riemann-curvature-tensor-for-the-surface-of-a-sphere)\ +\>", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}, {3.74817116905129*^9, 3.7481711974490223`*^9}, { + 3.782207140055911*^9, + 3.7822071516076937`*^9}},ExpressionUUID->"d77b7e0a-37fe-4fae-b4c7-\ +ab23d397621e"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"xxt", "=", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "\[CurlyPhi]"}], "}"}]}]], "Input", + CellChangeTimes->{{3.782206795629023*^9, 3.782206800489605*^9}, + 3.7822069531962137`*^9}, + CellLabel-> + "In[182]:=",ExpressionUUID->"01df2675-7543-4eaf-a777-bb3b592ad5c9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"\[Theta]", ",", "\[CurlyPhi]"}], "}"}]], "Output", + CellChangeTimes->{{3.782206797948868*^9, 3.78220680085098*^9}, + 3.782206953561055*^9, {3.797835262441374*^9, 3.797835288679607*^9}, + 3.797912228585606*^9, 3.798200478213064*^9, 3.798203102286201*^9, + 3.798253761655999*^9, 3.798347335512574*^9, 3.798349544190802*^9}, + CellLabel-> + "Out[182]=",ExpressionUUID->"665df167-82dd-4563-a05c-cbda3f786184"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"gabt", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"r", "^", "2"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", " ", ",", + RowBox[{ + RowBox[{"r", "^", "2"}], " ", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}]}], " ", "}"}]}], + "}"}]}]], "Input", + CellChangeTimes->{{3.782206809612924*^9, 3.78220686628939*^9}, { + 3.7822069396287727`*^9, 3.782206948236793*^9}}, + CellLabel-> + "In[183]:=",ExpressionUUID->"04275776-8f18-4f37-bbf5-d693d7dc0cfb"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.782206847586747*^9, 3.782206866793309*^9}, + 3.7822069487454777`*^9, {3.797835263704236*^9, 3.7978352896668863`*^9}, + 3.7979122298295803`*^9, 3.798200478939333*^9, 3.798203103779208*^9, + 3.798253762452446*^9, 3.7983473362824287`*^9, 3.798349544924501*^9}, + CellLabel-> + "Out[183]=",ExpressionUUID->"be84d4f9-3975-4a44-827a-750c4eef7c2d"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"riemannt", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}]}], ";"}]], "Input", + CellChangeTimes->{ + 3.7822067834182043`*^9, {3.782206853452589*^9, 3.782206868239273*^9}}, + CellLabel-> + "In[184]:=",ExpressionUUID->"114c3b30-9e5e-445d-a4ed-def79fbfbecf"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riemannt", "[", + RowBox[{"[", + RowBox[{"1", ",", "2", ",", "1", ",", "2"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.78220687300616*^9, 3.7822068900754547`*^9}, { + 3.782206985358652*^9, 3.7822069889296827`*^9}}, + CellLabel-> + "In[185]:=",ExpressionUUID->"6ec9aa31-8715-40a8-8de4-fe5553c192dc"], + +Cell[BoxData[ + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]], "Output", + CellChangeTimes->{3.7822068909456244`*^9, 3.7822069891274157`*^9, + 3.78220705060463*^9, 3.79783529101235*^9, 3.7979122314167337`*^9, + 3.7982004799895782`*^9, 3.79820310528283*^9, 3.79825376342732*^9, + 3.79834733792297*^9, 3.798349546145063*^9}, + CellLabel-> + "Out[185]=",ExpressionUUID->"0f6440f7-89cc-47fe-9c83-462905f72eb0"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riccitt", "=", + RowBox[{"Simplify", "[", + RowBox[{"RicciTensor", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], "]"}]}]], "Input", + CellChangeTimes->{{3.782207026446374*^9, 3.782207082409597*^9}}, + CellLabel-> + "In[186]:=",ExpressionUUID->"da6bb885-c11e-4af0-ba12-5a61ada9cb60"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}]}], "}"}]], "Output",\ + + CellChangeTimes->{{3.782207036252987*^9, 3.7822070827387877`*^9}, + 3.797835291711833*^9, 3.797912232627132*^9, 3.798200480497753*^9, + 3.798203105816321*^9, 3.7982537644338837`*^9, 3.7983473386296997`*^9, + 3.7983495466007967`*^9}, + CellLabel-> + "Out[186]=",ExpressionUUID->"d2c5a32b-740e-4ba4-8c59-9da001eebe84"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riccits", "=", + RowBox[{"Simplify", "[", + RowBox[{"RicciScalar", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], "]"}]}]], "Input", + CellChangeTimes->{{3.782207091034103*^9, 3.7822071040387506`*^9}}, + CellLabel-> + "In[187]:=",ExpressionUUID->"5aa484fc-0cd2-4926-b47a-29f14f4d2f17"], + +Cell[BoxData[ + FractionBox["2", + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{{3.782207098755959*^9, 3.7822071044679317`*^9}, + 3.797835292494437*^9, 3.797912234911577*^9, 3.7982004810565166`*^9, + 3.7982031063510036`*^9, 3.798253765045897*^9, 3.798347339400362*^9, + 3.798349547013073*^9}, + CellLabel-> + "Out[187]=",ExpressionUUID->"6010ec2c-e7a3-47f0-b22d-9c5bd00f2385"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], "\[IndentingNewLine]", + RowBox[{"test", "=", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0", ",", + RowBox[{"\"\<Compile\>\"", "\[Rule]", "False"}]}], "]"}]}]}], "Input", + CellChangeTimes->{{3.797835299231812*^9, 3.797835340394423*^9}, { + 3.797836115556294*^9, 3.7978361214969673`*^9}, {3.7978362190049334`*^9, + 3.797836222350019*^9}, {3.797912224035125*^9, 3.7979122242233*^9}, { + 3.79791305515164*^9, 3.797913056807482*^9}, {3.797913637483117*^9, + 3.7979136385662603`*^9}, {3.797917680586905*^9, 3.7979176831091337`*^9}, { + 3.797917991038041*^9, 3.797917993468326*^9}, {3.797918333609417*^9, + 3.797918334225422*^9}, {3.797918424514086*^9, 3.797918426986541*^9}, { + 3.7982004981709633`*^9, 3.79820050891855*^9}, {3.79820210527951*^9, + 3.798202105939046*^9}}, + CellLabel-> + "In[188]:=",ExpressionUUID->"ed5781e4-22a4-4ae7-a266-bbbc22d0f39a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + RowBox[{"Cos", "[", "\[Theta]", "]"}]}], " ", + RowBox[{"Sin", "[", "\[Theta]", "]"}]}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Cot", "[", "\[Theta]", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Cot", "[", "\[Theta]", "]"}], ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.797835307688987*^9, 3.797835340622093*^9}, + 3.797835399560177*^9, 3.797835437739683*^9, 3.7978354765431147`*^9, { + 3.797835568477516*^9, 3.797835661239153*^9}, {3.797835729670292*^9, + 3.797835741330311*^9}, {3.7978357808153477`*^9, 3.7978358369457283`*^9}, { + 3.797836116191352*^9, 3.797836170675275*^9}, {3.797836292602689*^9, + 3.7978362949327393`*^9}, {3.7979122246871147`*^9, 3.79791223889471*^9}, { + 3.797913051183906*^9, 3.797913057110894*^9}, {3.797913170318356*^9, + 3.7979131739345512`*^9}, {3.79791338266549*^9, 3.797913424566861*^9}, { + 3.797913631042828*^9, 3.7979136390546427`*^9}, 3.797913736058296*^9, + 3.797913771479032*^9, {3.797915230798224*^9, 3.797915261972831*^9}, { + 3.797915416676668*^9, 3.7979154815538588`*^9}, 3.797915567333851*^9, { + 3.797916182186376*^9, 3.79791618715528*^9}, 3.7979162789483223`*^9, + 3.797917683516242*^9, {3.797917755425886*^9, 3.797917771661071*^9}, { + 3.797917837748905*^9, 3.797917901028458*^9}, {3.7979179323923607`*^9, + 3.797917993972505*^9}, 3.797918126610745*^9, {3.7979181725897627`*^9, + 3.797918180998002*^9}, 3.797918219060905*^9, 3.7979182552817507`*^9, { + 3.797918334463344*^9, 3.797918364144372*^9}, {3.79791842548182*^9, + 3.797918450755554*^9}, 3.797920778253409*^9, {3.797920835912807*^9, + 3.7979208551369543`*^9}, 3.79792094623209*^9, 3.7979210681644163`*^9, { + 3.79820049988873*^9, 3.798200509322856*^9}, 3.798200546102264*^9, + 3.798200819282467*^9, {3.798200860397668*^9, 3.798200919172752*^9}, { + 3.798200980796159*^9, 3.7982010006649857`*^9}, {3.7982021018023043`*^9, + 3.798202106208156*^9}, 3.7982031068756733`*^9, 3.798253765574381*^9, + 3.7982729707950163`*^9, 3.798347340031307*^9, 3.798349547631942*^9}, + CellLabel-> + "Out[188]=",ExpressionUUID->"baac7dd9-3722-43d2-8c34-922c3cf5f6f3"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + RowBox[{"Cos", "[", "\[Theta]", "]"}]}], " ", + RowBox[{"Sin", "[", "\[Theta]", "]"}]}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Cot", "[", "\[Theta]", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"Cot", "[", "\[Theta]", "]"}], ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.797835307688987*^9, 3.797835340622093*^9}, + 3.797835399560177*^9, 3.797835437739683*^9, 3.7978354765431147`*^9, { + 3.797835568477516*^9, 3.797835661239153*^9}, {3.797835729670292*^9, + 3.797835741330311*^9}, {3.7978357808153477`*^9, 3.7978358369457283`*^9}, { + 3.797836116191352*^9, 3.797836170675275*^9}, {3.797836292602689*^9, + 3.7978362949327393`*^9}, {3.7979122246871147`*^9, 3.79791223889471*^9}, { + 3.797913051183906*^9, 3.797913057110894*^9}, {3.797913170318356*^9, + 3.7979131739345512`*^9}, {3.79791338266549*^9, 3.797913424566861*^9}, { + 3.797913631042828*^9, 3.7979136390546427`*^9}, 3.797913736058296*^9, + 3.797913771479032*^9, {3.797915230798224*^9, 3.797915261972831*^9}, { + 3.797915416676668*^9, 3.7979154815538588`*^9}, 3.797915567333851*^9, { + 3.797916182186376*^9, 3.79791618715528*^9}, 3.7979162789483223`*^9, + 3.797917683516242*^9, {3.797917755425886*^9, 3.797917771661071*^9}, { + 3.797917837748905*^9, 3.797917901028458*^9}, {3.7979179323923607`*^9, + 3.797917993972505*^9}, 3.797918126610745*^9, {3.7979181725897627`*^9, + 3.797918180998002*^9}, 3.797918219060905*^9, 3.7979182552817507`*^9, { + 3.797918334463344*^9, 3.797918364144372*^9}, {3.79791842548182*^9, + 3.797918450755554*^9}, 3.797920778253409*^9, {3.797920835912807*^9, + 3.7979208551369543`*^9}, 3.79792094623209*^9, 3.7979210681644163`*^9, { + 3.79820049988873*^9, 3.798200509322856*^9}, 3.798200546102264*^9, + 3.798200819282467*^9, {3.798200860397668*^9, 3.798200919172752*^9}, { + 3.798200980796159*^9, 3.7982010006649857`*^9}, {3.7982021018023043`*^9, + 3.798202106208156*^9}, 3.7982031068756733`*^9, 3.798253765574381*^9, + 3.7982729707950163`*^9, 3.798347340031307*^9, 3.798349547634553*^9}, + CellLabel-> + "Out[189]=",ExpressionUUID->"3a141bce-5fbc-4c50-92c7-8379c58297ca"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], "\[IndentingNewLine]", + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}]}]}], "Input", + CellChangeTimes->{{3.7982021084293747`*^9, 3.798202108676981*^9}, + 3.798202209419623*^9, {3.798202278707458*^9, 3.798202280568131*^9}, { + 3.798254320974615*^9, 3.798254324675338*^9}}, + CellLabel-> + "In[190]:=",ExpressionUUID->"e70c66e4-4e26-43dd-8013-82022d2d95c7"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.798202210082041*^9, 3.7982022406943617`*^9, {3.798202274764333*^9, + 3.798202281003334*^9}, 3.798203107462268*^9, 3.798253766924748*^9, { + 3.7982543191383867`*^9, 3.798254323118341*^9}, {3.798260495795043*^9, + 3.798260520066625*^9}, 3.79827127911635*^9, 3.798272983503522*^9, { + 3.7983473418637953`*^9, 3.7983473602291527`*^9}, 3.798349548363228*^9}, + CellLabel-> + "Out[190]=",ExpressionUUID->"b0b4dea8-47e3-447d-8f2b-96d2d27080ba"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.798202210082041*^9, 3.7982022406943617`*^9, {3.798202274764333*^9, + 3.798202281003334*^9}, 3.798203107462268*^9, 3.798253766924748*^9, { + 3.7982543191383867`*^9, 3.798254323118341*^9}, {3.798260495795043*^9, + 3.798260520066625*^9}, 3.79827127911635*^9, 3.798272983503522*^9, { + 3.7983473418637953`*^9, 3.7983473602291527`*^9}, 3.798349548368374*^9}, + CellLabel-> + "Out[191]=",ExpressionUUID->"3cbcbad1-a20a-4490-b84f-aa78f9e300d8"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Clear", "[", "RiemannTensorDev", "]"}]], "Input", + CellChangeTimes->{{3.7983484213415337`*^9, 3.7983484252174253`*^9}}, + CellLabel-> + "In[192]:=",ExpressionUUID->"4736ce0c-fd95-488b-9cad-da3d82cd0647"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0", ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "True"}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0", ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "False"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.798349307441161*^9, 3.7983493334937487`*^9}, { + 3.7983494062569857`*^9, 3.7983494141610107`*^9}, {3.798349453559577*^9, + 3.79834945657146*^9}}, + CellLabel-> + "In[197]:=",ExpressionUUID->"090305e6-e53f-4de4-8760-85909e86ff8f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798349313790066*^9, 3.79834941442148*^9}, { + 3.798349448577828*^9, 3.7983494644996*^9}, {3.798349549614999*^9, + 3.798349553268338*^9}}, + CellLabel-> + "Out[197]=",ExpressionUUID->"1802f678-c827-451a-8772-3c7e96881a2f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798349313790066*^9, 3.79834941442148*^9}, { + 3.798349448577828*^9, 3.7983494644996*^9}, {3.798349549614999*^9, + 3.7983495532714453`*^9}}, + CellLabel-> + "Out[198]=",ExpressionUUID->"d6508d3e-502d-4994-befc-441a401f61b4"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], + "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}], + "]"}]], "Input", + CellChangeTimes->{{3.798357973849049*^9, 3.7983579752767487`*^9}}, + CellLabel-> + "In[251]:=",ExpressionUUID->"a7c4d7c1-41c1-4f28-a00a-21a6c5370173"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.798357975610765*^9}, + CellLabel-> + "Out[251]=",ExpressionUUID->"127fe166-63e3-40e8-85f8-1cc2c599fb65"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0", ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "True"}]}], "]"}], "-", + RowBox[{"Simplify", "@", + RowBox[{"RiemannTensorDev2", "[", + RowBox[{"xxt", ",", "gabt", ",", "0", ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "True"}]}], + "]"}]}]}], "\[IndentingNewLine]", + RowBox[{"Simplify", "@", + RowBox[{"RiemannTensorDev2", "[", + RowBox[{"xxt", ",", "gabt", ",", "0", ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "True"}]}], "]"}]}]}], "Input", + CellChangeTimes->{{3.7983519184381247`*^9, 3.7983519191904373`*^9}, { + 3.79835806229522*^9, 3.79835806792765*^9}, {3.7983591260700483`*^9, + 3.798359126258613*^9}}, + CellLabel-> + "In[414]:=",ExpressionUUID->"fe89dc2a-c9ac-4fe2-b899-ef0c3d47b93e"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798351919563176*^9, 3.7983519747528763`*^9}, { + 3.798352005248436*^9, 3.7983520256110897`*^9}, {3.798357813421052*^9, + 3.7983578274279737`*^9}, {3.798357883255492*^9, 3.79835792192127*^9}, + 3.7983579558802757`*^9, {3.798358064247616*^9, 3.7983580684237423`*^9}, + 3.7983581110696373`*^9, {3.798358204513907*^9, 3.798358206762725*^9}, { + 3.798358919707143*^9, 3.7983589215203753`*^9}, {3.7983590625997972`*^9, + 3.798359126634324*^9}, {3.798359359411724*^9, 3.798359376798409*^9}, { + 3.7983602527324944`*^9, 3.798360254368186*^9}}, + CellLabel-> + "Out[414]=",ExpressionUUID->"510d0189-5306-488d-9d98-d72b472703f0"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798351919563176*^9, 3.7983519747528763`*^9}, { + 3.798352005248436*^9, 3.7983520256110897`*^9}, {3.798357813421052*^9, + 3.7983578274279737`*^9}, {3.798357883255492*^9, 3.79835792192127*^9}, + 3.7983579558802757`*^9, {3.798358064247616*^9, 3.7983580684237423`*^9}, + 3.7983581110696373`*^9, {3.798358204513907*^9, 3.798358206762725*^9}, { + 3.798358919707143*^9, 3.7983589215203753`*^9}, {3.7983590625997972`*^9, + 3.798359126634324*^9}, {3.798359359411724*^9, 3.798359376798409*^9}, { + 3.7983602527324944`*^9, 3.7983602543711367`*^9}}, + CellLabel-> + "Out[415]=",ExpressionUUID->"004e0069-9eea-4160-b167-ebe64adc2af6"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"p", "=", "0"}], ";", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"p", "=", + RowBox[{"p", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "l", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.798358771334364*^9, 3.798358791332468*^9}, { + 3.798359110957396*^9, 3.798359111921338*^9}, 3.798359933190682*^9}, + CellLabel-> + "In[398]:=",ExpressionUUID->"43a39a62-5608-44fe-8443-e69dce1fa939"], + +Cell[CellGroupData[{ + +Cell[BoxData["p"], "Input", + CellChangeTimes->{3.7983591136734867`*^9}, + CellLabel-> + "In[399]:=",ExpressionUUID->"46b07b7d-76b2-43d1-886e-1f734e343bd7"], + +Cell[BoxData["65"], "Output", + CellChangeTimes->{3.798359114139866*^9, 3.798359941598441*^9}, + CellLabel-> + "Out[399]=",ExpressionUUID->"69e76015-b545-4a29-a5c6-a95e25aa360f"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"n", "=", "4"}], ";", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"p", "=", + RowBox[{"p", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "i"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.798359870748979*^9, 3.7983598760261517`*^9}, { + 3.7983599503452787`*^9, 3.798359956303214*^9}}, + CellLabel-> + "In[401]:=",ExpressionUUID->"6ce44593-fdc2-41aa-ad1e-1cc49d9461ff"], + +Cell[CellGroupData[{ + +Cell[BoxData["p"], "Input", + CellChangeTimes->{3.798359937023489*^9}, + CellLabel-> + "In[402]:=",ExpressionUUID->"19a4e782-47a0-4a4c-9ac1-4dc16a3ec4cf"], + +Cell[BoxData["161"], "Output", + CellChangeTimes->{3.7983599577390337`*^9}, + CellLabel-> + "Out[402]=",ExpressionUUID->"ebf88fb7-3a7c-413d-b0e4-b3a9c9a26971"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"p", "=", + RowBox[{"p", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "i"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{3.798359902532851*^9}, + CellLabel-> + "In[403]:=",ExpressionUUID->"f275f059-a571-42ab-8070-687490a278a1"], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"p", "=", + RowBox[{"p", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "l"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{3.798359924122264*^9}, + CellLabel-> + "In[404]:=",ExpressionUUID->"e027fdb6-eff3-4bd9-a9aa-87088edb34cf"], + +Cell[CellGroupData[{ + +Cell[BoxData["p"], "Input", + CellChangeTimes->{{3.7983599257008047`*^9, 3.798359926166152*^9}}, + CellLabel-> + "In[405]:=",ExpressionUUID->"1792ddf6-d45d-44c1-a4b5-330f4aeff6a2"], + +Cell[BoxData["353"], "Output", + CellChangeTimes->{3.7983599266220503`*^9, 3.7983599602611017`*^9}, + CellLabel-> + "Out[405]=",ExpressionUUID->"81dcb636-9dcd-4984-bd8f-c7783e2bc53c"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"p", "=", "0"}], ";", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"p", "=", + RowBox[{"p", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.798360006202197*^9, 3.798360031017626*^9}}, + CellLabel-> + "In[406]:=",ExpressionUUID->"5fbbd0b9-08ce-4eb7-a923-377942f201b6"], + +Cell[CellGroupData[{ + +Cell[BoxData["p"], "Input", + CellChangeTimes->{3.798360032769032*^9}, + CellLabel-> + "In[407]:=",ExpressionUUID->"096588e5-38a4-4025-922c-9e4d81ed7424"], + +Cell[BoxData["10"], "Output", + CellChangeTimes->{3.7983600331921253`*^9}, + CellLabel-> + "Out[407]=",ExpressionUUID->"c580f8da-aeb5-4cf0-81c9-251fba296602"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"p", "=", + RowBox[{"p", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7983600850695677`*^9, 3.798360087927095*^9}}, + CellLabel-> + "In[408]:=",ExpressionUUID->"157be32d-15d6-4149-bfb6-8e0087bcf0c9"], + +Cell[CellGroupData[{ + +Cell[BoxData["p"], "Input", + CellChangeTimes->{3.798360088892056*^9}, + CellLabel-> + "In[409]:=",ExpressionUUID->"8e07c9e3-1125-4429-b862-bb3eed90c896"], + +Cell[BoxData["16"], "Output", + CellChangeTimes->{3.798360089401593*^9}, + CellLabel-> + "Out[409]=",ExpressionUUID->"4c5cea56-2557-494f-b20b-8e21d5dee9a3"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RiemannTensorDev2", "]"}], "=", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}], ",", + RowBox[{"{", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "False"}], "}"}]}], "]"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"RiemannTensorDev2", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "n", ",", "Chr", ",", "compile", ",", "index", ",", "res", ",", "perti", + ",", "simpl", ",", "verbose"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"index", "=", + RowBox[{"OptionValue", "[", "\"\<IndexDown\>\"", "]"}]}], ";", "\n", + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"verbose", "=", + RowBox[{"OptionValue", "[", "\"\<Verbose\>\"", "]"}]}], ";", "\n", + "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", "\"\<Starting with Christoffel symbols...\>\"", "]"}]}], + "]"}], ";", "\n", + RowBox[{"Chr", "=", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}], ",", + RowBox[{"\"\<Compile\>\"", "\[Rule]", "False"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{ + "Print", "[", + "\"\<Christoffel symbols computed. Starting with Riemann...\>\"", + "]"}]}], "]"}], ";", "\n", "\n", + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n", ",", "n", ",", "n"}], "}"}]}], "]"}]}], ";", + "\n", + RowBox[{"If", "[", + RowBox[{"index", ",", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "p"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}]}], ",", + + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "p"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"p", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], + "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", "\n", + "\t\t\t\t\t\t\t", "\n", "\t\t\t\t\t\t\t", + RowBox[{"If", "[", + RowBox[{"compile", ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "]"}], ",", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + ",", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", "xx"}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "]"}], ",", + RowBox[{"CompilationTarget", "\[Rule]", "\"\<C\>\""}], ",", + RowBox[{"CompilationOptions", "\[Rule]", + RowBox[{ + "\"\<InlineExternalDefinitions\>\"", "\[Rule]", + "True"}]}]}], "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}], ";"}], + "\n", " ", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "simmetries"}], " ", "*)"}], + " ", "\n", " ", + ",", " ", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}]}], ",", + + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], + "=", + RowBox[{"(", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}], + ")"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";"}]}], "\n", + " ", "]"}], ";", "\n", "\[IndentingNewLine]", "\n", + RowBox[{"If", "[", + RowBox[{"verbose", ",", + RowBox[{"Print", "[", "\"\<...Riemann computed\>\"", "]"}]}], "]"}], + ";", "\n", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}], ";"}]}], "Code", + CellChangeTimes->{{3.798201761796755*^9, 3.798201778478615*^9}, { + 3.7982019426048517`*^9, 3.7982020885463676`*^9}, {3.798202188469666*^9, + 3.798202188752832*^9}, {3.798202235213434*^9, 3.7982022357380667`*^9}, + 3.798258168874947*^9, {3.7982582120531693`*^9, 3.798258215584395*^9}, { + 3.798258262930125*^9, 3.798258302777269*^9}, {3.7982583442770777`*^9, + 3.798258456880644*^9}, {3.798258610943906*^9, 3.798258611147222*^9}, + 3.7982595549072323`*^9, {3.7982595940162573`*^9, 3.798259595257298*^9}, { + 3.798260413439714*^9, 3.7982604575218897`*^9}, {3.798260507032803*^9, + 3.798260513839057*^9}, {3.7982616128595667`*^9, 3.798261675437492*^9}, { + 3.798270325445936*^9, 3.7982703721049747`*^9}, {3.798270419687889*^9, + 3.798270429981975*^9}, {3.798270464872583*^9, 3.79827046501184*^9}, { + 3.7982705239495277`*^9, 3.798270539044157*^9}, {3.798273323499441*^9, + 3.798273323761797*^9}, {3.798347314779356*^9, 3.7983473288683662`*^9}, { + 3.7983474966959352`*^9, 3.798347500360285*^9}, {3.798347683734331*^9, + 3.7983477685354013`*^9}, {3.798347952699193*^9, 3.798348046250648*^9}, { + 3.798348091503224*^9, 3.79834811612291*^9}, {3.798348199523498*^9, + 3.798348226693466*^9}, {3.798348325664906*^9, 3.798348381624979*^9}, { + 3.7983484656883698`*^9, 3.7983485978555183`*^9}, {3.79834897114116*^9, + 3.798348983540642*^9}, {3.7983490571025753`*^9, 3.798349239958953*^9}, { + 3.798349376285989*^9, 3.798349401841381*^9}, {3.798349439234774*^9, + 3.798349462105866*^9}, {3.798349824332347*^9, 3.798349826124508*^9}, { + 3.798350825548751*^9, 3.798350825777767*^9}, {3.7983514446295223`*^9, + 3.798351477759396*^9}, {3.7983515766824503`*^9, 3.798351603658345*^9}, { + 3.798351638961677*^9, 3.798351907861167*^9}, {3.798351942471902*^9, + 3.798351945408573*^9}, {3.798351980416534*^9, 3.79835202195184*^9}, { + 3.7983522230691633`*^9, 3.798352242907681*^9}, {3.7983522861833878`*^9, + 3.798352315458262*^9}, {3.798352375739766*^9, 3.7983523975806313`*^9}, { + 3.798352435687175*^9, 3.7983524413802958`*^9}, {3.798352473201661*^9, + 3.798352599136998*^9}, {3.7983574888368063`*^9, 3.798357538699814*^9}, { + 3.79835763349463*^9, 3.7983576963693743`*^9}, {3.798357732197682*^9, + 3.7983577991957903`*^9}, {3.7983578664443913`*^9, + 3.7983579534268093`*^9}, {3.798358029621838*^9, 3.79835805102246*^9}}, + CellLabel-> + "In[435]:=",ExpressionUUID->"b07eb285-b84f-41d1-8ec4-d701def84f96"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"Options", "[", "RicciTensorDev", "]"}], "=", + RowBox[{"Options", "[", "ChristoffelSymbolDev", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx_", ",", "g_", ",", + RowBox[{"pert_:", "0"}], ",", + RowBox[{"OptionsPattern", "[", "]"}]}], "]"}], ":=", + RowBox[{"Block", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + "compile", ",", "Rie", ",", "res", ",", "n", ",", "perti", ",", + "simpl"}], "}"}], ",", "\n", + RowBox[{ + RowBox[{"perti", "=", + RowBox[{"OptionValue", "[", "\"\<PerturbationIndex\>\"", "]"}]}], ";", + "\n", + RowBox[{"compile", "=", + RowBox[{"OptionValue", "[", "\"\<Compile\>\"", "]"}]}], ";", "\n", + RowBox[{"simpl", "=", + RowBox[{"OptionValue", "[", "\"\<SimplifyFunction\>\"", "]"}]}], ";", + "\n", "\n", + RowBox[{"n", "=", + RowBox[{"Length", "@", "xx"}]}], ";", "\n", + RowBox[{"Rie", "=", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "pert", ",", + RowBox[{"\"\<PerturbationIndex\>\"", "->", "perti"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "->", "simpl"}]}], "]"}]}], ";", + "\n", "\n", + RowBox[{"res", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n"}], "}"}]}], "]"}]}], ";", "\n", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumericQ", "[", "pert", "]"}], ",", " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"s", ",", "i", ",", "s", ",", "j"}], "]"}], "]"}], ",", + + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "n"}], "}"}]}], "]"}], ",", "\n", + " ", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"Normal", "@", + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"Rie", "[", + RowBox[{"[", + RowBox[{"s", ",", "i", ",", "s", ",", "j"}], "]"}], "]"}], + ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"pert", ",", "0", ",", "perti"}], "}"}]}], "]"}]}]}], + ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}]}], "]"}], ";", + " ", "\n", "\n", + RowBox[{"If", "[", + RowBox[{"compile", ",", " ", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"NumberQ", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], ",", + RowBox[{"Compile", "[", + RowBox[{ + RowBox[{"Evaluate", "@", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"#", ",", "_Real"}], "}"}], "&"}], "/@", "xx"}], + ")"}]}], ",", + RowBox[{"Evaluate", "[", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], "]"}], ",", + RowBox[{"CompilationTarget", "\[Rule]", "\"\<C\>\""}], ",", + RowBox[{"CompilationOptions", "\[Rule]", + RowBox[{ + "\"\<InlineExternalDefinitions\>\"", "\[Rule]", "True"}]}]}], + "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i", ",", "n"}], "}"}]}], "]"}], ";"}]}], "]"}], + " ", ";", " ", "\n", + RowBox[{"(*", " ", + RowBox[{"Applying", " ", "symmetries"}], " ", "*)"}], "\n", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{ + RowBox[{"i", "+", "1"}], ",", "j"}], "]"}], "]"}], "=", + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"j", ",", + RowBox[{"i", "+", "1"}]}], "]"}], "]"}]}], ";"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"n", "-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "i"}], "}"}]}], "]"}], ";", " ", + "\n", "\[IndentingNewLine]", + RowBox[{"simpl", "@", "res"}]}]}], "]"}]}]}], "Code", + CellChangeTimes->{{3.798202691045713*^9, 3.7982027188195963`*^9}, { + 3.798202825154427*^9, 3.798202961899489*^9}, {3.79820299299233*^9, + 3.798203087732658*^9}, {3.798207066617684*^9, 3.798207068772373*^9}, { + 3.798257016849008*^9, 3.7982570709057302`*^9}, {3.798352450497024*^9, + 3.798352465842792*^9}, {3.7983572930221167`*^9, 3.798357293291419*^9}}, + CellLabel-> + "In[226]:=",ExpressionUUID->"6e8c9979-e983-4f48-b1b8-beb2ba431594"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], "\[IndentingNewLine]", + RowBox[{"RicciTensor", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}]}], "Input", + CellChangeTimes->{{3.798203109138748*^9, 3.798203120846019*^9}}, + CellLabel-> + "In[198]:=",ExpressionUUID->"1f823ee3-17cf-4b4d-b7a5-4f64e10f47a0"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}], ",", + + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}]}], "}"}]], "Output",\ + + CellChangeTimes->{{3.7982031132894783`*^9, 3.798203121202406*^9}}, + CellLabel-> + "Out[198]=",ExpressionUUID->"592cfd98-0fb4-4f54-b8e7-ec512703bdd8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}], ",", + + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}]}], "}"}]], "Output",\ + + CellChangeTimes->{{3.7982031132894783`*^9, 3.7982031212095137`*^9}}, + CellLabel-> + "Out[199]=",ExpressionUUID->"1b8a6207-1e39-41fa-93d1-20524893fe91"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], "-", "riemannd"}], + "]"}]], "Input", + CellChangeTimes->{{3.798258512359416*^9, 3.7982585586840477`*^9}}, + CellLabel->"In[90]:=",ExpressionUUID->"66e4ef84-d010-4316-8e2f-1775594db8e0"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798258534753887*^9, 3.798258588084697*^9}, + 3.798258847484206*^9, {3.79825954695162*^9, 3.798259578815139*^9}}, + CellLabel->"Out[90]=",ExpressionUUID->"55a09e0a-ec0e-4179-bfbb-07a3faea7061"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciScalarDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciScalar", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}], ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798204748584147*^9, 3.798204767410651*^9}}, + CellLabel-> + "In[285]:=",ExpressionUUID->"1ae15dfb-770e-45bc-a13c-25a8223d9a18"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.000613`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204751600883*^9, 3.79820477723498*^9}}, + CellLabel-> + "Out[285]=",ExpressionUUID->"676ec1f6-7593-4c7c-8697-d1d103ea5798"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.000534`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204751600883*^9, 3.7982047772378483`*^9}}, + CellLabel-> + "Out[286]=",ExpressionUUID->"4268ad27-15a0-42a0-ad8a-c2ba8bf2830a"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Chr", "=", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}]}], ";"}]], "Input", + CellChangeTimes->{{3.798260587113681*^9, 3.798260592713299*^9}}, + CellLabel-> + "In[105]:=",ExpressionUUID->"c1ab6d48-4f6d-474c-b146-3609ab6ac4a3"], + +Cell[BoxData[ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gabt", "[", + RowBox[{"[", + RowBox[{"i", ",", "r"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ","}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"r", ",", "n"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.798260602670498*^9, + 3.798260638502249*^9}},ExpressionUUID->"849f5cd1-bb08-4f35-8c7a-\ +080ee5bb35cb"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Rllll", "=", + RowBox[{"ConstantArray", "[", + RowBox[{"0", ",", + RowBox[{"{", + RowBox[{"n", ",", "n", ",", "n", ",", "n"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.798271117023128*^9, 3.7982711324597883`*^9}}, + CellLabel-> + "In[113]:=",ExpressionUUID->"8576f70e-b712-483e-b81f-7ba8b7817457"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.79827113325907*^9}, + CellLabel-> + "Out[113]=",ExpressionUUID->"baf9673c-f43e-4a0a-b63d-becfd5ee2224"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"Rllll", "[", + RowBox[{"[", + RowBox[{"ii", ",", "jj", ",", "kk", ",", "mm"}], "]"}], "]"}], + "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"ll", ",", "ii", ",", "kk"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "jj", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"ll", ",", "jj", ",", "kk"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "ii", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"nn", ",", "ii", ",", "kk"}], "]"}], "]"}], " ", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"ll", ",", "nn", ",", "jj"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"nn", ",", "jj", ",", "kk"}], "]"}], "]"}], " ", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"ll", ",", "nn", ",", "ii"}], "]"}], "]"}]}]}], + ",", + RowBox[{"{", + RowBox[{"nn", ",", "n"}], "}"}]}], "]"}]}], ")"}], " ", + RowBox[{"gabt", "[", + RowBox[{"[", + RowBox[{"ll", ",", "mm"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"ll", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"mm", ",", "kk", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"kk", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"jj", ",", "ii", ",", "n"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"ii", ",", "n"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.798256166628677*^9, 3.7982561666297626`*^9}, { + 3.798270943361526*^9, 3.798270956208839*^9}, {3.798271069814122*^9, + 3.798271160661531*^9}, {3.798273012906166*^9, 3.7982730147074203`*^9}}, + CellLabel-> + "In[117]:=",ExpressionUUID->"d463090a-fedf-44da-bad8-9ec47f801d42"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"n", "=", "2"}]], "Input", + CellChangeTimes->{{3.7982711757331333`*^9, 3.798271176544757*^9}}, + CellLabel-> + "In[118]:=",ExpressionUUID->"b04a902c-ddab-47ff-ae41-40ee8053148f"], + +Cell[BoxData["2"], "Output", + CellChangeTimes->{3.798271176942319*^9}, + CellLabel-> + "Out[118]=",ExpressionUUID->"fe779acd-5a84-4f6d-b813-eaf8a86f8060"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"n", "=", "0"}], ";", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"n", "=", + RowBox[{"n", "+", "1"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", + RowBox[{"k", "+", "1"}], ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"i", "+", "1"}], ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.79835059350274*^9, 3.798350647432851*^9}, { + 3.7983507227597857`*^9, 3.7983507332935743`*^9}}, + CellLabel-> + "In[200]:=",ExpressionUUID->"8fc0dd53-4891-4630-ba15-6aff16aeccb3"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"3", "*", "n"}]], "Input", + CellChangeTimes->{{3.7983507353715897`*^9, 3.798350764669745*^9}}, + CellLabel-> + "In[202]:=",ExpressionUUID->"be3433cc-df75-47d0-bab6-8f94e852e5ac"], + +Cell[BoxData["108"], "Output", + CellChangeTimes->{{3.798350735916326*^9, 3.798350765248959*^9}}, + CellLabel-> + "Out[202]=",ExpressionUUID->"b218650d-f272-412c-89e6-68470be9a64b"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"mm", ",", + RowBox[{"kk", "+", "1"}], ",", "dim"}], "}"}], "]"}], ",", + RowBox[{"{", + RowBox[{"kk", ",", + RowBox[{"dim", "-", "1"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"jj", ",", + RowBox[{"ii", "+", "1"}], ",", "dim"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"ii", ",", + RowBox[{"dim", "-", "1"}]}], "}"}]}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.798350678936556*^9, + 3.7983506789378643`*^9}},ExpressionUUID->"d082c7b5-5e49-4e11-b39e-\ +3e470b191fb7"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", "Rllll", "]"}]], "Input", + CellChangeTimes->{{3.798271216821392*^9, 3.798271219660417*^9}}, + CellLabel-> + "In[122]:=",ExpressionUUID->"6d20c31b-5aee-407c-affa-f6dd4607be9b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798271165436208*^9, 3.7982711784471083`*^9}, + 3.7982712200759974`*^9}, + CellLabel-> + "Out[122]=",ExpressionUUID->"874305eb-d15f-4754-b4bb-a41b2d24e075"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", "riemannd", "]"}]], "Input", + CellChangeTimes->{{3.798271193989959*^9, 3.798271211976635*^9}}, + CellLabel-> + "In[121]:=",ExpressionUUID->"6c27ba34-6cef-4d38-bc0f-9c85eccddb76"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798271196129643*^9, 3.798271212387245*^9}}, + CellLabel-> + "Out[121]=",ExpressionUUID->"dd2d6302-3afa-4227-8973-afbced035839"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gabt", "[", + RowBox[{"[", + RowBox[{"a", ",", "\[Alpha]"}], "]"}], "]"}], + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"\[Alpha]", ",", "b", ",", "c", ",", "d"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "2"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\ +"ce84ec16-b710-4bea-8dfe-dd1b1b1ce42a"], + +Cell[BoxData[ + RowBox[{"riemannd", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gabt", "[", + RowBox[{"[", + RowBox[{"a", ",", "\[Alpha]"}], "]"}], "]"}], + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"\[Alpha]", ",", "b", ",", "c", ",", "d"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "2"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"a", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"c", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", "2"}], "}"}]}], "]"}]}]], "Input",ExpressionUUID->\ +"159eb7a6-4eec-49e0-84c9-ef2405685d24"], + +Cell[CellGroupData[{ + +Cell[BoxData["riemann"], "Input", + CellLabel-> + "In[132]:=",ExpressionUUID->"474f40fc-0808-476f-a97c-012d1df8d21e"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.79827334603363*^9}, + CellLabel-> + "Out[132]=",ExpressionUUID->"7c479871-c9bf-4bbe-b128-ae4c2b2bd58b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xxt", ",", "gabt", ",", "0"}], "]"}]], "Input", + CellLabel-> + "In[131]:=",ExpressionUUID->"4a489840-1543-4d33-9049-364d146ec26a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.798261364847686*^9, 3.798273337350636*^9}, + CellLabel-> + "Out[131]=",ExpressionUUID->"f81641df-e959-499e-87d8-462650723adb"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"n", "=", "2"}], ";", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gabt", "[", + RowBox[{"[", + RowBox[{"i", ",", "r"}], "]"}], "]"}], + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"r", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.7982613328489017`*^9, 3.7982613513748493`*^9}, { + 3.798261547255275*^9, + 3.7982615782468*^9}},ExpressionUUID->"0f467eec-a7ba-463d-a027-3b5602c48647"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}], ",", "0"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0"}], "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.7982613479740562`*^9, 3.798261351652082*^9}}, + CellLabel-> + "Out[107]=",ExpressionUUID->"860921e1-b1a9-4915-b2d1-e4b5882653a4"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], "=", + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xxt", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"r", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], "="}], + "]"}]}], "Input", + CellChangeTimes->{{3.798261770480234*^9, + 3.798261821269239*^9}},ExpressionUUID->"6ed5f051-7411-46b0-9fb3-\ +f6775be5748f"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "r"}], "]"}], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}], "-", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"r", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"r", ",", "n"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.798270435777136*^9, 3.7982704362000628`*^9}, { + 3.798271004015177*^9, + 3.7982710178854313`*^9}},ExpressionUUID->"3c8e42ae-51fb-405c-a049-\ +35cff0a054ea"], + +Cell[BoxData[ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Gull", "[", + RowBox[{"[", + RowBox[{"ll", ",", "ii", ",", "kk"}], "]"}], "]"}], ",", + RowBox[{"xu", "[", + RowBox[{"[", "jj", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Gull", "[", + RowBox[{"[", + RowBox[{"ll", ",", "jj", ",", "kk"}], "]"}], "]"}], ",", + RowBox[{"xu", "[", + RowBox[{"[", "ii", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Gull", "[", + RowBox[{"[", + RowBox[{"nn", ",", "ii", ",", "kk"}], "]"}], "]"}], " ", + RowBox[{"Gull", "[", + RowBox[{"[", + RowBox[{"ll", ",", "nn", ",", "jj"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Gull", "[", + RowBox[{"[", + RowBox[{"nn", ",", "jj", ",", "kk"}], "]"}], "]"}], " ", + RowBox[{"Gull", "[", + RowBox[{"[", + RowBox[{"ll", ",", "nn", ",", "ii"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"nn", ",", "dim"}], "}"}]}], "]"}]}], ")"}], " ", + RowBox[{"gll", "[", + RowBox[{"[", + RowBox[{"ll", ",", "mm"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"ll", ",", "dim"}], "}"}]}], "]"}]], "Input",ExpressionUUID->\ +"08010e25-a9cb-4239-aae2-a8b5bff5840e"], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{ + RowBox[{"res", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l", ",", "m"}], "]"}], "]"}], "=", + RowBox[{"(", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "m"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "l", "]"}], "]"}]}], "]"}], "-", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "k", ",", "l"}], "]"}], "]"}], ",", + RowBox[{"xx", "[", + RowBox[{"[", "m", "]"}], "]"}]}], "]"}], "+", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "l"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "m"}], "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"i", ",", "s", ",", "m"}], "]"}], "]"}], "*", + RowBox[{"Chr", "[", + RowBox[{"[", + RowBox[{"s", ",", "k", ",", "l"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"s", ",", "n"}], "}"}]}], "]"}]}], ")"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "n"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "n"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7982708774161158`*^9, + 3.79827089813865*^9}},ExpressionUUID->"694e3683-9945-499b-bb16-\ +cf59112f3cc3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Schwarzschild solution", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}, {3.74817116905129*^9, + 3.7481711974490223`*^9}},ExpressionUUID->"71c6953a-658a-45b8-8bc4-\ +5b582d6e7a41"], + +Cell[CellGroupData[{ + +Cell["Centered at r=0", "Subsubsection", + CellChangeTimes->{{3.783402201148816*^9, + 3.7834022070941677`*^9}},ExpressionUUID->"097d7736-64f4-43ed-8752-\ +ace7248abe11"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", "r"}]}]}], ")"}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", "1"}], "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", "r"}]}]}], ")"}]}], ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"-", + SuperscriptBox["r", "2"]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", "1"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.748171321217037*^9, 3.748171333404755*^9}, { + 3.748171434155205*^9, 3.748171435097939*^9}, 3.748171469502976*^9, { + 3.782197504475832*^9, 3.782197525507375*^9}, 3.782197817851701*^9, + 3.782219455162467*^9}, + CellLabel-> + "In[287]:=",ExpressionUUID->"bc52bc22-aa28-46c1-bec0-7bb151040250"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.7979136584137077`*^9, 3.79791377859127*^9, + 3.797915265866742*^9, 3.797915486723537*^9, 3.7979155732465143`*^9, + 3.797915669432715*^9, 3.797916188930868*^9, 3.797916280485346*^9, + 3.7982022981861763`*^9, 3.798203133108059*^9, 3.798203221794207*^9, + 3.7982047855390177`*^9}, + CellLabel-> + "Out[288]=",ExpressionUUID->"af354c88-a964-4897-956b-c382f322a790"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.748171040384201*^9, 3.748171337672936*^9, 3.748171435515542*^9, + 3.748171472097746*^9, {3.7821974589108067`*^9, 3.782197525822959*^9}, + 3.782197774525013*^9, 3.7821978182122602`*^9, 3.782199138522822*^9, + 3.782200305520879*^9, 3.7822005243360853`*^9, 3.782200600177784*^9, + 3.782201008113688*^9, {3.7822194494845133`*^9, 3.782219464912323*^9}, + 3.782630476462756*^9, 3.782630521573388*^9, 3.7826305727030573`*^9, + 3.783402189441841*^9, 3.7979136584167757`*^9, 3.797913778593964*^9, + 3.797915265870791*^9, 3.7979154867260437`*^9, 3.7979155732492723`*^9, + 3.7979156694364433`*^9, 3.797916188934161*^9, 3.7979162804884167`*^9, + 3.79820229818928*^9, 3.798203133110924*^9, 3.798203221797865*^9, + 3.7982047855435266`*^9}, + CellLabel-> + "During evaluation of \ +In[287]:=",ExpressionUUID->"982f80a5-5816-4dbb-9383-da90f0a95ea2"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.7979136584137077`*^9, 3.79791377859127*^9, + 3.797915265866742*^9, 3.797915486723537*^9, 3.7979155732465143`*^9, + 3.797915669432715*^9, 3.797916188930868*^9, 3.797916280485346*^9, + 3.7982022981861763`*^9, 3.798203133108059*^9, 3.798203221794207*^9, + 3.798204785546117*^9}, + CellLabel-> + "Out[292]=",ExpressionUUID->"78edf1f1-3c90-49de-87e7-26a4e8cb1e0b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.798204811856698*^9, 3.798204821209098*^9}}, + CellLabel-> + "In[315]:=",ExpressionUUID->"19e35762-c809-4558-94ef-46c9f005c26d"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{{3.798204816323435*^9, 3.7982048216018972`*^9}}, + CellLabel-> + "Out[315]=",ExpressionUUID->"22dea635-5fb2-40d1-81d9-e40378d9fee8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798204748584147*^9, 3.7982047974538593`*^9}}, + CellLabel-> + "In[312]:=",ExpressionUUID->"d82f7aa2-a215-4330-959b-c50192e0809b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.007047`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204751600883*^9, 3.798204808635923*^9}}, + CellLabel-> + "Out[312]=",ExpressionUUID->"c8360ad2-5eba-476b-adc4-2dbec1c433fb"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.011049`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204751600883*^9, 3.798204808738502*^9}}, + CellLabel-> + "Out[313]=",ExpressionUUID->"d196b586-d192-47c5-ba89-d4b22d565927"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}], + "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.797835299231812*^9, 3.797835340394423*^9}, { + 3.797836115556294*^9, 3.7978361214969673`*^9}, {3.7978362190049334`*^9, + 3.797836222350019*^9}, {3.797912224035125*^9, 3.7979122242233*^9}, { + 3.79791305515164*^9, 3.797913056807482*^9}, {3.797913637483117*^9, + 3.7979136385662603`*^9}, {3.797913671918254*^9, 3.797913718118505*^9}, + 3.797915079595621*^9, 3.797915122931198*^9}, + CellLabel-> + "In[221]:=",ExpressionUUID->"0247e2b9-bc3c-4c3f-bb00-8acd165592e5"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.797913680342815*^9, 3.7979137185817537`*^9}, + 3.797913779560367*^9, 3.797916153139942*^9, 3.797916191502902*^9, + 3.797916281487125*^9, 3.798202301441284*^9, 3.798203135358303*^9, + 3.798203222442752*^9}, + CellLabel-> + "Out[221]=",ExpressionUUID->"0fdba44a-65cd-45b1-ba22-f41cc3770772"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7982021084293747`*^9, 3.798202108676981*^9}, + 3.798202209419623*^9, {3.798202278707458*^9, 3.798202344492771*^9}}, + CellLabel-> + "In[222]:=",ExpressionUUID->"7424ddb4-26b8-48d6-9abb-98d2bc885989"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.798202210082041*^9, 3.7982022406943617`*^9, {3.798202274764333*^9, + 3.798202281003334*^9}, {3.798202317306707*^9, 3.798202344906736*^9}, + 3.7982031359286547`*^9, 3.798203223004592*^9}, + CellLabel-> + "Out[222]=",ExpressionUUID->"de552109-5584-41ed-b9bf-a763376239e4"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.7982032541973352`*^9, 3.7982032647545633`*^9}}, + CellLabel-> + "In[237]:=",ExpressionUUID->"dfefc84c-dd88-4a77-bff2-e060f6469dd9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.006866`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203260933875*^9, 3.798203272767045*^9}}, + CellLabel-> + "Out[237]=",ExpressionUUID->"0f7f8d4a-fd24-4a77-a498-873ec5943458"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.010266`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203260933875*^9, 3.798203272874894*^9}}, + CellLabel-> + "Out[238]=",ExpressionUUID->"0f3aa6e9-6148-45e8-9769-ef3e29f81d80"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.798203109138748*^9, 3.798203151789197*^9}, { + 3.798203224680072*^9, 3.7982032288681593`*^9}}, + CellLabel-> + "In[223]:=",ExpressionUUID->"a45c7fd6-bc95-4cd2-a939-0f8b9ceee313"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.7982031132894783`*^9, 3.798203121202406*^9}, + 3.798203152136614*^9, 3.798203229286425*^9}, + CellLabel-> + "Out[223]=",ExpressionUUID->"9df9d3c6-5328-4733-92da-a417154d24c6"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riemanndev", "=", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyldev", "=", + RowBox[{"WeylTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.78221947850369*^9, 3.782219506150009*^9}, {3.798202761833997*^9, + 3.798202776738352*^9}, {3.798203289208571*^9, 3.798203296173214*^9}}, + CellLabel-> + "In[243]:=",ExpressionUUID->"6c0757c1-66e8-4635-a6a5-ec9565cf9a09"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}], + ";"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}], + ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798203309481266*^9, 3.798203326705572*^9}}, + CellLabel-> + "In[262]:=",ExpressionUUID->"e481ab34-a861-4cbf-bb67-9d5ec109ebcb"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.006847`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203318979433*^9, 3.798203334094913*^9}, + 3.798203560664033*^9}, + CellLabel-> + "Out[262]=",ExpressionUUID->"57104fae-7004-49db-9520-650de57167f0"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.006349`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203318979433*^9, 3.798203334094913*^9}, + 3.79820356077897*^9}, + CellLabel-> + "Out[263]=",ExpressionUUID->"16cdaf05-618c-4d4c-9e5e-f68281f53b92"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"riemann", "-", "riemanndev"}], "]"}]], "Input", + CellChangeTimes->{{3.798203304472187*^9, 3.7982033059470587`*^9}}, + CellLabel-> + "In[264]:=",ExpressionUUID->"395e2117-5a18-4852-9ffe-0e5905492742"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.7982033063425913`*^9, 3.798203561840762*^9}, + CellLabel-> + "Out[264]=",ExpressionUUID->"9ee3c406-b481-4f27-ada6-9b57b5e8621b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"weyldev", "-", "weyl"}], "]"}]], "Input", + CellChangeTimes->{{3.798202780233724*^9, 3.7982027854377613`*^9}}, + CellLabel-> + "In[180]:=",ExpressionUUID->"d0571893-4b91-45a5-8b07-ab8ad5b83c2e"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.798202785808283*^9}, + CellLabel-> + "Out[180]=",ExpressionUUID->"7513720c-eab0-4f3f-bdcf-8da67b8f20f7"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}, 3.78219948658713*^9, {3.7826305867019253`*^9, + 3.7826305936220818`*^9}}, + CellLabel-> + "In[163]:=",ExpressionUUID->"bd54c951-997e-4b8b-a899-a562208bb2a6"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.7821991425329933`*^9}, { + 3.782199429131427*^9, 3.78219948196135*^9}, {3.782199540342497*^9, + 3.782199550322959*^9}, {3.782199608544145*^9, 3.782199648909281*^9}, + 3.78219969038365*^9, 3.782199754770076*^9, {3.782199825367083*^9, + 3.78219984981874*^9}, 3.782200314358725*^9, 3.782200351709373*^9, + 3.782200528115121*^9, {3.782200604605845*^9, 3.78220061390936*^9}, + 3.782201009582872*^9, {3.782219457390414*^9, 3.782219507353655*^9}, + 3.7826292163787107`*^9, 3.7826294821670322`*^9, 3.782629513596752*^9, + 3.782629548887363*^9, {3.782629622671447*^9, 3.7826296612390957`*^9}, + 3.7826297260622997`*^9, {3.78263057576853*^9, 3.7826305941944313`*^9}, + 3.7834021919351*^9, 3.797913661692087*^9, 3.798202364880413*^9}, + CellLabel-> + "Out[163]=",ExpressionUUID->"05d56857-72b0-4a1b-bf65-dd62002228bc"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.7821991706900883`*^9, 3.7821991762012653`*^9}, { + 3.782630596645924*^9, 3.782630597441167*^9}}, + CellLabel-> + "In[164]:=",ExpressionUUID->"ce2d7b28-ce7f-4e91-b79a-4c68043edacf"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{ + 3.782199176483611*^9, 3.782199649877537*^9, 3.782200315929088*^9, + 3.782200529119993*^9, {3.7822006057257643`*^9, 3.78220061422635*^9}, + 3.782201009871745*^9, {3.7822194576524878`*^9, 3.782219507531801*^9}, { + 3.7826305784902067`*^9, 3.782630597863805*^9}, 3.7834021923682137`*^9, + 3.797913662346368*^9, 3.798202365636868*^9}, + CellLabel-> + "Out[164]=",ExpressionUUID->"458cab5e-3d63-405a-be46-afcf502f7e2d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel-> + "In[173]:=",ExpressionUUID->"fe94d06a-6caf-4b89-8901-b282db79c747"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", "r"}], ")"}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782200624712783*^9, {3.782200995586378*^9, 3.782201015695821*^9}, { + 3.7822194688461123`*^9, 3.782219507905998*^9}, 3.7826306009316597`*^9, + 3.7834021929226503`*^9, 3.797913663066283*^9, 3.798202754365016*^9}, + CellLabel-> + "Out[173]=",ExpressionUUID->"46e93b8f-d250-48df-993b-4df86997f306"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.782219551658869*^9, 3.782219562036425*^9}}, + CellLabel-> + "In[100]:=",ExpressionUUID->"7e2a08eb-a661-4dcf-a34a-bf362707e182"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219575788557*^9, 3.7826306026890507`*^9, + 3.783402193732977*^9, 3.79791366432831*^9}, + CellLabel-> + "Out[100]=",ExpressionUUID->"21b05cfc-e373-4ec3-8e53-509d03e916b2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel-> + "In[101]:=",ExpressionUUID->"1a24ba00-5ef8-4c8a-869e-50a6b344cb96"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219574030792*^9, 3.782630603464432*^9, + 3.783402194348279*^9, 3.7979136648421392`*^9}, + CellLabel-> + "Out[101]=",ExpressionUUID->"900bf33b-c142-487e-b8b5-186cb3cac659"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Kerr mod at r=0", "Subsubsection", + CellChangeTimes->{{3.783402201148816*^9, 3.7834022070941677`*^9}, { + 3.798205250011554*^9, + 3.7982052519137278`*^9}},ExpressionUUID->"e43554bf-b26c-4e7d-84a9-\ +a8c2f159e955"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", "r"}]}]}], ")"}], ",", + RowBox[{ + RowBox[{"-", " ", "a"}], "/", + RowBox[{"r", "^", "2"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", " ", "a"}], "/", + RowBox[{"r", "^", "2"}]}], ",", + RowBox[{ + RowBox[{"-", "1"}], "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", "r"}]}]}], ")"}]}], ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"-", + SuperscriptBox["r", "2"]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", "1"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.748171321217037*^9, 3.748171333404755*^9}, { + 3.748171434155205*^9, 3.748171435097939*^9}, 3.748171469502976*^9, { + 3.782197504475832*^9, 3.782197525507375*^9}, 3.782197817851701*^9, + 3.782219455162467*^9, {3.7982052642248983`*^9, 3.798205292176104*^9}}, + CellLabel-> + "In[276]:=",ExpressionUUID->"05f31ab9-16b7-42ba-8606-57d7209b7e4b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.7979136584137077`*^9, 3.79791377859127*^9, + 3.797915265866742*^9, 3.797915486723537*^9, 3.7979155732465143`*^9, + 3.797915669432715*^9, 3.797916188930868*^9, 3.797916280485346*^9, + 3.7982022981861763`*^9, 3.798203133108059*^9, 3.798203221794207*^9, + 3.7982047855390177`*^9, 3.798205257520162*^9, 3.798205292948371*^9, + 3.7983582191300993`*^9}, + CellLabel-> + "Out[277]=",ExpressionUUID->"6bcdbbd6-205b-41a0-abb8-bfebcc453f6e"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.748171040384201*^9, 3.748171337672936*^9, 3.748171435515542*^9, + 3.748171472097746*^9, {3.7821974589108067`*^9, 3.782197525822959*^9}, + 3.782197774525013*^9, 3.7821978182122602`*^9, 3.782199138522822*^9, + 3.782200305520879*^9, 3.7822005243360853`*^9, 3.782200600177784*^9, + 3.782201008113688*^9, {3.7822194494845133`*^9, 3.782219464912323*^9}, + 3.782630476462756*^9, 3.782630521573388*^9, 3.7826305727030573`*^9, + 3.783402189441841*^9, 3.7979136584167757`*^9, 3.797913778593964*^9, + 3.797915265870791*^9, 3.7979154867260437`*^9, 3.7979155732492723`*^9, + 3.7979156694364433`*^9, 3.797916188934161*^9, 3.7979162804884167`*^9, + 3.79820229818928*^9, 3.798203133110924*^9, 3.798203221797865*^9, + 3.7982047855435266`*^9, 3.798205257524719*^9, 3.7982052929555693`*^9, + 3.798358219133264*^9}, + CellLabel-> + "During evaluation of \ +In[276]:=",ExpressionUUID->"fb201946-a8e9-427e-9482-44a7f5630cad"], + +Cell[BoxData[ + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + RowBox[{"6", " ", "M", " ", + SuperscriptBox["r", "3"]}], "-", + RowBox[{"3", " ", + SuperscriptBox["r", "4"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["r", "4"]}], ")"}], "2"]}]]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.7979136584137077`*^9, 3.79791377859127*^9, + 3.797915265866742*^9, 3.797915486723537*^9, 3.7979155732465143`*^9, + 3.797915669432715*^9, 3.797916188930868*^9, 3.797916280485346*^9, + 3.7982022981861763`*^9, 3.798203133108059*^9, 3.798203221794207*^9, + 3.7982047855390177`*^9, 3.798205257520162*^9, 3.798205292948371*^9, + 3.79835821921964*^9}, + CellLabel-> + "Out[281]=",ExpressionUUID->"1cb63972-9da5-467a-be1c-f293792f02b9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"g", "//", "TableForm"}]], "Input", + CellChangeTimes->{{3.798205298667816*^9, 3.798205303682613*^9}}, + CellLabel-> + "In[285]:=",ExpressionUUID->"60ca60ec-dc2b-48a3-822e-788e1a1bcdbf"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{"1", "-", + FractionBox[ + RowBox[{"2", " ", "M"}], "r"]}], + RowBox[{"-", + FractionBox["a", + SuperscriptBox["r", "2"]]}], "0", "0"}, + { + RowBox[{"-", + FractionBox["a", + SuperscriptBox["r", "2"]]}], + RowBox[{"-", + FractionBox["1", + RowBox[{"1", "-", + FractionBox[ + RowBox[{"2", " ", "M"}], "r"]}]]}], "0", "0"}, + {"0", "0", + RowBox[{"-", + SuperscriptBox["r", "2"]}], "0"}, + {"0", "0", "0", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.7982052959976892`*^9, 3.7982053040020113`*^9}, + 3.798358223995205*^9}, + CellLabel-> + "Out[285]//TableForm=",ExpressionUUID->"2a563e88-ab31-4cda-a4bb-\ +a5667eef19c2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.798204811856698*^9, 3.798204821209098*^9}}, + CellLabel-> + "In[286]:=",ExpressionUUID->"d42c09f2-57c0-48c6-a89e-d2d7088b7ca2"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{{3.798204816323435*^9, 3.7982048216018972`*^9}, + 3.798205307770852*^9, 3.798358226664236*^9}, + CellLabel-> + "Out[286]=",ExpressionUUID->"62c89b2b-5cfe-4b79-a612-19aba2e14786"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798204748584147*^9, 3.7982047974538593`*^9}}, + CellLabel-> + "In[377]:=",ExpressionUUID->"9d0b6749-f7cb-4712-97aa-9a7964afd790"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.011048`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204751600883*^9, 3.798204808635923*^9}, + 3.798205309647306*^9}, + CellLabel-> + "Out[377]=",ExpressionUUID->"bbbf5731-5bb2-472e-b683-1bd44dbe5a68"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.018603`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204751600883*^9, 3.798204808635923*^9}, + 3.798205309650301*^9}, + CellLabel-> + "Out[378]=",ExpressionUUID->"70123f00-074a-4a33-882a-e5225ed9630b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}], + "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.797835299231812*^9, 3.797835340394423*^9}, { + 3.797836115556294*^9, 3.7978361214969673`*^9}, {3.7978362190049334`*^9, + 3.797836222350019*^9}, {3.797912224035125*^9, 3.7979122242233*^9}, { + 3.79791305515164*^9, 3.797913056807482*^9}, {3.797913637483117*^9, + 3.7979136385662603`*^9}, {3.797913671918254*^9, 3.797913718118505*^9}, + 3.797915079595621*^9, 3.797915122931198*^9}, + CellLabel-> + "In[289]:=",ExpressionUUID->"b9948f6c-d174-4fcd-9cc2-27d140571218"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.797913680342815*^9, 3.7979137185817537`*^9}, + 3.797913779560367*^9, 3.797916153139942*^9, 3.797916191502902*^9, + 3.797916281487125*^9, 3.798202301441284*^9, 3.798203135358303*^9, + 3.798203222442752*^9, 3.798205310809457*^9, {3.798358233011009*^9, + 3.798358239973896*^9}}, + CellLabel-> + "Out[289]=",ExpressionUUID->"8fedad54-aa59-4b75-8fff-aba28ba3ad11"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RiemannTensorDev2", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7982021084293747`*^9, 3.798202108676981*^9}, + 3.798202209419623*^9, {3.798202278707458*^9, 3.798202344492771*^9}, + 3.798358251132328*^9}, + CellLabel-> + "In[293]:=",ExpressionUUID->"ce880f5c-5bc7-4de0-bc57-e55a681ed2b5"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.798202210082041*^9, 3.7982022406943617`*^9, {3.798202274764333*^9, + 3.798202281003334*^9}, {3.798202317306707*^9, 3.798202344906736*^9}, + 3.7982031359286547`*^9, 3.798203223004592*^9, 3.798205311846031*^9, { + 3.798358237122497*^9, 3.798358251593992*^9}}, + CellLabel-> + "Out[293]=",ExpressionUUID->"3f1eab61-11b8-43a2-9901-09f55a9a3825"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.7982032541973352`*^9, 3.7982032647545633`*^9}}, + CellLabel-> + "In[294]:=",ExpressionUUID->"155c5e2a-4ee8-41a4-8c55-0c5b3dd543a2"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.013085`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203260933875*^9, 3.798203272767045*^9}, + 3.798205312847139*^9, 3.7983582537927732`*^9}, + CellLabel-> + "Out[294]=",ExpressionUUID->"906266aa-9963-4682-a137-95757886d7df"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.015444`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203260933875*^9, 3.798203272767045*^9}, + 3.798205312847139*^9, 3.7983582537949467`*^9}, + CellLabel-> + "Out[295]=",ExpressionUUID->"24357483-228c-4dcb-a267-fa3d41edd8b4"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.798203109138748*^9, 3.798203151789197*^9}, { + 3.798203224680072*^9, 3.7982032288681593`*^9}}, + CellLabel-> + "In[296]:=",ExpressionUUID->"b6f96e58-3949-482e-84fd-1406f9da91b8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.7982031132894783`*^9, 3.798203121202406*^9}, + 3.798203152136614*^9, 3.798203229286425*^9, 3.798205314134336*^9, + 3.798358258594306*^9}, + CellLabel-> + "Out[296]=",ExpressionUUID->"78d4a0b0-efd4-4070-9e13-296a508f708d"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riemanndev", "=", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyldev", "=", + RowBox[{"WeylTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.78221947850369*^9, 3.782219506150009*^9}, {3.798202761833997*^9, + 3.798202776738352*^9}, {3.798203289208571*^9, 3.798203296173214*^9}}, + CellLabel-> + "In[243]:=",ExpressionUUID->"acb00660-e03b-405c-bcc1-dc000f54f0d8"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}], + ";"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}], + ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798203309481266*^9, 3.798203326705572*^9}}, + CellLabel-> + "In[262]:=",ExpressionUUID->"702c3ae5-2d9a-437d-a6d2-8bb23b963b34"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.006847`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203318979433*^9, 3.798203334094913*^9}, + 3.798203560664033*^9}, + CellLabel-> + "Out[262]=",ExpressionUUID->"d77a9816-083c-4751-82d2-aacbd1332800"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.006349`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798203318979433*^9, 3.798203334094913*^9}, + 3.79820356077897*^9}, + CellLabel-> + "Out[263]=",ExpressionUUID->"d4e2054a-93fa-4197-be67-6436756cc179"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"riemann", "-", "riemanndev"}], "]"}]], "Input", + CellChangeTimes->{{3.798203304472187*^9, 3.7982033059470587`*^9}}, + CellLabel-> + "In[264]:=",ExpressionUUID->"7bfc886e-2ded-48d0-9cf1-1960fe714b53"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.7982033063425913`*^9, 3.798203561840762*^9}, + CellLabel-> + "Out[264]=",ExpressionUUID->"7245960e-40c8-4dfe-b52d-8cfc5149a6f5"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"weyldev", "-", "weyl"}], "]"}]], "Input", + CellChangeTimes->{{3.798202780233724*^9, 3.7982027854377613`*^9}}, + CellLabel-> + "In[180]:=",ExpressionUUID->"4d22f561-5068-4098-9b65-ab6a871e80c7"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.798202785808283*^9}, + CellLabel-> + "Out[180]=",ExpressionUUID->"748d820a-cc37-4410-9235-7476da197f5c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}, 3.78219948658713*^9, {3.7826305867019253`*^9, + 3.7826305936220818`*^9}}, + CellLabel-> + "In[163]:=",ExpressionUUID->"76354c0f-e9fd-4d62-b862-7c3015f4ea76"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.7821991425329933`*^9}, { + 3.782199429131427*^9, 3.78219948196135*^9}, {3.782199540342497*^9, + 3.782199550322959*^9}, {3.782199608544145*^9, 3.782199648909281*^9}, + 3.78219969038365*^9, 3.782199754770076*^9, {3.782199825367083*^9, + 3.78219984981874*^9}, 3.782200314358725*^9, 3.782200351709373*^9, + 3.782200528115121*^9, {3.782200604605845*^9, 3.78220061390936*^9}, + 3.782201009582872*^9, {3.782219457390414*^9, 3.782219507353655*^9}, + 3.7826292163787107`*^9, 3.7826294821670322`*^9, 3.782629513596752*^9, + 3.782629548887363*^9, {3.782629622671447*^9, 3.7826296612390957`*^9}, + 3.7826297260622997`*^9, {3.78263057576853*^9, 3.7826305941944313`*^9}, + 3.7834021919351*^9, 3.797913661692087*^9, 3.798202364880413*^9}, + CellLabel-> + "Out[163]=",ExpressionUUID->"72af99db-9d7f-4c7e-9223-640402a66ad3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.7821991706900883`*^9, 3.7821991762012653`*^9}, { + 3.782630596645924*^9, 3.782630597441167*^9}}, + CellLabel-> + "In[164]:=",ExpressionUUID->"c6cb8015-adfa-4648-b1fb-3af96ad9bfc4"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{ + 3.782199176483611*^9, 3.782199649877537*^9, 3.782200315929088*^9, + 3.782200529119993*^9, {3.7822006057257643`*^9, 3.78220061422635*^9}, + 3.782201009871745*^9, {3.7822194576524878`*^9, 3.782219507531801*^9}, { + 3.7826305784902067`*^9, 3.782630597863805*^9}, 3.7834021923682137`*^9, + 3.797913662346368*^9, 3.798202365636868*^9}, + CellLabel-> + "Out[164]=",ExpressionUUID->"2ed220c1-5a7c-4ecc-b217-dcdf9fc6e227"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel-> + "In[173]:=",ExpressionUUID->"8e109ca0-d330-4c1b-8d1b-26b236673b3d"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", "r"}], ")"}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782200624712783*^9, {3.782200995586378*^9, 3.782201015695821*^9}, { + 3.7822194688461123`*^9, 3.782219507905998*^9}, 3.7826306009316597`*^9, + 3.7834021929226503`*^9, 3.797913663066283*^9, 3.798202754365016*^9}, + CellLabel-> + "Out[173]=",ExpressionUUID->"18b7b647-8cb8-4583-8a0f-05b8da674072"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.782219551658869*^9, 3.782219562036425*^9}}, + CellLabel-> + "In[100]:=",ExpressionUUID->"e21cf04c-f8ba-4443-8a5c-3f154e6eea0c"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219575788557*^9, 3.7826306026890507`*^9, + 3.783402193732977*^9, 3.79791366432831*^9}, + CellLabel-> + "Out[100]=",ExpressionUUID->"06a9eb3c-e44b-4ce9-90d3-5e08bea49b82"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel-> + "In[101]:=",ExpressionUUID->"441b528d-5cee-4b6f-9d76-444744e866e9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219574030792*^9, 3.782630603464432*^9, + 3.783402194348279*^9, 3.7979136648421392`*^9}, + CellLabel-> + "Out[101]=",ExpressionUUID->"039bfaa9-ca81-4a36-8988-33e37b3cd0ae"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Centered at r=d (recovery of the expected solution)", "Subsubsection", + CellChangeTimes->{{3.783402201148816*^9, 3.7834022123112507`*^9}, { + 3.783404813940013*^9, + 3.783404821622905*^9}},ExpressionUUID->"ba23e976-fa7b-4a9a-8934-\ +647fa435594b"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"r1", "^", "2"}], " ", "-", " ", + RowBox[{"2", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], "]"}]}]}]}], ")"}], + ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", "1"}], "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"r1", "^", "2"}], " ", "-", " ", + RowBox[{"2", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], "]"}]}]}]}], + ")"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"r1", "^", "2"}], " ", "-", " ", + RowBox[{"2", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], "]"}], "2"]}], ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"r1", "^", "2"}], " ", "-", " ", + RowBox[{"2", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], "]"}], "2"]}], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", "1"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.748171321217037*^9, 3.748171333404755*^9}, { + 3.748171434155205*^9, 3.748171435097939*^9}, 3.748171469502976*^9, { + 3.782197504475832*^9, 3.782197525507375*^9}, 3.782197817851701*^9, + 3.782219455162467*^9, {3.783402243067484*^9, 3.783402300981739*^9}, { + 3.783402511789713*^9, 3.783402517412003*^9}}, + CellLabel->"In[95]:=",ExpressionUUID->"4fd67d43-ee38-4901-9a4a-d89956cf95eb"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.783402361693857*^9, 3.783402518011313*^9}, + CellLabel->"Out[96]=",ExpressionUUID->"06b60870-7a8e-4da4-91bd-b8d925454c51"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.748171040384201*^9, 3.748171337672936*^9, 3.748171435515542*^9, + 3.748171472097746*^9, {3.7821974589108067`*^9, 3.782197525822959*^9}, + 3.782197774525013*^9, 3.7821978182122602`*^9, 3.782199138522822*^9, + 3.782200305520879*^9, 3.7822005243360853`*^9, 3.782200600177784*^9, + 3.782201008113688*^9, {3.7822194494845133`*^9, 3.782219464912323*^9}, + 3.782630476462756*^9, 3.782630521573388*^9, 3.7826305727030573`*^9, + 3.783402189441841*^9, 3.783402361696969*^9, 3.7834025180148087`*^9}, + CellLabel-> + "During evaluation of \ +In[95]:=",ExpressionUUID->"ddace223-cda9-404e-87bd-78a292e5f7c6"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], " ", "M"}], "+", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], + RowBox[{"5", "/", "2"}]]]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.783402361693857*^9, 3.7834025185222893`*^9}, + CellLabel-> + "Out[100]=",ExpressionUUID->"4aaf02bd-af65-4afe-8482-f92a29749b06"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.78221947850369*^9, 3.782219506150009*^9}}, + CellLabel-> + "In[104]:=",ExpressionUUID->"b22c3b79-fdca-424f-b1a2-f13bdd670dba"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"wtr", "=", + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}, 3.78219948658713*^9, {3.7826305867019253`*^9, + 3.7826305936220818`*^9}, {3.783402373181252*^9, 3.783402374000952*^9}}, + CellLabel-> + "In[106]:=",ExpressionUUID->"48448da8-b735-429f-bbf9-a9e6c33bd84b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "M"}], "+", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", + SuperscriptBox["M", "2"], " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"6", " ", + SuperscriptBox["M", "2"], " ", + SuperscriptBox["r1", "2"]}], "-", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"]}], "-", + RowBox[{"2", " ", + SuperscriptBox["r1", "4"]}], "-", + RowBox[{"12", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"M", " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "24"}], " ", + SuperscriptBox["M", "2"]}], "+", + SuperscriptBox["r1", "2"], "+", + RowBox[{"12", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], "+", + + RowBox[{ + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"18", " ", + SuperscriptBox["M", "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}]}], "-", + RowBox[{"13", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}], "-", + RowBox[{"2", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + RowBox[{"Cos", "[", + RowBox[{"3", " ", "\[Theta]1"}], "]"}]}]}], ")"}], "2"]}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "12"}], " ", "M", " ", + SuperscriptBox["r", "4"]}], "-", + RowBox[{"35", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"]}], "+", + RowBox[{"M", " ", + SuperscriptBox["r1", "4"]}], "+", + RowBox[{"24", " ", + SuperscriptBox["M", "2"], " ", + SuperscriptBox["r", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"6", " ", + SuperscriptBox["M", "2"], " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "-", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "-", + RowBox[{"2", " ", + SuperscriptBox["r1", "4"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"48", " ", "M", " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"35", " ", "M", " ", + SuperscriptBox["r1", "2"]}], "-", + RowBox[{"48", " ", + SuperscriptBox["M", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], "+", + + RowBox[{ + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "M"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"37", " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"13", " ", + SuperscriptBox["r1", "2"]}]}], ")"}]}], "+", + RowBox[{"18", " ", + SuperscriptBox["M", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}], "+", + RowBox[{"13", " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + RowBox[{"Cos", "[", + RowBox[{"3", " ", "\[Theta]1"}], "]"}]}], "-", + RowBox[{"2", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + RowBox[{"Cos", "[", + RowBox[{"3", " ", "\[Theta]1"}], "]"}]}]}], ")"}], "2"]}], "+", + RowBox[{"4", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", + RowBox[{"r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], "2"]}], + " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "M"}], "+", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}]}], "-", + + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], + RowBox[{"3", "/", "2"}]], " ", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], + RowBox[{"3", "/", "2"}]], " ", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{"6", " ", "M", " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "M"}], "+", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "-", + RowBox[{ + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"5", " ", "M", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}]}], "-", + RowBox[{"6", " ", + SuperscriptBox["M", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "5"}], " ", "M"}], "+", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}]}]}], + ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}], "2"]}], + "+", + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "12"}], " ", "M", " ", + SuperscriptBox["r", "4"]}], "-", + RowBox[{"15", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"]}], "-", + RowBox[{"3", " ", "M", " ", + SuperscriptBox["r1", "4"]}], "-", + RowBox[{"48", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"24", " ", + SuperscriptBox["M", "2"], " ", + SuperscriptBox["r", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"6", " ", + SuperscriptBox["M", "2"], " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"9", " ", "M", " ", + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], "-", + SuperscriptBox["r1", "2"], "+", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}], "+", + RowBox[{"9", " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + RowBox[{"Cos", "[", + RowBox[{"3", " ", "\[Theta]1"}], "]"}]}], "+", + RowBox[{"8", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"8", " ", "M", " ", + SuperscriptBox["r1", "4"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "-", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "-", + RowBox[{"4", " ", + SuperscriptBox["r1", "4"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", "M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"16", " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"13", " ", + SuperscriptBox["r1", "2"]}], "-", + RowBox[{"16", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], + "+", + RowBox[{"8", " ", + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}]}], "-", + RowBox[{"8", " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + RowBox[{"Sin", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Sin", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}]}], ")"}], "2"]}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"12", " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "3"]}], "+", + RowBox[{"6", " ", "M", " ", + SuperscriptBox["r1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "5"}], " ", + SuperscriptBox["r", "2"]}], "-", + SuperscriptBox["r1", "2"], "+", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], "+", + + RowBox[{"6", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], "-", + SuperscriptBox["r1", "2"], "+", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], "-", + + RowBox[{ + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "7"}], " ", "M", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}]}], "+", + RowBox[{"6", " ", + SuperscriptBox["M", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "+", + RowBox[{"4", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", "M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["r", "2"]}], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], + "+", + RowBox[{ + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}]}], "-", + RowBox[{"7", " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + RowBox[{"Sin", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Sin", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}]}], ")"}], "2"]}], "+", + RowBox[{"3", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "12"}], " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "3"]}], "+", + RowBox[{"6", " ", "M", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], "-", + + RowBox[{"6", " ", "M", " ", + SuperscriptBox["r1", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "5"}], " ", + SuperscriptBox["r", "2"]}], "-", + SuperscriptBox["r1", "2"], "+", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], "+", + + RowBox[{ + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "7"}], " ", "M", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}]}], "+", + RowBox[{"6", " ", + SuperscriptBox["M", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"]}], ")"}], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}], "-", + RowBox[{"4", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", "M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["r", "2"]}], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}]}], + "+", + RowBox[{ + SuperscriptBox["r1", "2"], " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{"7", " ", "M", " ", "r", " ", + SuperscriptBox["r1", "3"], " ", + RowBox[{"Sin", "[", "\[Theta]1", "]"}], " ", + RowBox[{"Sin", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}]}], ")"}], "2"]}]}], ")"}], + "/", + RowBox[{"(", + RowBox[{"18", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], "6"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", "M"}], "+", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}], ")"}], "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "-", + RowBox[{"2", " ", "M", " ", + SqrtBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}]]}]}], ")"}], "2"]}], + ")"}]}]], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.7821991425329933`*^9}, { + 3.782199429131427*^9, 3.78219948196135*^9}, {3.782199540342497*^9, + 3.782199550322959*^9}, {3.782199608544145*^9, 3.782199648909281*^9}, + 3.78219969038365*^9, 3.782199754770076*^9, {3.782199825367083*^9, + 3.78219984981874*^9}, 3.782200314358725*^9, 3.782200351709373*^9, + 3.782200528115121*^9, {3.782200604605845*^9, 3.78220061390936*^9}, + 3.782201009582872*^9, {3.782219457390414*^9, 3.782219507353655*^9}, + 3.7826292163787107`*^9, 3.7826294821670322`*^9, 3.782629513596752*^9, + 3.782629548887363*^9, {3.782629622671447*^9, 3.7826296612390957`*^9}, + 3.7826297260622997`*^9, {3.78263057576853*^9, 3.7826305941944313`*^9}, + 3.7834021919351*^9, {3.783402369029224*^9, 3.783402374737726*^9}, + 3.7834025939003277`*^9}, + CellLabel-> + "Out[106]=",ExpressionUUID->"25056618-0553-4369-a989-9da1e9ea57a7"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"wtr", "/.", + RowBox[{"\[Theta]1", "\[Rule]", "0"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7834023786761513`*^9, 3.783402401488029*^9}, { + 3.783402436321726*^9, 3.783402437026492*^9}}, + CellLabel-> + "In[107]:=",ExpressionUUID->"58eeb28d-a0f3-4b57-885e-098ab3e4faa1"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}], "6"]]], "Output", + CellChangeTimes->{{3.7834023828131447`*^9, 3.783402401905864*^9}, + 3.7834024375330143`*^9, 3.783402594537661*^9}, + CellLabel-> + "Out[107]=",ExpressionUUID->"ae9944c0-3f20-4f92-926d-30a583cf8c6b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.7821991706900883`*^9, 3.7821991762012653`*^9}, { + 3.782630596645924*^9, 3.782630597441167*^9}}, + CellLabel->"In[74]:=",ExpressionUUID->"7daeea03-a07b-45c9-9062-b3e37fae4891"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{ + 3.782199176483611*^9, 3.782199649877537*^9, 3.782200315929088*^9, + 3.782200529119993*^9, {3.7822006057257643`*^9, 3.78220061422635*^9}, + 3.782201009871745*^9, {3.7822194576524878`*^9, 3.782219507531801*^9}, { + 3.7826305784902067`*^9, 3.782630597863805*^9}, 3.7834021923682137`*^9}, + CellLabel->"Out[74]=",ExpressionUUID->"e2db03df-5f12-47b8-96a1-904adb17c403"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel->"In[75]:=",ExpressionUUID->"afb7792d-d623-4673-b2dd-c45d5fa70422"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", "r"}], ")"}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782200624712783*^9, {3.782200995586378*^9, 3.782201015695821*^9}, { + 3.7822194688461123`*^9, 3.782219507905998*^9}, 3.7826306009316597`*^9, + 3.7834021929226503`*^9}, + CellLabel->"Out[75]=",ExpressionUUID->"330b5f86-6e71-47cf-b7c3-9cf31ea6e42a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.782219551658869*^9, 3.782219562036425*^9}}, + CellLabel->"In[76]:=",ExpressionUUID->"6441def8-220d-43ea-9c40-e63413506748"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219575788557*^9, 3.7826306026890507`*^9, + 3.783402193732977*^9}, + CellLabel->"Out[76]=",ExpressionUUID->"449cd564-b1d3-4e12-a661-fcf7df5397e0"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel->"In[77]:=",ExpressionUUID->"2833197a-c0cb-48dd-849e-eeb44afc0931"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219574030792*^9, 3.782630603464432*^9, + 3.783402194348279*^9}, + CellLabel->"Out[77]=",ExpressionUUID->"88c98d26-2d4e-464f-96ef-c782868f3050"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Centered at r=d (different sol.)", "Subsubsection", + CellChangeTimes->{{3.783402201148816*^9, 3.7834022123112507`*^9}, { + 3.783404813940013*^9, + 3.783404832062974*^9}},ExpressionUUID->"03f50970-3fdc-4e1d-8009-\ +e192edb7e192"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"r1", "^", "2"}], " ", "-", " ", + RowBox[{"2", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], "]"}]}]}]}], ")"}], + ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", "1"}], "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", + RowBox[{"Sqrt", "[", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"r1", "^", "2"}], " ", "-", " ", + RowBox[{"2", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], "]"}]}]}]}], + ")"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"-", + SuperscriptBox["r", "2"]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", "1"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.748171321217037*^9, 3.748171333404755*^9}, { + 3.748171434155205*^9, 3.748171435097939*^9}, 3.748171469502976*^9, { + 3.782197504475832*^9, 3.782197525507375*^9}, 3.782197817851701*^9, + 3.782219455162467*^9, {3.783402243067484*^9, 3.783402300981739*^9}, { + 3.783402511789713*^9, 3.783402517412003*^9}, {3.7834048403163633`*^9, + 3.783404843504134*^9}}, + CellLabel-> + "In[149]:=",ExpressionUUID->"d11b3047-6f7e-4abc-a919-968f38d3f32a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.783402361693857*^9, 3.783402518011313*^9, + 3.783404844841113*^9}, + CellLabel-> + "Out[150]=",ExpressionUUID->"5384b931-7bdb-4128-9307-5dade5d5452b"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.748171040384201*^9, 3.748171337672936*^9, 3.748171435515542*^9, + 3.748171472097746*^9, {3.7821974589108067`*^9, 3.782197525822959*^9}, + 3.782197774525013*^9, 3.7821978182122602`*^9, 3.782199138522822*^9, + 3.782200305520879*^9, 3.7822005243360853`*^9, 3.782200600177784*^9, + 3.782201008113688*^9, {3.7822194494845133`*^9, 3.782219464912323*^9}, + 3.782630476462756*^9, 3.782630521573388*^9, 3.7826305727030573`*^9, + 3.783402189441841*^9, 3.783402361696969*^9, 3.7834025180148087`*^9, + 3.7834048448445*^9}, + CellLabel-> + "During evaluation of \ +In[149]:=",ExpressionUUID->"293cc5c7-2855-4953-b62d-d5b5549b6c77"], + +Cell[BoxData[ + RowBox[{"-", + FractionBox[ + RowBox[{"M", " ", + SuperscriptBox["r1", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{"4", " ", + SuperscriptBox["r1", "2"]}], "-", + RowBox[{"8", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"3", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], + RowBox[{"5", "/", "2"}]]}]]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, 3.7821991385183163`*^9, + 3.782200305518237*^9, 3.78220052433305*^9, 3.782200600174798*^9, + 3.7822010081105757`*^9, {3.782219449481257*^9, 3.7822194649098873`*^9}, + 3.7826304764595337`*^9, 3.7826305215650063`*^9, 3.782630572700049*^9, + 3.783402189437334*^9, 3.783402361693857*^9, 3.783402518011313*^9, + 3.7834048455695*^9}, + CellLabel-> + "Out[154]=",ExpressionUUID->"db3d01d8-9a29-4fc3-9b13-ed4fc58ec1e4"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.78221947850369*^9, 3.782219506150009*^9}}, + CellLabel-> + "In[158]:=",ExpressionUUID->"e6d8f1b9-633d-4725-96c7-7f6b00e17104"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"wtr", "=", + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}, 3.78219948658713*^9, {3.7826305867019253`*^9, + 3.7826305936220818`*^9}, {3.783402373181252*^9, 3.783402374000952*^9}}, + CellLabel-> + "In[160]:=",ExpressionUUID->"2cc06b90-b0c8-40f6-971e-060563b26645"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["M", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"12", " ", + SuperscriptBox["r", "4"]}], "+", + RowBox[{"25", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r1", "4"]}], "-", + RowBox[{"4", " ", "r", " ", "r1", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"9", " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"5", " ", + SuperscriptBox["r1", "2"]}]}], ")"}], " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}], "+", + RowBox[{"15", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["r1", "2"], " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]1"}], "]"}]}]}], ")"}], "2"]}], + RowBox[{"3", " ", + SuperscriptBox["r", "4"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + SuperscriptBox["r1", "2"], "-", + RowBox[{"2", " ", "r", " ", "r1", " ", + RowBox[{"Cos", "[", "\[Theta]1", "]"}]}]}], ")"}], "5"]}]]], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.7821991425329933`*^9}, { + 3.782199429131427*^9, 3.78219948196135*^9}, {3.782199540342497*^9, + 3.782199550322959*^9}, {3.782199608544145*^9, 3.782199648909281*^9}, + 3.78219969038365*^9, 3.782199754770076*^9, {3.782199825367083*^9, + 3.78219984981874*^9}, 3.782200314358725*^9, 3.782200351709373*^9, + 3.782200528115121*^9, {3.782200604605845*^9, 3.78220061390936*^9}, + 3.782201009582872*^9, {3.782219457390414*^9, 3.782219507353655*^9}, + 3.7826292163787107`*^9, 3.7826294821670322`*^9, 3.782629513596752*^9, + 3.782629548887363*^9, {3.782629622671447*^9, 3.7826296612390957`*^9}, + 3.7826297260622997`*^9, {3.78263057576853*^9, 3.7826305941944313`*^9}, + 3.7834021919351*^9, {3.783402369029224*^9, 3.783402374737726*^9}, + 3.7834025939003277`*^9, 3.7834048492638817`*^9}, + CellLabel-> + "Out[160]=",ExpressionUUID->"a041fc60-67d4-47f5-9ac7-6f1c4d2c2eeb"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{"wtr", "/.", + RowBox[{"\[Theta]1", "\[Rule]", "0"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "r1", ",", "1"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7834023786761513`*^9, 3.783402401488029*^9}, { + 3.783402436321726*^9, 3.783402437026492*^9}, {3.7834048554827557`*^9, + 3.7834048688526773`*^9}}, + CellLabel-> + "In[162]:=",ExpressionUUID->"76ed1715-da47-4c79-b5fb-3f9700c84fd3"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + FractionBox[ + RowBox[{"16", " ", + SuperscriptBox["M", "2"]}], + RowBox[{"3", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}], "6"]}]], "+", + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["M", "2"]}], + RowBox[{"3", " ", "r1", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}], "5"]}]], "+", + FractionBox[ + RowBox[{"16", " ", + SuperscriptBox["M", "2"]}], + RowBox[{"3", " ", + SuperscriptBox["r1", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}], "4"]}]], "-", + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["M", "2"]}], + RowBox[{"3", " ", + SuperscriptBox["r1", "3"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}], "3"]}]], "+", + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["M", "2"]}], + RowBox[{"3", " ", + SuperscriptBox["r1", "4"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}], "2"]}]], "-", + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["M", "2"]}], + RowBox[{"3", " ", + SuperscriptBox["r1", "5"], " ", + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}]}]], "+", + FractionBox[ + RowBox[{"16", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r1", "6"]], "-", + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["M", "2"], " ", + RowBox[{"(", + RowBox[{"r", "-", "r1"}], ")"}]}], + SuperscriptBox["r1", "7"]], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + RowBox[{"r", "-", "r1"}], "]"}], "2"], + SeriesData[$CellContext`r, $CellContext`r1, {}, -6, 2, 1], + Editable->False]}], + SeriesData[$CellContext`r, $CellContext`r1, { + Rational[16, 3] $CellContext`M^2, + Rational[32, 3] $CellContext`M^2/$CellContext`r1, + Rational[16, 3] $CellContext`M^2 $CellContext`r1^(-2), + Rational[-32, 3] $CellContext`M^2 $CellContext`r1^(-3), + Rational[32, 3] $CellContext`M^2 $CellContext`r1^(-4), + Rational[-32, 3] $CellContext`M^2 $CellContext`r1^(-5), + 16 $CellContext`M^2 $CellContext`r1^(-6), (-32) $CellContext`M^2 \ +$CellContext`r1^(-7)}, -6, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{{3.7834023828131447`*^9, 3.783402401905864*^9}, + 3.7834024375330143`*^9, 3.783402594537661*^9, {3.783404849437766*^9, + 3.783404869454207*^9}}, + CellLabel-> + "Out[162]=",ExpressionUUID->"53b1f956-56b9-4346-80fa-c8b426515863"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.7821991706900883`*^9, 3.7821991762012653`*^9}, { + 3.782630596645924*^9, 3.782630597441167*^9}}, + CellLabel->"In[74]:=",ExpressionUUID->"226fd772-cc38-4fb3-9167-e835546f18b7"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{ + 3.782199176483611*^9, 3.782199649877537*^9, 3.782200315929088*^9, + 3.782200529119993*^9, {3.7822006057257643`*^9, 3.78220061422635*^9}, + 3.782201009871745*^9, {3.7822194576524878`*^9, 3.782219507531801*^9}, { + 3.7826305784902067`*^9, 3.782630597863805*^9}, 3.7834021923682137`*^9}, + CellLabel->"Out[74]=",ExpressionUUID->"17abe11d-e21d-4685-b4b8-d912eff82eff"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel->"In[75]:=",ExpressionUUID->"b98129e6-803c-4951-9a34-7f14dd9f5dd2"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", "r"}], ")"}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782200624712783*^9, {3.782200995586378*^9, 3.782201015695821*^9}, { + 3.7822194688461123`*^9, 3.782219507905998*^9}, 3.7826306009316597`*^9, + 3.7834021929226503`*^9}, + CellLabel->"Out[75]=",ExpressionUUID->"d5801126-a3ac-40b7-b07e-7cd16b98f233"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.782219551658869*^9, 3.782219562036425*^9}}, + CellLabel->"In[76]:=",ExpressionUUID->"b7acc017-0cdc-402f-bee7-cd9056bce9df"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219575788557*^9, 3.7826306026890507`*^9, + 3.783402193732977*^9}, + CellLabel->"Out[76]=",ExpressionUUID->"ae79aff6-809d-45f9-b998-254115d39c48"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel->"In[77]:=",ExpressionUUID->"2007b6b3-a1ab-4f00-a7ff-30433be708ea"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219574030792*^9, 3.782630603464432*^9, + 3.783402194348279*^9}, + CellLabel->"Out[77]=",ExpressionUUID->"32669049-5f44-4c4f-a698-e1f2009716a6"] +}, Open ]] +}, Closed]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["De Sitter-Schwarzschild solution", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}, {3.74817116905129*^9, 3.7481711974490223`*^9}, { + 3.782197905848242*^9, + 3.782197910102886*^9}},ExpressionUUID->"23d96f1e-2347-48e0-ac75-\ +17359a135bfb"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", "r"}]}], "-", + RowBox[{"\[CapitalLambda]", " ", + RowBox[{ + RowBox[{"r", "^", "2"}], "/", + RowBox[{"(", "3", ")"}]}]}]}], ")"}], ",", "0", ",", "0", ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", "1"}], "/", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + RowBox[{"M", "/", "r"}]}], "-", + RowBox[{"\[CapitalLambda]", " ", + RowBox[{ + RowBox[{"r", "^", "2"}], "/", + RowBox[{"(", "3", ")"}]}]}]}], ")"}]}], ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"-", + SuperscriptBox["r", "2"]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", "1"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.748171321217037*^9, 3.748171333404755*^9}, { + 3.748171434155205*^9, 3.748171435097939*^9}, 3.748171469502976*^9, { + 3.782197504475832*^9, 3.782197525507375*^9}, 3.782197817851701*^9, { + 3.782197923165782*^9, 3.782197946067222*^9}, {3.782197980049502*^9, + 3.782197993665573*^9}, {3.7979162931804533`*^9, 3.797916299399157*^9}}, + CellLabel-> + "In[345]:=",ExpressionUUID->"d2cef66a-d619-4c5d-afe3-b60c65ba9c77"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.748171337542096*^9, 3.748171435499645*^9, + 3.7481714720853043`*^9, {3.782197458908531*^9, 3.782197525819818*^9}, + 3.7821977745215807`*^9, 3.7821978182088623`*^9, {3.7821979139962797`*^9, + 3.782197946590433*^9}, {3.7821979918141727`*^9, 3.782197994085217*^9}, + 3.7822006216431437`*^9, 3.782630332923903*^9, {3.7979162901303797`*^9, + 3.797916300050826*^9}}, + CellLabel-> + "Out[346]=",ExpressionUUID->"31b0d5eb-afa5-4752-9d08-34165787a314"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{{3.7979162901377583`*^9, 3.797916300054262*^9}}, + CellLabel-> + "During evaluation of \ +In[345]:=",ExpressionUUID->"c3c48d41-56fc-4ba9-8dbd-a8d83ef1ff13"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}], + "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.797835299231812*^9, 3.797835340394423*^9}, { + 3.797836115556294*^9, 3.7978361214969673`*^9}, {3.7978362190049334`*^9, + 3.797836222350019*^9}, {3.797912224035125*^9, 3.7979122242233*^9}, { + 3.79791305515164*^9, 3.797913056807482*^9}, {3.797913637483117*^9, + 3.7979136385662603`*^9}, {3.797913671918254*^9, 3.797913718118505*^9}, + 3.797915079595621*^9, 3.797915122931198*^9}, + CellLabel-> + "In[354]:=",ExpressionUUID->"8731592f-b5b6-44d9-bfe3-fed3eab238bc"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{3.797916305690037*^9}, + CellLabel-> + "Out[354]=",ExpressionUUID->"f137ad53-add1-4a67-97d5-498ae2c0972b"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.782200987615611*^9, 3.7822009920712767`*^9}}, + CellLabel-> + "In[478]:=",ExpressionUUID->"ec9f40c8-c6cc-4367-bd37-3c6a19fe8a01"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel-> + "In[480]:=",ExpressionUUID->"33b7c433-9fd2-4efd-855d-75a56448e4c8"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"6", " ", "M"}], "-", + RowBox[{"3", " ", "r"}], "+", + RowBox[{ + SuperscriptBox["r", "3"], " ", "\[CapitalLambda]"}]}], ")"}]}], + RowBox[{"3", " ", + SuperscriptBox["r", "2"]}]]], "Output", + CellChangeTimes->{3.782200624712783*^9, 3.782200995586378*^9}, + CellLabel-> + "Out[480]=",ExpressionUUID->"f136e73c-92b0-44be-b4dc-ebfa5a37a5d3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g"}], "]"}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}}, + CellLabel-> + "In[475]:=",ExpressionUUID->"3e4927ab-ec94-4d10-bc92-ba926930e2e3"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.782199121242787*^9}, + 3.782200631074593*^9}, + CellLabel-> + "Out[475]=",ExpressionUUID->"ae021c1b-256c-4638-b76b-945563bee8c4"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["(*Another test (https://arxiv.org/pdf/0706.0622.pdf)*)", "Subsection", + CellChangeTimes->{{3.7826276363114853`*^9, 3.782627639845909*^9}, { + 3.782628341938529*^9, + 3.782628348314848*^9}},ExpressionUUID->"9860c941-3dd8-458e-8cd5-\ +866698d2b422"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"ds2", "=", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"dr", "+", + RowBox[{"a", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{"du", "+", + RowBox[{"a", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"du", "+", + RowBox[{"a", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["d\[Theta]", "2"], "+", + RowBox[{ + SuperscriptBox["d\[Phi]", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}]}]}], + ";"}]], "Input", + CellChangeTimes->{{3.782628939500342*^9, 3.782628944519279*^9}}, + CellLabel-> + "In[358]:=",ExpressionUUID->"d69d8708-895a-463b-a52e-ab1008cb4d55"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Collect", "[", + RowBox[{"ds2", ",", + RowBox[{"{", + RowBox[{"du", ",", "dr", ",", "d\[Theta]", ",", "d\[Phi]"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.782628356213738*^9, 3.782628378575472*^9}}, + CellLabel-> + "In[359]:=",ExpressionUUID->"a51b6570-caec-4c7e-9875-fd7276af2b2c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox["d\[Theta]", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["du", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}]}], "+", + RowBox[{"2", " ", "a", " ", "dr", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{ + SuperscriptBox["d\[Phi]", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}]}], ")"}]}], "+", + RowBox[{"du", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "dr"}], "+", + RowBox[{"d\[Phi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", "a", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}]}], + ")"}]}]}]], "Output", + CellChangeTimes->{{3.7826283576926394`*^9, 3.782628379103348*^9}, + 3.782628557977313*^9, 3.782628947840866*^9, 3.797916322012472*^9}, + CellLabel-> + "Out[359]=",ExpressionUUID->"6912a6f5-90db-4a13-b550-13e668a27885"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], ",", + + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], ",", "0", ",", + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], ",", "0", ",", + "0", ",", + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], ",", + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0", ",", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], + " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}]}], ")"}]}], "}"}]}], + "}"}]}], ")"}], "//", "TableForm"}]], "Input", + CellChangeTimes->{{3.782628565033598*^9, 3.782628627736512*^9}, { + 3.7826286879721413`*^9, 3.782628794600528*^9}, {3.7826289184069147`*^9, + 3.7826289237717943`*^9}, {3.782629080517095*^9, 3.782629081722155*^9}, + 3.782629139723832*^9}, + CellLabel-> + "In[360]:=",ExpressionUUID->"5aab6c9f-8c4b-44ce-b705-7c0c78e08037"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], "0", + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}, + { + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], "0", "0", + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}, + {"0", "0", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], "0"}, + { + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "0", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}]}]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.782628717065482*^9, 3.7826287948669167`*^9}, { + 3.78262892422803*^9, 3.7826289484227858`*^9}, 3.782629082297165*^9, + 3.782629140649428*^9, 3.782630298178563*^9, 3.782630641705719*^9, + 3.782630736535286*^9, 3.782631131427799*^9, 3.797916322568838*^9}, + CellLabel-> + "Out[360]//TableForm=",ExpressionUUID->"a5709ecc-77b5-4bf2-ad7f-\ +a1afe814f0fe"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}]], "Input", + CellLabel-> + "In[361]:=",ExpressionUUID->"4fd267d1-5cbf-4aee-b206-af288e917bfe"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.797916347650399*^9, 3.797916359208786*^9}}, + CellLabel-> + "In[377]:=",ExpressionUUID->"6a5cc6fd-f069-4911-88a2-66b9af0b0afb"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.006342`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.7979163499404783`*^9, 3.797916370519368*^9}}, + CellLabel-> + "Out[377]=",ExpressionUUID->"cff29f79-f15c-45d3-aec8-0f8bbd95d147"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.008851`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.7979163499404783`*^9, 3.797916370619577*^9}}, + CellLabel-> + "Out[378]=",ExpressionUUID->"ae24194c-ad93-424d-b0fe-65580e988f72"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}], + "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.797835299231812*^9, 3.797835340394423*^9}, { + 3.797836115556294*^9, 3.7978361214969673`*^9}, {3.7978362190049334`*^9, + 3.797836222350019*^9}, {3.797912224035125*^9, 3.7979122242233*^9}, { + 3.79791305515164*^9, 3.797913056807482*^9}, {3.797913637483117*^9, + 3.7979136385662603`*^9}, {3.797913671918254*^9, 3.797913718118505*^9}, + 3.797915079595621*^9, 3.797915122931198*^9}, + CellLabel-> + "In[365]:=",ExpressionUUID->"243dfb6f-6e59-4855-bb6d-375157d4152d"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.797916305690037*^9, 3.79791633222025*^9}}, + CellLabel-> + "Out[365]=",ExpressionUUID->"dc14c283-12a1-4b2b-a3dc-649052c42761"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.78221947850369*^9, 3.782219506150009*^9}, 3.782629421278203*^9, { + 3.782630826812586*^9, 3.782630830660441*^9}}, + CellLabel-> + "In[362]:=",ExpressionUUID->"fbaa16fd-4a60-4777-a3ab-f84eb76293c2"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.79791632575342*^9}, + CellLabel-> + "Out[362]=",ExpressionUUID->"3e97689d-8f31-4cce-a68b-a29dcdb030fb"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.797916326424705*^9}, + CellLabel-> + "Out[363]=",ExpressionUUID->"931999ab-6f6e-445f-a968-f98014029ece"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], + "]"}]], "Input", + CellLabel->"In[27]:=",ExpressionUUID->"26da8fab-e2c3-4890-91d7-9c9f57dc0390"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.782629424201839*^9, 3.782630663732882*^9, + 3.782630711958499*^9, 3.782630818616474*^9, 3.782631515971192*^9}, + CellLabel->"Out[27]=",ExpressionUUID->"615edd47-5ceb-474d-b69a-2e70d0441052"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.782630842199098*^9, 3.782630869252737*^9}, { + 3.7826309149645367`*^9, 3.782630916268448*^9}, {3.7826311377714767`*^9, + 3.782631138609394*^9}, {3.78263122868388*^9, 3.782631236731242*^9}, { + 3.782631304542654*^9, 3.782631305491106*^9}}, + CellLabel->"In[25]:=",ExpressionUUID->"35d0828d-4b9e-4a1e-8d71-fa7dff788056"], + +Cell[CellGroupData[{ + +Cell[BoxData["\<\"Starting with Christoffel symbols...\"\>"], "Print", + CellChangeTimes->{3.782631237206863*^9, 3.782631305858279*^9}, + CellLabel-> + "During evaluation of \ +In[25]:=",ExpressionUUID->"d8f54305-3662-4247-be38-c8719ddd7c56"], + +Cell[BoxData["\<\"Christoffel symbols computed. Starting with \ +Riemann...\"\>"], "Print", + CellChangeTimes->{3.782631237206863*^9, 3.7826313059486*^9}, + CellLabel-> + "During evaluation of \ +In[25]:=",ExpressionUUID->"965964d7-426f-48ba-92d7-111e1a0d07b2"], + +Cell[BoxData["\<\"...Riemann computed\"\>"], "Print", + CellChangeTimes->{3.782631237206863*^9, 3.7826313211785097`*^9}, + CellLabel-> + "During evaluation of \ +In[25]:=",ExpressionUUID->"28867a86-29aa-4065-9511-a0af4b2d2660"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}], + "]"}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}, 3.78219948658713*^9, {3.782628908663885*^9, + 3.782628908920684*^9}, {3.782629098438472*^9, 3.782629100527957*^9}, { + 3.7826291467878113`*^9, 3.782629147713559*^9}}, + CellLabel->"In[97]:=",ExpressionUUID->"f9fe2db0-bdc3-4aba-8a4c-f37e087a9292"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.7821991425329933`*^9}, { + 3.782199429131427*^9, 3.78219948196135*^9}, {3.782199540342497*^9, + 3.782199550322959*^9}, {3.782199608544145*^9, 3.782199648909281*^9}, + 3.78219969038365*^9, 3.782199754770076*^9, {3.782199825367083*^9, + 3.78219984981874*^9}, 3.782200314358725*^9, 3.782200351709373*^9, + 3.782200528115121*^9, {3.782200604605845*^9, 3.78220061390936*^9}, + 3.782201009582872*^9, {3.782219457390414*^9, 3.782219507353655*^9}, + 3.78262891527374*^9, 3.7826290606601458`*^9, {3.782629091089501*^9, + 3.782629104959847*^9}, 3.7826291495529757`*^9}, + CellLabel->"Out[97]=",ExpressionUUID->"e8a0293d-8c2a-459a-9e25-ffd166fce5dc"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]], "Input", + CellChangeTimes->{{3.7821991706900883`*^9, 3.7821991762012653`*^9}}, + CellLabel->"In[74]:=",ExpressionUUID->"1e850c86-38bd-43b2-838f-f3374bbb6fa4"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{ + 3.782199176483611*^9, 3.782199649877537*^9, 3.782200315929088*^9, + 3.782200529119993*^9, {3.7822006057257643`*^9, 3.78220061422635*^9}, + 3.782201009871745*^9, {3.7822194576524878`*^9, 3.782219507531801*^9}}, + CellLabel->"Out[74]=",ExpressionUUID->"63c78ea1-7757-43e2-975b-47e81cb59d9d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel->"In[75]:=",ExpressionUUID->"432a9f98-c627-430d-8370-d4a6875a63d3"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", "r"}], ")"}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782200624712783*^9, {3.782200995586378*^9, 3.782201015695821*^9}, { + 3.7822194688461123`*^9, 3.782219507905998*^9}}, + CellLabel->"Out[75]=",ExpressionUUID->"ef87f464-4747-4ab7-92ce-bbb5b5a2a10e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.782219551658869*^9, 3.782219562036425*^9}}, + CellLabel->"In[79]:=",ExpressionUUID->"1996a515-cc6d-4b72-9e33-0d9b031834b5"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219575788557*^9}, + CellLabel->"Out[79]=",ExpressionUUID->"01bfe3c6-17c2-4891-9953-95ad2e6c8d81"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel->"In[78]:=",ExpressionUUID->"049075b7-2afd-46f7-a37c-c62a0a31b7ba"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219574030792*^9}, + CellLabel->"Out[78]=",ExpressionUUID->"da553f4d-254f-42a1-8ad7-15a73bef7508"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["(*Another test (http://kias.dyndns.org/crg/blackhole.html)*)", \ +"Subsection", + CellChangeTimes->{{3.7826276363114853`*^9, 3.782627639845909*^9}, { + 3.782628341938529*^9, 3.782628348314848*^9}, + 3.782632936981777*^9},ExpressionUUID->"e38b947a-e4be-4219-a8c6-\ +1c279e3e9c47"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"ds2", "=", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"dr", "+", + RowBox[{"a", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{"du", "+", + RowBox[{"a", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"du", "+", + RowBox[{"a", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["d\[Theta]", "2"], "+", + RowBox[{ + SuperscriptBox["d\[Phi]", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}]}]}], + ";"}]], "Input", + CellChangeTimes->{{3.782628939500342*^9, 3.782628944519279*^9}}, + CellLabel->"In[87]:=",ExpressionUUID->"fb0e3c60-3e70-40a5-acf4-a0e851ce43fd"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Collect", "[", + RowBox[{"ds2", ",", + RowBox[{"{", + RowBox[{"du", ",", "dr", ",", "d\[Theta]", ",", "d\[Phi]"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.782628356213738*^9, 3.782628378575472*^9}}, + CellLabel->"In[88]:=",ExpressionUUID->"575a6066-901a-4866-9b00-4fa5473ebba6"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox["d\[Theta]", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["du", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}]}], "+", + RowBox[{"2", " ", "a", " ", "dr", " ", "d\[Phi]", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{ + SuperscriptBox["d\[Phi]", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}]}], ")"}]}], "+", + RowBox[{"du", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "dr"}], "+", + RowBox[{"d\[Phi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", "a", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}]}], + ")"}]}]}]], "Output", + CellChangeTimes->{{3.7826283576926394`*^9, 3.782628379103348*^9}, + 3.782628557977313*^9, 3.782628947840866*^9}, + CellLabel->"Out[88]=",ExpressionUUID->"5f983282-c8ea-457b-bc60-d740b4988cbd"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], ",", + + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], ",", "0", ",", + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], ",", "0", ",", + "0", ",", + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], ",", + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], ",", "0", ",", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], + " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}]}], ")"}]}], "}"}]}], + "}"}]}], ")"}], "//", "TableForm"}]], "Input", + CellChangeTimes->{{3.782628565033598*^9, 3.782628627736512*^9}, { + 3.7826286879721413`*^9, 3.782628794600528*^9}, {3.7826289184069147`*^9, + 3.7826289237717943`*^9}, {3.782629080517095*^9, 3.782629081722155*^9}, + 3.782629139723832*^9}, + CellLabel->"In[3]:=",ExpressionUUID->"4c33ffd5-f6b0-4497-b400-c8e5e1b62739"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], "0", + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}, + { + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"4", " ", "a", " ", "d\[Phi]", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], ")"}]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], "0", "0", + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}, + {"0", "0", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], "0"}, + { + FractionBox[ + RowBox[{"4", " ", "a", " ", "m", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]], + RowBox[{"2", " ", "a", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "0", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "+", + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "m", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], ")"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "4"]}]}]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.782628717065482*^9, 3.7826287948669167`*^9}, { + 3.78262892422803*^9, 3.7826289484227858`*^9}, 3.782629082297165*^9, + 3.782629140649428*^9, 3.782630298178563*^9, 3.782630641705719*^9, + 3.782630736535286*^9, 3.782631131427799*^9}, + CellLabel-> + "Out[3]//TableForm=",ExpressionUUID->"7ea62d4d-0fc2-4d10-a336-7ff7b4a4b9f0"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}]], "Input", + CellLabel->"In[4]:=",ExpressionUUID->"e6028eaf-23d1-41b8-abdd-1abc254fc143"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"weyl", "=", + RowBox[{"WeylTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.782197782517384*^9, 3.782197805786971*^9}, { + 3.78221947850369*^9, 3.782219506150009*^9}, 3.782629421278203*^9, { + 3.782630826812586*^9, 3.782630830660441*^9}}, + CellLabel->"In[71]:=",ExpressionUUID->"23a26c80-bfbf-4089-9d4d-33140fe48106"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], + "]"}]], "Input", + CellLabel->"In[27]:=",ExpressionUUID->"4dceb517-6bce-40ff-aa26-4e3426c8da01"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.782629424201839*^9, 3.782630663732882*^9, + 3.782630711958499*^9, 3.782630818616474*^9, 3.782631515971192*^9}, + CellLabel->"Out[27]=",ExpressionUUID->"1f7cd247-6a62-458d-a57d-9e8570b68cfc"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}]}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.782630842199098*^9, 3.782630869252737*^9}, { + 3.7826309149645367`*^9, 3.782630916268448*^9}, {3.7826311377714767`*^9, + 3.782631138609394*^9}, {3.78263122868388*^9, 3.782631236731242*^9}, { + 3.782631304542654*^9, 3.782631305491106*^9}}, + CellLabel->"In[25]:=",ExpressionUUID->"5a887488-5839-40a1-a8e1-7230d76b79a9"], + +Cell[CellGroupData[{ + +Cell[BoxData["\<\"Starting with Christoffel symbols...\"\>"], "Print", + CellChangeTimes->{3.782631237206863*^9, 3.782631305858279*^9}, + CellLabel-> + "During evaluation of \ +In[25]:=",ExpressionUUID->"a28b2dba-a370-405c-946d-e2bb55b8f1ce"], + +Cell[BoxData["\<\"Christoffel symbols computed. Starting with \ +Riemann...\"\>"], "Print", + CellChangeTimes->{3.782631237206863*^9, 3.7826313059486*^9}, + CellLabel-> + "During evaluation of \ +In[25]:=",ExpressionUUID->"f603151b-9290-4a65-b77f-6b26affa6fb6"], + +Cell[BoxData["\<\"...Riemann computed\"\>"], "Print", + CellChangeTimes->{3.782631237206863*^9, 3.7826313211785097`*^9}, + CellLabel-> + "During evaluation of \ +In[25]:=",ExpressionUUID->"57ce7877-e5a3-4942-b0dd-60d1740451a9"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + RowBox[{"WeylTrace", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}], + "]"}]], "Input", + CellChangeTimes->{{3.782198681681613*^9, 3.782198694566325*^9}, { + 3.782198765094138*^9, 3.78219876956022*^9}, {3.782199119846146*^9, + 3.782199120218539*^9}, 3.78219948658713*^9, {3.782628908663885*^9, + 3.782628908920684*^9}, {3.782629098438472*^9, 3.782629100527957*^9}, { + 3.7826291467878113`*^9, 3.782629147713559*^9}}, + CellLabel->"In[97]:=",ExpressionUUID->"41243e4b-ac71-4795-aff8-c357a7b55494"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{{3.782198687799865*^9, 3.782198695187286*^9}, { + 3.782198753239895*^9, 3.782198791196067*^9}, {3.7821988227740917`*^9, + 3.782198883797268*^9}, {3.782199116347159*^9, 3.7821991425329933`*^9}, { + 3.782199429131427*^9, 3.78219948196135*^9}, {3.782199540342497*^9, + 3.782199550322959*^9}, {3.782199608544145*^9, 3.782199648909281*^9}, + 3.78219969038365*^9, 3.782199754770076*^9, {3.782199825367083*^9, + 3.78219984981874*^9}, 3.782200314358725*^9, 3.782200351709373*^9, + 3.782200528115121*^9, {3.782200604605845*^9, 3.78220061390936*^9}, + 3.782201009582872*^9, {3.782219457390414*^9, 3.782219507353655*^9}, + 3.78262891527374*^9, 3.7826290606601458`*^9, {3.782629091089501*^9, + 3.782629104959847*^9}, 3.7826291495529757`*^9}, + CellLabel->"Out[97]=",ExpressionUUID->"5836a063-8c6a-4bba-8c14-cfd203be6028"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]], "Input", + CellChangeTimes->{{3.7821991706900883`*^9, 3.7821991762012653`*^9}}, + CellLabel->"In[74]:=",ExpressionUUID->"4fbdefa8-3e4c-4818-947e-14fb109719c0"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["M", "2"]}], + SuperscriptBox["r", "6"]]], "Output", + CellChangeTimes->{ + 3.782199176483611*^9, 3.782199649877537*^9, 3.782200315929088*^9, + 3.782200529119993*^9, {3.7822006057257643`*^9, 3.78220061422635*^9}, + 3.782201009871745*^9, {3.7822194576524878`*^9, 3.782219507531801*^9}}, + CellLabel->"Out[74]=",ExpressionUUID->"5cf9db23-b743-42de-9154-39e38ae559de"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"1", ",", "3", ",", "1", ",", "3"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7821980352778254`*^9, 3.782198058332946*^9}, + 3.78220099512788*^9}, + CellLabel->"In[75]:=",ExpressionUUID->"7ea7d09e-9d74-4dfa-b2fd-202e95075acb"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"M", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "M"}], "-", "r"}], ")"}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782200624712783*^9, {3.782200995586378*^9, 3.782201015695821*^9}, { + 3.7822194688461123`*^9, 3.782219507905998*^9}}, + CellLabel->"Out[75]=",ExpressionUUID->"98a41eb2-8f9b-4ea3-b902-d8f8769c47b5"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.782219551658869*^9, 3.782219562036425*^9}}, + CellLabel->"In[79]:=",ExpressionUUID->"fd9cd8c2-6fc2-4f6a-aa89-3c53a4ec383d"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219575788557*^9}, + CellLabel->"Out[79]=",ExpressionUUID->"8f500451-34f6-4665-9b1a-7f1a5c613492"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"k", ",", "m"}], "]"}], "]"}], + RowBox[{"weyl", "[", + RowBox[{"[", + RowBox[{"i", ",", "j", ",", "k", ",", "m"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"k", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]], "Input", + CellLabel->"In[78]:=",ExpressionUUID->"fa78bb4f-d19c-40e4-a6da-4b1d35332d22"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.782219574030792*^9}, + CellLabel->"Out[78]=",ExpressionUUID->"6df9b3ba-f86a-480f-9733-f128accb9c94"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["\<\ +Slowly rotating \ +(https://www.maplesoft.com/support/help/maple/view.aspx?path=Physics%\ +2FRiemann)\ +\>", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}, {3.74817116905129*^9, 3.7481711974490223`*^9}, { + 3.782207140055911*^9, 3.7822071516076937`*^9}, {3.782207438707678*^9, + 3.7822074419669733`*^9}, {3.782207488805292*^9, + 3.782207489967887*^9}},ExpressionUUID->"69a1a86d-9563-4e01-8399-\ +43141a852dfd"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"r", ",", "\[Theta]", ",", "\[Phi]", ",", "t"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{"-", "1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"r", "^", "2"}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}], ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1"}], ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "^", "2"}]}]}], "}"}]}], "}"}]}], + ")"}], "//", "TableForm"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", "1"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], "\[IndentingNewLine]", + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.748171321217037*^9, 3.748171333404755*^9}, { + 3.748171434155205*^9, 3.748171435097939*^9}, 3.748171469502976*^9, { + 3.782197504475832*^9, 3.782197525507375*^9}, 3.782197817851701*^9, { + 3.7822074748649178`*^9, 3.782207508063509*^9}, {3.782207547697193*^9, + 3.7822076123893547`*^9}, {3.7822077904796352`*^9, 3.782207820493321*^9}}, + CellLabel->"In[2]:=",ExpressionUUID->"7bb4e17f-7da1-45e5-a65e-43cb6c470b11"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.782207515642351*^9, {3.7822075864832487`*^9, 3.7822076127173233`*^9}, { + 3.782207794420248*^9, 3.7822078211867743`*^9}, 3.782213669417759*^9}, + CellLabel->"Out[3]=",ExpressionUUID->"60d93ef9-2e9b-41c1-8b02-65313e50d459"], + +Cell[BoxData[ + TagBox[GridBox[{ + {"0", "0", "0", + RowBox[{"-", "1"}]}, + {"0", + SuperscriptBox["r", "2"], "0", "0"}, + {"0", "0", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], "0"}, + { + RowBox[{"-", "1"}], "0", "0", + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{ + 3.782207515642351*^9, {3.7822075864832487`*^9, 3.7822076127173233`*^9}, { + 3.782207794420248*^9, 3.7822078211867743`*^9}, 3.782213669420177*^9}, + CellLabel-> + "Out[4]//TableForm=",ExpressionUUID->"35054b6b-1a38-4bfa-ae99-b1360f1ee8ea"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.782207515646593*^9, {3.782207586485757*^9, 3.782207612722682*^9}, { + 3.78220779442859*^9, 3.782207821192574*^9}, 3.782213669422431*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"2dd9ae60-0ee1-4891-9af6-b446a14ca7b9"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"2", "-", + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "2"], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "+", + RowBox[{"r", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"4", " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"2", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}], ")"}]}]}], ")"}]}]}], + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{ + 3.782207515642351*^9, {3.7822075864832487`*^9, 3.7822076127173233`*^9}, { + 3.782207794420248*^9, 3.7822078211867743`*^9}, 3.782213669502715*^9}, + CellLabel->"Out[7]=",ExpressionUUID->"bb6fe149-65c8-476f-a45f-e92af75a1233"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "r"], "+", + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"2", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox[ + RowBox[{"Cot", "[", "\[Theta]", "]"}], "2"]}], "+", + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"], "-", + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "-", + RowBox[{"4", " ", "r", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}], ",", "0", ",", "0"}], "}"}], ",", + + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{ + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"], "-", + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"], " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "-", + RowBox[{"4", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"], " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "r"], "+", + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"2", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}], ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"0", ",", "1"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "-", + RowBox[{"8", " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"0", ",", "1"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "+", + RowBox[{"8", " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "3"], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}], "r"], "-", + RowBox[{"2", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "1"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"4", " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"0", ",", "1"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "+", + RowBox[{"24", " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "+", + RowBox[{"4", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "1"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}], "+", + RowBox[{"8", " ", + SuperscriptBox[ + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], "3"], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"2", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}], ")"}]}]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.782207515642351*^9, {3.7822075864832487`*^9, 3.7822076127173233`*^9}, { + 3.782207794420248*^9, 3.7822078211867743`*^9}, 3.782213669505773*^9}, + CellLabel->"Out[8]=",ExpressionUUID->"67f9afd3-d862-4562-842b-8d69e47292b5"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"NonZeroTensorComp", "[", + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.782211134753688*^9, 3.782211135611273*^9}, { + 3.782213264807415*^9, 3.782213265030693*^9}}, + CellLabel-> + "In[430]:=",ExpressionUUID->"716d0ea0-f1fe-4dd3-b873-39b7a17ae99d"], + +Cell[CellGroupData[{ + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"003\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.7822132653370047`*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"355734d5-2d5c-4e52-bbff-bfba2968b26f"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"011\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\" \ +\\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"2\\\"]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.7822132653395452`*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"f0e1a213-7a74-49c0-a58e-90ac592024fd"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"022\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\" \ +\\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\ +\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", SuperscriptBox[RowBox[{\\\ +\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\ +\"}], \\\"2\\\"]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.7822132653452682`*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"23d585fe-e7f4-4838-8294-f9f23a3d6d75"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"030\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265347188*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"00d29387-35f9-4260-8d01-e3683f9b18d5"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"033\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \ +\\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \\\", \ +RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.7822132653499203`*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"65a7ab39-172a-47cf-adf3-7220d0897879"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"101\\\\\\\"\\\"]\\) = \\!\\(\\*FractionBox[\\\"1\\\", \\\"r\\\"]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265355247*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"cf954f3f-0745-4742-b078-a8793cc011a7"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"110\\\\\\\"\\\"]\\) = \\!\\(\\*FractionBox[\\\"1\\\", \\\"r\\\"]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265359342*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"2969f55c-68c2-4523-8163-4fa0316767af"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"122\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", RowBox[{\\\"Cos\\\ +\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}]}], \\\" \\\", \ +RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}]}]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265362515*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"543875d6-51c6-41c7-a886-d0bfe7b3b116"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"202\\\\\\\"\\\"]\\) = \\!\\(\\*FractionBox[\\\"1\\\", \\\"r\\\"]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265364911*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"0b41c2e8-b0df-434a-879b-e5048d543f6c"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"212\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"Cot\\\", \\\"[\\\", \\\"\[Theta]\ +\\\", \\\"]\\\"}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.78221326536699*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"509fe20b-139e-4f6e-95ed-60da15667abe"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"220\\\\\\\"\\\"]\\) = \\!\\(\\*FractionBox[\\\"1\\\", \\\"r\\\"]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.78221326536909*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"33d567db-5afe-4f4d-810a-265f9b4ff5f3"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"221\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"Cot\\\", \\\"[\\\", \\\"\[Theta]\ +\\\", \\\"]\\\"}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.7822132653711443`*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"7e6bc82f-0b56-4038-876c-23d8d6f7d2df"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"311\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"r\\\"}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265373234*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"9bc93af2-aa80-4dd4-a877-8832fd2ca8c8"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"322\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"r\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.782213265375461*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"691d10f8-4600-42a8-9628-b014e418628d"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"g\\\\\\\"\\\", \\\"\\\\\\\ +\"333\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\" \ +\\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782211665458316*^9, 3.782211686957411*^9}, + 3.7822118468769217`*^9, {3.782211886577039*^9, 3.782211907015267*^9}, + 3.7822119426380672`*^9, {3.7822120514161386`*^9, 3.782212074151368*^9}, + 3.782212264480937*^9, {3.782212305833905*^9, 3.78221234186512*^9}, + 3.782212616611849*^9, {3.782212690438579*^9, 3.78221270580437*^9}, { + 3.782213246777755*^9, 3.7822132653776703`*^9}}, + CellLabel-> + "During evaluation of \ +In[430]:=",ExpressionUUID->"15c2b1d6-e5ba-434c-965a-d00c5174fc3f"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "1", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "3", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "4", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "4", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "3", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "1", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "2", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "3", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "3", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "2", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "3", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "4", ",", "4"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.782211135830249*^9, 3.7822111545885077`*^9}, { + 3.782211654462357*^9, 3.782211686979196*^9}, 3.782211846898991*^9, { + 3.7822118866013536`*^9, 3.782211907038869*^9}, 3.782211942659264*^9, { + 3.7822120514379597`*^9, 3.782212074178936*^9}, 3.7822122645090857`*^9, { + 3.782212305864943*^9, 3.782212341898322*^9}, 3.7822126166347733`*^9, { + 3.782212690472674*^9, 3.782212705838151*^9}, {3.782213246803986*^9, + 3.7822132653803587`*^9}}, + CellLabel-> + "Out[430]=",ExpressionUUID->"e3566e6c-5a8d-4e41-8ccb-3ee534771c77"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "FullSimplify"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riemanndown", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"a", ",", "\[Alpha]"}], "]"}], "]"}], + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"\[Alpha]", ",", "b", ",", "c", ",", "d"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"a", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"b", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"c", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"d", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.782207638382729*^9, 3.78220767323232*^9}, + 3.7822077216337214`*^9, {3.782218353679057*^9, 3.782218355027852*^9}}, + CellLabel-> + "In[118]:=",ExpressionUUID->"eb87366f-6836-4da7-8c10-b55d8efd9e07"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riemanndown", "[", + RowBox[{"[", + RowBox[{"1", ",", "2", ",", "2", ",", "4"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.782207680510866*^9, 3.782207705351872*^9}, + 3.782207749366933*^9, {3.782207834590252*^9, 3.782207842165374*^9}}, + CellLabel-> + "In[123]:=",ExpressionUUID->"8c390a46-a63e-4954-8bfa-b571b071177a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"-", "2"}], " ", "r", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]], "Output", + CellChangeTimes->{{3.782207683453257*^9, 3.782207759453858*^9}, + 3.782207805471963*^9, {3.782207840357939*^9, 3.782207842557723*^9}, + 3.7822136767222424`*^9, 3.782218359908702*^9, 3.782218560975244*^9}, + CellLabel-> + "Out[123]=",ExpressionUUID->"9bfe28d3-d4b3-4ddb-8111-d16873d005c5"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riemanndown", "[", + RowBox[{"[", + RowBox[{"1", ",", "2", ",", "4", ",", "2"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.782218576321106*^9, 3.782218577159437*^9}}, + CellLabel-> + "In[124]:=",ExpressionUUID->"8d44daae-0a87-4036-9e7c-412e754ec5d7"], + +Cell[BoxData[ + RowBox[{"2", " ", "r", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]], "Output", + CellChangeTimes->{3.78221857733666*^9}, + CellLabel-> + "Out[124]=",ExpressionUUID->"bbf552db-c687-401f-8da3-813d35f4f71a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riemanndown", "[", + RowBox[{"[", + RowBox[{"2", ",", "4", ",", "1", ",", "2"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.782218584118342*^9, 3.782218607393388*^9}}, + CellLabel-> + "In[128]:=",ExpressionUUID->"f1c0e670-cc12-4109-9a8e-5149a13ebb9c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"-", "2"}], " ", "r", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]], "Output", + CellChangeTimes->{{3.782218590225705*^9, 3.782218607592513*^9}}, + CellLabel-> + "Out[128]=",ExpressionUUID->"ccd9763e-2fe4-4dde-835f-384dd7a14cb2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"nonzeroR", "=", + RowBox[{"NonZeroTensorComp", "[", + RowBox[{"riemanndown", ",", + RowBox[{"\"\<TensorString\>\"", "\[Rule]", "\"\<R\>\""}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.7822137332796907`*^9, 3.782213733547245*^9}, { + 3.7822137670222273`*^9, 3.782213771181052*^9}, {3.7822183445598927`*^9, + 3.78221835085793*^9}, {3.782218475477069*^9, 3.7822184795009413`*^9}}, + CellLabel-> + "In[122]:=",ExpressionUUID->"21d973d3-44d6-4ffc-9451-5c149c8d53b7"], + +Cell[CellGroupData[{ + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"0113\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480143238*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"fc396e04-ee82-4a2a-9da7-6f2b7e13107c"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"0131\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480148807*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"d24f1371-edbe-4637-92fd-79d797f21469"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"0223\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \ +\\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480152582*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"3d8c7230-9ce3-4491-b36e-1eba32e67223"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"0232\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \ +\\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480155006*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"d3c5de00-c3be-4887-b179-0bc5b56f0625"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"0303\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480157391*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"b7758648-3268-441b-9b5e-4d914e0e9345"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"0330\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"-\\\", \ +\\\"2\\\"}], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480160019*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"507faacd-8c9b-4a56-9add-a1360ca311bb"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1013\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480162405*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"ad063293-4dac-4b04-a7d8-e7582a886de8"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1031\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480164575*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"f9498f55-f72e-4410-a3bc-fb448691e61b"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1212\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{SuperscriptBox[\\\"r\\\", \ +\\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \ +\\\"]\\\"}], \\\"2\\\"], \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"], \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}]}], \\\")\ +\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480166745*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"648adab7-0358-40fd-b77c-e9a445de2f79"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1221\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{SuperscriptBox[\\\"r\\\", \ +\\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"]}], \\\"+\\\", RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"], \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}]}], \\\")\ +\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480168934*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"aa12dd40-395d-4c3a-b305-f1f7cebd785e"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1301\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801710978`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"b2bdd99a-9524-44d1-9098-8dd5a1c57662"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1310\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480173023*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"67f15249-7b40-45fa-b579-46500d033ce0"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1313\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \ +\\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801749*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"e52d9096-ac8b-4619-a941-e4a0c40068a5"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"1331\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", \\\"r\\\", \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\ +\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \ +\\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", \ +RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801771193`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"6be145f6-9449-4690-ab38-5cc38da2e3c1"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2023\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \ +\\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480179303*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"5d56e729-e6b0-4faa-86a7-986b3a2a65e3"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2032\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \ +\\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480181149*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"d9509c79-1516-49f7-9fd6-9fb59bbedc0d"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2112\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{SuperscriptBox[\\\"r\\\", \ +\\\"2\\\"], \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\ +\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{SuperscriptBox[RowBox[{\\\"Cot\\\", \\\"[\\\", \\\"\[Theta]\\\", \ +\\\"]\\\"}], \\\"2\\\"], \\\"-\\\", SuperscriptBox[RowBox[{\\\"Csc\\\", \\\"[\ +\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\"+\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"2\\\"]}]}], \\\")\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801829844`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"1dfa5664-2ad4-4e7c-9bde-14851f85ec07"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2121\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{SuperscriptBox[\\\"r\\\", \ +\\\"2\\\"], \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\ +\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"-\\\", SuperscriptBox[RowBox[{\\\"Cot\\\", \\\"[\\\", \ +\\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +SuperscriptBox[RowBox[{\\\"Csc\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"], \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}]}], \\\")\\\"}]}]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.78221848018472*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"787c08f3-9db0-4470-abe3-447dadca2081"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2302\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \ +\\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801863537`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"383bb048-db94-49a4-8055-3dcaef0b51bb"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2320\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \ +\\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480187912*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"02947826-837d-4c1d-b005-b41b6aefdf81"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2323\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \ +\\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \ +\\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\ +\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \ +\\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", \ +RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480189608*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"55e0756e-8403-4fe3-adfc-7a4af4585552"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"2332\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \ +FractionBox[\\\"1\\\", \\\"2\\\"]}], \\\" \\\", \\\"r\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \ +\\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801917067`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"eb60c6a2-82ec-42d0-b332-6a170aab0eec"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3003\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"-\\\", \ +\\\"2\\\"}], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184801935387`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"ff2f94db-4b72-46a4-afe5-981ef027e1bf"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3030\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480195199*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"cdcde152-6b6c-4b91-acbe-b5d2d4099614"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3101\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480196855*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"0958d403-6658-455b-bb2b-ab9f15dc0254"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3110\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480198389*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"8e17d985-1dfe-4085-ba1b-2ec4cbcccef4"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3113\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"-\\\", \ +\\\"4\\\"}], \\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\ +\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +\\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \ +\\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", \ +RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\ +\"], \\\" \\\", \\\"r\\\", \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480199938*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"50efadd7-0d6e-4936-8789-b387a059078f"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3131\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"4\\\", \\\" \\\", \\\"r\ +\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\ +\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\ +\"}], \\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\ +\\\"8\\\", \\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", \ +RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \\\"r\\\", \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\ +\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \ +\\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", \ +RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.7822184802021427`*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"825a0ddb-fa69-443c-b0ca-16c961331a07"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3202\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{\\\"2\\\", \\\" \\\", \\\"r\\\", \\\ +\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \ +\\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480204301*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"f3d9ba45-64e7-473c-82ce-51c40d0422d9"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3220\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \ +\\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \ +\\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480205832*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"5dbe509b-baec-40c2-a9df-816ae3cdf713"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3223\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"-\\\", \ +\\\"4\\\"}], \\\" \\\", \\\"r\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"], \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", \ +RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +\\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\ +\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", SuperscriptBox[RowBox[{\\\"\ +\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \ +\\\"]\\\"}], \\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", \\\"r\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \ +\\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \ +\\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480207428*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"b400a75d-eed1-4877-939a-0b9d2c72876d"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3232\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"4\\\", \\\" \\\", \\\"r\ +\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \\\"[\\\", \ +\\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\ +\"Sin\\\", \\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{FractionBox[\\\"1\\\", \\\"2\\\ +\"], \\\" \\\", \\\"r\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"Sin\\\", \ +\\\"[\\\", \\\"\[Theta]\\\", \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\ +\\\", \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \ +\\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", \ +RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480209784*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"f54b4c2e-8ffa-42f7-bd97-72c906a39ae5"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3303\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{\\\"2\\\", \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"2\\\"], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"2\\\"}], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], \\\"+\\\", \ +RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{RowBox[{\\\"-\\\", \\\"4\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"24\\\ +\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480212151*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"53e2d912-725e-4e11-bab9-f65c10c743c1"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3330\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{RowBox[{\\\"-\\\", \ +\\\"2\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +RowBox[{\\\"2\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], \\\"+\\\", \ +RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"4\\\", \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"24\\\ +\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"1\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"8\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"3\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"2\\\", \\\",\\\", \\\"0\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], "Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480215479*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"7a55c919-4a92-4379-bd5b-4df13487ec33"], + +Cell[BoxData["\<\"\\!\\(\\*SubscriptBox[\\\"\\\\\\\"R\\\\\\\"\\\", \\\"\\\\\\\ +\"3333\\\\\\\"\\\"]\\) = \\!\\(\\*RowBox[{RowBox[{FractionBox[\\\"1\\\", \ +\\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"-\\\", \ +\\\"4\\\"}], \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"-\\\", \ +RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"2\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", RowBox[{\\\"24\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"-\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}], \\\"+\\\", \ +RowBox[{FractionBox[\\\"1\\\", \\\"2\\\"], \\\" \\\", RowBox[{\\\"(\\\", \ +RowBox[{RowBox[{\\\"4\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"0\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"]}], \\\"+\\\", \ +RowBox[{\\\"4\\\", \\\" \\\", RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\ +\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"2\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"24\\\", \\\" \\\", \ +SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \\\"[\\\", RowBox[{\\\"r\\\", \ +\\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \\\"2\\\"], \\\" \\\", \ +RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", TagBox[RowBox[{\\\"(\\\", RowBox[{\\\ +\"0\\\", \\\",\\\", \\\"1\\\"}], \\\")\\\"}], Derivative], \ +Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \ +\\\"t\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"0\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ +RowBox[{\\\"8\\\", \\\" \\\", SuperscriptBox[RowBox[{\\\"\[Kappa]\\\", \ +\\\"[\\\", RowBox[{\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}], \ +\\\"3\\\"], \\\" \\\", RowBox[{SuperscriptBox[\\\"\[Kappa]\\\", \ +TagBox[RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\",\\\", \\\"1\\\"}], \ +\\\")\\\"}], Derivative], Rule[MultilineFunction, None]], \\\"[\\\", RowBox[{\ +\\\"r\\\", \\\",\\\", \\\"t\\\"}], \\\"]\\\"}]}]}], \\\")\\\"}]}]}]\\)\"\>"], \ +"Print", + CellChangeTimes->{{3.782213744090189*^9, 3.782213771728095*^9}, + 3.782217290294557*^9, {3.782218345746953*^9, 3.7822183607892847`*^9}, + 3.782218480218789*^9}, + CellLabel-> + "During evaluation of \ +In[122]:=",ExpressionUUID->"c1cc086f-364b-42cf-9598-332bcb718246"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"1", ",", "2", ",", "2", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "2", ",", "4", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "3", ",", "3", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "3", ",", "4", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "4", ",", "1", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"1", ",", "4", ",", "4", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1", ",", "2", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "1", ",", "4", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "3", ",", "2", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "3", ",", "3", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "4", ",", "1", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "4", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "4", ",", "2", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"2", ",", "4", ",", "4", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "1", ",", "3", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "1", ",", "4", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "2", ",", "2", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "2", ",", "3", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "4", ",", "1", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "4", ",", "3", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "4", ",", "3", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"3", ",", "4", ",", "4", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "1", ",", "1", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "1", ",", "4", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "2", ",", "1", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "2", ",", "2", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "2", ",", "2", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "2", ",", "4", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "3", ",", "1", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "3", ",", "3", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "3", ",", "3", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "3", ",", "4", ",", "3"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "4", ",", "1", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "4", ",", "4", ",", "1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"4", ",", "4", ",", "4", ",", "4"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.7822137338651114`*^9, 3.782213771812983*^9}, + 3.782217290417171*^9, {3.782218345820467*^9, 3.7822183608659573`*^9}, + 3.7822184802223597`*^9}, + CellLabel-> + "Out[122]=",ExpressionUUID->"323cfdeb-cdf7-492d-99a4-6b43b7f97b9d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"riemanndown", "[", + RowBox[{"[", + RowBox[{"1", ",", "4", ",", "1", ",", "4"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.782207914358975*^9, 3.782207916425805*^9}}, + CellLabel-> + "In[183]:=",ExpressionUUID->"2ea6af3c-3620-4faa-8a92-b5fe607cd5c2"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"1", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"\[Kappa]", "[", + RowBox[{"r", ",", "t"}], "]"}], " ", + RowBox[{ + SuperscriptBox["\[Kappa]", + TagBox[ + RowBox[{"(", + RowBox[{"2", ",", "0"}], ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"r", ",", "t"}], "]"}]}]}]], "Output", + CellChangeTimes->{3.782207916625918*^9}, + CellLabel-> + "Out[183]=",ExpressionUUID->"f7521aeb-7da2-4091-a451-48e59446336d"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Kerr solution", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}, {3.74817116905129*^9, 3.7481711974490223`*^9}, { + 3.7705406880263157`*^9, + 3.770540688459054*^9}},ExpressionUUID->"d009f1f3-e0f6-4ea9-a195-\ +0763b8bc42ba"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{ + RowBox[{"a", "^", "2"}], " ", + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}], + RowBox[{ + RowBox[{"r", "^", "2"}], " ", "+", + RowBox[{"a", "^", "2"}], "-", + RowBox[{"2", " ", "M", " ", "r"}]}]], ",", "0", ",", "0", ",", + RowBox[{"(", + FractionBox[ + RowBox[{" ", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "M"}], " ", "r", " ", "a"}], ")"}], + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}]}], + RowBox[{ + RowBox[{"r", "^", "2"}], " ", "+", + RowBox[{ + RowBox[{"a", "^", "2"}], + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}]], ")"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{ + RowBox[{"a", "^", "2"}], " ", + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}], ",", "0", + ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{ + RowBox[{"r", "^", "2"}], "+", + RowBox[{"a", "^", "2"}], " ", "-", + FractionBox[ + RowBox[{ + RowBox[{"a", "^", "2"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "M", " ", "r"}], ")"}], + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}], + RowBox[{ + RowBox[{"r", "^", "2"}], " ", "+", + RowBox[{ + RowBox[{"a", "^", "2"}], + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}]]}], ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"(", + FractionBox[ + RowBox[{" ", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "M"}], " ", "r", " ", "a"}], ")"}], + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}]}], + RowBox[{ + RowBox[{"r", "^", "2"}], " ", "+", + RowBox[{ + RowBox[{"a", "^", "2"}], + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}]], ")"}], + ",", "0", ",", "0", ",", + RowBox[{"-", + RowBox[{"(", + RowBox[{"1", "+", + FractionBox[ + RowBox[{" ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "M", " ", "r"}], ")"}]}], + RowBox[{ + RowBox[{"r", "^", "2"}], " ", "+", + RowBox[{ + RowBox[{"a", "^", "2"}], + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "^", "2"}]}]}]]}], + ")"}]}]}], "}"}]}], "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.770541621872037*^9, 3.770541760559494*^9}, { + 3.770543814731696*^9, 3.770544012600278*^9}, {3.770544056286233*^9, + 3.7705440584503527`*^9}}, + CellLabel-> + "In[422]:=",ExpressionUUID->"0f6aa630-4d48-4b3c-8921-94be2420c27e"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"g", "//", "TableForm"}]], "Input", + CellChangeTimes->{{3.7705417705699797`*^9, 3.770541772530279*^9}}, + CellLabel-> + "In[384]:=",ExpressionUUID->"0d4d3d7e-d17d-42f3-9e3b-4adf73923439"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + FractionBox[ + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], + RowBox[{ + SuperscriptBox["a", "2"], "-", + RowBox[{"2", " ", "M", " ", "r"}], "+", + SuperscriptBox["r", "2"]}]], "0", "0", + RowBox[{"-", + FractionBox[ + RowBox[{"a", " ", "M", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}]}, + {"0", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}], "0", "0"}, + {"0", "0", + RowBox[{ + SuperscriptBox["a", "2"], "+", + SuperscriptBox["r", "2"], "+", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["a", "2"], " ", "M", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], "0"}, + { + RowBox[{"-", + FractionBox[ + RowBox[{"a", " ", "M", " ", "r", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}], "0", "0", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox[ + RowBox[{"2", " ", "M", " ", "r"}], + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"]}]}]]}]} + }, + GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Baseline}}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.77054176804323*^9, 3.770541772985812*^9}, + 3.770544014076241*^9, 3.7705440597545443`*^9, {3.798204853084311*^9, + 3.79820486427291*^9}, 3.7982068579269743`*^9, 3.798207083640918*^9, + 3.798358280226358*^9, 3.798359133518505*^9, 3.798359392027989*^9}, + CellLabel-> + "Out[384]//TableForm=",ExpressionUUID->"1b016fcd-b09d-4672-a24b-\ +9a80643b712c"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"KrScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}], ";"}]], "Input", + CellChangeTimes->{{3.7705419307027884`*^9, 3.770541957499669*^9}, { + 3.770543740941799*^9, 3.770543752085894*^9}, {3.79820686339365*^9, + 3.798206866275424*^9}}, + CellLabel-> + "In[423]:=",ExpressionUUID->"058381d3-f6a7-4cc9-8bb3-a65c6b30b2c9"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"ChristoffelSymbol", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}], "-", + RowBox[{"ChristoffelSymbolDev", "[", + RowBox[{"xx", ",", "g", ",", "0"}], "]"}]}], "]"}]], "Input", + CellLabel-> + "In[424]:=",ExpressionUUID->"440ced52-f137-4584-8d5f-fd34c8cc50de"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{3.798206870719454*^9, 3.798207085321713*^9, + 3.7983582824016943`*^9, 3.79835913461185*^9, 3.798359393042636*^9, + 3.7983602778905888`*^9}, + CellLabel-> + "Out[424]=",ExpressionUUID->"4e996734-9e06-495f-9a59-0acf7953b305"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"riemann", "=", + RowBox[{"RiemannTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}]}], + ";"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"riemanndev", "=", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}]}], + ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798204905186998*^9, 3.798204963974113*^9}}, + CellLabel-> + "In[425]:=",ExpressionUUID->"866a0f19-f95e-4fc0-ac2e-fe2565e4f8a8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.025176`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204941859147*^9, 3.798204969124363*^9}, + 3.798207088204986*^9, 3.798207137560917*^9, {3.798358285936928*^9, + 3.7983582901946993`*^9}, 3.79835848290765*^9, 3.798359135101411*^9, + 3.7983593938330927`*^9, {3.798360269965068*^9, 3.79836027848281*^9}}, + CellLabel-> + "Out[425]=",ExpressionUUID->"a33e91d8-28d5-4ce2-b33a-b69afe19e8c2"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.021144`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204941859147*^9, 3.798204969124363*^9}, + 3.798207088204986*^9, 3.798207137560917*^9, {3.798358285936928*^9, + 3.7983582901946993`*^9}, 3.79835848290765*^9, 3.798359135101411*^9, + 3.7983593938330927`*^9, {3.798360269965068*^9, 3.798360278485095*^9}}, + CellLabel-> + "Out[426]=",ExpressionUUID->"8f333b1f-352f-4e51-ab85-358929ff84c9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Options", "@", "RiemannTensorDev"}]], "Input", + CellChangeTimes->{{3.798358520366753*^9, 3.798358522036151*^9}}, + CellLabel-> + "In[427]:=",ExpressionUUID->"43f92161-42c6-411b-9fc8-0f7b16742d8e"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"\<\"Verbose\"\>", "\[Rule]", "False"}], ",", + RowBox[{"\<\"PerturbationIndex\"\>", "\[Rule]", "1"}], ",", + RowBox[{"\<\"SimplifyFunction\"\>", "\[Rule]", "Identity"}], ",", + RowBox[{"\<\"Compile\"\>", "\[Rule]", "False"}], ",", + RowBox[{"\<\"CompiledCoordinates\"\>", "\[Rule]", + RowBox[{"{", + RowBox[{"{", + RowBox[{"1", ",", "2", ",", "3", ",", "4"}], "}"}], "}"}]}], ",", + RowBox[{"\<\"IndexDown\"\>", "\[Rule]", "False"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.798358522368855*^9, 3.7983591359603024`*^9, 3.798359394478198*^9, { + 3.7983602707401752`*^9, 3.798360279049099*^9}}, + CellLabel-> + "Out[427]=",ExpressionUUID->"18935c58-2005-4eba-a257-c8468d2d200b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Chop", "[", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "s"}], "]"}], "]"}], + RowBox[{"riemann", "[", + RowBox[{"[", + RowBox[{"s", ",", "j", ",", "l", ",", "m"}], "]"}], "]"}]}], + ",", + RowBox[{"{", + RowBox[{"s", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}], "-", + RowBox[{"RiemannTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}], ",", + RowBox[{"\"\<IndexDown\>\"", "\[Rule]", "True"}]}], "]"}]}], ")"}], + "/.", + RowBox[{"a", "\[Rule]", "0.8"}]}], "/.", + RowBox[{"r", "\[Rule]", "10"}]}], "/.", + RowBox[{"\[Theta]", "\[Rule]", "0.784"}]}], "/.", + RowBox[{"M", "\[Rule]", "1.23"}]}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7983585041829243`*^9, 3.798358595751525*^9}, { + 3.7983591969558973`*^9, 3.7983592391576157`*^9}}, + CellLabel-> + "In[439]:=",ExpressionUUID->"86cd3787-f42d-4a3d-bea8-11f0c0a514fd"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.798358589615808*^9, 3.798358605972528*^9}, + 3.798359194155895*^9, {3.79835922910749*^9, 3.798359240512393*^9}, + 3.798359395921578*^9, {3.7983602638936033`*^9, 3.7983603087469*^9}, + 3.798360343756048*^9}, + CellLabel-> + "Out[439]=",ExpressionUUID->"2a21cc18-b849-4e3f-8490-adb1ec5ed4a7"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"riemann", "-", "riemanndev"}], "]"}]], "Input", + CellChangeTimes->{{3.798203304472187*^9, 3.7982033059470587`*^9}}, + CellLabel-> + "In[429]:=",ExpressionUUID->"384fae2e-1e8a-4f05-862b-743770fb9f61"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.7982033063425913`*^9, 3.798203561840762*^9, {3.798204965623232*^9, + 3.798204969700964*^9}, 3.798207089197337*^9, {3.798358287547853*^9, + 3.798358295831017*^9}, 3.79835848366313*^9, 3.79836028274487*^9}, + CellLabel-> + "Out[429]=",ExpressionUUID->"119aa2a6-3adf-4824-ad6f-8f65f27414af"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"riccits", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}]}], + ";"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"riccitsdev", "=", + RowBox[{"RicciTensorDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}]}], + ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798204905186998*^9, 3.798204963974113*^9}, { + 3.7982051451351147`*^9, 3.798205157432707*^9}}, + CellLabel-> + "In[310]:=",ExpressionUUID->"8f5618a8-8837-4497-b015-946ac19d7712"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.026792`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204941859147*^9, 3.798204969124363*^9}, + 3.798205157776929*^9, 3.798207091313519*^9, {3.7982071329336233`*^9, + 3.798207134616316*^9}, 3.7983584958241577`*^9}, + CellLabel-> + "Out[310]=",ExpressionUUID->"98853bb7-9f64-42b8-98aa-77d9470516f8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.019567`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204941859147*^9, 3.798204969124363*^9}, + 3.798205157776929*^9, 3.798207091313519*^9, {3.7982071329336233`*^9, + 3.798207134616316*^9}, 3.7983584958262367`*^9}, + CellLabel-> + "Out[311]=",ExpressionUUID->"7c994407-948f-4b88-ab0c-cff6a385d6a2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"(", + RowBox[{"riccits", "-", "riccitsdev"}], ")"}], "]"}]], "Input", + CellChangeTimes->{{3.798203304472187*^9, 3.7982033059470587`*^9}, { + 3.7982051649237947`*^9, 3.798205197264146*^9}, {3.7982070994104767`*^9, + 3.798207101820526*^9}}, + CellLabel-> + "In[312]:=",ExpressionUUID->"ce724af1-72cc-4960-991c-ea9dd6cc2a5b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.798207102298037*^9, 3.798358496735332*^9}, + CellLabel-> + "Out[312]=",ExpressionUUID->"0f86ee43-7920-4b75-acd2-6d596a21697a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"riccisc", "=", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}]}], + ";"}], "]"}], "\[IndentingNewLine]", + RowBox[{"Timing", "[", + RowBox[{ + RowBox[{"ricciscdev", "=", + RowBox[{"RicciScalarDev", "[", + RowBox[{"xx", ",", "g", ",", "0", ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Identity"}]}], "]"}]}], + ";"}], "]"}]}], "Input", + CellChangeTimes->{{3.798204905186998*^9, 3.79820500091984*^9}, { + 3.7982050440751534`*^9, 3.798205046044992*^9}, {3.798207116700327*^9, + 3.798207119748815*^9}}, + CellLabel-> + "In[313]:=",ExpressionUUID->"310dd24f-8805-46a2-9cf7-e81fa33a2131"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.029005`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204941859147*^9, 3.798204969124363*^9}, + 3.798205001600836*^9, 3.798205054409267*^9, {3.798207120328743*^9, + 3.7982071303341417`*^9}, 3.79835849875667*^9}, + CellLabel-> + "Out[313]=",ExpressionUUID->"cd6e1b76-a951-4ad3-a32a-d37f418392e5"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"0.021242`", ",", "Null"}], "}"}]], "Output", + CellChangeTimes->{{3.798204941859147*^9, 3.798204969124363*^9}, + 3.798205001600836*^9, 3.798205054409267*^9, {3.798207120328743*^9, + 3.7982071303341417`*^9}, 3.798358498759306*^9}, + CellLabel-> + "Out[314]=",ExpressionUUID->"b4ca9e80-a14d-4280-86ea-b8bda7f1be53"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FullSimplify", "[", + RowBox[{"(", + RowBox[{"riccisc", "-", "ricciscdev"}], ")"}], "]"}]], "Input", + CellChangeTimes->{{3.798203304472187*^9, 3.7982033059470587`*^9}, { + 3.798205006336442*^9, 3.798205027512092*^9}, {3.798205059406145*^9, + 3.798205110111209*^9}, 3.7982071257286463`*^9}, + CellLabel-> + "In[315]:=",ExpressionUUID->"0320bf66-74eb-444f-a16a-57e38d7c7861"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{ + 3.7982033063425913`*^9, 3.798203561840762*^9, {3.798204965623232*^9, + 3.798204969700964*^9}, {3.798205003925699*^9, 3.798205042165185*^9}, { + 3.7982050789840183`*^9, 3.798205113277308*^9}, {3.798207121469675*^9, + 3.798207126190461*^9}, 3.798358499469522*^9}, + CellLabel-> + "Out[315]=",ExpressionUUID->"bf6f5d6a-e61c-41f0-945d-36875055fc2a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", "%", "]"}]], "Input", + CellChangeTimes->{{3.7705419629792347`*^9, 3.7705419658553333`*^9}}, + CellLabel-> + "In[753]:=",ExpressionUUID->"587b302a-a244-495f-a90d-e618527f431f"], + +Cell[BoxData[ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"12", " ", + SuperscriptBox["a", "4"], " ", + SuperscriptBox["r", "3"], " ", + SuperscriptBox["rs", "3"]}], "+", + RowBox[{"16", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox["r", "5"], " ", + SuperscriptBox["rs", "3"]}], "-", + RowBox[{"64", " ", + SuperscriptBox["a", "4"], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["rs", "2"], " ", "\[CapitalSigma]"}], "-", + RowBox[{"80", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox["r", "4"], " ", + SuperscriptBox["rs", "2"], " ", "\[CapitalSigma]"}], "-", + RowBox[{"32", " ", + SuperscriptBox["r", "6"], " ", + SuperscriptBox["rs", "2"], " ", "\[CapitalSigma]"}], "-", + RowBox[{"3", " ", + SuperscriptBox["a", "4"], " ", + SuperscriptBox["rs", "2"], " ", "\[CapitalDelta]", " ", + "\[CapitalSigma]"}], "+", + RowBox[{"16", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["rs", "2"], " ", "\[CapitalDelta]", " ", + "\[CapitalSigma]"}], "+", + RowBox[{"8", " ", + SuperscriptBox["r", "4"], " ", + SuperscriptBox["rs", "2"], " ", "\[CapitalDelta]", " ", + "\[CapitalSigma]"}], "+", + RowBox[{"64", " ", + SuperscriptBox["a", "4"], " ", "r", " ", "rs", " ", + SuperscriptBox["\[CapitalSigma]", "2"]}], "+", + RowBox[{"128", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox["r", "3"], " ", "rs", " ", + SuperscriptBox["\[CapitalSigma]", "2"]}], "+", + RowBox[{"64", " ", + SuperscriptBox["r", "5"], " ", "rs", " ", + SuperscriptBox["\[CapitalSigma]", "2"]}], "-", + RowBox[{"80", " ", + SuperscriptBox["a", "2"], " ", "r", " ", "rs", " ", "\[CapitalDelta]", + " ", + SuperscriptBox["\[CapitalSigma]", "2"]}], "-", + RowBox[{"16", " ", + SuperscriptBox["r", "3"], " ", "rs", " ", "\[CapitalDelta]", " ", + SuperscriptBox["\[CapitalSigma]", "2"]}], "-", + RowBox[{"32", " ", + SuperscriptBox["a", "4"], " ", + SuperscriptBox["\[CapitalSigma]", "3"]}], "-", + RowBox[{"64", " ", + SuperscriptBox["a", "2"], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox["\[CapitalSigma]", "3"]}], "-", + RowBox[{"32", " ", + SuperscriptBox["r", "4"], " ", + SuperscriptBox["\[CapitalSigma]", "3"]}], "+", + RowBox[{"32", " ", + SuperscriptBox["a", "2"], " ", "\[CapitalDelta]", " ", + SuperscriptBox["\[CapitalSigma]", "3"]}], "+", + RowBox[{"4", " ", + SuperscriptBox["a", "2"], " ", "rs", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "3"], " ", + SuperscriptBox["rs", "2"]}], "-", + RowBox[{"7", " ", + SuperscriptBox["r", "2"], " ", "rs", " ", "\[CapitalSigma]"}], + "+", + RowBox[{"rs", " ", "\[CapitalDelta]", " ", "\[CapitalSigma]"}], + "+", + RowBox[{"6", " ", "r", " ", + SuperscriptBox["\[CapitalSigma]", "2"]}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"4", " ", + SuperscriptBox["r", "3"], " ", + SuperscriptBox["rs", "2"]}], "-", + RowBox[{"20", " ", + SuperscriptBox["r", "2"], " ", "rs", " ", "\[CapitalSigma]"}], + "-", + RowBox[{"rs", " ", "\[CapitalDelta]", " ", "\[CapitalSigma]"}], + "+", + RowBox[{"24", " ", "r", " ", + SuperscriptBox["\[CapitalSigma]", "2"]}]}], ")"}]}]}], ")"}], + " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]"}], "]"}]}], "+", + RowBox[{ + SuperscriptBox["a", "4"], " ", + SuperscriptBox["rs", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"4", " ", + SuperscriptBox["r", "3"], " ", "rs"}], "-", + RowBox[{"16", " ", + SuperscriptBox["r", "2"], " ", "\[CapitalSigma]"}], "-", + RowBox[{"\[CapitalDelta]", " ", "\[CapitalSigma]"}]}], ")"}], " ", + RowBox[{"Cos", "[", + RowBox[{"4", " ", "\[Theta]"}], "]"}]}]}], ")"}], "/", + RowBox[{"(", + RowBox[{"4", " ", + SuperscriptBox["\[CapitalSigma]", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["a", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"r", " ", "rs"}], "-", + RowBox[{"2", " ", "\[CapitalSigma]"}]}], ")"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"r", " ", "rs"}], "-", "\[CapitalSigma]"}], ")"}]}], "+", + + RowBox[{ + SuperscriptBox["a", "2"], " ", "r", " ", "rs", " ", + RowBox[{"Cos", "[", + RowBox[{"2", " ", "\[Theta]"}], "]"}]}]}], ")"}], "2"]}], ")"}]}], + ")"}]}]], "Output", + CellChangeTimes->{3.770541966607559*^9}, + CellLabel-> + "Out[753]=",ExpressionUUID->"3cc2eaee-cc1b-448b-8750-819d727fdcd5"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["Obtain the GR-TOV", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}},ExpressionUUID->"b00818ba-6c8f-40ea-a44e-\ +068ff9461ac1"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}], "]"}], ",", "0", ",", "0", ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"-", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}]}], ",", "0", ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{"-", + SuperscriptBox["r", "2"]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", + RowBox[{"Sign", "[", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "/", + RowBox[{"Abs", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], "]"}], + "]"}]}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}}, + CellLabel-> + "In[317]:=",ExpressionUUID->"334e0c5c-d5b8-4498-a6c2-c1226e3681ca"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.7523156331866407`*^9, 3.752315669277997*^9, + 3.752392300994501*^9}, + CellLabel-> + "Out[318]=",ExpressionUUID->"98ceb010-eee8-430a-9b93-35fc3bd3164b"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", + RowBox[{"-", "1"}]}], + SequenceForm[" Metric signature : ", -1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.748171040384201*^9, 3.752315633196405*^9, 3.752315669295588*^9, + 3.7523923010049334`*^9}, + CellLabel-> + "During evaluation of \ +In[317]:=",ExpressionUUID->"c3c37e5f-ee11-4b5e-8086-76fb241de61b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"u", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"signature", "\[Equal]", "1"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"-", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "]"}]}], ",", "0", ",", + "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], ",", "0", ",", + "0", ",", "0"}], "}"}]}], "]"}]}], ";"}], + " "}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{"\"\<Recall that metric signature == 1 !!\>\"", ",", "Blue"}], + "]"}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"u", ".", + RowBox[{"(", + RowBox[{"g", ".", "u"}], ")"}]}], "//", "Simplify"}]}], "Input", + CellChangeTimes->{ + 3.717748556792015*^9, {3.7201497297916393`*^9, 3.7201497529754763`*^9}, + 3.72014991471554*^9, {3.720149994412814*^9, 3.7201500313172197`*^9}, { + 3.720150086674468*^9, 3.720150131609095*^9}, 3.7210282239247627`*^9, { + 3.72102831877349*^9, 3.7210283399140167`*^9}, {3.721028449002584*^9, + 3.721028475825095*^9}}, + CellLabel->"In[11]:=",ExpressionUUID->"b4a97553-7b8c-4b79-8686-150ea30a3335"], + +Cell[BoxData[ + StyleBox["\<\"Recall that metric signature == 1 !!\"\>", + StripOnInput->False, + LineColor->RGBColor[0, 0, 1], + FrontFaceColor->RGBColor[0, 0, 1], + BackFaceColor->RGBColor[0, 0, 1], + GraphicsColor->RGBColor[0, 0, 1], + FontColor->RGBColor[0, 0, 1]]], "Print", + CellChangeTimes->{ + 3.738239257112466*^9, 3.7382435238685102`*^9, 3.738246292929134*^9, + 3.7382464188291807`*^9, 3.73836478810083*^9, {3.738418460085128*^9, + 3.738418471520904*^9}, 3.7384289371081944`*^9, 3.738443370764*^9, + 3.738472763664342*^9, 3.74026847514088*^9, {3.740268788096965*^9, + 3.74026880768769*^9}, 3.7468715049662857`*^9, 3.746944062367889*^9, + 3.74712138379294*^9, 3.7471341935186443`*^9, 3.747368843523903*^9, { + 3.747369034507238*^9, 3.7473690527723494`*^9}, 3.747376188218173*^9, + 3.7474748837605553`*^9, 3.747546289212886*^9, 3.747996746597335*^9, + 3.7481523982847357`*^9, 3.748154280671157*^9, 3.748164885621563*^9, + 3.748169408381311*^9, 3.748169452430599*^9, 3.748170037322853*^9, { + 3.748170840527648*^9, 3.748170847658226*^9}, 3.748171045692328*^9, + 3.752315634067535*^9, 3.752315671600762*^9}, + CellLabel-> + "During evaluation of \ +In[11]:=",ExpressionUUID->"2d2b862d-cf68-4113-8e2a-98c5463c8130"], + +Cell[BoxData["1"], "Output", + CellChangeTimes->{ + 3.738239257119619*^9, 3.7382435238819447`*^9, 3.738246292942831*^9, + 3.738246418839004*^9, 3.738364788110938*^9, {3.738418460094223*^9, + 3.738418471529682*^9}, 3.7384289371145353`*^9, 3.738443370773481*^9, + 3.738472763675894*^9, 3.740268475151412*^9, {3.74026878810935*^9, + 3.740268807698867*^9}, 3.746871504976838*^9, 3.746944062381765*^9, + 3.747121383803788*^9, 3.7471341935303907`*^9, 3.7473688435357523`*^9, { + 3.747369034519001*^9, 3.74736905278379*^9}, 3.74737618822885*^9, + 3.7474748837726727`*^9, 3.747546289222625*^9, 3.747996746613248*^9, + 3.748152398296513*^9, 3.748154280682889*^9, 3.748164885632936*^9, + 3.7481694083941917`*^9, 3.748169452442214*^9, 3.748170037334834*^9, { + 3.748170840542295*^9, 3.7481708476702213`*^9}, 3.748171045705168*^9, + 3.752315634078697*^9, 3.752315671610896*^9}, + CellLabel->"Out[13]=",ExpressionUUID->"86594c3c-0fc8-4918-8ca3-a2da281bb632"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"udown", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717419862193388*^9, 3.717419865888034*^9}}, + CellLabel->"In[14]:=",ExpressionUUID->"cd208626-5e3d-4207-a7de-66c63b88255f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + SqrtBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]]], ",", "0", ",", "0", ",", "0"}], + "}"}]], "Output", + CellChangeTimes->{ + 3.738239257163746*^9, 3.738243523948827*^9, 3.7382462929995403`*^9, + 3.7382464188849897`*^9, 3.73836478815267*^9, {3.7384184601478577`*^9, + 3.73841847158427*^9}, 3.738428937144867*^9, 3.738443370798142*^9, + 3.7384727637275257`*^9, 3.740268475196102*^9, {3.740268788164484*^9, + 3.74026880774127*^9}, 3.746871505033381*^9, 3.746944062454286*^9, + 3.747121383991096*^9, 3.7471341941359377`*^9, {3.74736884435433*^9, + 3.747368931670208*^9}, {3.747369002872841*^9, 3.747369035345422*^9}, + 3.7473761883514833`*^9, {3.7474748808062*^9, 3.747474885702282*^9}, + 3.7475462892942038`*^9, 3.747996750990672*^9, 3.748152399052104*^9, + 3.748154282046466*^9, 3.7481648865057898`*^9, 3.748169410303257*^9, + 3.7481694532038803`*^9, 3.748170038351623*^9, 3.7481708486599894`*^9, + 3.748171046443185*^9, 3.752315634957336*^9, 3.752315672597735*^9}, + CellLabel->"Out[14]=",ExpressionUUID->"91eca7c9-73fd-4472-92d7-a79a244bba5c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T\[Mu]\[Nu]up", "=", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"signature", "\[Equal]", "1"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]}], "]"}], "//", + "Simplify"}]}]], "Input", + CellChangeTimes->{{3.71689694546478*^9, 3.716896961608288*^9}, { + 3.7168975014713984`*^9, 3.716897598306788*^9}, {3.7168977931239853`*^9, + 3.71689792839441*^9}, {3.716898097895761*^9, 3.7168981141752157`*^9}, { + 3.716904567989387*^9, 3.716904569653391*^9}, {3.716968878668749*^9, + 3.716968879274379*^9}, {3.717419798092717*^9, 3.717419800990034*^9}, + 3.717419896422799*^9, {3.7174199813473663`*^9, 3.7174199834974747`*^9}, { + 3.717433608891754*^9, 3.717433619210552*^9}, {3.717748495274461*^9, + 3.7177485082789173`*^9}, {3.721028230461268*^9, 3.721028230644088*^9}, { + 3.7210284217648573`*^9, 3.721028436578032*^9}, {3.747368966969143*^9, + 3.747368970170349*^9}}, + CellLabel->"In[15]:=",ExpressionUUID->"407d0ac1-1dc2-4088-a59f-3865a5879a10"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"w", "[", "r", "]"}]}]], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + FractionBox[ + RowBox[{"p", "[", "r", "]"}], + SuperscriptBox["r", "2"]], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + FractionBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], + SuperscriptBox["r", "2"]]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.73823925721414*^9, 3.738243524036004*^9, 3.738246293048765*^9, + 3.738246418939494*^9, 3.738364788231888*^9, {3.7384184601930647`*^9, + 3.7384184716317587`*^9}, 3.7384289371700087`*^9, 3.738443370832918*^9, + 3.738472763780528*^9, 3.740268475244999*^9, {3.740268788229795*^9, + 3.740268807787265*^9}, 3.7468715051033773`*^9, 3.7469440625206747`*^9, + 3.7471213841465883`*^9, 3.747134194675424*^9, {3.74736886857541*^9, + 3.747368932270035*^9}, {3.747368967314714*^9, 3.747368970469545*^9}, { + 3.7473690201575613`*^9, 3.7473690364301434`*^9}, 3.747376188419807*^9, + 3.7475462893170757`*^9, 3.747996751535898*^9, 3.748152399754668*^9, + 3.748154282747005*^9, 3.7481648871387177`*^9, 3.748169411135203*^9, + 3.748169453780912*^9, 3.748170038938608*^9, 3.74817084936005*^9, + 3.748171047025981*^9, 3.752315635674481*^9, 3.7523156731916847`*^9}, + CellLabel->"Out[15]=",ExpressionUUID->"e5f5c524-4c06-4454-bde2-0cc1edf982e1"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T\[Mu]\[Nu]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"T\[Mu]\[Nu]up", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717174398720162*^9, 3.717174405832109*^9}, { + 3.71741999153314*^9, 3.71741999188358*^9}, 3.717428505145114*^9, + 3.717748524802745*^9, {3.717933907043252*^9, 3.717933940392991*^9}, { + 3.717933979091668*^9, 3.7179340154647083`*^9}, {3.717934054328257*^9, + 3.717934085440922*^9}, {3.748154284812828*^9, 3.748154285371112*^9}}, + CellLabel->"In[16]:=",ExpressionUUID->"31c38d14-b264-4ee3-a4ee-f32919091b05"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.73823925726434*^9, 3.7382435241174088`*^9, 3.738246293099222*^9, + 3.738246418989193*^9, 3.73836478828795*^9, {3.7384184602399*^9, + 3.738418471687704*^9}, 3.7384289372230263`*^9, 3.7384433708652983`*^9, + 3.738472763827738*^9, 3.740268475277933*^9, {3.740268788296517*^9, + 3.74026880784545*^9}, 3.746871505193667*^9, 3.746944062588154*^9, + 3.7471213842441883`*^9, 3.747134195425392*^9, 3.747368932924829*^9, + 3.7473761884858913`*^9, 3.7475462893611107`*^9, 3.747996752123827*^9, + 3.7481524006377907`*^9, 3.748154285798277*^9, 3.748164887788493*^9, + 3.748169411801445*^9, 3.748169454365245*^9, 3.748170039600761*^9, + 3.7481708501085377`*^9, 3.7481710478303947`*^9, 3.752315636301714*^9, + 3.752315674119981*^9}, + CellLabel->"Out[16]=",ExpressionUUID->"7b2711ec-e763-491a-a451-07a0aa1e0c40"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"Continuity", " ", "equation"}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{"eqp", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Flatten", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "T\[Mu]\[Nu]up", ",", + RowBox[{"{", + RowBox[{"i", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{ + "\"\<Valence\>\"", "\[Rule]", "\"\<Contravariant\>\""}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], "\[Equal]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}], "]"}]}], + ")"}]}], "}"}]}]}]], "Input", + CellChangeTimes->{{3.721113587934162*^9, 3.721113629229336*^9}, { + 3.721113664237012*^9, 3.721113668190748*^9}, {3.721113706596529*^9, + 3.721113796106236*^9}, {3.721115385820541*^9, 3.7211153908543663`*^9}, { + 3.7211158095314198`*^9, 3.7211158099529877`*^9}, {3.724072252803965*^9, + 3.724072253227384*^9}, {3.748164893214014*^9, 3.7481649827529*^9}, { + 3.748165954576632*^9, 3.7481660302527246`*^9}, {3.74816697324897*^9, + 3.7481669813728113`*^9}, {3.748167759768062*^9, 3.7481677613568907`*^9}}, + CellLabel->"In[17]:=",ExpressionUUID->"e37f6004-ac20-4940-99fe-c1119c385340"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.738239257484399*^9, 3.738243524520303*^9, 3.7382462932329187`*^9, + 3.73824641910999*^9, 3.738364788423029*^9, {3.738418460312562*^9, + 3.738418471817337*^9}, 3.7384289373527927`*^9, 3.738443371033216*^9, + 3.738472764031474*^9, 3.740268475425226*^9, {3.74026878843533*^9, + 3.74026880798472*^9}, 3.746871505282242*^9, 3.7469440627205973`*^9, + 3.74712138449193*^9, 3.747134196353437*^9, 3.7473761885820627`*^9, + 3.747546289449*^9, {3.7479967528191547`*^9, 3.7479967566656027`*^9}, + 3.748152401853285*^9, 3.748154286697897*^9, 3.748164983062326*^9, { + 3.74816595501602*^9, 3.748166030801673*^9}, {3.748166639141268*^9, + 3.748166641386911*^9}, 3.748166981854083*^9, 3.748167611925775*^9, { + 3.748167752382866*^9, 3.7481677618489847`*^9}, 3.748169413464644*^9, + 3.748169456283239*^9, {3.748170041891592*^9, 3.748170046076436*^9}, + 3.748170086401606*^9, 3.748170227874957*^9, 3.7481708507730722`*^9, + 3.7481710513136*^9, 3.752315637100428*^9, 3.752315674779408*^9}, + CellLabel->"Out[17]=",ExpressionUUID->"55923611-c4f3-4ef1-a4a7-a84704ac6edf"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T", "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"g", ".", "T\[Mu]\[Nu]up"}], ")"}], "[", + RowBox[{"[", + RowBox[{"i", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717420085395555*^9, 3.717420095641667*^9}, { + 3.7177528701703787`*^9, 3.7177528711479816`*^9}, {3.72102889795538*^9, + 3.721028898626919*^9}, {3.748166060217938*^9, 3.748166063648992*^9}}, + CellLabel->"In[18]:=",ExpressionUUID->"c1f545f6-dc9a-4d75-b3d2-612eb819b905"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}]], "Output", + CellChangeTimes->{ + 3.738239257530514*^9, 3.738243524604237*^9, 3.7382462932826843`*^9, + 3.7382464191689796`*^9, 3.738364788550866*^9, {3.738418460358227*^9, + 3.7384184719034433`*^9}, 3.738428937375473*^9, 3.738443371106002*^9, + 3.7384727641123734`*^9, 3.7402684754621964`*^9, {3.740268788548218*^9, + 3.740268808038826*^9}, 3.746871505435012*^9, 3.746944062787211*^9, + 3.747121384635006*^9, 3.747134197189636*^9, 3.747376188654307*^9, + 3.747546289472776*^9, {3.747996753423074*^9, 3.7479967575071297`*^9}, + 3.7481524029425793`*^9, 3.748166064007366*^9, 3.7481694580821037`*^9, + 3.74817004674165*^9, 3.748170088593472*^9, 3.748170231197794*^9, + 3.7481708515864563`*^9, 3.748171059508092*^9, 3.752315637871675*^9, + 3.752315675504908*^9}, + CellLabel->"Out[18]=",ExpressionUUID->"c7bcd78e-891d-429a-aef4-de5b3d9b183d"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", "Teff", "*)"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Teff", "=", + RowBox[{"TeffFR", "[", + RowBox[{"xx", ",", "g", ",", "R"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"Ttot", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"1", "/", "1"}], + RowBox[{"(", + RowBox[{"T\[Mu]\[Nu]", "+", "Teff"}], ")"}]}], "]"}]}], + ";"}]}]}]], "Input", + CellChangeTimes->{{3.7481548559010553`*^9, 3.748154897048135*^9}, { + 3.748154994128281*^9, 3.748155057582625*^9}, {3.7481552299087887`*^9, + 3.748155230552683*^9}, {3.748155281931972*^9, 3.748155305460484*^9}, { + 3.7481664896107597`*^9, 3.748166491490004*^9}, {3.748171063213746*^9, + 3.748171082659*^9}, {3.7523156799126177`*^9, 3.7523156875269337`*^9}}, + CellLabel->"In[24]:=",ExpressionUUID->"1cafd883-7da7-4823-a6a9-5123a8159c14"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eq\[Lambda]", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "\[Equal]", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"Ttot", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]}], ")"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellLabel->"In[26]:=",ExpressionUUID->"9aba9333-17e7-4381-9168-1d6071ba951b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"2", " ", "r"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r"}]]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.748166067281787*^9, 3.748166233412775*^9, 3.748166596293666*^9, + 3.748167602734932*^9, 3.748169461822729*^9, 3.74817004819375*^9, + 3.748170090042617*^9, 3.748170233367116*^9, {3.748170935979722*^9, + 3.74817094929779*^9}, 3.7481710657245398`*^9, 3.748171098750437*^9, + 3.752315639242178*^9, {3.75231567704215*^9, 3.752315691751334*^9}}, + CellLabel->"Out[26]=",ExpressionUUID->"ff51abc0-e70f-4c06-85d1-b9b62ff29c5b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eqw", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}], "\[Equal]", " ", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"Ttot", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}]}]}], ",", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}]}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellChangeTimes->{{3.720144588759453*^9, 3.720144590876111*^9}, { + 3.720144667086581*^9, 3.7201446946279087`*^9}, {3.720144780854402*^9, + 3.720144790861692*^9}, {3.7201449833155107`*^9, 3.7201450049970293`*^9}, { + 3.720145050235566*^9, 3.720145137715763*^9}, {3.720145182382394*^9, + 3.720145200625107*^9}, {3.72015053649203*^9, 3.720150544697959*^9}, { + 3.721028941895832*^9, 3.721028946059544*^9}, {3.748155950547563*^9, + 3.748155971151705*^9}}, + CellLabel->"In[27]:=",ExpressionUUID->"1d768848-b3e5-4b5c-b907-aa6c6db9e3a7"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "r"}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r"}]]}]}], "}"}]], "Output", + CellChangeTimes->{3.7481559749135237`*^9, 3.748166598682158*^9, + 3.7481676042602654`*^9, 3.748169465159646*^9, 3.7481700493588057`*^9, + 3.7481709512813377`*^9, 3.748171102155809*^9, 3.752315640629643*^9, + 3.752315702590332*^9}, + CellLabel->"Out[27]=",ExpressionUUID->"bd624d91-6864-42d8-81b1-36ed894481a8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"(", + RowBox[{"myfReqs", "=", + RowBox[{"{", + RowBox[{"eqp", ",", "eq\[Lambda]", ",", "eqw"}], "}"}]}], ")"}], "//", + "TableForm"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(*", + RowBox[{ + RowBox[{"(", + RowBox[{"myfReqs", "=", + RowBox[{"FullSimplify", "[", + RowBox[{"{", + RowBox[{"eqp", ",", "eq\[Lambda]", ",", "eqw", ",", "eq\[Psi]"}], + "}"}], "]"}]}], ")"}], "//", "TableForm"}], "*)"}]}]}], "Input", + CellChangeTimes->{{3.720145580445201*^9, 3.7201455916796227`*^9}, { + 3.720149514779941*^9, 3.720149524192295*^9}, {3.720149615433412*^9, + 3.720149617111251*^9}, {3.7210293786478643`*^9, 3.7210293787112827`*^9}, { + 3.721113805174633*^9, 3.72111380530075*^9}, {3.722318655994528*^9, + 3.722318662232821*^9}, 3.7244952552271976`*^9, {3.726228510372617*^9, + 3.726228516913807*^9}, {3.727695818886282*^9, 3.727695836403275*^9}, { + 3.72769604086134*^9, 3.727696048025983*^9}, 3.728128676118905*^9, { + 3.747134208464203*^9, 3.7471342105489817`*^9}, {3.7481711512677917`*^9, + 3.748171151406582*^9}}, + CellLabel->"In[28]:=",ExpressionUUID->"6da4dccc-52c1-4bcf-b508-a649e7b2ebcd"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"2", " ", "r"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r"}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "r"}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r"}]]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{ + 3.738239260373521*^9, 3.738243527750675*^9, 3.73824629498415*^9, + 3.738246420937697*^9, 3.738364790236902*^9, 3.7383652872089777`*^9, { + 3.738365349154182*^9, 3.7383653729699097`*^9}, {3.738418460676594*^9, + 3.738418473598926*^9}, 3.7384289392050953`*^9, 3.7384433728075933`*^9, + 3.7384727660607862`*^9, 3.7402684778385687`*^9, {3.740268781076466*^9, + 3.7402688097520027`*^9}, 3.7468715068647947`*^9, 3.7469440638063087`*^9, + 3.747121386201676*^9, {3.747134208967265*^9, 3.747134210861104*^9}, + 3.7473761900465593`*^9, 3.747546290309759*^9, 3.7479967682983093`*^9, + 3.748152408241688*^9, 3.7481564158026247`*^9, 3.748166615342593*^9, + 3.748171004181975*^9, 3.7481711090241957`*^9, 3.748171151734049*^9, + 3.7523157032553453`*^9}, + CellLabel-> + "Out[28]//TableForm=",ExpressionUUID->"47ac9b27-5843-4e1f-a4d1-\ +8aea6fd563e0"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Obtain the GR-TOV different metric", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171016206524*^9, + 3.7481710338362217`*^9}, {3.7663073462523518`*^9, + 3.766307348585086*^9}},ExpressionUUID->"06f86be9-7053-4f53-a3c9-\ +1038d3ae12e8"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"g", "//", "MatrixForm"}]], "Input", + CellChangeTimes->{{3.766309711698284*^9, 3.766309716522088*^9}}, + CellLabel-> + "In[132]:=",ExpressionUUID->"af2d4ead-32f6-44b4-9c23-e29c45d89556"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + { + RowBox[{"-", + RowBox[{"f", "[", "r", "]"}]}], "0", "0", "0"}, + {"0", + FractionBox["1", + RowBox[{"b", "[", "r", "]"}]], "0", "0"}, + {"0", "0", + SuperscriptBox["r", "2"], "0"}, + {"0", "0", "0", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.7663097124922132`*^9, 3.7663097168922997`*^9}}, + CellLabel-> + "Out[132]//MatrixForm=",ExpressionUUID->"5d04cfdc-4d84-48b7-a97d-\ +95ea169f5248"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"b", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], ">", "0"}], " ", "&&", " ", + RowBox[{ + RowBox[{"b", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"f", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"1", "/", + RowBox[{"b", "[", "r", "]"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", + RowBox[{"Sign", "[", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "/", + RowBox[{"Abs", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], "]"}], + "]"}]}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.766307352231407*^9, 3.766307366123831*^9}, { + 3.766309733573256*^9, 3.766309768306882*^9}}, + CellLabel-> + "In[160]:=",ExpressionUUID->"4c800565-cf82-45a7-b06d-bca9237b5db0"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"b", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.7523156331866407`*^9, 3.752315669277997*^9, + 3.752392300994501*^9, 3.766307368465804*^9, {3.766309726848216*^9, + 3.766309768784924*^9}}, + CellLabel-> + "Out[161]=",ExpressionUUID->"e124c890-233c-4c64-9845-07a965e651f5"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], ">", "0"}], "&&", + RowBox[{ + RowBox[{"b", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.748171040372291*^9, 3.7523156331866407`*^9, 3.752315669277997*^9, + 3.752392300994501*^9, 3.766307368465804*^9, {3.766309726848216*^9, + 3.766309768799501*^9}}, + CellLabel-> + "Out[162]=",ExpressionUUID->"d20902b0-57a1-4f80-85ff-8a02479854e2"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", "1"}], + SequenceForm[" Metric signature : ", 1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.748171040384201*^9, 3.752315633196405*^9, 3.752315669295588*^9, + 3.7523923010049334`*^9, 3.76630736847604*^9, {3.766309726860224*^9, + 3.7663097688085747`*^9}}, + CellLabel-> + "During evaluation of \ +In[160]:=",ExpressionUUID->"85de8086-c7f7-4fb0-ae8e-b8a75633a540"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"u", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"signature", "\[Equal]", "1"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"-", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "]"}]}], ",", "0", ",", + "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], ",", "0", ",", + "0", ",", "0"}], "}"}]}], "]"}]}], ";"}], + " "}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{"\"\<Recall that metric signature == 1 !!\>\"", ",", "Blue"}], + "]"}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"u", ".", + RowBox[{"(", + RowBox[{"g", ".", "u"}], ")"}]}], "//", "Simplify"}]}], "Input", + CellChangeTimes->{ + 3.717748556792015*^9, {3.7201497297916393`*^9, 3.7201497529754763`*^9}, + 3.72014991471554*^9, {3.720149994412814*^9, 3.7201500313172197`*^9}, { + 3.720150086674468*^9, 3.720150131609095*^9}, 3.7210282239247627`*^9, { + 3.72102831877349*^9, 3.7210283399140167`*^9}, {3.721028449002584*^9, + 3.721028475825095*^9}}, + CellLabel-> + "In[170]:=",ExpressionUUID->"4d74e151-d388-4591-8827-c11578074dd0"], + +Cell[BoxData[ + StyleBox["\<\"Recall that metric signature == 1 !!\"\>", + StripOnInput->False, + LineColor->RGBColor[0, 0, 1], + FrontFaceColor->RGBColor[0, 0, 1], + BackFaceColor->RGBColor[0, 0, 1], + GraphicsColor->RGBColor[0, 0, 1], + FontColor->RGBColor[0, 0, 1]]], "Print", + CellChangeTimes->{ + 3.738239257112466*^9, 3.7382435238685102`*^9, 3.738246292929134*^9, + 3.7382464188291807`*^9, 3.73836478810083*^9, {3.738418460085128*^9, + 3.738418471520904*^9}, 3.7384289371081944`*^9, 3.738443370764*^9, + 3.738472763664342*^9, 3.74026847514088*^9, {3.740268788096965*^9, + 3.74026880768769*^9}, 3.7468715049662857`*^9, 3.746944062367889*^9, + 3.74712138379294*^9, 3.7471341935186443`*^9, 3.747368843523903*^9, { + 3.747369034507238*^9, 3.7473690527723494`*^9}, 3.747376188218173*^9, + 3.7474748837605553`*^9, 3.747546289212886*^9, 3.747996746597335*^9, + 3.7481523982847357`*^9, 3.748154280671157*^9, 3.748164885621563*^9, + 3.748169408381311*^9, 3.748169452430599*^9, 3.748170037322853*^9, { + 3.748170840527648*^9, 3.748170847658226*^9}, 3.748171045692328*^9, + 3.752315634067535*^9, 3.752315671600762*^9, 3.766309802632094*^9}, + CellLabel-> + "During evaluation of \ +In[170]:=",ExpressionUUID->"22eddef9-84e1-4b5f-bdfd-c83809fadbeb"], + +Cell[BoxData[ + RowBox[{"-", "1"}]], "Output", + CellChangeTimes->{ + 3.738239257119619*^9, 3.7382435238819447`*^9, 3.738246292942831*^9, + 3.738246418839004*^9, 3.738364788110938*^9, {3.738418460094223*^9, + 3.738418471529682*^9}, 3.7384289371145353`*^9, 3.738443370773481*^9, + 3.738472763675894*^9, 3.740268475151412*^9, {3.74026878810935*^9, + 3.740268807698867*^9}, 3.746871504976838*^9, 3.746944062381765*^9, + 3.747121383803788*^9, 3.7471341935303907`*^9, 3.7473688435357523`*^9, { + 3.747369034519001*^9, 3.74736905278379*^9}, 3.74737618822885*^9, + 3.7474748837726727`*^9, 3.747546289222625*^9, 3.747996746613248*^9, + 3.748152398296513*^9, 3.748154280682889*^9, 3.748164885632936*^9, + 3.7481694083941917`*^9, 3.748169452442214*^9, 3.748170037334834*^9, { + 3.748170840542295*^9, 3.7481708476702213`*^9}, 3.748171045705168*^9, + 3.752315634078697*^9, 3.752315671610896*^9, 3.76630980264349*^9}, + CellLabel-> + "Out[172]=",ExpressionUUID->"27ae41e0-5bbc-4eea-b456-9eacf6e10b2b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"udown", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717419862193388*^9, 3.717419865888034*^9}}, + CellLabel-> + "In[173]:=",ExpressionUUID->"82221953-57d5-4897-8857-a4ea2de86434"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SqrtBox[ + RowBox[{"f", "[", "r", "]"}]]}], ",", "0", ",", "0", ",", "0"}], + "}"}]], "Output", + CellChangeTimes->{ + 3.738239257163746*^9, 3.738243523948827*^9, 3.7382462929995403`*^9, + 3.7382464188849897`*^9, 3.73836478815267*^9, {3.7384184601478577`*^9, + 3.73841847158427*^9}, 3.738428937144867*^9, 3.738443370798142*^9, + 3.7384727637275257`*^9, 3.740268475196102*^9, {3.740268788164484*^9, + 3.74026880774127*^9}, 3.746871505033381*^9, 3.746944062454286*^9, + 3.747121383991096*^9, 3.7471341941359377`*^9, {3.74736884435433*^9, + 3.747368931670208*^9}, {3.747369002872841*^9, 3.747369035345422*^9}, + 3.7473761883514833`*^9, {3.7474748808062*^9, 3.747474885702282*^9}, + 3.7475462892942038`*^9, 3.747996750990672*^9, 3.748152399052104*^9, + 3.748154282046466*^9, 3.7481648865057898`*^9, 3.748169410303257*^9, + 3.7481694532038803`*^9, 3.748170038351623*^9, 3.7481708486599894`*^9, + 3.748171046443185*^9, 3.752315634957336*^9, 3.752315672597735*^9, + 3.766309803480845*^9}, + CellLabel-> + "Out[173]=",ExpressionUUID->"908532ff-1eea-48ef-b0f7-b6bd80bab3a7"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T\[Mu]\[Nu]up", "=", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"signature", "\[Equal]", "1"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]}], "]"}], "//", + "Simplify"}]}]], "Input", + CellChangeTimes->{{3.71689694546478*^9, 3.716896961608288*^9}, { + 3.7168975014713984`*^9, 3.716897598306788*^9}, {3.7168977931239853`*^9, + 3.71689792839441*^9}, {3.716898097895761*^9, 3.7168981141752157`*^9}, { + 3.716904567989387*^9, 3.716904569653391*^9}, {3.716968878668749*^9, + 3.716968879274379*^9}, {3.717419798092717*^9, 3.717419800990034*^9}, + 3.717419896422799*^9, {3.7174199813473663`*^9, 3.7174199834974747`*^9}, { + 3.717433608891754*^9, 3.717433619210552*^9}, {3.717748495274461*^9, + 3.7177485082789173`*^9}, {3.721028230461268*^9, 3.721028230644088*^9}, { + 3.7210284217648573`*^9, 3.721028436578032*^9}, {3.747368966969143*^9, + 3.747368970170349*^9}}, + CellLabel-> + "In[174]:=",ExpressionUUID->"68a86325-7d4e-489a-8554-11545358bb9a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + FractionBox[ + RowBox[{"\[Rho]", "[", "r", "]"}], + RowBox[{"f", "[", "r", "]"}]], ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{"b", "[", "r", "]"}], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + FractionBox[ + RowBox[{"p", "[", "r", "]"}], + SuperscriptBox["r", "2"]], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + FractionBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], + SuperscriptBox["r", "2"]]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.73823925721414*^9, 3.738243524036004*^9, 3.738246293048765*^9, + 3.738246418939494*^9, 3.738364788231888*^9, {3.7384184601930647`*^9, + 3.7384184716317587`*^9}, 3.7384289371700087`*^9, 3.738443370832918*^9, + 3.738472763780528*^9, 3.740268475244999*^9, {3.740268788229795*^9, + 3.740268807787265*^9}, 3.7468715051033773`*^9, 3.7469440625206747`*^9, + 3.7471213841465883`*^9, 3.747134194675424*^9, {3.74736886857541*^9, + 3.747368932270035*^9}, {3.747368967314714*^9, 3.747368970469545*^9}, { + 3.7473690201575613`*^9, 3.7473690364301434`*^9}, 3.747376188419807*^9, + 3.7475462893170757`*^9, 3.747996751535898*^9, 3.748152399754668*^9, + 3.748154282747005*^9, 3.7481648871387177`*^9, 3.748169411135203*^9, + 3.748169453780912*^9, 3.748170038938608*^9, 3.74817084936005*^9, + 3.748171047025981*^9, 3.752315635674481*^9, 3.7523156731916847`*^9, + 3.7663098043309298`*^9}, + CellLabel-> + "Out[174]=",ExpressionUUID->"ce094d0b-901b-4924-b99b-d67127abb61f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T\[Mu]\[Nu]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"T\[Mu]\[Nu]up", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717174398720162*^9, 3.717174405832109*^9}, { + 3.71741999153314*^9, 3.71741999188358*^9}, 3.717428505145114*^9, + 3.717748524802745*^9, {3.717933907043252*^9, 3.717933940392991*^9}, { + 3.717933979091668*^9, 3.7179340154647083`*^9}, {3.717934054328257*^9, + 3.717934085440922*^9}, {3.748154284812828*^9, 3.748154285371112*^9}}, + CellLabel-> + "In[175]:=",ExpressionUUID->"81448baf-b8f8-400b-bd9d-f40a53525971"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + FractionBox[ + RowBox[{"p", "[", "r", "]"}], + RowBox[{"b", "[", "r", "]"}]], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.73823925726434*^9, 3.7382435241174088`*^9, 3.738246293099222*^9, + 3.738246418989193*^9, 3.73836478828795*^9, {3.7384184602399*^9, + 3.738418471687704*^9}, 3.7384289372230263`*^9, 3.7384433708652983`*^9, + 3.738472763827738*^9, 3.740268475277933*^9, {3.740268788296517*^9, + 3.74026880784545*^9}, 3.746871505193667*^9, 3.746944062588154*^9, + 3.7471213842441883`*^9, 3.747134195425392*^9, 3.747368932924829*^9, + 3.7473761884858913`*^9, 3.7475462893611107`*^9, 3.747996752123827*^9, + 3.7481524006377907`*^9, 3.748154285798277*^9, 3.748164887788493*^9, + 3.748169411801445*^9, 3.748169454365245*^9, 3.748170039600761*^9, + 3.7481708501085377`*^9, 3.7481710478303947`*^9, 3.752315636301714*^9, + 3.752315674119981*^9, 3.766307380540984*^9, 3.766309805498457*^9}, + CellLabel-> + "Out[175]=",ExpressionUUID->"abf6abcf-02ca-4509-9253-e0b623a936b7"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"Continuity", " ", "equation"}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{"eqp", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Flatten", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "T\[Mu]\[Nu]up", ",", + RowBox[{"{", + RowBox[{"i", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{ + "\"\<Valence\>\"", "\[Rule]", "\"\<Contravariant\>\""}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], "\[Equal]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}], "]"}]}], + ")"}]}], "}"}]}]}]], "Input", + CellChangeTimes->{{3.721113587934162*^9, 3.721113629229336*^9}, { + 3.721113664237012*^9, 3.721113668190748*^9}, {3.721113706596529*^9, + 3.721113796106236*^9}, {3.721115385820541*^9, 3.7211153908543663`*^9}, { + 3.7211158095314198`*^9, 3.7211158099529877`*^9}, {3.724072252803965*^9, + 3.724072253227384*^9}, {3.748164893214014*^9, 3.7481649827529*^9}, { + 3.748165954576632*^9, 3.7481660302527246`*^9}, {3.74816697324897*^9, + 3.7481669813728113`*^9}, {3.748167759768062*^9, 3.7481677613568907`*^9}}, + CellLabel-> + "In[176]:=",ExpressionUUID->"37efe627-009f-4a3c-b16f-69f84cf1d96a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"2", " ", + RowBox[{"f", "[", "r", "]"}]}]]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.738239257484399*^9, 3.738243524520303*^9, 3.7382462932329187`*^9, + 3.73824641910999*^9, 3.738364788423029*^9, {3.738418460312562*^9, + 3.738418471817337*^9}, 3.7384289373527927`*^9, 3.738443371033216*^9, + 3.738472764031474*^9, 3.740268475425226*^9, {3.74026878843533*^9, + 3.74026880798472*^9}, 3.746871505282242*^9, 3.7469440627205973`*^9, + 3.74712138449193*^9, 3.747134196353437*^9, 3.7473761885820627`*^9, + 3.747546289449*^9, {3.7479967528191547`*^9, 3.7479967566656027`*^9}, + 3.748152401853285*^9, 3.748154286697897*^9, 3.748164983062326*^9, { + 3.74816595501602*^9, 3.748166030801673*^9}, {3.748166639141268*^9, + 3.748166641386911*^9}, 3.748166981854083*^9, 3.748167611925775*^9, { + 3.748167752382866*^9, 3.7481677618489847`*^9}, 3.748169413464644*^9, + 3.748169456283239*^9, {3.748170041891592*^9, 3.748170046076436*^9}, + 3.748170086401606*^9, 3.748170227874957*^9, 3.7481708507730722`*^9, + 3.7481710513136*^9, 3.752315637100428*^9, 3.752315674779408*^9, + 3.7663073830657253`*^9, 3.7663098069005527`*^9}, + CellLabel-> + "Out[176]=",ExpressionUUID->"174c416f-5ccc-4d73-9b5e-d04758d39a3b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T", "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"g", ".", "T\[Mu]\[Nu]up"}], ")"}], "[", + RowBox[{"[", + RowBox[{"i", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717420085395555*^9, 3.717420095641667*^9}, { + 3.7177528701703787`*^9, 3.7177528711479816`*^9}, {3.72102889795538*^9, + 3.721028898626919*^9}, {3.748166060217938*^9, 3.748166063648992*^9}}, + CellLabel-> + "In[177]:=",ExpressionUUID->"0dee3fbc-cae5-4e91-a556-b0a93f9b7f9e"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"3", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}]], "Output", + CellChangeTimes->{ + 3.738239257530514*^9, 3.738243524604237*^9, 3.7382462932826843`*^9, + 3.7382464191689796`*^9, 3.738364788550866*^9, {3.738418460358227*^9, + 3.7384184719034433`*^9}, 3.738428937375473*^9, 3.738443371106002*^9, + 3.7384727641123734`*^9, 3.7402684754621964`*^9, {3.740268788548218*^9, + 3.740268808038826*^9}, 3.746871505435012*^9, 3.746944062787211*^9, + 3.747121384635006*^9, 3.747134197189636*^9, 3.747376188654307*^9, + 3.747546289472776*^9, {3.747996753423074*^9, 3.7479967575071297`*^9}, + 3.7481524029425793`*^9, 3.748166064007366*^9, 3.7481694580821037`*^9, + 3.74817004674165*^9, 3.748170088593472*^9, 3.748170231197794*^9, + 3.7481708515864563`*^9, 3.748171059508092*^9, 3.752315637871675*^9, + 3.752315675504908*^9, 3.766307389699265*^9, 3.766309808287836*^9}, + CellLabel-> + "Out[177]=",ExpressionUUID->"b2a499a1-5f75-4ac2-a3de-091164953a92"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", "Teff", "*)"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Teff", "=", + RowBox[{"TeffFR", "[", + RowBox[{"xx", ",", "g", ",", "R"}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"Ttot", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"1", "/", "1"}], + RowBox[{"(", + RowBox[{"T\[Mu]\[Nu]", "+", "Teff"}], ")"}]}], "]"}]}], + ";"}]}]}]], "Input", + CellChangeTimes->{{3.7481548559010553`*^9, 3.748154897048135*^9}, { + 3.748154994128281*^9, 3.748155057582625*^9}, {3.7481552299087887`*^9, + 3.748155230552683*^9}, {3.748155281931972*^9, 3.748155305460484*^9}, { + 3.7481664896107597`*^9, 3.748166491490004*^9}, {3.748171063213746*^9, + 3.748171082659*^9}, {3.7523156799126177`*^9, 3.7523156875269337`*^9}}, + CellLabel-> + "In[178]:=",ExpressionUUID->"971e90cc-d509-4ecd-baa9-dddff00fb886"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eq\[Lambda]", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["b", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["b", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "\[Equal]", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"Ttot", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}]}], ",", + RowBox[{ + SuperscriptBox["b", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]}], ")"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellChangeTimes->{{3.7663073983112183`*^9, 3.766307433237727*^9}}, + CellLabel-> + "In[180]:=",ExpressionUUID->"3dd417d0-b511-416e-adcd-4dc96e264d35"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["b", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"1", "-", + RowBox[{"b", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "r"]}], "}"}]], "Output", + CellChangeTimes->{ + 3.748166067281787*^9, 3.748166233412775*^9, 3.748166596293666*^9, + 3.748167602734932*^9, 3.748169461822729*^9, 3.74817004819375*^9, + 3.748170090042617*^9, 3.748170233367116*^9, {3.748170935979722*^9, + 3.74817094929779*^9}, 3.7481710657245398`*^9, 3.748171098750437*^9, + 3.752315639242178*^9, {3.75231567704215*^9, 3.752315691751334*^9}, { + 3.766307396215714*^9, 3.76630743636633*^9}, 3.766309809649989*^9}, + CellLabel-> + "Out[180]=",ExpressionUUID->"bf8f0eb7-c5f9-4512-b5cd-0cb898aa03e9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eqw", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}], "\[Equal]", " ", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"Ttot", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}]}]}], ",", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}]}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellChangeTimes->{{3.720144588759453*^9, 3.720144590876111*^9}, { + 3.720144667086581*^9, 3.7201446946279087`*^9}, {3.720144780854402*^9, + 3.720144790861692*^9}, {3.7201449833155107`*^9, 3.7201450049970293`*^9}, { + 3.720145050235566*^9, 3.720145137715763*^9}, {3.720145182382394*^9, + 3.720145200625107*^9}, {3.72015053649203*^9, 3.720150544697959*^9}, { + 3.721028941895832*^9, 3.721028946059544*^9}, {3.748155950547563*^9, + 3.748155971151705*^9}, {3.7663074474914913`*^9, 3.766307450892837*^9}}, + CellLabel-> + "In[181]:=",ExpressionUUID->"207ae9c7-0ad4-440e-8db2-ba18bcd1851a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"b", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"r", " ", + RowBox[{"b", "[", "r", "]"}]}]]}]}], "}"}]], "Output", + CellChangeTimes->{3.7481559749135237`*^9, 3.748166598682158*^9, + 3.7481676042602654`*^9, 3.748169465159646*^9, 3.7481700493588057`*^9, + 3.7481709512813377`*^9, 3.748171102155809*^9, 3.752315640629643*^9, + 3.752315702590332*^9, 3.7663074511935377`*^9, 3.766309810636524*^9}, + CellLabel-> + "Out[181]=",ExpressionUUID->"91971350-99b1-4d5e-be9f-7f578a545979"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"(", + RowBox[{"myfReqs", "=", + RowBox[{"{", + RowBox[{"eqp", ",", "eq\[Lambda]", ",", "eqw"}], "}"}]}], ")"}], "//", + "TableForm"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(*", + RowBox[{ + RowBox[{"(", + RowBox[{"myfReqs", "=", + RowBox[{"FullSimplify", "[", + RowBox[{"{", + RowBox[{"eqp", ",", "eq\[Lambda]", ",", "eqw", ",", "eq\[Psi]"}], + "}"}], "]"}]}], ")"}], "//", "TableForm"}], "*)"}]}]}], "Input", + CellChangeTimes->{{3.720145580445201*^9, 3.7201455916796227`*^9}, { + 3.720149514779941*^9, 3.720149524192295*^9}, {3.720149615433412*^9, + 3.720149617111251*^9}, {3.7210293786478643`*^9, 3.7210293787112827`*^9}, { + 3.721113805174633*^9, 3.72111380530075*^9}, {3.722318655994528*^9, + 3.722318662232821*^9}, 3.7244952552271976`*^9, {3.726228510372617*^9, + 3.726228516913807*^9}, {3.727695818886282*^9, 3.727695836403275*^9}, { + 3.72769604086134*^9, 3.727696048025983*^9}, 3.728128676118905*^9, { + 3.747134208464203*^9, 3.7471342105489817`*^9}, {3.7481711512677917`*^9, + 3.748171151406582*^9}, 3.766307523379047*^9}, + CellLabel-> + "In[182]:=",ExpressionUUID->"9028f88b-cf85-4f46-9f7d-f0adc334a391"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"2", " ", + RowBox[{"f", "[", "r", "]"}]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["b", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"1", "-", + RowBox[{"b", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "r"]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"b", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"r", " ", + RowBox[{"b", "[", "r", "]"}]}]]}]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{ + 3.738239260373521*^9, 3.738243527750675*^9, 3.73824629498415*^9, + 3.738246420937697*^9, 3.738364790236902*^9, 3.7383652872089777`*^9, { + 3.738365349154182*^9, 3.7383653729699097`*^9}, {3.738418460676594*^9, + 3.738418473598926*^9}, 3.7384289392050953`*^9, 3.7384433728075933`*^9, + 3.7384727660607862`*^9, 3.7402684778385687`*^9, {3.740268781076466*^9, + 3.7402688097520027`*^9}, 3.7468715068647947`*^9, 3.7469440638063087`*^9, + 3.747121386201676*^9, {3.747134208967265*^9, 3.747134210861104*^9}, + 3.7473761900465593`*^9, 3.747546290309759*^9, 3.7479967682983093`*^9, + 3.748152408241688*^9, 3.7481564158026247`*^9, 3.748166615342593*^9, + 3.748171004181975*^9, 3.7481711090241957`*^9, 3.748171151734049*^9, + 3.7523157032553453`*^9, 3.766307461014554*^9, 3.766309811401895*^9}, + CellLabel-> + "Out[182]//TableForm=",ExpressionUUID->"4408dd50-1d33-4954-8691-\ +97270d703c93"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData["myfReqs"], "Input", + CellLabel-> + "In[130]:=",ExpressionUUID->"6defb715-d8cc-45fa-b88a-98d788b86211"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"2", " ", + RowBox[{"f", "[", "r", "]"}]}]]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["b", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"1", "-", + RowBox[{"b", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "r"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"f", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"b", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"r", " ", + RowBox[{"b", "[", "r", "]"}]}]]}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{3.76630759588844*^9}, + CellLabel-> + "Out[130]=",ExpressionUUID->"9643d1ef-c288-4ceb-8616-a4981806b9ac"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"eqs", "=", + RowBox[{"{", + RowBox[{"eqf", ",", "eqb", ",", "eqp"}], "}"}]}]], "Input", + CellChangeTimes->{{3.766307835729076*^9, + 3.7663078485567417`*^9}},ExpressionUUID->"4a3372b9-d5e6-4dff-8d6c-\ +d0f118d346bc"], + +Cell[BoxData[ + RowBox[{"NDSolve", "[", + RowBox[{"eqsht", ",", + RowBox[{"{", + RowBox[{"p", ",", "b", ",", "f"}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], ",", "20"}], "}"}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "15"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "15"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}], ",", + RowBox[{"MaxSteps", "->", "Infinity"}]}], "]"}]], "Input", + CellChangeTimes->{{3.76630800053511*^9, + 3.766308019459383*^9}},ExpressionUUID->"21ca1c66-9eb8-4cb7-8ecb-\ +a623582904c9"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Obtain the fR-TOV in metric formalism and solve", "Subsection", + CellChangeTimes->{{3.7210105510470247`*^9, 3.7210105660195227`*^9}, { + 3.7481523636463337`*^9, 3.748152367201062*^9}, {3.748171027173711*^9, + 3.748171029490901*^9}, {3.7523159314431133`*^9, + 3.752315933388239*^9}},ExpressionUUID->"f3438ed9-ec6e-4e68-93c2-\ +a3ccadacc1a2"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}], "]"}]}], ",", "0", ",", "0", ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}], ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{" ", + RowBox[{"Print", "[", + RowBox[{"\"\< Metric signature : \>\"", ",", + RowBox[{"signature", "=", + RowBox[{"-", + RowBox[{"Sign", "[", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "/", + RowBox[{"Abs", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], "]"}], + "]"}]}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"gup", "=", + RowBox[{"Inverse", "[", "g", "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccisc", "=", + RowBox[{"FullSimplify", "@", + RowBox[{"RicciScalar", "[", + RowBox[{"xx", ",", "g"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"riccist", "=", + RowBox[{"RicciTensor", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGR", "=", + RowBox[{"Einstein", "[", + RowBox[{"xx", ",", "g"}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"einsteinGRup", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.641881398179303*^9, 3.641881398180313*^9}, { + 3.64188143142566*^9, 3.641881433272481*^9}, {3.641881533490884*^9, + 3.641881533692501*^9}, {3.641881905670519*^9, 3.641881911778586*^9}, { + 3.641881948641364*^9, 3.641881998011469*^9}, {3.716897370812011*^9, + 3.7168974429055367`*^9}, {3.71689927715203*^9, 3.7168992806128674`*^9}, { + 3.716909728939191*^9, 3.716909731145919*^9}, {3.717416378399757*^9, + 3.717416385070117*^9}, {3.7177453497721767`*^9, 3.717745350875762*^9}, { + 3.717751327225008*^9, 3.717751333477292*^9}, {3.719827772301094*^9, + 3.7198277731714563`*^9}, {3.719828375529578*^9, 3.7198283810424643`*^9}, { + 3.719843432902688*^9, 3.719843440092783*^9}, {3.7200906713535*^9, + 3.720090680593198*^9}, {3.7200930890141287`*^9, 3.720093111026506*^9}, { + 3.7201438973660994`*^9, 3.72014397009901*^9}, {3.720144081891119*^9, + 3.720144088296419*^9}, {3.720144244648271*^9, 3.7201442450156193`*^9}, { + 3.720149771432404*^9, 3.720149777469427*^9}, 3.7201498851016912`*^9, { + 3.721013258838583*^9, 3.7210132793477583`*^9}, {3.721013349853985*^9, + 3.721013353524569*^9}, {3.7210134320451813`*^9, 3.7210134967719717`*^9}, { + 3.72101355049997*^9, 3.7210136003351917`*^9}, {3.7210136361793327`*^9, + 3.721013639422922*^9}, {3.721013675739923*^9, 3.7210136871657963`*^9}, { + 3.721013845743524*^9, 3.7210139239470654`*^9}, {3.721014044649848*^9, + 3.721014115608385*^9}, {3.72101418423457*^9, 3.721014223806147*^9}, { + 3.7210144529011497`*^9, 3.7210145267400837`*^9}, 3.721020989154325*^9, { + 3.721026215368113*^9, 3.721026224430217*^9}, {3.721031160831037*^9, + 3.72103118692761*^9}, {3.721115438957518*^9, 3.7211154715488462`*^9}, { + 3.721115503115947*^9, 3.721115629271291*^9}, {3.721115687483364*^9, + 3.72111570815872*^9}, {3.724072179644595*^9, 3.724072195893395*^9}, { + 3.7244940637061777`*^9, 3.724494075187446*^9}, {3.7244941532525587`*^9, + 3.724494163091423*^9}, {3.7244942621254053`*^9, 3.724494341364126*^9}, { + 3.7244943786565447`*^9, 3.724494392444635*^9}, {3.724494431009405*^9, + 3.724494443973899*^9}, {3.7262285708737164`*^9, 3.7262285710855*^9}, + 3.747368849385605*^9, {3.748164617171702*^9, 3.748164627404191*^9}, { + 3.748170514506686*^9, 3.748170516479364*^9}, {3.748170941037615*^9, + 3.748170943335956*^9}, {3.752313207066328*^9, 3.752313211684422*^9}, { + 3.752313912080008*^9, 3.752313914998248*^9}, {3.752315710127583*^9, + 3.752315711326207*^9}}, + CellLabel->"In[41]:=",ExpressionUUID->"a94fab01-b5d6-44d8-8812-bcc2b5b9d6ed"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{ + 3.7382392551881037`*^9, 3.7382435212452793`*^9, 3.7382462916408997`*^9, + 3.73824641801165*^9, 3.7383647867919188`*^9, {3.7384184596583767`*^9, + 3.7384184701136303`*^9}, 3.7384289357753363`*^9, 3.7384433695100203`*^9, + 3.7384727622888002`*^9, 3.740268473769195*^9, {3.740268786942709*^9, + 3.7402688064541063`*^9}, 3.7468715042029943`*^9, 3.746944061090225*^9, + 3.7471213828982887`*^9, 3.747134188567253*^9, 3.7473688337114773`*^9, + 3.7473761877589808`*^9, 3.747474065155192*^9, {3.747546287590657*^9, + 3.7475462885697317`*^9}, 3.747991206952808*^9, 3.747996745284129*^9, { + 3.748152370195997*^9, 3.7481523918959627`*^9}, 3.7481542775743933`*^9, + 3.748164596911322*^9, 3.748164628084785*^9, {3.748164780889201*^9, + 3.748164793382852*^9}, {3.74816487611198*^9, 3.7481648842071753`*^9}, + 3.748169398617688*^9, 3.748169440332889*^9, 3.748170034779338*^9, + 3.74817051859494*^9, 3.748170838977736*^9, 3.748170943789819*^9, + 3.752313214148736*^9, 3.752313269338995*^9, 3.752313814614554*^9, + 3.752313880352662*^9, 3.7523139153343973`*^9, 3.7523139462043953`*^9, { + 3.752315706440743*^9, 3.7523157117472067`*^9}, 3.752392306210204*^9, + 3.754135255124865*^9, 3.754135329976109*^9, 3.768285575150218*^9}, + CellLabel->"Out[42]=",ExpressionUUID->"5aadbc6c-681b-4420-9211-c6ba309e1efc"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\" Metric signature : \"\>", "\[InvisibleSpace]", "1"}], + SequenceForm[" Metric signature : ", 1], + Editable->False]], "Print", + CellChangeTimes->{ + 3.738239255196527*^9, 3.738243521262576*^9, 3.73824629165377*^9, + 3.738246418021469*^9, 3.738364786802227*^9, {3.738418459668754*^9, + 3.7384184701213017`*^9}, 3.7384289357878513`*^9, 3.738443369522828*^9, + 3.738472762302166*^9, 3.7402684737825727`*^9, {3.740268786955584*^9, + 3.7402688064672728`*^9}, 3.746871504219412*^9, 3.7469440611095753`*^9, + 3.747121382911256*^9, 3.747134188580369*^9, 3.7473688337239513`*^9, + 3.7473761877709913`*^9, 3.747474065168154*^9, {3.747546287600452*^9, + 3.747546288579324*^9}, 3.747991206963832*^9, 3.7479967452968407`*^9, { + 3.748152370207882*^9, 3.748152391907658*^9}, 3.7481542775851307`*^9, + 3.74816459692209*^9, 3.748164628095346*^9, {3.7481647809034348`*^9, + 3.748164793392847*^9}, {3.748164876122925*^9, 3.748164884221294*^9}, + 3.748169398630703*^9, 3.748169440345209*^9, 3.748170034791052*^9, + 3.74817051860809*^9, 3.748170838992044*^9, 3.7481709438041487`*^9, + 3.752313214160125*^9, 3.752313269355547*^9, 3.752313814624196*^9, + 3.752313880364992*^9, 3.752313915346499*^9, 3.752313946216873*^9, { + 3.752315706450338*^9, 3.752315711760054*^9}, 3.752392306219882*^9, + 3.7541352551348667`*^9, 3.7541353299863043`*^9, 3.7682855751606703`*^9}, + CellLabel-> + "During evaluation of \ +In[41]:=",ExpressionUUID->"bb2f9a4f-69f7-4b37-b253-3afb51460f58"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{ + "Tab", " ", "should", " ", "be", " ", "the", " ", "same", " ", "then", " ", + "for", " ", "any", " ", "signature"}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{"einsteinfr", "=", + RowBox[{"EinsteinfR", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"f", "[", "R", "]"}]}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.720093317305147*^9, 3.7200933219852467`*^9}, { + 3.720093641753481*^9, 3.720093643873809*^9}, {3.720144228928281*^9, + 3.720144229495419*^9}, {3.724072224547172*^9, 3.7240722248665533`*^9}, { + 3.748169448997884*^9, 3.748169450505187*^9}, 3.75231394041054*^9}, + CellLabel->"In[50]:=",ExpressionUUID->"ece3f124-cf57-4dce-91f6-4c6c98d14f2b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], ",", "0", ",", "0"}], "}"}], + "}"}]], "Output", + CellChangeTimes->{{3.752313940791109*^9, 3.752313948659738*^9}, + 3.7523157132896223`*^9, 3.752392307744381*^9, 3.7541353332777033`*^9, + 3.768285577153924*^9}, + CellLabel->"Out[50]=",ExpressionUUID->"242a05ca-d47e-491a-bfc0-2a384284b79f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{"u", "=", + RowBox[{"If", "[", + RowBox[{ + RowBox[{"signature", "\[Equal]", "1"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"-", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}], "]"}]}], ",", "0", ",", + "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", + RowBox[{"Sqrt", "[", + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "]"}]}], ",", "0", ",", + "0", ",", "0"}], "}"}]}], "]"}]}], ";"}], + " "}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"Style", "[", + RowBox[{"\"\<Recall that metric signature == 1 !!\>\"", ",", "Blue"}], + "]"}], "]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"u", ".", + RowBox[{"(", + RowBox[{"g", ".", "u"}], ")"}]}], "//", "Simplify"}]}], "Input", + CellChangeTimes->{ + 3.717748556792015*^9, {3.7201497297916393`*^9, 3.7201497529754763`*^9}, + 3.72014991471554*^9, {3.720149994412814*^9, 3.7201500313172197`*^9}, { + 3.720150086674468*^9, 3.720150131609095*^9}, 3.7210282239247627`*^9, { + 3.72102831877349*^9, 3.7210283399140167`*^9}, {3.721028449002584*^9, + 3.721028475825095*^9}}, + CellLabel->"In[51]:=",ExpressionUUID->"51002296-3dd1-4358-9017-e0dae2d7edda"], + +Cell[BoxData[ + StyleBox["\<\"Recall that metric signature == 1 !!\"\>", + StripOnInput->False, + LineColor->RGBColor[0, 0, 1], + FrontFaceColor->RGBColor[0, 0, 1], + BackFaceColor->RGBColor[0, 0, 1], + GraphicsColor->RGBColor[0, 0, 1], + FontColor->RGBColor[0, 0, 1]]], "Print", + CellChangeTimes->{ + 3.738239257112466*^9, 3.7382435238685102`*^9, 3.738246292929134*^9, + 3.7382464188291807`*^9, 3.73836478810083*^9, {3.738418460085128*^9, + 3.738418471520904*^9}, 3.7384289371081944`*^9, 3.738443370764*^9, + 3.738472763664342*^9, 3.74026847514088*^9, {3.740268788096965*^9, + 3.74026880768769*^9}, 3.7468715049662857`*^9, 3.746944062367889*^9, + 3.74712138379294*^9, 3.7471341935186443`*^9, 3.747368843523903*^9, { + 3.747369034507238*^9, 3.7473690527723494`*^9}, 3.747376188218173*^9, + 3.7474748837605553`*^9, 3.747546289212886*^9, 3.747996746597335*^9, + 3.7481523982847357`*^9, 3.748154280671157*^9, 3.748164885621563*^9, + 3.748169408381311*^9, 3.748169452430599*^9, 3.748170037322853*^9, { + 3.748170840527648*^9, 3.748170847658226*^9}, 3.752313216622217*^9, + 3.7523132716392183`*^9, 3.7523138205137053`*^9, 3.752315714404293*^9, + 3.752392308771327*^9, 3.754135333734808*^9, 3.768285577803672*^9}, + CellLabel-> + "During evaluation of \ +In[51]:=",ExpressionUUID->"f17f84bb-be84-4b7a-b7fb-e81b3bcd0834"], + +Cell[BoxData[ + RowBox[{"-", "1"}]], "Output", + CellChangeTimes->{ + 3.738239257119619*^9, 3.7382435238819447`*^9, 3.738246292942831*^9, + 3.738246418839004*^9, 3.738364788110938*^9, {3.738418460094223*^9, + 3.738418471529682*^9}, 3.7384289371145353`*^9, 3.738443370773481*^9, + 3.738472763675894*^9, 3.740268475151412*^9, {3.74026878810935*^9, + 3.740268807698867*^9}, 3.746871504976838*^9, 3.746944062381765*^9, + 3.747121383803788*^9, 3.7471341935303907`*^9, 3.7473688435357523`*^9, { + 3.747369034519001*^9, 3.74736905278379*^9}, 3.74737618822885*^9, + 3.7474748837726727`*^9, 3.747546289222625*^9, 3.747996746613248*^9, + 3.748152398296513*^9, 3.748154280682889*^9, 3.748164885632936*^9, + 3.7481694083941917`*^9, 3.748169452442214*^9, 3.748170037334834*^9, { + 3.748170840542295*^9, 3.7481708476702213`*^9}, 3.752313216634013*^9, + 3.7523132716511583`*^9, 3.752313820524448*^9, 3.752315714414487*^9, + 3.7523923087815437`*^9, 3.754135333745454*^9, 3.7682855778138523`*^9}, + CellLabel->"Out[53]=",ExpressionUUID->"ffdb5b6d-4d52-4813-abc2-4c39f24b9d3e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"udown", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"i", ",", "l"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717419862193388*^9, 3.717419865888034*^9}}, + CellLabel->"In[54]:=",ExpressionUUID->"c767434e-a002-41e4-a07a-53d7579ef615"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SqrtBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]]]}], ",", "0", ",", "0", ",", "0"}], + "}"}]], "Output", + CellChangeTimes->{ + 3.738239257163746*^9, 3.738243523948827*^9, 3.7382462929995403`*^9, + 3.7382464188849897`*^9, 3.73836478815267*^9, {3.7384184601478577`*^9, + 3.73841847158427*^9}, 3.738428937144867*^9, 3.738443370798142*^9, + 3.7384727637275257`*^9, 3.740268475196102*^9, {3.740268788164484*^9, + 3.74026880774127*^9}, 3.746871505033381*^9, 3.746944062454286*^9, + 3.747121383991096*^9, 3.7471341941359377`*^9, {3.74736884435433*^9, + 3.747368931670208*^9}, {3.747369002872841*^9, 3.747369035345422*^9}, + 3.7473761883514833`*^9, {3.7474748808062*^9, 3.747474885702282*^9}, + 3.7475462892942038`*^9, 3.747996750990672*^9, 3.748152399052104*^9, + 3.748154282046466*^9, 3.7481648865057898`*^9, 3.748169410303257*^9, + 3.7481694532038803`*^9, 3.748170038351623*^9, 3.7481708486599894`*^9, + 3.752313217399918*^9, 3.7523132724378147`*^9, 3.752313821211959*^9, + 3.752315715555457*^9, 3.752392309622497*^9, 3.7541353343174543`*^9, + 3.768285587661442*^9}, + CellLabel->"Out[54]=",ExpressionUUID->"5fd67647-4ece-4989-a61b-ef7f5d324b61"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T\[Mu]\[Nu]up", "=", + RowBox[{ + RowBox[{"If", "[", + RowBox[{ + RowBox[{"signature", "\[Equal]", "1"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "i", "]"}], "]"}], " ", + RowBox[{"u", "[", + RowBox[{"[", "j", "]"}], "]"}]}], "-", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"gup", "[", + RowBox[{"[", + RowBox[{"i", ",", "j"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "4"}], "}"}]}], "]"}]}], "]"}], "//", + "Simplify"}]}]], "Input", + CellChangeTimes->{{3.71689694546478*^9, 3.716896961608288*^9}, { + 3.7168975014713984`*^9, 3.716897598306788*^9}, {3.7168977931239853`*^9, + 3.71689792839441*^9}, {3.716898097895761*^9, 3.7168981141752157`*^9}, { + 3.716904567989387*^9, 3.716904569653391*^9}, {3.716968878668749*^9, + 3.716968879274379*^9}, {3.717419798092717*^9, 3.717419800990034*^9}, + 3.717419896422799*^9, {3.7174199813473663`*^9, 3.7174199834974747`*^9}, { + 3.717433608891754*^9, 3.717433619210552*^9}, {3.717748495274461*^9, + 3.7177485082789173`*^9}, {3.721028230461268*^9, 3.721028230644088*^9}, { + 3.7210284217648573`*^9, 3.721028436578032*^9}, {3.747368966969143*^9, + 3.747368970170349*^9}}, + CellLabel->"In[55]:=",ExpressionUUID->"78c65863-bce5-44ef-b63e-ad0a5a39db3b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"w", "[", "r", "]"}]}]], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + FractionBox[ + RowBox[{"p", "[", "r", "]"}], + SuperscriptBox["r", "2"]], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + FractionBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"Csc", "[", "\[Theta]", "]"}], "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], + SuperscriptBox["r", "2"]]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.73823925721414*^9, 3.738243524036004*^9, 3.738246293048765*^9, + 3.738246418939494*^9, 3.738364788231888*^9, {3.7384184601930647`*^9, + 3.7384184716317587`*^9}, 3.7384289371700087`*^9, 3.738443370832918*^9, + 3.738472763780528*^9, 3.740268475244999*^9, {3.740268788229795*^9, + 3.740268807787265*^9}, 3.7468715051033773`*^9, 3.7469440625206747`*^9, + 3.7471213841465883`*^9, 3.747134194675424*^9, {3.74736886857541*^9, + 3.747368932270035*^9}, {3.747368967314714*^9, 3.747368970469545*^9}, { + 3.7473690201575613`*^9, 3.7473690364301434`*^9}, 3.747376188419807*^9, + 3.7475462893170757`*^9, 3.747996751535898*^9, 3.748152399754668*^9, + 3.748154282747005*^9, 3.7481648871387177`*^9, 3.748169411135203*^9, + 3.748169453780912*^9, 3.748170038938608*^9, 3.74817084936005*^9, + 3.7523132181837263`*^9, 3.752313273176724*^9, 3.752313821713154*^9, + 3.752315716167737*^9, 3.752392310303739*^9, 3.754135334814303*^9, + 3.768285588692029*^9}, + CellLabel->"Out[55]=",ExpressionUUID->"8d020d58-ab4a-47fe-a423-2e7603758a3c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T\[Mu]\[Nu]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"l", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"g", "[", + RowBox[{"[", + RowBox[{"m", ",", "\[Nu]"}], "]"}], "]"}], + RowBox[{"T\[Mu]\[Nu]up", "[", + RowBox[{"[", + RowBox[{"\[Eta]", ",", "\[Nu]"}], "]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Eta]", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Nu]", ",", "4"}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "4"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", "4"}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717174398720162*^9, 3.717174405832109*^9}, { + 3.71741999153314*^9, 3.71741999188358*^9}, 3.717428505145114*^9, + 3.717748524802745*^9, {3.717933907043252*^9, 3.717933940392991*^9}, { + 3.717933979091668*^9, 3.7179340154647083`*^9}, {3.717934054328257*^9, + 3.717934085440922*^9}, {3.748154284812828*^9, 3.748154285371112*^9}}, + CellLabel->"In[56]:=",ExpressionUUID->"e16dadd3-7746-4b37-8e25-4b10b5c0b4d6"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.73823925726434*^9, 3.7382435241174088`*^9, 3.738246293099222*^9, + 3.738246418989193*^9, 3.73836478828795*^9, {3.7384184602399*^9, + 3.738418471687704*^9}, 3.7384289372230263`*^9, 3.7384433708652983`*^9, + 3.738472763827738*^9, 3.740268475277933*^9, {3.740268788296517*^9, + 3.74026880784545*^9}, 3.746871505193667*^9, 3.746944062588154*^9, + 3.7471213842441883`*^9, 3.747134195425392*^9, 3.747368932924829*^9, + 3.7473761884858913`*^9, 3.7475462893611107`*^9, 3.747996752123827*^9, + 3.7481524006377907`*^9, 3.748154285798277*^9, 3.748164887788493*^9, + 3.748169411801445*^9, 3.748169454365245*^9, 3.748170039600761*^9, + 3.7481708501085377`*^9, 3.75231321948772*^9, 3.752313273821907*^9, + 3.7523138222142553`*^9, 3.752315716806234*^9, 3.752392310905693*^9, + 3.754135335633444*^9, 3.7682855906945267`*^9}, + CellLabel->"Out[56]=",ExpressionUUID->"fe7dba21-6a7a-4147-a692-b358649a1ec8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"Continuity", " ", "equation"}], " ", "*)"}], + "\[IndentingNewLine]", + RowBox[{"eqp", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Flatten", "[", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{"CovDer", "[", + RowBox[{"xx", ",", "g", ",", "T\[Mu]\[Nu]up", ",", + RowBox[{"{", + RowBox[{"i", ",", "i", ",", "j"}], "}"}], ",", + RowBox[{ + "\"\<Valence\>\"", "\[Rule]", "\"\<Contravariant\>\""}]}], + "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"j", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}], "\[Equal]", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], ",", + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}], "]"}]}], + ")"}]}], "}"}]}]}]], "Input", + CellChangeTimes->{{3.721113587934162*^9, 3.721113629229336*^9}, { + 3.721113664237012*^9, 3.721113668190748*^9}, {3.721113706596529*^9, + 3.721113796106236*^9}, {3.721115385820541*^9, 3.7211153908543663`*^9}, { + 3.7211158095314198`*^9, 3.7211158099529877`*^9}, {3.724072252803965*^9, + 3.724072253227384*^9}, {3.748164893214014*^9, 3.7481649827529*^9}, { + 3.748165954576632*^9, 3.7481660302527246`*^9}, {3.74816697324897*^9, + 3.7481669813728113`*^9}, {3.748167759768062*^9, 3.7481677613568907`*^9}}, + CellLabel-> + "In[161]:=",ExpressionUUID->"59cf8a24-2695-4a39-9191-46ad7472da44"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.738239257484399*^9, 3.738243524520303*^9, 3.7382462932329187`*^9, + 3.73824641910999*^9, 3.738364788423029*^9, {3.738418460312562*^9, + 3.738418471817337*^9}, 3.7384289373527927`*^9, 3.738443371033216*^9, + 3.738472764031474*^9, 3.740268475425226*^9, {3.74026878843533*^9, + 3.74026880798472*^9}, 3.746871505282242*^9, 3.7469440627205973`*^9, + 3.74712138449193*^9, 3.747134196353437*^9, 3.7473761885820627`*^9, + 3.747546289449*^9, {3.7479967528191547`*^9, 3.7479967566656027`*^9}, + 3.748152401853285*^9, 3.748154286697897*^9, 3.748164983062326*^9, { + 3.74816595501602*^9, 3.748166030801673*^9}, {3.748166639141268*^9, + 3.748166641386911*^9}, 3.748166981854083*^9, 3.748167611925775*^9, { + 3.748167752382866*^9, 3.7481677618489847`*^9}, 3.748169413464644*^9, + 3.748169456283239*^9, {3.748170041891592*^9, 3.748170046076436*^9}, + 3.748170086401606*^9, 3.748170227874957*^9, 3.7481708507730722`*^9, + 3.7523132202740297`*^9, 3.752313274647264*^9, 3.752313823554882*^9, + 3.752315717533684*^9, 3.7523923115184937`*^9, 3.754135336447886*^9}, + CellLabel-> + "Out[161]=",ExpressionUUID->"7c464cf5-ea69-4311-95ce-e926bca92081"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"T", "=", + RowBox[{"Sum", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"g", ".", "T\[Mu]\[Nu]up"}], ")"}], "[", + RowBox[{"[", + RowBox[{"i", ",", "i"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"Length", "@", "xx"}]}], "}"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.717420085395555*^9, 3.717420095641667*^9}, { + 3.7177528701703787`*^9, 3.7177528711479816`*^9}, {3.72102889795538*^9, + 3.721028898626919*^9}, {3.748166060217938*^9, 3.748166063648992*^9}}, + CellLabel->"In[57]:=",ExpressionUUID->"efa8bd04-c098-4a23-bc2c-e2c1c133ac2a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"3", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}]], "Output", + CellChangeTimes->{{3.75413533740279*^9, 3.754135347562957*^9}, + 3.7682855961649857`*^9}, + CellLabel->"Out[57]=",ExpressionUUID->"3c636017-9e85-4a88-9f61-6693910d6448"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"?", "TeffFR"}]], "Input", + CellChangeTimes->{{3.75949975188133*^9, 3.759499762451078*^9}}, + CellLabel->"In[58]:=",ExpressionUUID->"7a38fc7a-000d-43b9-a533-ca65e4c760cc"], + +Cell[BoxData["\<\"TeffFR[coords_,g_,fR_]. Compute fR Teff tensor such Gab=8\ +\[Pi]/f'[R](Tab + Teff) following the convention of Misner et al., that is, \ +[S2] = 1, [S3] = 1\"\>"], "Print", "PrintUsage", + CellChangeTimes->{3.768285596945266*^9}, + CellTags-> + "Info583768292796-1566858",ExpressionUUID->"1e8981a4-b242-4305-a785-\ +013e3ec45a07"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", "Teff", "*)"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"Teff", "=", + RowBox[{"TeffFR", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"f", "[", "R", "]"}]}], "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"Ttot", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"1", "/", + RowBox[{ + RowBox[{"f", "'"}], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], + RowBox[{"(", + RowBox[{"T\[Mu]\[Nu]", "+", "Teff"}], ")"}]}], "]"}]}], + ";"}]}]}]], "Input", + CellChangeTimes->{{3.7481548559010553`*^9, 3.748154897048135*^9}, { + 3.748154994128281*^9, 3.748155057582625*^9}, {3.7481552299087887`*^9, + 3.748155230552683*^9}, {3.748155281931972*^9, 3.748155305460484*^9}, { + 3.7481664896107597`*^9, 3.748166491490004*^9}, 3.7523137821761923`*^9}, + CellLabel->"In[59]:=",ExpressionUUID->"678dc65e-7432-42e1-b49f-3ffc4a25dec4"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eq\[Lambda]", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}], "\[Equal]", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"Ttot", "[", + RowBox[{"[", + RowBox[{"1", ",", "1"}], "]"}], "]"}]}]}], ",", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]}], ")"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellLabel->"In[62]:=",ExpressionUUID->"7f228384-675c-4e5e-b2ee-06a8d8e5a664"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]]}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.748166067281787*^9, 3.748166233412775*^9, 3.748166596293666*^9, + 3.748167602734932*^9, 3.748169461822729*^9, 3.74817004819375*^9, + 3.748170090042617*^9, 3.748170233367116*^9, {3.748170935979722*^9, + 3.74817094929779*^9}, 3.752313224977825*^9, 3.752313276893128*^9, + 3.7523136888536987`*^9, {3.752313828084836*^9, 3.7523138363010197`*^9}, + 3.752315722643148*^9, 3.752392316987212*^9, 3.754135358222561*^9, + 3.7682856128249617`*^9}, + CellLabel->"Out[62]=",ExpressionUUID->"3aa6847a-364a-458d-84fe-06c13e3fdfdf"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eqw", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{"einsteinGR", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}], "\[Equal]", " ", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"Ttot", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}]}]}], ",", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}]}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellChangeTimes->{{3.720144588759453*^9, 3.720144590876111*^9}, { + 3.720144667086581*^9, 3.7201446946279087`*^9}, {3.720144780854402*^9, + 3.720144790861692*^9}, {3.7201449833155107`*^9, 3.7201450049970293`*^9}, { + 3.720145050235566*^9, 3.720145137715763*^9}, {3.720145182382394*^9, + 3.720145200625107*^9}, {3.72015053649203*^9, 3.720150544697959*^9}, { + 3.721028941895832*^9, 3.721028946059544*^9}, {3.748155950547563*^9, + 3.748155971151705*^9}}, + CellLabel-> + "In[169]:=",ExpressionUUID->"41b5f867-a890-46cb-8b17-79cf5636cb0a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]]}]}], + "}"}]], "Output", + CellChangeTimes->{{3.752313278328526*^9, 3.7523132848493347`*^9}, + 3.7523138373806047`*^9, 3.752315724260882*^9, 3.752392317172143*^9, + 3.7541353590680113`*^9}, + CellLabel-> + "Out[169]=",ExpressionUUID->"595cac98-5612-44af-b15e-23687bf4cda1"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eq3v1", "=", + RowBox[{"(", + RowBox[{ + RowBox[{"3", + RowBox[{"DAlembert", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"D", "[", + RowBox[{ + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}], ",", + RowBox[{"R", "[", "r", "]"}]}], "]"}]}], "]"}]}], "+", + RowBox[{ + RowBox[{"D", "[", + RowBox[{ + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}], ",", + RowBox[{"R", "[", "r", "]"}]}], "]"}], + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"2", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]], "Input", + CellChangeTimes->{{3.72014543744361*^9, 3.720145539144125*^9}, { + 3.7201505506109257`*^9, 3.720150578512877*^9}, 3.721461817927593*^9, { + 3.7262331077703133`*^9, 3.7262331194709587`*^9}, {3.748166608097294*^9, + 3.748166609374119*^9}}, + CellLabel-> + "In[170]:=",ExpressionUUID->"74bbe6fe-31ac-4288-8d60-2e468ca364be"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + FractionBox[ + RowBox[{"3", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], "r"]}]], "Output", + CellChangeTimes->{ + 3.738239258400588*^9, 3.738243525683835*^9, 3.738246293802143*^9, + 3.738246419714864*^9, 3.73836478907736*^9, {3.738418460576734*^9, + 3.738418472520486*^9}, 3.738428938003529*^9, 3.738443371649888*^9, + 3.738472764714779*^9, 3.740268475979018*^9, {3.740268789158476*^9, + 3.740268808525041*^9}, 3.746871506016693*^9, 3.7469440631104393`*^9, + 3.747121385514057*^9, 3.747134201917446*^9, 3.747376189349622*^9, + 3.747546289894864*^9, 3.7479967669172773`*^9, 3.748152406036901*^9, + 3.748156413911536*^9, {3.7481666046689987`*^9, 3.748166609930109*^9}, + 3.748169467838295*^9, 3.748170954093789*^9, 3.7523132865144577`*^9, + 3.752313838394244*^9, 3.752315725536461*^9, 3.752392317460309*^9, + 3.7541353598901176`*^9}, + CellLabel-> + "Out[170]=",ExpressionUUID->"75b2dc7e-6ac6-4cbf-b8b4-4e148faaacdd"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"eqR", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "/.", + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{"eq3v1", "\[Equal]", + RowBox[{"8", "\[Pi]", " ", "T"}]}], ",", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}]}], ")"}], + "]"}], "[", + RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}]], "Input", + CellChangeTimes->{{3.7218097767746677`*^9, 3.721809781253079*^9}, + 3.7262331218717957`*^9, 3.72623319716074*^9, 3.7383652845898314`*^9, + 3.738365339837438*^9, 3.738365371069243*^9, {3.7471342025800657`*^9, + 3.74713420307006*^9}, {3.7523134784190607`*^9, 3.752313490566244*^9}}, + CellLabel-> + "In[174]:=",ExpressionUUID->"8422b3d8-1439-4f40-842f-7f52520f99f2"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], "-", + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.738239260284128*^9, 3.738243527617139*^9, 3.738246294852051*^9, + 3.738246420847036*^9, 3.738364790129573*^9, 3.738365286186277*^9, { + 3.738365349018014*^9, 3.738365372590682*^9}, {3.7384184606261587`*^9, + 3.738418473542637*^9}, 3.738428939125821*^9, 3.738443372750059*^9, + 3.738472765969792*^9, 3.740268477092124*^9, {3.740268792282749*^9, + 3.740268809593441*^9}, 3.746871506656945*^9, 3.746944063653206*^9, + 3.747121386105685*^9, 3.7471342039673433`*^9, 3.747376189938764*^9, + 3.747546290281329*^9, 3.747996768116095*^9, 3.7481524075629463`*^9, + 3.748156415220152*^9, 3.748166613656562*^9, 3.748170958792716*^9, + 3.752313288266623*^9, {3.752313478885158*^9, 3.7523134914459057`*^9}, + 3.752313839416296*^9, 3.752315727033721*^9, 3.7523923179321938`*^9, + 3.7541353711236687`*^9}, + CellLabel-> + "Out[174]=",ExpressionUUID->"7dd01aa6-855d-48ee-a776-9c12ff58e35f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"(", + RowBox[{"myfReqs", "=", + RowBox[{"{", + RowBox[{"eqp", ",", "eq\[Lambda]", ",", "eqw", ",", "eqR"}], "}"}]}], + ")"}], "//", "TableForm"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"(*", + RowBox[{ + RowBox[{"(", + RowBox[{"myfReqs", "=", + RowBox[{"FullSimplify", "[", + RowBox[{"{", + RowBox[{"eqp", ",", "eq\[Lambda]", ",", "eqw", ",", "eq\[Psi]"}], + "}"}], "]"}]}], ")"}], "//", "TableForm"}], "*)"}]}]}], "Input", + CellChangeTimes->{{3.720145580445201*^9, 3.7201455916796227`*^9}, { + 3.720149514779941*^9, 3.720149524192295*^9}, {3.720149615433412*^9, + 3.720149617111251*^9}, {3.7210293786478643`*^9, 3.7210293787112827`*^9}, { + 3.721113805174633*^9, 3.72111380530075*^9}, {3.722318655994528*^9, + 3.722318662232821*^9}, 3.7244952552271976`*^9, {3.726228510372617*^9, + 3.726228516913807*^9}, {3.727695818886282*^9, 3.727695836403275*^9}, { + 3.72769604086134*^9, 3.727696048025983*^9}, 3.728128676118905*^9, { + 3.747134208464203*^9, 3.7471342105489817`*^9}}, + CellLabel-> + "In[176]:=",ExpressionUUID->"a4927c75-976d-4b85-9a41-8b24dbdd666a"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], "-", + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{ + 3.738239260373521*^9, 3.738243527750675*^9, 3.73824629498415*^9, + 3.738246420937697*^9, 3.738364790236902*^9, 3.7383652872089777`*^9, { + 3.738365349154182*^9, 3.7383653729699097`*^9}, {3.738418460676594*^9, + 3.738418473598926*^9}, 3.7384289392050953`*^9, 3.7384433728075933`*^9, + 3.7384727660607862`*^9, 3.7402684778385687`*^9, {3.740268781076466*^9, + 3.7402688097520027`*^9}, 3.7468715068647947`*^9, 3.7469440638063087`*^9, + 3.747121386201676*^9, {3.747134208967265*^9, 3.747134210861104*^9}, + 3.7473761900465593`*^9, 3.747546290309759*^9, 3.7479967682983093`*^9, + 3.748152408241688*^9, 3.7481564158026247`*^9, 3.748166615342593*^9, + 3.748171004181975*^9, 3.752313290332437*^9, 3.752313496532138*^9, + 3.752313581724657*^9, 3.752313840202444*^9, 3.752315728288419*^9, + 3.7523923181708384`*^9, 3.7541353732779922`*^9}, + CellLabel-> + "Out[176]//TableForm=",ExpressionUUID->"76bc9c0b-e65f-47ba-b36d-\ +107ec42511a0"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Collect", "[", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], "-", + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]], "Input", + CellLabel->"",ExpressionUUID->"2dfa80a1-c83a-43de-9f92-83db1043d753"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Collect", "[", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], "-", + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]], "Input", + CellLabel-> + "In[1999]:=",ExpressionUUID->"a7153694-09c4-49a6-a2f7-a8a30e9ae39d"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "r", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", "r", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "6"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]]}]], "Output", + CellChangeTimes->{3.758536681351144*^9}, + CellLabel-> + "Out[1999]=",ExpressionUUID->"ff5aca70-ec30-4202-bb7a-9cd5045e4644"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "r", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", "r", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], "]"}]], "Input", + CellChangeTimes->{{3.758536684812989*^9, 3.7585366860319357`*^9}}, + CellLabel-> + "In[2000]:=",ExpressionUUID->"67371f87-21ae-4653-9325-cbc7844c6b42"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]]], "Output", + CellChangeTimes->{3.7585366862263727`*^9}, + CellLabel-> + "Out[2000]=",ExpressionUUID->"d5bf89fb-c33a-48ef-b00a-7c11d6c82499"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Simplify", "[", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "6"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], "]"}]], "Input", + CellChangeTimes->{{3.758536695475773*^9, 3.758536697848175*^9}}, + CellLabel-> + "In[2001]:=",ExpressionUUID->"857bb5b1-8f66-41bc-aa02-f798a39dd39a"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"myeq", "=", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], "+", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["2", "r"]}], "-", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]]}], ")"}]}]}]}]], "Input", + CellChangeTimes->{{3.7585368124543953`*^9, 3.758536813866153*^9}}, + CellLabel-> + "In[2006]:=",ExpressionUUID->"3a6521e2-4fb8-4d34-8cdc-49c89bc63bc0"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], "+", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["2", "r"]}], "-", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]]}], ")"}]}]}]], "Output", + CellChangeTimes->{3.758536814444109*^9}, + CellLabel-> + "Out[2006]=",ExpressionUUID->"afddedb7-f690-45a9-a8f2-4bb485c52222"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TeXForm", "[", "myeq", "]"}]], "Input", + CellChangeTimes->{{3.758536702599984*^9, 3.7585367258914824`*^9}, { + 3.758536773538313*^9, 3.758536773670597*^9}, {3.758536818629702*^9, + 3.758536858068055*^9}}, + CellLabel-> + "In[2012]:=",ExpressionUUID->"d2b66353-4375-474b-aff1-53d72c1a8ecc"], + +Cell["\<\ +R'(r) \\left(-\\frac{f^{(3)}(R(r)) R'(r)}{f''(R(r))}+\\lambda \ +'(r)-w'(r)-\\frac{2}{r}\\right)+\\frac{e^{2 \\lambda (r)} \\left(-R(r) \ +f'(R(r))+2 f(R(r))+24 \\pi p(r)-8 \\pi + \\rho (r)\\right)}{3 f''(R(r))}\ +\>", "Output", + CellChangeTimes->{{3.758536726349514*^9, 3.758536776790968*^9}, { + 3.75853681938444*^9, 3.75853685837344*^9}}, + CellLabel-> + "Out[2012]//TeXForm=",ExpressionUUID->"6a8a7b90-b93a-40a9-8f9d-\ +49c252dd5e38"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TeXForm", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + FractionBox["1", + RowBox[{"3", " ", "r", " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]], + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"f", "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "+", + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], "-", + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["f", "\[Prime]\[Prime]", + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}], "-", + RowBox[{"3", " ", "r", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"], " ", + RowBox[{ + SuperscriptBox["f", + TagBox[ + RowBox[{"(", "3", ")"}], + Derivative], + MultilineFunction->None], "[", + RowBox[{"R", "[", "r", "]"}], "]"}]}]}], ")"}]}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7585365671747427`*^9, 3.758536585228326*^9}}, + CellLabel-> + "In[1998]:=",ExpressionUUID->"b3fcda93-bcea-42b5-b931-8de4d25ac3d3"], + +Cell["\<\ +R''(r)=\\frac{-3 r f^{(3)}(R(r)) R'(r)^2+3 r \\lambda '(r) R'(r) f''(R(r))-3 \ +r R'(r) w'(r) f''(R(r))-6 R'(r) f''(R(r))}{3 r f''(R(r))}+\\frac{e^{2 \ +\\lambda (r)} \\left(-r + R(r) f'(R(r))+2 r f(R(r))+24 \\pi r p(r)-8 \\pi r \\rho (r)\\right)}{3 r \ +f''(R(r))}\ +\>", "Output", + CellChangeTimes->{{3.758536585665832*^9, 3.75853661437458*^9}}, + CellLabel-> + "Out[1998]//TeXForm=",ExpressionUUID->"6886a7c9-e43e-4c9f-bf4a-\ +7f45b58fe243"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(", + RowBox[{"myfR\[Alpha]", "=", + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{"myfReqs", "/.", + RowBox[{"f", "\[Rule]", + RowBox[{"Function", "[", + RowBox[{"R", ",", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}]}], "]"}]}]}], "]"}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]}], ")"}], "//", + "TableForm"}]], "Input", + CellChangeTimes->{{3.752315766876018*^9, 3.75231585069816*^9}}, + CellLabel-> + "In[177]:=",ExpressionUUID->"318b432d-14e0-4360-868d-6fad30d49c00"], + +Cell[BoxData[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "\[Equal]", "0"}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}]}, + { + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]]}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[2.0999999999999996`]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.752315782629377*^9, 3.7523158205910263`*^9}, + 3.7523158511045237`*^9, 3.75239231976923*^9, 3.752420403293173*^9, + 3.7541353902390547`*^9}, + CellLabel-> + "Out[177]//TableForm=",ExpressionUUID->"21ed61f1-fe32-4c7f-8180-\ +7145e3384ea8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["\[Psi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]]}], ",", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.758534526950095*^9, 3.758534541603031*^9}}, + CellLabel-> + "In[1988]:=",ExpressionUUID->"ee33dd72-7455-48eb-bed4-725018cdd264"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Rule]", + FractionBox[ + RowBox[{ + RowBox[{"24", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Psi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]]}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.758534531189814*^9, 3.758534541869034*^9}}, + CellLabel-> + "Out[1988]=",ExpressionUUID->"7309ecc5-a075-4357-8f2b-58c72a13094e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TeXForm", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]], "-", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}]}]}], + "]"}]], "Input", + CellChangeTimes->{{3.7585345481468973`*^9, 3.75853457243291*^9}, { + 3.758534671061825*^9, 3.7585346772611732`*^9}}, + CellLabel-> + "In[1994]:=",ExpressionUUID->"9b287d67-75de-431c-ba3f-c2cc92da7ef8"], + +Cell["\<\ +R''(r)=\\frac{e^{2 \\lambda (r)} (24 \\pi p(r)-8 \\pi \\rho (r)+R(r))}{6 \ +\\alpha }-R'(r) \\left(-\\lambda '(r)+w'(r)+\\frac{2}{r}\\right)\ +\>", "Output", + CellChangeTimes->{3.75853467760931*^9}, + CellLabel-> + "Out[1994]//TeXForm=",ExpressionUUID->"10883ce6-26bb-4797-a12e-\ +07d7155d5059"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"Collect", "[", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"24", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Psi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]}]], "Input", + CellLabel-> + "In[1992]:=",ExpressionUUID->"4f81de4e-b876-4766-a637-717e516fe892"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"TeXForm", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", "r", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "12"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Psi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"6", " ", "r", " "}]]}]}], "]"}]], "Input", + CellChangeTimes->{{3.758534613601798*^9, 3.7585346240350037`*^9}}, + CellLabel-> + "In[1993]:=",ExpressionUUID->"e88e8deb-4a5c-4a02-bc36-51abff25c10d"], + +Cell["\<\ +R''(r)=\\frac{e^{2 \\lambda (r)} (24 \\pi r p(r)-8 \\pi r \\rho (r)+r \ +R(r))}{6 \\alpha r}+\\frac{6 r \\lambda '(r) R'(r)-6 r R'(r) \\psi '(r)-12 \ +R'(r)}{6 r}\ +\>", "Output", + CellChangeTimes->{3.758534624428521*^9}, + CellLabel-> + "Out[1993]//TeXForm=",ExpressionUUID->"d4970ed4-e197-4203-bb11-\ +c49634308a3f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"myfR\[Alpha]", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "\[Equal]", "0"}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]]}]}], "}"}]}]], "Input", + CellChangeTimes->{{3.753098806835648*^9, 3.753098851761342*^9}}, + CellLabel->"In[29]:=",ExpressionUUID->"2c391c23-8166-427e-8366-fc78b0849f9f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], ",", + + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], ",", + + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]]}]}], "}"}]], "Output", + CellChangeTimes->{3.7530988523964*^9}, + CellLabel->"Out[29]=",ExpressionUUID->"944ee480-3956-4df4-aab4-185dd656db9e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{"\[Alpha]", "\[Rule]", "\[Infinity]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.752495973064423*^9, 3.75249602954173*^9}}, + CellLabel-> + "In[1016]:=",ExpressionUUID->"044eeb49-6c2a-4711-a32f-0a2901946c64"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]], "Output", + CellChangeTimes->{3.752496029957674*^9}, + CellLabel-> + "Out[1016]=",ExpressionUUID->"bc362edc-1070-4c5d-a542-6873fc2c4bdf"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{"\[Alpha]", "\[Rule]", "\[Infinity]"}]}], "]"}]], "Input", + CellChangeTimes->{3.7524961314350986`*^9}, + CellLabel-> + "In[1017]:=",ExpressionUUID->"90f23d99-6743-4ad0-9d94-a95d6754768f"], + +Cell[BoxData[ + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}]], "Output", + CellChangeTimes->{3.752496132064238*^9}, + CellLabel-> + "Out[1017]=",ExpressionUUID->"f770ee52-5b0f-4836-9aed-1074bcf26cd8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{"2", "/", "r"}], "+", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], "-", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], "]"}]], "Input", + CellChangeTimes->{{3.752496138900449*^9, 3.752496171468586*^9}}, + CellLabel-> + "In[1018]:=",ExpressionUUID->"ecdf0e46-6abe-462e-87f7-a2fe6e2430b9"], + +Cell[BoxData[ + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], " ", + RowBox[{"(", + RowBox[{"1", "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]], "Output",\ + + CellChangeTimes->{3.752496171870388*^9}, + CellLabel-> + "Out[1018]=",ExpressionUUID->"6db9dfca-1fc9-40df-b34e-38bc539d45f6"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"DSolve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"\[Lambda]", "'"}], "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"-", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}]}], + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "/", + RowBox[{"(", + RowBox[{"4", " ", "r"}], ")"}]}]}]}], ",", "\[Lambda]", ",", "r"}], + "]"}]], "Input", + CellChangeTimes->{{3.75249694930939*^9, 3.752497002888946*^9}, + 3.75249703718981*^9}, + CellLabel-> + "In[1028]:=",ExpressionUUID->"35411675-f19d-48ab-b07b-bef06d9f593e"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"\[Lambda]", "\[Rule]", + RowBox[{"Function", "[", + RowBox[{ + RowBox[{"{", "r", "}"}], ",", + RowBox[{ + RowBox[{"InverseFunction", "[", + RowBox[{ + RowBox[{"ExpIntegralEi", "[", + RowBox[{ + RowBox[{"-", "2"}], " ", "#1"}], "]"}], "&"}], "]"}], "[", + RowBox[{ + RowBox[{"C", "[", "1", "]"}], "-", + FractionBox[ + RowBox[{"Log", "[", "r", "]"}], "4"]}], "]"}]}], "]"}]}], "}"}], + "}"}]], "Output", + CellChangeTimes->{{3.7524970293318872`*^9, 3.752497037564332*^9}}, + CellLabel-> + "Out[1028]=",ExpressionUUID->"1b94e7a2-a6f2-468e-a56e-6792e22b7271"] +}, Open ]], + +Cell[BoxData["\[Ellipsis]"], "Input", + CellChangeTimes->{ + 3.752497027406502*^9},ExpressionUUID->"ca41ef3d-71fc-4a30-ad04-\ +b7aa5b871fc4"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{ + RowBox[{"riccisc", "/.", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"w", "'"}], "[", "r", "]"}], "\[Rule]", + RowBox[{"(", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], ")"}]}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"\[Lambda]", "'"}], "[", "r", "]"}], "->", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}]}], "]"}], "/.", + + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"R", "''"}], "[", "r", "]"}], "\[Rule]", "0"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], ",", "0", ",", "1"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.752496313992495*^9, 3.752496330302266*^9}, { + 3.752496369636424*^9, 3.752496433790724*^9}}, + CellLabel-> + "In[1026]:=",ExpressionUUID->"e005e862-9715-4191-8a06-144207384582"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"4", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}]}], + SuperscriptBox["r", "2"]]}], "+", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{"1", "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + RowBox[{"R", "[", "r", "]"}], "]"}], "2"], + SeriesData[ + $CellContext`R[$CellContext`r], 0, {}, 0, 2, 1], + Editable->False]}], + SeriesData[ + $CellContext`R[$CellContext`r], + 0, {((-E^((-2) $CellContext`\[Lambda][$CellContext`r])) (-1 + + E^(4 $CellContext`\[Lambda][$CellContext`r]))) $CellContext`r^(-2), + Rational[1, 2] (1 + E^(2 $CellContext`\[Lambda][$CellContext`r]))}, 0, 2, + 1], + Editable->False]], "Output", + CellChangeTimes->{{3.752496315379999*^9, 3.752496330888755*^9}, { + 3.752496380336779*^9, 3.7524964341850233`*^9}}, + CellLabel-> + "Out[1026]=",ExpressionUUID->"3a185a88-157b-49c8-9755-c758188b11c3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"fact", "=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"2", "/", "r"}], "+", "wap2", "-", "\[Lambda]ap2"}], + "]"}]}]], "Input", + CellChangeTimes->{{3.752475564006135*^9, 3.7524756037847347`*^9}}, + CellLabel-> + "In[749]:=",ExpressionUUID->"8d7bbb02-a9e8-4f7e-a906-9c171458db1e"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"2", "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "-", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], ")"}]}], + "-", + RowBox[{"2", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"2", " ", "r"}]]], "Output", + CellChangeTimes->{{3.752475595083344*^9, 3.752475604492529*^9}}, + CellLabel-> + "Out[749]=",ExpressionUUID->"1fe9b3a5-9739-40ca-a9dc-80be2329a600"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}]}], "fact"}], " ", "+", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"2", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}], + RowBox[{ + RowBox[{"R", "[", "r", "]"}], "/", + RowBox[{"(", + RowBox[{"6", "\[Alpha]"}], ")"}]}]}]}]}], "]"}]], "Input", + CellChangeTimes->{{3.7524756242215157`*^9, 3.752475657650303*^9}}, + CellLabel-> + "In[750]:=",ExpressionUUID->"14480d61-8085-4fee-8303-e23038dfcb77"], + +Cell[BoxData[ + TemplateBox[{ + "Solve","nsmet", + "\"This system cannot be solved with the methods available to Solve.\"",2, + 750,81,29958356846220445255,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.752475658224009*^9}, + CellLabel-> + "During evaluation of \ +In[750]:=",ExpressionUUID->"ac5ebabb-6b33-4ba2-86d1-d024834d6f14"], + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], + RowBox[{"6", " ", "\[Alpha]"}]], "-", + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "-", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + ")"}]}], "-", + RowBox[{"2", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + ")"}]}], + RowBox[{"2", " ", "r"}]]}]}], "]"}]], "Output", + CellChangeTimes->{3.7524756582323513`*^9}, + CellLabel-> + "Out[750]=",ExpressionUUID->"6a7276be-0c26-4fc4-a22a-f2169f5bd2c2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]], "-", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}]}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", "0"}]}]], "Input", + CellChangeTimes->{{3.752472416203661*^9, 3.752472431979589*^9}}, + CellLabel-> + "In[729]:=",ExpressionUUID->"c94e8fd7-1775-41d9-9b8f-7c45e3243150"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], + RowBox[{"6", " ", "\[Alpha]"}]], "-", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", "\[Alpha]", "]"}], "2"], + SeriesData[$CellContext`\[Alpha], 0, {}, -1, 2, 1], + Editable->False]}], + SeriesData[$CellContext`\[Alpha], + 0, {(Rational[1, 6] + E^(2 $CellContext`\[Lambda][$CellContext`r])) \ +$CellContext`R[$CellContext`r], (- + Derivative[1][$CellContext`R][$CellContext`r]) (2/$CellContext`r + + Derivative[1][$CellContext`w][$CellContext`r] - Derivative[ + 1][$CellContext`\[Lambda]][$CellContext`r])}, -1, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{{3.7524724210109177`*^9, 3.752472432379672*^9}}, + CellLabel-> + "Out[729]=",ExpressionUUID->"e2da7e68-52d7-417f-ae56-8932b5775993"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"17", "*", "17"}]], "Input", + CellChangeTimes->{{3.752502668953978*^9, 3.752502684091833*^9}, { + 3.752502737163684*^9, 3.7525027482719584`*^9}}, + CellLabel-> + "In[1059]:=",ExpressionUUID->"b88ceea7-a2db-4672-8d20-3687f418ad2a"], + +Cell[BoxData["289"], "Output", + CellChangeTimes->{ + 3.75250268497621*^9, {3.752502740086473*^9, 3.752502748657988*^9}}, + CellLabel-> + "Out[1059]=",ExpressionUUID->"0db795e1-f601-4cb6-bd7e-af03e2a8cc23"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"\[Lambda]ap2", "=", + RowBox[{"Normal", "[", + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"2", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", "0"}]}], "]"}]}]], "Input",\ + + CellChangeTimes->{{3.752468134059368*^9, 3.752468156301052*^9}, { + 3.7524684544605293`*^9, 3.7524684759552526`*^9}, {3.752468511284079*^9, + 3.7524685168556843`*^9}, {3.7524697768357773`*^9, 3.752469777030323*^9}, { + 3.752469825991617*^9, 3.752469826213581*^9}, {3.752472131235984*^9, + 3.752472132344742*^9}, {3.752472167874254*^9, 3.752472175338965*^9}, { + 3.75247315149617*^9, 3.752473178151702*^9}}, + CellLabel-> + "In[733]:=",ExpressionUUID->"69de18a0-dadd-4129-81fa-6b80753036ef"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], + RowBox[{"2", " ", "r"}]], "+", + RowBox[{ + FractionBox["1", "4"], " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"6", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]], "Output", + CellChangeTimes->{{3.7524681370167437`*^9, 3.752468156714419*^9}, { + 3.752468468503398*^9, 3.7524684762956553`*^9}, {3.75246851232023*^9, + 3.752468517342793*^9}, 3.752469777244411*^9, 3.752469826426436*^9, + 3.752472133265315*^9, 3.7524721809021397`*^9, {3.752473152773971*^9, + 3.7524731785047007`*^9}}, + CellLabel-> + "Out[733]=",ExpressionUUID->"fff9ed75-9a5f-4e22-a5d6-9b7dff2a9433"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"6", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + "\[Alpha]"}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]], "Input", + CellChangeTimes->{{3.752472188681079*^9, 3.752472195349778*^9}}, + CellLabel-> + "In[724]:=",ExpressionUUID->"9a57cbe5-8f3c-4ea0-ac80-307529e87fdd"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "4"], " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"6", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]], "Output", + CellChangeTimes->{3.752472195745976*^9}, + CellLabel-> + "Out[724]=",ExpressionUUID->"fcdf84f3-0f92-4698-bedb-f0c9e814a68e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"wap2", "=", + RowBox[{"Normal", "[", + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"3", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", "0"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.752472243596612*^9, 3.752472248568634*^9}, { + 3.7524731615077868`*^9, 3.752473169338662*^9}}, + CellLabel-> + "In[732]:=",ExpressionUUID->"558c9857-9cff-4fce-a8e1-8bde3d380918"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], + RowBox[{"2", " ", "r"}]], "+", + RowBox[{ + FractionBox["1", "4"], " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], " ", "r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "-", + RowBox[{"6", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]], "Output", + CellChangeTimes->{{3.752472244062418*^9, 3.7524722489737186`*^9}, { + 3.752473164415182*^9, 3.7524731697366047`*^9}}, + CellLabel-> + "Out[732]=",ExpressionUUID->"bbe83a6b-7a53-4a6d-a62a-6cfb258f3d3a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{ + RowBox[{"riccisc", "/.", + RowBox[{ + RowBox[{ + RowBox[{"w", "''"}], "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"\[Lambda]", "'"}], "[", "r", "]"}], "->", "\[Lambda]ap2"}]}], + "/.", + RowBox[{ + RowBox[{ + RowBox[{"w", "'"}], "[", "r", "]"}], "->", "wap2"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.752473180476296*^9, 3.752473250761701*^9}}, + CellLabel-> + "In[738]:=",ExpressionUUID->"8620aa3d-1136-489a-88f3-684b15ad253a"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"4", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}]}], + SuperscriptBox["r", "2"]]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + FractionBox[ + RowBox[{"8", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"], "+", + FractionBox[ + RowBox[{"6", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"], "+", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{"3", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + "\[Alpha]"}], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", "\[Alpha]", "]"}], "2"], + SeriesData[$CellContext`\[Alpha], 0, {}, 0, 2, 1], + Editable->False]}], + SeriesData[$CellContext`\[Alpha], + 0, {((-E^((-2) $CellContext`\[Lambda][$CellContext`r])) (-1 + + E^(4 $CellContext`\[Lambda][$CellContext`r]))) $CellContext`r^(-2), \ +$CellContext`R[$CellContext`r]^2 + + E^(2 $CellContext`\[Lambda][$CellContext`r]) \ +$CellContext`R[$CellContext`r]^2 + (8/$CellContext`r) + Derivative[ + 1][$CellContext`R][$CellContext`r] + ((6 + E^((-2) $CellContext`\[Lambda][$CellContext`r]))/$CellContext`r) + Derivative[ + 1][$CellContext`R][$CellContext`r] + ((2 + E^(2 $CellContext`\[Lambda][$CellContext`r]))/$CellContext`r) + Derivative[1][$CellContext`R][$CellContext`r] + + Derivative[ + 2][$CellContext`R][$CellContext`r] + (3 + E^((-2) $CellContext`\[Lambda][$CellContext`r])) + Derivative[2][$CellContext`R][$CellContext`r]}, 0, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{{3.752473191532618*^9, 3.752473251043239*^9}}, + CellLabel-> + "Out[738]=",ExpressionUUID->"a2067eea-0f86-4b59-ae84-a69a354b96fa"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Collect", "[", + RowBox[{ + RowBox[{ + FractionBox["1", "4"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], " ", "r", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "-", + RowBox[{"6", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + "\[Alpha]"}], ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "]"}]], "Input", + CellChangeTimes->{3.752472272197709*^9}, + CellLabel-> + "In[727]:=",ExpressionUUID->"8284887b-e9da-46ac-9d62-8165463007b3"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + FractionBox["1", "4"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "r"}], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "-", + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "-", + RowBox[{ + FractionBox["3", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]], "Output", + CellChangeTimes->{3.7524722726250134`*^9}, + CellLabel-> + "Out[727]=",ExpressionUUID->"de47c1bd-ff6d-4a9d-856c-7ddc7d536f6c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"\[Lambda]ap", "=", + RowBox[{"Normal", "[", + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], ",", "0", ",", "1"}], + "}"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", "0"}]}], "]"}]}]], "Input",\ + + CellChangeTimes->{{3.752468613664947*^9, 3.752468631012101*^9}, { + 3.752469359084147*^9, 3.752469365703779*^9}}, + CellLabel-> + "In[708]:=",ExpressionUUID->"0eacae42-d976-433d-9eac-d57907030215"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "3"}], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "+", + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"2", " ", "r"}]]}]], "Output", + CellChangeTimes->{{3.752468619610672*^9, 3.7524686313387423`*^9}, + 3.752469366150187*^9}, + CellLabel-> + "Out[708]=",ExpressionUUID->"93abd06a-dd84-4d46-a180-22a3281a848e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"3", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], ",", "0", ",", "1"}], "}"}]}], "]"}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", "0"}]}]], "Input", + CellChangeTimes->{{3.752467703477459*^9, 3.7524677155205936`*^9}, { + 3.7524677896509933`*^9, 3.752467791953526*^9}, {3.752468060443079*^9, + 3.752468064127406*^9}, {3.7524682198038807`*^9, 3.75246822349535*^9}, + 3.75246825883888*^9, {3.752468871129027*^9, 3.752468873895854*^9}, { + 3.752468916443536*^9, 3.752468916695836*^9}}, + CellLabel-> + "In[704]:=",ExpressionUUID->"e9d084ae-3c28-4910-b681-fe6624d6a002"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "-", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{"R", "[", "r", "]"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], "2"]], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + RowBox[{"R", "[", "r", "]"}], "]"}], "2"], + SeriesData[ + $CellContext`R[$CellContext`r], 0, {}, 0, 2, 1], + Editable->False]}], + SeriesData[ + $CellContext`R[$CellContext`r], + 0, {(Rational[1, 2]/$CellContext`r) ((-1 + + E^(2 $CellContext`\[Lambda][$CellContext`r]) - (( + 4 $CellContext`r) $CellContext`\[Alpha]) + Derivative[1][$CellContext`R][$CellContext`r])/( + 1 + ($CellContext`r $CellContext`\[Alpha]) + Derivative[ + 1][$CellContext`R][$CellContext`r])), ($CellContext`\[Alpha] (( + 3 $CellContext`\[Alpha]) + Derivative[1][$CellContext`R][$CellContext`r] + ( + E^(2 $CellContext`\[Lambda][$CellContext`r]) $CellContext`\[Alpha]) + Derivative[1][$CellContext`R][$CellContext`r])) ( + 1 + ($CellContext`r $CellContext`\[Alpha]) + Derivative[1][$CellContext`R][$CellContext`r])^(-2)}, 0, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{{3.7524677109391537`*^9, 3.752467715872595*^9}, + 3.752467792297621*^9, 3.752468064445266*^9, 3.752468225092663*^9, + 3.752468259542725*^9, 3.7524688747967663`*^9, 3.752468917140931*^9}, + CellLabel-> + "Out[704]=",ExpressionUUID->"51468aa5-b1de-45dc-af84-7ae011494d0c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"wap", "=", + RowBox[{"Normal", "[", + RowBox[{ + RowBox[{"Series", "[", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "-", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}], ",", "0", ",", "1"}], "}"}]}], + "]"}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", "0"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.75246894081531*^9, 3.752468942495675*^9}, { + 3.7524693443251743`*^9, 3.7524693534948072`*^9}}, + CellLabel-> + "In[707]:=",ExpressionUUID->"b143b96a-c8ef-434b-89a7-db654f98426f"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], + RowBox[{"2", " ", "r"}]], "-", + RowBox[{ + FractionBox["1", "2"], " ", + RowBox[{"(", + RowBox[{"3", "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]], "Output", + CellChangeTimes->{ + 3.752468943119136*^9, {3.752469348410821*^9, 3.752469353970602*^9}}, + CellLabel-> + "Out[707]=",ExpressionUUID->"ccafea8b-6689-4e91-aa9a-74b935d3499a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"LogPlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"1", "/", "r"}], ",", + RowBox[{"Exp", "[", + RowBox[{"-", "r"}], "]"}], ",", + RowBox[{ + RowBox[{"1", "/", "r"}], "+", + RowBox[{"Exp", "[", + RowBox[{"-", "r"}], "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "1", ",", "100"}], "}"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", + CellChangeTimes->{{3.752475054806285*^9, 3.752475123691073*^9}, { + 3.7524893352476063`*^9, 3.7524893582948713`*^9}}, + CellLabel-> + "In[816]:=",ExpressionUUID->"85a3dba1-16ba-45b2-a989-ce2ffc799389"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV1Wk41G0bBvBhSDyWmb8hZKchMSUtWjQXUtbs+RcJ8WQLSSIqEqnQcoQs +rZYKr4yk9JT7xpOlFL3WFKWyZR1L1sw774frOI/fh/M4zm+Xmlewg48ghUK5 +xL//p5X3AWVBygTbNHwV9e0krjz7IF7WI3qC3TBulXz1/h1U+o0jWTk3wW65 +Zck6tr4YyR0S40VyuWzzcKn8NeRr1O/8z1fu9yl2xYHx9dFt75DCzYEO28PT +7B9ycoTryAdk81/p5v98nmZHnvuuZzXXjMr2BWK/1hl2p8cbDePvLej8XqX7 +vW9m2QUVJwMDXD6h8niLDLbJHLt43CX484MuNFRz8vrtyjn2EzNHgYqBz8gO +PsQeeD7PvlIs3FDp3oOUt53z+vhokS00HLGscqEXvdTp1ai6wmN/VR+cZ1X0 +ofCyFSlSQhRoWu0u7bmlH11rUby8y4QCWSdNX5Zw+tG/dIvz2ZUUOES7Yt37 +YADppNwPJZ8LwAlQzpoMGUJzCQ6OzY+oUOHmPpj8ZgQR+b62vH4qrDMSxUyd +UaT75qwVa40QuNqUsS4mj6LD1ELTpPtC8HUpP/aV3RiqPUfdZJ4pDEGZghkv +G8bRzYgyBr4iAoa5Q8FFZlwkduiejE6TCLSvir++/QQXxRonyd4kVoJEX1aA ++T0uChLzlvPNWAnpWxPdxua4yDxbWpH2UBSCGNzewtxJtIRCNTyq/4Ll10pB +UwNTKDTXXfOtsDjI3jlad1dyGg0lWq7ZZCEOlyVDEsY3TaN2e3Wtlc3i0D27 +SiQmZhqV/PioU9ItAbalObtuSM8gbxH9jZR5KVAYFy2v1vmNRk+myG9WpoHf +aocXrta/kbavkMIvNg1OC1/Hxcd+o7vWEwpOcTQwjrrhcfHJb5QkU6+oLUYH +/8ntbaobZtHfD0+pNq8ioKrC3qJ5zRxSeNeupWrAADzfcnV6cB4pPPjjmOHA +tx5ne5PAAlodqRlDhDKAYxIeH6ewgBS1QjuFOAw4Uvi26bTVAlKJk7g0xJKB +EueJ9JLCBaS5Y/evUh1ZEO5kP0v1WUSsQk6RmbocpClqdLRWLSHW+c7OSmM5 +EKOVj+W2L6H1B3hChp5ysHMmVvbg8BLaIGJzSOeeHAyWGxaGMf4ggyODElLK +8pDyRoUd6vMHGa5WCe6UV4CVv4yyagWXkemVJP0AuiI8fbzp6RFdHirKmrXb +s0ERtrq19E8Y8ZBskVeImq0izKxNGvO35aHBRsMnHUmKYHkkVZUZykNJkn26 +u1cqwdWa3jOvy3mo9bqRthJPCcSuflkwV6Zg71tjyk0jKsAk5NN+3qbgagft +BPmfalBhEepz+qIA3mct3dE2rQaVagJ5kykCuMtsWeuGsDpEfEvmHkkTwFzD +1gYxLXXY/kW4Tz9PAKuqxEgs+alDffXZ1OhqAXxmuONmz7g6PDtdUdyxKIAN +L1zMyVnUAOrObN6knyB+8qwf60kzoVQwUrxrMxXfUSvQalRnQjXHjxG7g4qT +ko+l+G9kwg+zKlVNYyr29Zl2fWjPhOMzS27u1lSsLiM4q3qNCfZJsX9yvKg4 +LUxJjyGhBW9jyxIjUqg42sApY2GFNnCvozG/H1Rswak6XrewFtbKBFb7xgnh +EsH5YPoWFvhSz7iEvRDG17HrcCNLH1qmOl854hVY1brhU4uyAZzulgtkZong +NMG+sVLDzbBu3VGVwpCV2EtYCrWytsKdT4lnn68RxWV3omtkVm+DfEnrVYP1 +onjE69YYS38HnGoo0vIJFMNRJ6pbL2sYARazaKUsiOGJ4szeSjYbnjaU12+4 +9BcOB1e66GOA4cbnr/PExfFd2xApp3vGUJyJGIwYcbwj7IvqlSITIB/2zzr9 +FseCqOnqj3xTqBpV+tXtLoGNVBQI7fLdoMm0/xXwVgL/Y5nAisZmoJs6PfOW +JYm9syMfcV/sgS6ds3r6iZI4hvrvZsfavVBeXOo98FMS111LVW2vMgeKWo5X +21YpbD+UmOf7wgK0ho3HefFSeJ9Li9FAjSXUf7ovm9IhhcOHcw0uvrYCs3zh +qAAaDROp73dKN1qDQeTtzrItNMwVlftW3GYDc66mJ6YO0vBi7tC3gPf74MTl +0uM5UTQc4UzMMLpsgZqFxCdv0zBN1vNpsL8dlEyVrZt9RcPCAxYVbn12MDR7 +eO2ZLhouM+mpR/72MHqYI58+z+/rb7loMGAP3wPV6utk6Ph3wTZbpSAHKKi9 +sBBtQMeXnlNqV404gE2qe2HEPjqufNwpmnnUEd6ojJWDLx0XMd1cbow6AnEq +syomjo5LtuQ4Zvk7wcgDkc3W2XQc9DH1gMKkE7zyuxoXW07H7+0zdNVOOYNp +9dKtjCY6NvHxKDaccuZ/CZf4U/10HEJt2VYbuR8E4xJvly7Tcdkm0TDv2f0w +pKVp1MwgcIaVXdTlUBfocWzbL6ZDYMNRkyTmnAuEPE13TwUCj6jNW7WEkdD7 +OHsXy5nAH1weLvPCSTCUatx7ie+SZGeObiQJRZY/zX/yHTbPkU04Q0IatW1j +5n4CLzX79xomkBCb9zVPmCSwRMyX8DvpJMQVfBL9fJDArB503+8lCbWj1i3n +PAhMYwQ5pb0iwb+K/PKJ70kLRZGaShKESk53G3gSuPxZRKBiDQkNx1bUD/C9 +K1l/a9M7Eup2e++yPULgfTtzGjd18/fNBXEU/ybwhlD7c55fSVC5dn5nON/E +I55+Si8JoS7VqInvdmm39IE+EtpG3hWfP0pg92GGV+YYCTV+eusHfQkMajWM +ugkS6svro4z9CKzucrxuapKEHoUsnMl3f/V7XZtZEvak/tpo40/g+rmor5Hz +JBh5+nvk813A0rmRv0hC0hNmAo/vJO/O3S1/SNDoUs0lAwgcnJkwy+ORcGv7 +wZccvv8HcV8eJw== + "]]}, + Annotation[#, "Charting`Private`Tag$306628#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwtxX1M1HUABvDbOedoKwUuMkLjciNzdOuGIkzpntAyRN7B+zqpKcNV2ECN +ETeoXFtnCfbiQpOa+ZapcwSGZlr8HqDAJmTtjFkz4SpgDmQHrICsrtqePz77 +OEsq8rfYbTZb1n/+P7N0w0K7LeTR1stHXovZVBvyaOvMQMtdbdMhj7bmP3VH +2Dc+7tHWUNHF/vFfJj3aenXNgsPBr6c82rqwJLiovS7s0da71a0O1s2BZuzl +vgfjkxzQXFVX794aGQfNjvzF/nt/c0Lzk7NDfDg6AZoZLe3bu/98CJrN9pmK +yGQXNN/hxpEelxua8eu++TGwMAma++yDY2dSlkGzZPZc66prOTRbD9Z23n1f +KjRHS94bc7lXQLPmhY6ruxelQTPU1Bhs83igWYWNkREnAc0Pc7bNLTz0GDRX +VF6PrzudDk27deWtX4+vgmba/bFRi8+thubFtX5XLR+HZukHvhPj55+A5s5Z +Xy0r6FoDze63G+L72p+EZt7N1z969nwGNLO9gbThzrXQrBo5lrTry0xoRjX0 +rozuWQfN8Yj5A00/ZEHz9rGbA1t7s6FZXRT1u+OnHGjOi9n8aUVZLjRnD2d8 +XjyYC83W9BuXrLI8aFa7k3clDedB849TqTkLyvOh+cZntq57RvOh2XbyWkTj +MwXQPJ1Q7N17qwCazclHC94vK4Rm+fcNG2InCqHZm3cg0fliETTTt2xqSpks +gua2WYHULt96aLYujagsnVoPzQOZuTW7d3ihmXIrvT5h2gvNUedMZqDSQPNb +78f/hKsMNJv3FLUk+gw0K2daYvwvGWj+9V1ZMMVvoHnnzutVB/cbaLpuWIef +u2CgOc9RXrjvCwPNiYy4OZ1tBprnzlY/H9dpoPnoHvfyK5cNNLNXHu1Z+rOB +5iM78l7Z3G+gGXUi7H4zaKDZF128f3jQQPPpEUdJ45iBJpydju6QgeYD3u3d +kxMGmkMdvYlZUwaal6Zr+n0zBpqnXEv2Hr9toFlfem114G8DzYpG/1Q4bKD5 +L5S0ZJ0= + "]]}, + Annotation[#, "Charting`Private`Tag$306628#2"]& ], + TagBox[ + {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV1Xk41HsbBvBh7A1mfg1ZZmwJOZoskZLmsbRYIlt+WnFUqFRD4pBEtkjl +zRpKKsQrJO2+3zih4kgolZRkX7LkWDPvvH881319/riv6/7vUfc+7nxQmEKh +xAru/2nn46EiTBnnzmR4bOXR2rgRN2PkPcPHuVd+8dg+au+4Fd/KZapnx7lC +2ZOj1ZvfchX2SfFDJya48R493Z36r7h9bk+/Tnyf4s6mJeKQ11XcqG3svO6X +M9yNpd3FbJ2nqCrGJpNrOcsdFNWsXxOB0WDtqSs51bPcrXrT2xv21aKd8M85 +j4dz3FNFz74VLTUglQ1nvVsKF7hRz/kG7v0t6Ilu98oXiXwusrirsmHkMwqu +FEuWFaGAXcrFgPPKX9DlVtaFzZYUsB6zmDHe1oX+ZthEZVdTIMmXnBWz/YZ0 +k/N45EMhaOlc0ZMb9R3Nxjq7vC2kQo+YRWhxYR8i7vg68vuoUNRuWNiu1Y/0 +XkbYcVaJwMnOi2+y8vvRAWqxVVKeCOQHS/+QzBxAdWep67ZnicLWiPOKQkFD +6GpIJRMnikNsmdoHk7FRJLXvhpxuszgs/dQoILzG0DmLJPmrhASUXyFYOe/G +UICUj4JvpgS8vOql0VL+E23PXs6iF0gCuyKNll02jhYRb6VnzTLYOJCsOmE1 +iXi39mu+FqXBRErupp7ASTQYb7tqnQ0N0kP3xjjmT6L3ThraEm9pIEup8Mql +TKGynhbdsi/SED6e7Wv7YAr5iBsYUuZkofeVeOBJiWk0eipZ0ViFDoPMXP8e +/Wmk4yuiNMSlw4f0UeoIOY2u248ruUbTIdAiLLC+YBolyTWwdKQYYCEtd+Yd +/IsOFZxWe7uCAJfAw3+d85pBSm/ea6sZMUHnQtTPkENzSOnmb5dMZyYkCl9e +CoqaQ8qhmpEEjwliiYk9prlziKXN6xApZ0Lfdbv9yu1zSDVaOmGQIwdRCYfL +PGEeaZpZD1XoysNAhnzJJekFxCkuL9mioQBUQ+kyatwi4kR1dFRbKEDhWuUI +h5xFtNaDL2LqpQBKF+etTt1fRPriO/bp3lAAs968TPLrIjL6c0BaVkURtrHk +ONHGv5GpsurxDkUl6A/5T0v959/IKjHJ4AiDBcrDHNFKgo9Krs3s3KrPApPN +RWcHNPlIvsT7hLojC1KqrP8rup6PBhpN731IYsHkmMMfC7v5KEmmV89agg1r +75c9/pjHR21XzHXYfDZ49kdINslRsE/GmErziCqsGpw035lBwTXOOrGKP9Sh +0K/lwooYIexgv/xD+y91oAXds8pLEsKftixpp4hqwJu0a4krrwrhCdO2V1La +GuDn3yRJ5AthNdVI6UU/DehVVAnLwEL4zPCHq10/NWBQ1tGDnBfCpufj8vMX +VsKeMAlDqp8wvvegD69ZrgVkztx0uDEV56rf1W7U0IJxiekELTMqTrp4LNnf +UAtotiX0RqBi34O/9hQ4aYGTS5zMMnsq1pATnlG7rAWP71jzPLypOC2IvYYp +rQ3V8WZdm5KpONzINXNeTAf0X0vVWPVQsU35i5P186thZNbW2CNaBJcJzx1n +mHDgkAxvNe+RKL6C9ww3cgzAOsv5mAsWw2r2rz62qhhBW6rHAa1r4jhNuHes +wtQY2Col7OITEthbVBa1cdYDpc464uEqSVyZG14rp7wBbm2zWDHQIIlHvDPG +OAZmELGrWPvgUSkcFljTdmGlOQi/295GmZfC46VZ3dVcLjjXVDXoJyzDwbCH +IVkEMPbm4fPbNBq+7nhC1vWGBcRlISYzkobNgjrVEksswaWgb8b1XxoWRs2X +eu5YAR5lD33ZL43NVZUInSpr0NRyGjryWho/tY3lhOMtoJf6a/o1Rwb7ZIcW +TjzaCp90I9YYxMvgSOrfxi5126CqtMKn/4cMrr+cqvb+xXagqOd7t6+XxU6D +8bd9H9mA9rDFT36MLHZwbzXvr7WFho958skfZHHw8C2juOd2sOWOaNgROh0T +qU2bljfag1FoTkelCR1PSCp8K23fAbN7rAKndtPxwq3Bb0eaHCDwQsXJ/DA6 +DnEjppmfHIF6DdEmc+iYLu91/7j/Tiibqvxj5hkdi/bbPN7buxMGZw6sPvOJ +jistuxqQvxOMHihXTJ8T9A1M4oz6neD7UfWGejkG/vfuBkd2gDPcrTs/H27E +wAkPKXUrRpxhR+r+4hAHBq4u6pDMOuwCL1XHqsCXgUu09rqnjLoAcTrrRWQ0 +A5eZ5Ltc83eFkZvixvbZDBzQkuqhNOkKz/wuRZ+rYuAmp0w99dNuYFWzmJHZ +zMCWBz1LTafcBF/CPeZ0HwOfoLZuqAvdBcLR8TkVSwxcuU4yyGdmFwxqa5q/ +ZRI4025n2AWeO3S5tO+S0iWw6ahlktasO5y4n74/FQg8oj5n1xpEQndR9maO +G4H/cS9Y4geTYCrbuC1B4LKLbuV6oSSU2P7Y/kPgoLly+dgzJKRR2w2zdhF4 +8a1/t2ksCeduf70tShJYOrIzODedhOi7HyU/7yYwpwvl+T0hoW7UvvWsJ4Hp +zADXtGck+L8gOz8KPGnDEq+tJkGk7K8vRl4ErnoQcpRVS8KrY2IN/QJvvmiw +vvkNCfXWPpsd/ySww6b8xnVfBPtmA8pZhwisz3M66/WVBNXLUZuCBSYK+QbJ +3STw3GtQs8Dvl+9N7+8loX3kTWnUYQLvH2Z6Z42RUOu3Zu2AL4FBvZZZP05C +Q1VDmIUfgTXcT9ZPTZLQpXQNZwncV9Okt2OGhK2pQ4Y7/AncMBv2NXSOBHMv +f887At/l6KbcWSAh6Z5WLF/gJJ8O69bfJKz8pHaLPELg41mxM3w+CRkbdz8p +F/h/zKLyGg== + "]]}, + Annotation[#, "Charting`Private`Tag$306628#3"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, -99.99999797959184}, + CoordinatesToolOptions:>{"DisplayFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Part[#, 1], + Exp[ + Part[#, 2]]}& )}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{ + Charting`ScaledTicks[{Log, Exp}], + Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None}, + PlotRange->{All, All}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->FrontEndValueCache[{Automatic, + Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{-92.10340371976183, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "40"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-69.07755278982137, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "30"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-46.051701859880914`, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "20"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-23.025850929940457`, + FormBox[ + TemplateBox[{"10", + RowBox[{"-", "10"}]}, "Superscript", SyntaxForm -> SuperscriptBox], + TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {0., + FormBox["1", TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-103.61632918473205`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-101.31374409173802`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-99.01115899874397, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-96.70857390574992, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-94.40598881275588, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-89.80081862676778, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-87.49823353377374, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-85.19564844077969, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-82.89306334778564, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-80.5904782547916, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-78.28789316179756, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-75.9853080688035, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-73.68272297580947, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-71.38013788281542, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-66.77496769682732, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-64.47238260383328, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-62.16979751083923, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-59.86721241784519, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-57.564627324851145`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-55.262042231857095`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-52.95945713886305, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-50.65687204586901, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-48.35428695287496, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-43.74911676688687, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-41.44653167389282, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-39.14394658089878, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-36.841361487904734`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-34.538776394910684`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-32.23619130191664, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-29.933606208922594`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-27.631021115928547`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-25.328436022934504`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-20.72326583694641, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-18.420680743952367`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-16.11809565095832, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-13.815510557964274`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-11.512925464970229`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-9.210340371976182, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-6.907755278982137, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-4.605170185988091, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-2.3025850929940455`, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {2.302585092994046, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.605170185988092, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {6.907755278982137, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}}}]]], "Output", + CellChangeTimes->{{3.752475068155126*^9, 3.7524751242281647`*^9}, { + 3.752489335723124*^9, 3.752489362055065*^9}}, + CellLabel-> + "Out[816]=",ExpressionUUID->"35ba82c3-c4f2-4f1e-a701-4da86d126e5f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", "riccisc", "]"}]], "Input", + CellChangeTimes->{{3.752469670357664*^9, 3.75246968540447*^9}}, + CellLabel-> + "In[713]:=",ExpressionUUID->"29c6782f-8d78-454a-95f7-b565b0e40ae2"], + +Cell[BoxData[ + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], ")"}]}], + + SuperscriptBox["r", "2"]]], "Output", + CellChangeTimes->{{3.7524696733200293`*^9, 3.752469685719874*^9}}, + CellLabel-> + "Out[713]=",ExpressionUUID->"f2907e60-450d-4066-8e00-a93733d65c49"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + RowBox[{"wap", "-", "\[Lambda]ap"}], "]"}]], "Input", + CellChangeTimes->{{3.752469374030212*^9, 3.752469383546371*^9}}, + CellLabel-> + "In[710]:=",ExpressionUUID->"90d1cf29-675b-479b-8b5a-93807f6f3cda"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "3"}], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + "r"]], "Output", + CellChangeTimes->{{3.7524693762420053`*^9, 3.7524693840088043`*^9}}, + CellLabel-> + "Out[710]=",ExpressionUUID->"c2049564-a8ef-4387-b693-7ba48794e85f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "3"}], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}]}]}], "r"]], "Input", + CellChangeTimes->{{3.752469423386989*^9, 3.752469423583907*^9}}, + CellLabel-> + "In[711]:=",ExpressionUUID->"c0240fab-1fa6-4cb7-86dd-0816d9ed5333"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "3"}], "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", "r", " ", + "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "r"]], "Output", + CellChangeTimes->{3.752469424730689*^9}, + CellLabel-> + "Out[711]=",ExpressionUUID->"7a497dba-d949-4cd3-9263-d4b34edec7a3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"riccisc", "/.", + RowBox[{ + RowBox[{ + RowBox[{"w", "''"}], "[", "r", "]"}], "\[Rule]", "0"}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"w", "'"}], "[", "r", "]"}], ",", "0", ",", "1"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.752470603220113*^9, 3.7524706107188177`*^9}, { + 3.752470709207058*^9, 3.7524707158759127`*^9}}, + CellLabel-> + "In[720]:=",ExpressionUUID->"bbe2b716-ce47-42de-bcd4-ca4de3023890"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"2", " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], + SuperscriptBox["r", "2"]], "+", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "]"}], "2"], + SeriesData[ + Derivative[1][$CellContext`w][$CellContext`r], 0, {}, 0, 2, 1], + Editable->False]}], + SeriesData[ + Derivative[1][$CellContext`w][$CellContext`r], + 0, {((2 E^((-2) $CellContext`\[Lambda][$CellContext`r])) \ +$CellContext`r^(-2)) (-1 + + E^(2 $CellContext`\[Lambda][$CellContext`r]) + (2 $CellContext`r) + Derivative[1][$CellContext`\[Lambda]][$CellContext`r]), ((2 + E^((-2) $CellContext`\[Lambda][$CellContext`r]))/$CellContext`r) (-2 + \ +$CellContext`r Derivative[1][$CellContext`\[Lambda]][$CellContext`r])}, 0, 2, + 1], + Editable->False]], "Output", + CellChangeTimes->{3.752470611170364*^9, 3.75247071620971*^9}, + CellLabel-> + "Out[720]=",ExpressionUUID->"f5a9c401-44ce-4bcf-a804-ac99bfb4e8ae"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"DSolve", "[", + RowBox[{ + RowBox[{ + RowBox[{"r", " ", + RowBox[{"R", "[", "r", "]"}]}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}], "/", + RowBox[{"(", "12", ")"}]}]}], ",", "R", ",", "r"}], "]"}]], "Input", + CellChangeTimes->{{3.752470329276647*^9, 3.752470364052747*^9}}, + CellLabel-> + "In[717]:=",ExpressionUUID->"40c74a4f-78b1-4f96-a508-37a5b2cd467d"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"R", "\[Rule]", + RowBox[{"Function", "[", + RowBox[{ + RowBox[{"{", "r", "}"}], ",", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"6", " ", + SuperscriptBox["r", "2"]}]], " ", + RowBox[{"C", "[", "1", "]"}]}]}], "]"}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.7524703587031612`*^9, 3.752470364432105*^9}}, + CellLabel-> + "Out[717]=",ExpressionUUID->"4901e7bd-e16b-401a-a053-77df6a80ca50"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"D", "[", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"6", " ", + SuperscriptBox["r", "2"]}]], ",", "r"}], "]"}]], "Input", + CellChangeTimes->{{3.752470402867311*^9, 3.752470404783081*^9}}, + CellLabel-> + "In[718]:=",ExpressionUUID->"298558c8-d7bf-425c-8a30-7e85ec22ac33"], + +Cell[BoxData[ + RowBox[{"12", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"6", " ", + SuperscriptBox["r", "2"]}]], " ", "r"}]], "Output", + CellChangeTimes->{3.752470405083559*^9}, + CellLabel-> + "Out[718]=",ExpressionUUID->"5b4ad2a1-fe3e-4864-8001-f8f1f6e886fb"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"DSolve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox["1", + RowBox[{"2", " ", "r"}]], "-", + FractionBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], + RowBox[{"2", " ", "r"}]]}], "\[Equal]", + RowBox[{ + RowBox[{"\[Lambda]", "'"}], "[", "r", "]"}]}], ",", "\[Lambda]", ",", + "r"}], "]"}]], "Input", + CellChangeTimes->{{3.752467815102234*^9, 3.752467851042474*^9}, + 3.7524681927007303`*^9}, + CellLabel-> + "In[694]:=",ExpressionUUID->"6e56a157-709b-4b41-8e00-1e9d603bba11"], + +Cell[BoxData[ + TemplateBox[{ + "Solve","ifun", + "\"Inverse functions are being used by \ +\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \ +Reduce for complete solution information.\"",2,694,74,29958356846220445255, + "Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.752467835006423*^9, 3.752467851379737*^9}, + 3.752468193596162*^9}, + CellLabel-> + "During evaluation of \ +In[694]:=",ExpressionUUID->"c2605ad7-f225-4773-b397-44ecb96d5b70"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Lambda]", "\[Rule]", + RowBox[{"Function", "[", + RowBox[{ + RowBox[{"{", "r", "}"}], ",", + RowBox[{"-", + RowBox[{"Log", "[", + RowBox[{"-", + SqrtBox[ + RowBox[{"1", "+", + FractionBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"C", "[", "1", "]"}]}]], "r"]}]]}], "]"}]}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{"\[Lambda]", "\[Rule]", + RowBox[{"Function", "[", + RowBox[{ + RowBox[{"{", "r", "}"}], ",", + RowBox[{ + RowBox[{"-", + FractionBox["1", "2"]}], " ", + RowBox[{"Log", "[", + RowBox[{"1", "+", + FractionBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"C", "[", "1", "]"}]}]], "r"]}], "]"}]}]}], "]"}]}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.752467835015156*^9, 3.75246785140805*^9}, + 3.752468193624921*^9}, + CellLabel-> + "Out[694]=",ExpressionUUID->"21ed1d84-9cc8-4502-a50c-1c70f0a0c18f"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"G", "=", + RowBox[{"6.67428", " ", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"m0", "=", + RowBox[{"1.989", " ", + RowBox[{"10", "^", "33"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rg", "=", " ", + RowBox[{"G", " ", + RowBox[{"m0", "/", + RowBox[{"c", "^", "2"}]}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"P0", "=", + RowBox[{"m0", " ", + RowBox[{ + RowBox[{"c", "^", "2"}], "/", + RowBox[{"rg", "^", "3"}]}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]0", "=", + RowBox[{"m0", "/", + RowBox[{"rg", "^", "3"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"R0", "=", + RowBox[{"1", "/", + RowBox[{"rg", "^", "2"}]}]}], ";"}]}], "Input", + CellChangeTimes->{{3.7185222808128757`*^9, 3.718522283741341*^9}, + 3.718524118360667*^9, 3.719126253632967*^9, {3.719126395963193*^9, + 3.71912639669911*^9}, {3.724072460832786*^9, 3.724072467201078*^9}, { + 3.725084601527223*^9, 3.725084625197569*^9}, {3.7337367520460243`*^9, + 3.73373675229137*^9}, {3.7337368914027243`*^9, 3.7337369134723597`*^9}}, + CellLabel-> + "In[178]:=",ExpressionUUID->"7c759e54-dbbf-4602-9fe8-b629e3455f38"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"plotleg", "=", "\"\<SLy\>\""}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eqEoS", "=", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSFits", "[", "plotleg", "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]max", "=", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "->", + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], ",", "0.1"}], "}"}]}], "]"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pmax", "=", + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]max"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\<{pmax, \[Rho]max} = \>\"", " ", ",", + RowBox[{"{", + RowBox[{"pmax", ",", "\[Rho]max"}], "}"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", + RowBox[{"1", "/", "10000"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"listeos", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSFits", "[", "plotleg", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{"From\[Rho]To\[Epsilon]Fits", "[", "plotleg", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "1", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]int", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeos", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", "\[Rho]0", ")"}]}]}], "}"}]}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pint", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeos", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + ")"}]}]}], ";"}]}], "Input", + CellChangeTimes->{{3.727008422010909*^9, 3.7270086007439337`*^9}, { + 3.7270086877463408`*^9, 3.727008703493436*^9}, {3.731302268620392*^9, + 3.7313022792599497`*^9}, {3.7313027521692657`*^9, + 3.7313027544392147`*^9}, {3.731304314472582*^9, 3.731304441192816*^9}, { + 3.731735345613079*^9, 3.731735345742222*^9}, {3.734068252319124*^9, + 3.734068306806117*^9}, 3.734068678404808*^9, {3.73406871889307*^9, + 3.734068723770665*^9}, {3.734069036301003*^9, 3.734069045529524*^9}, { + 3.7340691459084682`*^9, 3.734069202515676*^9}, {3.73406935734336*^9, + 3.734069357759692*^9}, {3.734069857128277*^9, 3.73406988203631*^9}, { + 3.734074910315278*^9, 3.7340749234258127`*^9}, {3.7340939710774937`*^9, + 3.734093975122863*^9}, {3.734147256953299*^9, 3.734147273684791*^9}, { + 3.7341684959476833`*^9, 3.734168517218947*^9}, 3.734177263730288*^9, + 3.734180727893869*^9, {3.7343432062647667`*^9, 3.7343433144394197`*^9}, { + 3.7343434520066442`*^9, 3.734343457260149*^9}, {3.738227138499681*^9, + 3.7382271419792624`*^9}, {3.7383672260418673`*^9, 3.738367226166401*^9}, { + 3.738367511724197*^9, 3.738367511777093*^9}, 3.738422055821927*^9, + 3.750991396075021*^9, 3.751970977997518*^9, {3.752315938695657*^9, + 3.7523159429494953`*^9}, {3.7541354120251417`*^9, 3.754135413510075*^9}}, + CellLabel-> + "In[185]:=",ExpressionUUID->"f93c8ad0-a546-48e9-ba7d-99e67d03341e"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"{pmax, \[Rho]max} = \"\>", "\[InvisibleSpace]", + RowBox[{"{", + RowBox[{"0.0006892725464942204`", ",", "0.0020678176394826483`"}], "}"}]}], + SequenceForm[ + "{pmax, \[Rho]max} = ", {0.0006892725464942204, 0.0020678176394826483`}], + Editable->False]], "Print", + CellChangeTimes->{3.752315946019698*^9, 3.752315997363245*^9, + 3.753099466277261*^9, 3.7530995007574177`*^9, 3.754135423537212*^9}, + CellLabel-> + "During evaluation of \ +In[185]:=",ExpressionUUID->"10db2de8-6788-4d44-8a9b-d05ada99ceae"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Alpha]val", "=", "\[Infinity]"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"myeqs\[Alpha]1", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "/.", + RowBox[{"\[Alpha]", "\[Rule]", "\[Alpha]val"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.7184374008169537`*^9, 3.718437414236784*^9}, { + 3.718437494185628*^9, 3.718437593617321*^9}, {3.718437636009316*^9, + 3.71843766429198*^9}, {3.718437931714583*^9, 3.71843793617094*^9}, { + 3.718438765549902*^9, 3.7184387725963507`*^9}, {3.7184434391910257`*^9, + 3.718443441853094*^9}, {3.718443484193285*^9, 3.718443506284607*^9}, { + 3.718559464128769*^9, 3.718559467943961*^9}, {3.719061439821855*^9, + 3.719061444562524*^9}, {3.71906354255866*^9, 3.719063542733931*^9}, { + 3.7192407305489407`*^9, 3.719240773756016*^9}, {3.719240893282688*^9, + 3.7192408934660263`*^9}, {3.71924140797748*^9, 3.719241430663768*^9}, { + 3.719242019927012*^9, 3.719242027238345*^9}, {3.719244451874546*^9, + 3.719244513800668*^9}, 3.719244669295821*^9, 3.719245036201807*^9, { + 3.7192450899673243`*^9, 3.71924509067815*^9}, {3.7192451611104803`*^9, + 3.719245179742125*^9}, {3.719245220701231*^9, 3.7192452397742863`*^9}, { + 3.719245285155002*^9, 3.719245315139111*^9}, {3.719245351619425*^9, + 3.7192454071684732`*^9}, 3.719245884210607*^9, {3.719246470222393*^9, + 3.71924649000541*^9}, 3.7196470136825733`*^9, {3.719654651525614*^9, + 3.7196547367570744`*^9}, {3.719654909446266*^9, 3.719654923283415*^9}, { + 3.719655105454989*^9, 3.7196551440097113`*^9}, {3.719655197652171*^9, + 3.719655238214574*^9}, 3.719655279095626*^9, {3.7196570759512253`*^9, + 3.719657118589653*^9}, {3.719657159149605*^9, 3.719657186400576*^9}, { + 3.719657284361618*^9, 3.719657284495661*^9}, 3.719661833262862*^9, + 3.719661889542369*^9, {3.719677158726555*^9, 3.7196771593815804`*^9}, { + 3.7201508160700693`*^9, 3.720150854549415*^9}, {3.720150953337185*^9, + 3.720150988843315*^9}, {3.7201510947662373`*^9, 3.720151096513274*^9}, { + 3.720180194853396*^9, 3.7201801961733723`*^9}, {3.7204477444491367`*^9, + 3.720447752717889*^9}, {3.720447830398622*^9, 3.7204478306706963`*^9}, { + 3.720448947777711*^9, 3.720448948424841*^9}, {3.72092511238037*^9, + 3.72092516120851*^9}, 3.7209252708800373`*^9, {3.721030284430574*^9, + 3.7210303345388803`*^9}, {3.721039254318759*^9, 3.721039279957816*^9}, + 3.721385814374618*^9, {3.721389955180369*^9, 3.7213899557479877`*^9}, { + 3.721430198730941*^9, 3.7214301994314737`*^9}, {3.721430482730871*^9, + 3.721430503273196*^9}, 3.721430556674695*^9, {3.721434631643511*^9, + 3.721434635098914*^9}, {3.7214352358085003`*^9, 3.721435269276092*^9}, { + 3.721810132521253*^9, 3.72181013302395*^9}, {3.7219916821571827`*^9, + 3.721991682266123*^9}, {3.722034810936336*^9, 3.7220348123103523`*^9}, { + 3.722035439644766*^9, 3.722035439955229*^9}, {3.722035597216983*^9, + 3.722035598085511*^9}, {3.722132706385194*^9, 3.722132707495133*^9}, { + 3.728878929181488*^9, 3.728878939412635*^9}, {3.728879026878384*^9, + 3.728879028405472*^9}, {3.728879589344974*^9, 3.7288795954695683`*^9}, { + 3.728879817167754*^9, 3.728879828861765*^9}, 3.728885944506542*^9, { + 3.728885992099325*^9, 3.728886004403038*^9}, {3.728886152535172*^9, + 3.728886152852853*^9}, {3.728886196734907*^9, 3.728886206004057*^9}, + 3.7288865223207483`*^9, {3.728887683896122*^9, 3.728887684110838*^9}, { + 3.728888632342266*^9, 3.728888632533518*^9}, {3.7288887518958406`*^9, + 3.728888752084675*^9}, {3.73114457304851*^9, 3.731144599330369*^9}, + 3.731145262602448*^9, {3.731145569164222*^9, 3.731145611783329*^9}, { + 3.7311456744847717`*^9, 3.7311456766132383`*^9}, {3.731145723447528*^9, + 3.7311457685493107`*^9}, {3.731145808786429*^9, 3.73114581084544*^9}, { + 3.7311461504422483`*^9, 3.7311461568691177`*^9}, 3.7311470371680403`*^9, + 3.731147219222896*^9, 3.731150477499794*^9, {3.734343509286057*^9, + 3.734343514619609*^9}, 3.734344832001861*^9, 3.734344932168583*^9, { + 3.734347198308228*^9, 3.7343472281746902`*^9}, {3.734347369628532*^9, + 3.734347385569559*^9}, {3.7382217512744827`*^9, 3.738221753034275*^9}, { + 3.738227265618156*^9, 3.7382272830812607`*^9}, {3.7382283776489487`*^9, + 3.738228384563052*^9}, {3.7382285318009872`*^9, 3.738228531960734*^9}, + 3.7382438818428497`*^9, {3.738422550408177*^9, 3.7384225505752487`*^9}, { + 3.738423434397541*^9, 3.7384234344990788`*^9}, 3.738442332473753*^9, + 3.746352332399502*^9, 3.752316055027153*^9, 3.7523165847842703`*^9, { + 3.7523923548643837`*^9, 3.752392356846579*^9}, 3.752392434615747*^9, { + 3.753099521334536*^9, 3.753099522168209*^9}}, + CellLabel-> + "In[195]:=",ExpressionUUID->"10803daa-9f1a-471c-aa65-34ff913d6e48"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"2", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "->", "\[Alpha]val"}]}], "]"}]], "Input", + CellChangeTimes->{{3.753099694203515*^9, 3.75309970446832*^9}}, + CellLabel-> + "In[103]:=",ExpressionUUID->"53b43d2a-ed2a-428e-943e-7f7d9c19bc99"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]], "Output", + CellChangeTimes->{{3.753099691168735*^9, 3.7530997047765217`*^9}}, + CellLabel-> + "Out[103]=",ExpressionUUID->"3a36e02a-c368-4fc2-bbed-6ed18f084a54"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", "4", "]"}], "]"}]], "Input", + CellChangeTimes->{{3.7530997754579268`*^9, 3.7530997756443253`*^9}}, + CellLabel-> + "In[111]:=",ExpressionUUID->"dabee613-ede7-4bdd-8cef-6f4ea9b16fb4"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]]}]], "Output", + CellChangeTimes->{{3.753099773073803*^9, 3.753099775970003*^9}}, + CellLabel-> + "Out[111]=",ExpressionUUID->"03295674-c070-4fb6-a734-2d5149963355"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"4", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "->", "\[Alpha]val"}]}], "]"}]], "Input", + CellChangeTimes->{{3.753099770203486*^9, 3.753099770440819*^9}}, + CellLabel-> + "In[109]:=",ExpressionUUID->"398342f8-0562-42e8-a102-b66cdb9cf285"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{{3.753099768536496*^9, 3.753099770581808*^9}}, + CellLabel-> + "Out[109]=",ExpressionUUID->"7a47517a-080f-4dd2-8b67-42e39506d5a9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"3", ",", "1", ",", "2"}], "]"}], "]"}]], "Input", + CellChangeTimes->{{3.754135488808469*^9, 3.754135505284214*^9}}, + CellLabel-> + "In[203]:=",ExpressionUUID->"5fc1d1bb-76dd-4da2-8e84-059dc75e67f1"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]], "Output",\ + + CellChangeTimes->{{3.754135490385165*^9, 3.754135505943972*^9}}, + CellLabel-> + "Out[203]=",ExpressionUUID->"8a96d162-096c-4b91-9811-2ae502f23d52"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqsa1", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"2", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "->", "\[Alpha]val"}]}], "]"}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"3", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "->", "\[Alpha]val"}]}], "]"}]}], ",", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"4", ",", "1", ",", "1"}], "]"}], "]"}], "\[Equal]", "0"}]}], + "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.753099658493163*^9, 3.7530996871442842`*^9}, { + 3.753099720910987*^9, 3.753099818904805*^9}, 3.753099884245976*^9, { + 3.754135508510499*^9, 3.754135512159547*^9}}, + CellLabel-> + "In[204]:=",ExpressionUUID->"588f20c1-c3ae-4b02-bc1e-99e9e1c62fd0"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "0.5"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pc", "=", + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"RicGR", "=", + RowBox[{"-", + RowBox[{"Rationalize", "[", + RowBox[{"8", "\[Pi]", + RowBox[{"(", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}], ")"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ")"}]}], + "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"R", "[", "rin", "]"}], "\[Equal]", + FractionBox["26121", "32688326"]}]}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{"myeqsa", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", "0"}], "]"}]}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"prt", ",", "\[Lambda]rt", ",", "wrt", ",", "Rrt"}], "}"}], "=", + RowBox[{ + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], "/.", + RowBox[{"Flatten", "[", + RowBox[{"NDSolve", "[", + RowBox[{ + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "40"}], "}"}], ",", + RowBox[{"(*", + RowBox[{"Method", "\[Rule]", + RowBox[{"{", + RowBox[{"\"\<ExplicitRungeKutta\>\"", ",", + RowBox[{"\"\<DifferenceOrder\>\"", "\[Rule]", "8"}]}], "}"}]}], + "*)"}], + RowBox[{"Method", "\[Rule]", + RowBox[{"{", "\"\<StiffnessSwitching\>\"", "}"}]}], ",", + RowBox[{"AccuracyGoal", "\[Rule]", "16"}], ",", + RowBox[{"PrecisionGoal", "\[Rule]", "13"}]}], "]"}], "]"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dom", "=", + RowBox[{"InterpolationDomain", "[", "prt", "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], ",", + RowBox[{"0.5", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "2"}], + RowBox[{"\[Lambda]rt", "[", + RowBox[{"dom", "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "]"}]}], ")"}]}]}], + "}"}]}], "Input", + CellChangeTimes->{{3.7492886713814096`*^9, 3.74928870063199*^9}, { + 3.749288736034163*^9, 3.749288736342039*^9}, {3.749288792136807*^9, + 3.7492887924463863`*^9}, {3.752316181772462*^9, 3.752316197636197*^9}, { + 3.752392380535383*^9, 3.7523923841130867`*^9}, {3.7523924158235893`*^9, + 3.752392415909766*^9}, 3.752392665119565*^9, 3.753099528534545*^9, { + 3.753099605123693*^9, 3.7530996113942747`*^9}, 3.753099830509193*^9}, + CellLabel-> + "In[125]:=",ExpressionUUID->"deb4f4a6-7de0-41ed-8f31-0ce2cff821e0"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"40.`", ",", "2.130913647887629`"}], "}"}]], "Output", + CellChangeTimes->{ + 3.752316090814733*^9, {3.752316182445224*^9, 3.752316184659264*^9}, + 3.7523162879370747`*^9, 3.752392386246605*^9, {3.752392417369454*^9, + 3.7523924371665983`*^9}, 3.7523925920823593`*^9, 3.752392666871985*^9, + 3.753099532431177*^9, {3.753099605889971*^9, 3.753099611841525*^9}, { + 3.753099823074704*^9, 3.753099831196504*^9}}, + CellLabel-> + "Out[133]=",ExpressionUUID->"78c3d983-f185-4760-b6db-de6ce6b016a0"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Rrt", "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "10"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.753099843453477*^9, 3.753099862768662*^9}}, + CellLabel-> + "In[136]:=",ExpressionUUID->"49d16914-7589-487d-95da-10642445b704"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJxTTMoPSmViYGAwAWIQvX3fOVe3tKd27mv6Qtz0veyXBHB6TFbYaQ/jZ1p+ +WGercBLOD9yxRXSq3i04f7q3lQ9D8WM4v0Pjn86JdS/h/FjXrZNfWHyA893d +eZJWJXyG8y91m+/lOfMNzpc7LqJRof4Lzre6LPREwfMvnP9nQpGYaTiDA4x/ +WCEn+ccbRjj/1Wo7iwNVzHB+UkR1cIQWK5zvlOshzr+XDc4vXlyvOK2QA85n +udq/WVGOC87/m2fw7vRabjjfXcs63y2eF87/6Xttxv3PfHB+3cncFpVQATh/ +w8uYhmgdQThfzG7KBcWvCL7KYgaXC+eE4Pw0m63cfLOE4fyI4DBxv0QROP9z +lY5bmaUonH/omtdJXWYxON/SeV7+2bsIfoLuvcj8LeJw/m7vtBkLaiTg/P1V +yr92hkrC+d/vamxIUpCC8+/vk1rF+xzBz9/geHzBPmk43/jaBovD7TJw/gKe +0LNnE2XhfMdyx23punJw/qR4qcfMXxH87ggN446z8nD+Haf9r896K8D5xx+2 +nPfeieB373e4ekpFEc7P3K7QKtiJ4M82n+125iuC//yi5Sa/aCU4n3v1OftL ++xD8Zp5/905qKcP5oh2BGp39CL6y3Z4JR44j+IZf1H7+/4/gAwDr+kV1 + "]]}, + Annotation[#, "Charting`Private`Tag$19743#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 10}, {0., 0.001598185235915721}}, {{0.00001, 10}, { + 0., 0.001598185235915721}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.753099854871503*^9, 3.753099863211137*^9}}, + CellLabel-> + "Out[136]=",ExpressionUUID->"2505ebaf-6b4f-4c90-9ce0-e64c0d39e1d2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData["myeqsa1"], "Input", + CellLabel-> + "In[145]:=",ExpressionUUID->"3fe1304c-9b89-4b7a-b9ab-b09b8d69a3b9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"4", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "-", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", "0"}]}], + "}"}]], "Output", + CellChangeTimes->{3.753099894879567*^9}, + CellLabel-> + "Out[145]=",ExpressionUUID->"a792cc4a-a25b-4fb6-96b1-e4acc29fb63a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "40"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.753099932119272*^9, 3.753099940564345*^9}}, + CellLabel-> + "In[149]:=",ExpressionUUID->"03268e9c-ee27-4b43-9ab2-a4d7842b6d48"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJxTTMoPSmViYGAwAWIQvSxGetKPdc/slnZcDXfT97LPrXizXkzhpj2MH/Ts +MwODwks4/1qhyKsyvV9wflFTdtvHImYHGN/k27ytO9dxwvnyWROaHloIwPm2 +cbMrFicIw/n17Wf/sZ4Rg/PvHX0xuVBdCs4P5fQrl/KUhfN/OOR+NQxXgPMv +1UeEfX2jCOdbe+6w21ulDOebrdXOD9VShfP3Ch9x49mrBudfEylIm1yoAefX +LZjAKy+nBedv0rsWfXKtNpxfEa7/yTleF84/1bRW/+5nPTg/fMn8KOVQAzh/ +whmlxCgdQzifv8xit8JXBP/6m3DL8+eM4PynTzi5eWcZw/lWSmUKvokmcP5N +nTeRpZamcP6+HV+e6TCbwflvBNlnnLmL4CduuNyTt8Uczpe5YHR1fo0FnK+w +d7bjzlBLOD9LezpjkoIVnP/nng8r73ME/3o8j+6CfdaI+EiMW3Go3QbOTzLc +5X420RbOF2paYZWuawfnc0oEFjJ/RfA9q5nPtJ+1h/Nf6KvsPevtAOdf6PBe +5r0TwY9hCdh4SsURzu8+IJsm2IngxyV/0DnzFcG/6tYz1y/aCc5/78NqcGkf +gr/OsvnKSS1nOF8g/ZRSZz+CX7b2R++R4wj+7c9qP///R/ABveZiAw== + "]]}, + Annotation[#, "Charting`Private`Tag$24062#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 40}, {0., 0.00159818524783665}}, {{0.00001, 40}, { + 0., 0.00159818524783665}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{3.7530999410016327`*^9}, + CellLabel-> + "Out[149]=",ExpressionUUID->"34efc7d2-34bf-431b-acdd-11fe71b5d879"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + FractionBox["26121", "32688326."], "-", + RowBox[{"7.", "/", "10000"}]}]], "Input", + CellChangeTimes->{{3.753100066867094*^9, 3.753100078711709*^9}, { + 3.753100157636992*^9, 3.753100163925034*^9}}, + CellLabel-> + "In[173]:=",ExpressionUUID->"abc693b0-13f8-4ac8-883d-866e0f34ba80"], + +Cell[BoxData["0.00009909261795786062`"], "Output", + CellChangeTimes->{{3.7531000673255663`*^9, 3.753100079140263*^9}, { + 3.753100159149988*^9, 3.753100164134227*^9}}, + CellLabel-> + "Out[173]=",ExpressionUUID->"e54c99c9-6ba9-4903-8cf4-ed64f41b193b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], ",", "4", ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{ + FractionBox["81646663", "81720815000"], "+", + RowBox[{"1", "/", "10000"}]}]}], "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "True"}]}], "]"}]], "Input", + CellChangeTimes->{{3.753100092630625*^9, 3.75310017940173*^9}}, + CellLabel-> + "In[175]:=",ExpressionUUID->"54bd19ea-cc1a-4f68-9787-9eab338ae319"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"n: \"\>", "\[InvisibleSpace]", "1", + "\[InvisibleSpace]", "\<\". Redefining lower limit as: \"\>", + "\[InvisibleSpace]", + FractionBox["179637489", "163441630000000"]}], + SequenceForm["n: ", 1, ". Redefining lower limit as: ", + Rational[179637489, 163441630000000]], + Editable->False]], "Print", + CellChangeTimes->{{3.75310010092662*^9, 3.753100180036623*^9}}, + CellLabel-> + "During evaluation of \ +In[175]:=",ExpressionUUID->"0d88b026-45c8-488f-9687-886988455cb8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + FractionBox["179637489", "163441630000000"], ",", + FractionBox["179637489", "163441630000"], ",", "1"}], "}"}]], "Output", + CellChangeTimes->{{3.753100101267743*^9, 3.753100180047147*^9}}, + CellLabel-> + "Out[175]=",ExpressionUUID->"c0b0f92d-47ec-4d96-bd72-58854eb7c443"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqsa1", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"2", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "\[Rule]", "10000"}]}], "]"}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "==", + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"3", ",", "1", ",", "2"}], "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "->", "10000"}]}], "]"}]}], ",", + RowBox[{ + RowBox[{"myfR\[Alpha]", "[", + RowBox[{"[", + RowBox[{"4", ",", "1", ",", "1"}], "]"}], "]"}], "\[Equal]", "0"}]}], + "}"}]}], ";"}]], "Input", + CellChangeTimes->{{3.754135655776223*^9, 3.754135659171885*^9}}, + CellLabel-> + "In[227]:=",ExpressionUUID->"eb24cc85-33ff-4cde-97c1-2c4f28d24c4f"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Alpha]val", "=", "100"}], ";"}], "\n", + RowBox[{ + RowBox[{"di", "=", + RowBox[{"1", "/", "100"}]}], ";"}], "\n", + RowBox[{"tab", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"myeqsa", "=", "myeqsa1"}], ";", "\[IndentingNewLine]", + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "i"}]}], ";", "\[IndentingNewLine]", + RowBox[{"rin", "=", + RowBox[{"Rationalize", "[", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"pc", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "16"}], ")"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"rfin", "=", "50"}], ";", "\[IndentingNewLine]", + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{"myeqsa", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "15"}], ")"}]}]}], "]"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", + RowBox[{"Rationalize", "[", + RowBox[{"-", "0.12"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "rin", "]"}], "\[Equal]", "0"}]}], "}"}]}], + ";", "\n", + RowBox[{"eqsfin", "=", + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"test", "=", + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], ",", "4", + ",", + RowBox[{"{", + FractionBox["26121", "32688326"], "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "False"}]}], "]"}]}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"{", "0.5", "}"}]}], "}"}]}], "]"}]}]}], "Input", + CellChangeTimes->{{3.751811766206811*^9, 3.751811788078196*^9}, { + 3.751811911948484*^9, 3.751811928632483*^9}, {3.75184597343232*^9, + 3.751845976175544*^9}, {3.7518460087135067`*^9, 3.751846012500869*^9}, { + 3.751846190310767*^9, 3.7518461915528593`*^9}, {3.75184650815858*^9, + 3.751846513586975*^9}, {3.751979411570162*^9, 3.7519794439694443`*^9}, { + 3.7519794759265623`*^9, 3.751979477352743*^9}, {3.75197962132337*^9, + 3.751979631487918*^9}, {3.751979665655856*^9, 3.751979691880835*^9}, + 3.751979748783423*^9, 3.751979853346014*^9, 3.751979947397644*^9, { + 3.751980863276256*^9, 3.751980887163767*^9}, {3.751981674447106*^9, + 3.7519817248910418`*^9}, {3.751981805383251*^9, 3.751981808481189*^9}, { + 3.752226633279251*^9, 3.7522266567554502`*^9}, {3.752226715595039*^9, + 3.7522267287510138`*^9}, {3.752226821839292*^9, 3.752226841252283*^9}, { + 3.7522269087894497`*^9, 3.7522269113670807`*^9}, {3.752227006931594*^9, + 3.7522270736780376`*^9}, {3.752227118069972*^9, 3.752227138711067*^9}, { + 3.752227221901513*^9, 3.7522272579199038`*^9}, {3.752227313422024*^9, + 3.752227334406859*^9}, {3.752227438229046*^9, 3.752227443051566*^9}, { + 3.752227554273136*^9, 3.752227563342155*^9}, {3.752227670227501*^9, + 3.75222772869241*^9}, {3.752227858829393*^9, 3.752227876761191*^9}, { + 3.752228025046372*^9, 3.7522280274498053`*^9}, {3.752228161796549*^9, + 3.7522282030314083`*^9}, {3.752228440580614*^9, 3.7522284451987553`*^9}, { + 3.7522286049563637`*^9, 3.752228614626943*^9}, {3.752233670581884*^9, + 3.752233671080874*^9}, 3.7522338556718493`*^9, {3.75223466839053*^9, + 3.7522347065447407`*^9}, {3.7522349692680473`*^9, 3.752234979424655*^9}, { + 3.7523867563080053`*^9, 3.752386768583918*^9}, {3.752388732331579*^9, + 3.752388732513188*^9}, {3.752388784934883*^9, 3.752388785376953*^9}, { + 3.752389054149549*^9, 3.752389188214138*^9}, {3.7523893718312883`*^9, + 3.7523893799711637`*^9}, {3.752409177817237*^9, 3.752409184840012*^9}, { + 3.752409285780797*^9, 3.752409298820129*^9}, {3.7524093328698797`*^9, + 3.7524093475679197`*^9}, {3.752412524450931*^9, 3.752412527166087*^9}, { + 3.7530983919989443`*^9, 3.753098392729731*^9}, {3.753099873951865*^9, + 3.753099907874902*^9}, {3.7530999612954473`*^9, 3.753099961420526*^9}, { + 3.754135557557078*^9, 3.754135557777893*^9}, {3.754135626708253*^9, + 3.754135627063176*^9}}, + CellLabel-> + "In[229]:=",ExpressionUUID->"10b8fd9e-a7b1-4c53-a354-fd3124d392fa"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2486392, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 10198335557995508118424320319548569230795516116122829922784, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +50.0000000000000000000000000000}}, <>]"& )], + False, + BoxID -> 10198335557995508118424320319548569230795516116122829922784, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2474416, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 10198335557995508118424320319548569230813962860196539473280, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +50.0000000000000000000000000000}}, <>]"& )], + False, + BoxID -> 10198335557995508118424320319548569230813962860196539473280, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2485832, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 10198335557995508118424320319548569230832409604270249033936, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +50.0000000000000000000000000000}}, <>]"& )], + False, + BoxID -> 10198335557995508118424320319548569230832409604270249033936, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + RowBox[{"1.`30.*^-5", ",", "50.`30."}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2026528, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 10198335557995508118424320319548569230850856348343958576672, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +50.0000000000000000000000000000}}, <>]"& )], + False, + BoxID -> 10198335557995508118424320319548569230850856348343958576672, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", "0", ",", + FractionBox["26121", "32688326"], ",", "0"}], "}"}], "}"}]], "Output", + CellChangeTimes->{ + 3.75240930124366*^9, 3.7524093454016953`*^9, 3.752412493883439*^9, + 3.752412605570166*^9, {3.7530998784475813`*^9, 3.753099911812893*^9}, + 3.75309999361088*^9, 3.754135560012438*^9, 3.754135629442389*^9, + 3.754135677640867*^9}, + CellLabel-> + "Out[231]=",ExpressionUUID->"8ab1fa9a-5564-4c62-b6d2-68b4ad665913"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"testmax", "=", + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "r"}]}], ";"}]], "Input", + CellChangeTimes->{{3.752392492210472*^9, 3.752392494798365*^9}, { + 3.754135582484062*^9, 3.754135585051469*^9}}, + CellLabel-> + "In[232]:=",ExpressionUUID->"900a3dfb-2766-4cfc-8555-8d1add90bc26"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "50"}], "}"}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "2", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "50"}], "}"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.752392390635232*^9, 3.752392444836948*^9}, { + 3.752392596339136*^9, 3.7523926433977013`*^9}, {3.752412607908022*^9, + 3.7524126088096123`*^9}, {3.752412796766542*^9, 3.752412797523608*^9}, { + 3.754135592735467*^9, 3.754135594695869*^9}}, + CellLabel-> + "In[233]:=",ExpressionUUID->"7f308989-28a7-4778-a211-d16e67373d90"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJxTTMoPSmViYGAwAWIQveCZSVinzHM79zV9IW76Xvb6+k9/Cmbct4fxf92I +vvsr/T2c/yCvWoAzlsEBxve5dH/NGn8OOP/4dpNyY14BOD+xqNBH0l0Ezk9Q +8jt82kICzg/ft+gdW70MnD/nt8u2ZREKcP6BSRxuG3yV4PwH8hwG/3JU4PxN +y69nGWWowfm/aj/45URqwPl2Xq69r0q04HxTwSwZ/xwdOF/j3CnWH716cP6J +HCufy0EGcP7V/O975/oYwvkPcy/FdEUbwflumaIqWRHGcP6K+DKJnCwTON/1 +b/XDgnJTON9mxstLGUVmcL6BXunHpiZzOL/uYIbFhAYLOJ/9D0PIgkpLOL/f +cPucS+1WcH5BylXeH83WcL7fJME19lNt4Pz09E9yXQtt4fxblta7js+2g/O9 +2Bc1qa+2h/O5MndY2oY4wPk8SkUyGRcQ/N4bu0RVwh3h/N295otvXkHwMxyc +3RVineD8gx+b6hPuIPg7vokoKUU6w/l6P01vlzxA8AN+dWkcjHOB8z/9yOuZ +9xzBN/ReGvU31xXOl53Dvzf0NYLf8YrDzL7YDc6fb27mrPQJwQ+5sXVXW547 +Qn3ZEY+arwh+hjB7dnaxB5wv9ch649adCP7pDQXf//9H8AHgi0dz + "]]}, + Annotation[#, "Charting`Private`Tag$21653#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->{520.74609375, Automatic}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 50}, {0., 0.001598185235915721}}, {{0.00001, 50}, { + 0., 0.001598185235915721}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.752392401724881*^9, 3.752392445011245*^9}, + 3.752392643855624*^9, 3.752392723236087*^9, {3.75241260569595*^9, + 3.7524126092609243`*^9}, 3.75241276478483*^9, 3.752412797730137*^9, + 3.7541355950086*^9, 3.754135639013997*^9, 3.754135680334259*^9}, + CellLabel-> + "Out[233]=",ExpressionUUID->"6eeaa502-af05-461b-9d2e-2a8040d1a9eb"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV13k8lF8XAHDJWvyyZylZKlpskS3mHGaemUm2rKWE7LImaUHZKhVRSCUp +aUGSshZJUXhmKtEu2qmUZE/13vcvn+/HMPeee+4556pvjnDyFxQQEOicISDw +/5+Fn4zc0uZ9ZvwVEL8WuUTY8t8c7fclYUfg0rpDX3YqRjM2r/6z9n7IGag0 +fe00LneMsZkyPLHxyEWwGmJyqO3FDLlPgWmuwVdhY8fWPytlrzN8mXyLi2ev +Q/c0nxfLa2DcOtZ/oyijBq5u0vnza1sLQ+6DoE7h7ptw489dA6YRjxFmNL84 +P+g2JFX+q3WRecLwbT6VQZfcgcYn086yms8ZR75carc5exd+uVR4etI9jFsy +1SJtx1ugjK3ipyT6jtFvfteak3EfXpYaNa/e9pEh5/sooSWlDQ5LvW+6rTPA +wEM99czdHdC04j/33YaDjBOvxldg0EO4MKae9Vb6F+N9YpKJ19VHsDDhY6HW +/lHGpHyaa0HJY5COzgvI1JhgLGLkZs07+wTEpfZPtXX8YVh05l/dkN8FC+2z +PHmhAuAUUMQ7ebwbwl/Jz74vIggJGRXiShnPwEXDl/E9WhiyNWq01qU9h08R +HTdVOKJQUt1AHU95AT9etsd46IjD0zftifK7X4GNq2P6bENJ0NP7OCkd1AtZ +KnvenJaWhaK3o4cuGfRB4TxNm50cOShfNqnMvdoHPK9F0LNPHu7d/me6v+Qt +BLqtqGNoKMLQZ4kY4bPv4anM18zAjvnw20BKqFj1Axy4s2Fwn90CEImTPcbK +/wAcptbG46FqME9K+Vry8Y9gP1+t5ZCIBqw21RqckfEZ8u+EPL8QvQhckpbG +nZ3dD9tfbRZ/7rEYvGmd2VZp/TCdYuzDY2vBdm+jJXtTBsDmw/E4IZ0lcO6A +lf/fXV8hI/yG2vkVOjD1fEPPVOAPKDE/G+0sbQipat+Tlg39AI34ZeUKtYYg +ZoRyuhZD8GY65+kFHyM4uruzbtO9IRhLYw/oNKyEC7PGhZq6fkL4Scvepzmm +wNfGU0mjvyB2zceVR3kMOGYr/v2k2QgsNNvornkWYF1kJ16PH4H1PPVzTasQ +3tX4fXovPAqlmVtvrlWwgjF2mgGlMAadRklx+NoaVP0774uaTMC48GwZh1I2 +vD9wSllt9wRwC5p945dx4FKZX5jp7QmoU+0VlrnCgRUjYzLBnElwbjBZGX6D +C+xklU3t7lPg71cmP/zEBiLO+o0c3jEN3H+K8YvdHKAvfLeUuKcAWpXsnTx5 +3QXCBQYLnsQJoJDU8HcXIVeYztqkU5AvgPwYxX8lrq4wt8rKxvC1ANZ4OYUu +m3IF+9+iKZ4bZuBlqzWb423c4eb+7PFr6wVRQb993E/MA3ILr7zxcBPCxpyH +/haTXrBwxYKwRduFcEBxZOqmrjdU3s38/SNHCJv9Iu5o+XgD71O0Ymq3ENZL +ZHIGWr1BSMfc6aqLMFZYpi6Ry/WBqLrWlpnOImgrw+8QY/qCbWdvWZmDGAZr +z9kf/CwA7kx8zHkWLoZWjOIyRZlAMF7wLUEwQwwv/9WtkbELBLXQCcd1tBhm +FdXu+Hw3EEaEpUdnrhZHt89v8mWrgiDfzNpyg/UsXNAzuyemOAQGC8/zxFdK +IDWy6LJnYzhsvl9SbeQigXFBlvpBghHwfLDijFe0BLpw1fY3sCOg2bwhquqa +BMa0RZ3lPoqA3K5ueR9dSfSWNzSPjI4Ehpjoplqt/3Dfj5axWVlRcL/GKNZQ +UgrzEg09VvdHQ2VJ2n8qqlIoyJyrxZLZBvmn3xQL6klhvovmQIjFNohMPtD1 +2FEKT2CSjUXWNlB2eG0QmU0+v2h663eLGAj/lPytTEUa6/wNeo/kbwc5+Sc+ +i5fKYOqtLIW7cTvBZ2uUrRJHDr3DbPvuN+0BtY+2Cn1uciinGmphMLwH+ty1 ++y4EyKF/7TKvPum94G3ZG220Tw6rt+coXmYSi9mdcmiRwzcnO7wXXCIu0P6S +ypTH8xKiM85sSwTv9t79w6CAY0bWVv0qyeCtYX+3w1QRPVzXHj1StA/cG899 +F9kzDyfUvHLy7Y9A/m9W9YV1aqi9flh5Zk42NB0VY1fYaeDVE7D+UusJ6Fsg +pv83dCGqrXjWdlmkECovPgtZEbQYw4MXoqBVEUzFD9mHrtfGdTrSvORrF4Bh +Q6V/2bYUD40JgVx9CayUDpnnELoc+2Lq16reKwdtfrvwRLouyvuW6RXXXIMH +oea2T5z0sXe/zGXm4hvQHTHecNrWAK171yOmVcPbsM6NBzeswE9rjsy4wKgD +drD8wpB1hshJNVuj2XcTLnltVwwNMcJ/to/mKz9pBOrP7reRsSvRz0lAtO5T +E1jkDXQGbTVGsdinL0PWNoO+bszPpCQTDP+p2uTSexcS7gSZZu41ReW10lde +ObeA6LSAS+FOM9R/UHPFsrEVjhjU5HfuN0eegOdnLXgAkX7dkhPJq3DHU/sP +v/PawP6odBnkWODFZIOxlMl2CAwcVj141hL3vVvUFG9IQ8VBL/noYkvM01dj +tJrQMHWFnr3xsiVqvl/mLmFBQ8bIhQmda5ZolbnMIYtFQ3Xihs7HTZZ4VWO2 +SIIrDUL591KV+iyxoOK6QN92Ggof5X67pMrAtk9rJK7V0PDl18z3WRoMjDHf +tuTiTRqM5ka92LWYgZ/DJfeevE3Dfc81rba6DCzMQnrHfRq+f/l3ZsiSgUfm +nEmSfUaDpXCws6knA8eEosIbR2l4abaq/v4pBjLmDvg/1ueBVPdGM+FCBn47 +tn9DlREP2JEJtdbnGXix5m5qjikPrl24U91QxsBXO6t9bZAHB2S51683MDDg +i1JVqgMPjAddys70MjA74L0cI4wHRwvDC2I1Afe8UHySUcyDB6sy51dpATpu +Xfnk+yUe/H16LX94GeCshbFONmU8CJYcPRlmBGg/6HXjVyUPcNfu474U4NTX +zbZzmnjw3flApkMg4JWbbU99X/DARvRcklYpoK9Iwzt7MT7EWPvz510FPHUm +Z/m7WXwojNdWlrkO+P3Ao5pIST6M/yq/Nl0P2O72bNseGT6c77vZ97gdMDPS +oWbzPD48VNmz/D4f0EtSbNVDVT5MuVnvuNUJuCAzSNFEnQ+OvAdzLr4EtFvS +fHdiER/+1HUz4r4Amph64So9PmiP5h2M+g64RUysb7sBH1z0Nz4NGAZctavi +R7EhH0ouvAtbOwWYkhDH7THhQ2lbrL2sMKK72M+4aiBfHLh+RFIU0VR1zD7D +ig9PhVadFBNH/KJ/XNuDyQdB/PvxjwTi7tKzvnw2H9ZVp8T3yyHaOEnOWm7H +J/EJ0HyvgCjfyl960Z4PyT85bT2KiOaLE1bMdeRD+fLZ8k/mIc6d4e731IkP +rPZv9TxVROq1dMsiFz68COR7P1BDdMzu2RniygehoqyyhoWIkkOH13S58+Ek +RjvVLkYU/adUMLmOD3pvXCYqtRHnD4tXyHnwwUNJkXVpOeINZ8W45Rv5cO1I +waujRojtjS7ZH734wNbZm5hujJijqtd805sPr9t9tA6YItbcXr33gA8fxEQW +RcdbIBqa28qK+PKhoEhEaQcDsTnys3INsaFVf+NWRLxatUTRy48Pm+JKZwWx +EGfcyXPP9ufDiFJ6xWY24oBUaId6AB/SasLdPLmIDrNW5F0gVnV1nHa3QTwR +FvRUI5APN4YNzjnZImZFBxfkEttkynLt7BGnZMPEBIP40KszOshxREzUP7Dc +n3hbx9Nj1k6IgYJlGk3Es4JrzSxdED8svigoG0zi78D8qOOG+GOxWcJG4k5j +fqbqOsSiFxyfAuLq+est5nggqo+/vvOc+KTQh8//NiB2p/VVzQ7hQ8LX8GND +nmR/s5WdTYg3d04y3nohOkvqXd1AzK5L+fLYB/H7+6LeHcRLC+fkNvuSeGa9 +mswg/m//Savr/ohS/QqyBcTDYYsGiwIRi3Nj8ALxU5eKvOxgxIJVo7kXietX +rWKlbkG03Rm17BxxgUbrj5gwEr9t52VyiZPE154KiEBc8HiRTzJxwNArtnsU +Yn/ilmUhxDbPAoY50YgSMW2pNsS6jT9Pm8Yg6s6KSllILFMct3pJLOKt4ahV +E2S/Y4dER5V2ImrsqGtsIX659WjhrN2IB3fJaKQTN66fb/s7DvG/mYt32hOf +w0vjXxMQ3+7d9UycOOS/RnteEqK+lOt4OIm//Sh3qiEF8VKTRa8i8YrXT4rL +9yH6HdNWaSDnOXV5YPrIQUSzLreXI+T832Ruu7T3MGKna3/SAeLm2H/OURmI +YqfntSsQH6LkS52OIv7OPRqvSfIpcnmhGzMbMbZa+r9zJN9cZJcJGuUiTgiW +p6oQz3uL6+VPIuapWUX928yHsrhQ0ednEW/O3qqZTvI703e88kERYtP3kGcf +SP5vs0naVFeM+KBJ5o8JsYViXtXJy4g/c4z6Hnnygb5+19fzGuKzWt5jPrlP +FSft59hfJ+fpatI3kzg78UU9owoxYmP0O6P1fNjo8ENarQ7Ryvu3wCFyP799 +UW5614T4mMV0FSf3WUJj67ygR6Re5LMCN9jy4RPLXSK5E3Hs5/UoXMOHpkCL +6dNdiD2an/jqNmR9V0ReP3lO7nveovsvOOR+mp46BW8RFXxOHVYj9afM4Z7y +3GFyXyqvd8w144NtvIJSq6wVvusvLZiryYf05/XyC92t8E0496zBMA9uppsU +veiywjlO8+DdUR7su3W/YeqpFc54baG5NosHjl/dn6u8sMKM5zq/mo7w4BN3 +h+SmHitcvcbSq+gw6UdCdbHvPlrhgoI/p6L38SBgl7nt1zErrBf3Ws7axQOZ +QMvRaUVrnHAZcCzdzIMgZHLUPK1RWDFqx35jHujCQu58L2u8dWVE324lD35Z +Cq9W9rFGlZEb92VJf0tYdd9Gzt8a77UaHCky4MEx4zX2YmHWuHJaMJG3nAeN +y51dh+Ks8XgG3WqjyQM5JV/fpnxr7GwvPjQgxYM7P5P2eL+2xiUpLMsr32no +MpPc5/zGGj8+H11QPkhDf+Lxw+w+a3wcu5u++o0GKZmyE8s/WONAKJVU9YUG +7xXd1ye+WmPOaOGG9k80/N2q1Z/52xo36bw6pdRLg8VIh+MdZSb6Ux3Cdo9o +cLRwc78xj4mXT4+1BjykwS+lz/OiKhMPZIvaJvJpOCw3GpKuwUSlA/PP1tI0 +vDJSTV2/lInfq39G6bfRsCsmsu6nGRMTL8ulspppqB2T09BYz0SDzhdL/tyg +oXnXZChsYGLpop2F84npvz01Gz2ZOPmncoxxnYY+kYt2x32YKJs72yrlGg2i +c812SoQwMdamn61UToObieejsV1M3HnU9kPoRRp+xRYndOQz0bhn9+PakzRM +/05r6y9g4gcFiY6REzSI7A2XEznLxAQjodMGxMoHTEqwmIke4mvarhynwTqv +rbvqChOlmqQsK7JpyKwdXF7YyEQViUrvngwadCdXvtrWx8Q3mecUniXTsMJu +i0T4OyYGPYgcNyU2OVtoGfiB/H77g4xTSTTg6tmF6/uZaJEQ0Lc5kQanE31+ +jCEmXgk+N2sqgYbtZoe+iwqw8I1agqvNLhpu7+ybcWoBC0+33DwVFUXDPZ68 +YbY6C8WeCv4eiKThgfoav3RNFgaZHpztS9zZVtW6R4uFDsVV4B5BwwelQ4f8 +9FioNUdkiBNGg1j9SnldYGEpV8DOJpic59RB7TubWJhj9rL3sQ8NNgeVCz54 +s/D+ix+n3Igp5RJZMV8WPlxuq/HamwZz87a/9oEszJyUTR/womHhLtHu1xEs +3PI6uVtyEw0Tk8mJE3tZuHSlm2icBw3DabLjKsksMj9MOUoSDyoVhUIqWZ9i +j8+Z9TS8M2t235fGQl39s89b1pHz3imgK3eUNFTtX3Lz3Gk4Oxn3Uq+IhZU+ +uWcGnWnIT5NwdC5m4Ya7EpxDxLlK+S3bL7Lw6+snlUuID5vdrGgoZeEFufyn +QU4knjsn9625wcJZu6RthhzJ/iZjDANbWLhYla7VtCfrmwg/XPCZhYEa1nEq +q2lY1XlRtHaAhdm768o7uTSklPYlPf7KQqVBiRMHiRU2Oe0UGmLhjCXF2dMc +Eo+7KwNCJli4s1RHc4BNQ1L6NBiLU/jZJ3rXBzJfdwSsvOkwm8KhwvtzLxLL +YbhxsCSFvO/bQ0KILwz3Ls+XpnBT+mq9X0wa2t3vKgkqU3g7a/sKSWIZjYO/ +eEspZJYOT2+2omHD7+bwz8spjLOu7tEnPt/1e0BAj8KXh4Oj/iENxvvD+gwN +KUzPE7lWQOzxzZF3YhWF0bfHD38EGopa0rjXLSmcrS03o474W0HzXXLKmGgx +vDidOGGtUf0/JoV9gZ77TYjPVc+96G9LYaPE29xsBg1fjzhq7LGnUKl9IjuM +2Cg47XSeI4XZ5peZHOJWld/HOlwonF5nVTltSd4Le9/sNfCkcGvW2kcRxIYe +c6dtvCjcfUbPwZ44ztAx1s+H7DclKV6H+L9Pd8KO+1OoKDP+eZC8VwzWFHv8 +CaPwy4DO0HbibSO6t4YjKLSas/nuRuLa07Xz+6MorEiw1WUS41BHX2cMhVWh +j9ulie1zhgMuxVO4/HWsSvUqGo4y4h6c3kPhm07zy4XETz8LLz2WSOFPsYe8 +Q8Se5kqD8akUDqhPvfQlDu2FaOd0CgW2MQVViCsOtHVxj1DodmoHcxbxiIGz +MSOLwo3Gp5WnzGnYnRIwqZ1DYakm++Ar4kadIQ/V4yTeC49p8IgFn+28JXuC +QrsRb8fbxAeXpO/5m0/hWW+p0GJifqfC218FJD9K6tefIJaOK7QeKKRQTD32 +dTqxy6Kl59+co9BHeelIEnEe/7pw13kK3w7WFO4gfh1rGdh2gcLcYaF34cRq +6vcfNF6iUDd5tMaf+GL0y0OXyyg0SHZRdyX+Ms9vsKCcwh2L0m/YEeu2Dtpn +V5B8WvfnFZt4a0RsRVol+X6zg8eRuFpxhsyeGxTeeKv42Zx46s7B6G3VFGaE +Z7SvJLbcItcdXEvh6t8PrQyI98oVGHvVk/woarbVIb7XoJXncotCjeQ1X5cQ +iwVem1zdSOH5Kof5WsS2Uqs2QBNF3kc33i0kzqy7d8uomUJO0qZVmsRPNtur +Lr1H4T0XQy0NYgWJ53sWtFK4Rk/xgjqxR5XPW7kHJJ7vhmv+74JNX61ntVPY +uvryxv9//p1ozPl/HSSfQT37//9v8bW/wqM8Cg+dwU2LiEM8DgR+eUihHmuw +/v/rKZ8p09b7mMIrYpIlS4l/lp1a2v2EQpEHqct0iY3cFh1u76bQ0tMSVhDv ++Fc+ePsZha5FSh+NiW9dMnWoekGhY4zAfAtiAafmipJXFOqXP/tkRcz6vUam +sIfCce1Uay7x/vPd0Tm9ZH1N3/UciNvtvLoPvqVwMGGq3I34v/F+473vKYz6 +mHF7E7FT4da8mI/kPqUd9Qkkzl09PRnymUIzgW/ZkcTz8+c0uH6l8Hi9+dUU +YrfEX5tjBim8O9G3P/P/8Q14Jpbzg0LY/G3WaWIhgzMuXb8oFFW5NqeWmKGQ +PPVrlNSf/CVZrcSxvwMKZScoLC9LvdX9//xp0f3mNE2h8+cAqTHihaUyR7f+ +pXDyUampKLkfmzLHTI4KsJG/wGWWEvFjj8bkx0Js/P3N8TKDuPaHnYqjJBst +qLTOLOLhLoM7EXPYuHRdrPUl4mX18oFHpNlo/oj2uE1ckNJTyZdn480feik/ +iFOVwmzsVNk4039LtTu5741/HYdC1dg48nhJQDTxxHuj3MMa5O8L3RuOEIeW +T7/tWMzG7R/2+bQTOzEP77TRY2Ne8ct4Dqk/h7UjF4QYsFG+pt4/iLhV0qUl +zZCN/62UH0kjNnuuIt1mwkZX8TszHxKrhZVe4iAbjWIrv3qT+jeY2/6MtZaN +dtTPu0Wkfi6OK4/3c2ajVkuC8ENib5+jmimubBydLP06Rdy1zCPi7no2vrkf +VexC6nV904CINXlAPn65t2MOqe8HvogZQzQbN2z1fnDemuTTGctm8xg2Uty/ +158S/3TZam8cy8aSjIM64qRfeNx+FaCzm43N8bLtEcTLssuPqySzUWlDyAUm +6Td8S5fJ8aNsfNjMeS5M+pXgrwOpv7LZeGVgYR4Sm1xqkP6Ry8aan6kfdhMX +ymgt/XSSjQdC4zRGiKM+T3p0nSPx2vNc/yvpf3JZZ25VVLLR6appyi/SP7ns +Lm7ZDTaus1IRNLGhIf63WPfFajb6PV44ezfxJ/+tgwX1bGypdG0UWkNDjTml +mt7MxnrNnguqtmT9H77sCe4k++1RCQ8l/fmMiTFTY5iN/doOzAjS3zWM5bpl +R9gYkXJtbTPxeaPhAOExNiabO72Xd6GhxKD8YP8kG2fbzcxsJK5etrizfAYH +L2bISyq4kfligYLPKmkONn+5nNpD5o0p0bEEF30Otl7VGuKR+SVepEuKvYKD +s9RTrQ3IfCMgXHnOxIiD4ZHP5XOIhQXDW5VNOagerAybyDwkNf1R8i1wMMhE +/eQYmZe0hrrzwxw4+Cda3Bf8Sb1+XlW/L5yD9wzePNAPpYEn8z3zXCQHB9ao +fLlCzLZbHNi4lYMVzucLl5H5zKQ5V3ZsOwe9NTk87XAyj5bFhvrv4WDEg8Ma +S8l893aPmSork4N1FQal3G00hGs1JM6o5GBtV/ulkTiSL9vvceNGOehuKakt +lEnm3b12wtvGOWhW82npKeKIQ0/vbJnkoJ3z+dIVWaQeFPabb/jDwaLKnMW+ +R8n9bZfQMRfm4hrh5wLtZN5tmu8qPSHHxW0rYNVVMh9P3Pv4ItqIi45zW8Ke +FdEQJCu6ZUs0F1MGpPXy62h4U2facDqGi+9N2XsC62lw9g6Z8yiWi9PyNUGG +N0k9ucK7bhTHxSWPlEV5t0j+cLKn/6RwcbtYSqRoEw13dqlnZOZy8XOvwte8 +VrL/d6uuVdVxcaWfiL5uF6lXB8Jm9t/k4vjtmVkS3eQ89M64KjdyUX5zT9pX +4qHdglMJzVw8mTiTWfqM3F/5NmtuBxdXf1rRafCK9LPVbl0vX3NRQC7Ic8M7 +8j76sX+xZC8X1XN2mjLfk/6fW7cD3nIxvGWoZNkHks/v580//5GLSXsnXP9+ +pEE1/r1/2HcuDsx8crdkgIZsTfnaM0Pk+xNj1h8n7ynxdvaszmEuyhg770v5 +SuYDhZJy43EuevZeKfYm77GQhlcCwZNcFI3VyHMg77U+X0nnU7+5WIV31OEH +OY9ZUMz7w8V5yfus9YbI/FgROf7vHxdlG8KnFvyk4X9eJlg6 + "]]}, + Annotation[#, "Charting`Private`Tag$21697#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->{520.74609375, Automatic}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 50}, {0., 0.23762984152787409`}}, {{0.00001, 50}, { + 0., 0.23762984152787409`}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.752392401724881*^9, 3.752392445011245*^9}, + 3.752392643855624*^9, 3.752392723236087*^9, {3.75241260569595*^9, + 3.7524126092609243`*^9}, 3.75241276478483*^9, 3.752412797730137*^9, + 3.7541355950086*^9, 3.754135639013997*^9, 3.754135680400257*^9}, + CellLabel-> + "Out[234]=",ExpressionUUID->"b35ddae2-8dc6-4c81-8c47-e8468c987563"] +}, Open ]], + +Cell[BoxData["s"], "Input", + CellChangeTimes->{ + 3.754135685053424*^9},ExpressionUUID->"b3561fee-e50d-4cea-b7c3-\ +2b9273c48b5a"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Alpha]val", "=", "100"}], ";"}], "\n", + RowBox[{ + RowBox[{"di", "=", + RowBox[{"1", "/", "100"}]}], ";"}], "\n", + RowBox[{"tab", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"myeqsa", "=", + RowBox[{"(", + RowBox[{"myeqs", "/.", + RowBox[{"a", "\[Rule]", "\[Alpha]val"}]}], ")"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "i"}]}], ";", "\[IndentingNewLine]", + RowBox[{"rin", "=", + RowBox[{"Rationalize", "[", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"pc", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "16"}], ")"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"rfin", "=", "50"}], ";", "\[IndentingNewLine]", + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{"myeqs\[Alpha]1", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "15"}], ")"}]}]}], "]"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", + RowBox[{"Rationalize", "[", + RowBox[{"-", "0.12"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "rin", "]"}], "\[Equal]", "0"}]}], "}"}]}], + ";", "\n", + RowBox[{"eqsfin", "=", + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"test", "=", + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], ",", "4", + ",", + RowBox[{"{", "0", "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "False"}]}], "]"}]}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"{", "1", "}"}]}], "}"}]}], "]"}]}]}], "Input", + CellChangeTimes->{{3.751811766206811*^9, 3.751811788078196*^9}, { + 3.751811911948484*^9, 3.751811928632483*^9}, {3.75184597343232*^9, + 3.751845976175544*^9}, {3.7518460087135067`*^9, 3.751846012500869*^9}, { + 3.751846190310767*^9, 3.7518461915528593`*^9}, {3.75184650815858*^9, + 3.751846513586975*^9}, {3.751979411570162*^9, 3.7519794439694443`*^9}, { + 3.7519794759265623`*^9, 3.751979477352743*^9}, {3.75197962132337*^9, + 3.751979631487918*^9}, {3.751979665655856*^9, 3.751979691880835*^9}, + 3.751979748783423*^9, 3.751979853346014*^9, 3.751979947397644*^9, { + 3.751980863276256*^9, 3.751980887163767*^9}, {3.751981674447106*^9, + 3.7519817248910418`*^9}, {3.751981805383251*^9, 3.751981808481189*^9}, { + 3.752226633279251*^9, 3.7522266567554502`*^9}, {3.752226715595039*^9, + 3.7522267287510138`*^9}, {3.752226821839292*^9, 3.752226841252283*^9}, { + 3.7522269087894497`*^9, 3.7522269113670807`*^9}, {3.752227006931594*^9, + 3.7522270736780376`*^9}, {3.752227118069972*^9, 3.752227138711067*^9}, { + 3.752227221901513*^9, 3.7522272579199038`*^9}, {3.752227313422024*^9, + 3.752227334406859*^9}, {3.752227438229046*^9, 3.752227443051566*^9}, { + 3.752227554273136*^9, 3.752227563342155*^9}, {3.752227670227501*^9, + 3.75222772869241*^9}, {3.752227858829393*^9, 3.752227876761191*^9}, { + 3.752228025046372*^9, 3.7522280274498053`*^9}, {3.752228161796549*^9, + 3.7522282030314083`*^9}, {3.752228440580614*^9, 3.7522284451987553`*^9}, { + 3.7522286049563637`*^9, 3.752228614626943*^9}, {3.752233670581884*^9, + 3.752233671080874*^9}, 3.7522338556718493`*^9, {3.75223466839053*^9, + 3.7522347065447407`*^9}, {3.7522349692680473`*^9, 3.752234979424655*^9}, { + 3.7523867563080053`*^9, 3.752386768583918*^9}, {3.752388732331579*^9, + 3.752388732513188*^9}, {3.752388784934883*^9, 3.752388785376953*^9}, { + 3.752389054149549*^9, 3.752389188214138*^9}, {3.7523893718312883`*^9, + 3.7523893799711637`*^9}, {3.752409177817237*^9, 3.752409184840012*^9}, { + 3.752409285780797*^9, 3.752409298820129*^9}, {3.7524093328698797`*^9, + 3.7524093475679197`*^9}, {3.752412524450931*^9, 3.752412527166087*^9}, + 3.752420434053926*^9, 3.752420669342106*^9}, + CellLabel-> + "In[658]:=",ExpressionUUID->"d835b2f7-56ca-442d-a804-9d4ffa3d7f00"], + +Cell[BoxData[ + StyleBox["Interrupted", + FontColor->RGBColor[1., 0., 0.]]], "Output", + CellChangeTimes->{{3.7524204367837*^9, 3.7524204573164253`*^9}, + 3.752420671527156*^9}, + CellLabel-> + "Out[660]=",ExpressionUUID->"82d00e69-3dcd-4f0f-ba2b-542468eec624"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"eqsfin", "/.", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}], "\[Rule]", "0"}]}], "//", + "TableForm"}]], "Input", + CellChangeTimes->{{3.752420501750289*^9, 3.752420529540105*^9}}, + CellLabel-> + "In[661]:=",ExpressionUUID->"a05add30-20b0-4875-b868-8b9a483ddad1"], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "+", + RowBox[{ + InterpretationBox[ + RowBox[{ + TagBox["InterpolatingFunction", + "SummaryHead"], "[", + + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = + "Ready"}, + TemplateBox[{PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$282868#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$282868#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + + InterpolatingFunction[{{4.23046178224774*^-25, + 0.24395920510017832`}}, { + 5, 7, 0, {1501}, {4}, 0, 0, 0, 0, Automatic, {}, {}, + False}, CompressedData[" +1:eJwNVlc4138DtbIrMzujFFFWpN9nfG0ie6/I3utvFZK9RyF7h8oIWQ2hSJrI +LGVlhCQjNHjfi/Oc51yci3MuznME7bwNHCnIyMjI/4/PB8jIvvW8CKmwniJx +EJys2rtTpLGvqRztedMkAXH/BHGlGVJb/Rn/oR8zJOq4BvK18lnSK8fbqU8u +fSWxx2p1XBGYI70zk8ty/TZHMvZ/EtP/cJ4k7qh3Y+vGAqlFv95SyG+RVFb/ +V6Xc4htJu7A9qldribRSNUlMqy6T1Awb6lQvrJAKXi5JaJt8J/lU9bkbeq6S +ZiW1/FpTf5DWHvZ+97ReI51UbPNn3V0jRaWLG0fk/SSVuzxIXVVcJ7F0/RTL +/LFOujrGbFJbvkGq51p2Cbq0SWpr+kYjLbBFKqFvl+H/tkWS1x2yjXr4i/SP +riG14sY2qdGZw/a97w6ptOD4WW2LXdKZSUMFL63fpMzPV6ujVf+Qtj69uDun +8ZekSd2d+834H0lpPFhoxWOPdOhrscHF1H2ShXKMrZw1GdD8yDM6vkMGIjmy +MlTzyEEtXU9mvSIF+Eud9tXwBwWYvmpU7VZOCSjieFWkL1EBI+MQ/SX+A2D1 +vMKHocUDgJxuHco9pAbCGoIpxjdogOuZHMdQX1qgVu9zfNucDlw+xrXHpkUP +sk31OEVUGQCPiVBljAYjCNb/QRVrfBC8rIr9GO1xCOSSbM9OpxwGmTb7H/as +mEAXjTKpZIcJ/Al8OUiXxwyKGO/m+ymygPZw6iLWHyzA0f0KuUg5Kxi+Jy/w +3ZoN5DqQFZTxs4NTsx3/JS6yA4Eidu5vbUfAcd7S5AM3OAB5mbSHqC8nWF6Y +Yi815wJ8TgfbH2tyg3vMtrGvVXjAsfbn5cIavMC5wsNXyJgPcBzayODzOAoS +JZI5AlP4gTKjnEavlQDg6T1d5LQjAJxqXrC8yxUEEV425WcVhYCKiJnZh1Uh +MFF53Wyu7Bj4FUH8q7I+DsImgxcs+IWBJCVkV1gUBvv0xE5+2wkQEimZ0px+ +EpQ9nf9vxEcEBBABtFrmokCpXDLMTvPU//Pf2/JSEQP/GKvLetTFweQ/MPnU +6DTop3mq0+J+Bqy0H/tLnyIButRE29OsJEEt+wTF6R1JsNyUZngzVwq0iC9W +/1KQBuP/olgzVqWBzym3+rIyGXCaTuqTnfVZkPnsqwwrvyxIvtXUurUgC5Qu +eo3qtMmBoKD3qY7p50DN9abQKB95oPjg9N9Ns/Pg1UgkptMkgUHZM04sKgDI +Ko6VOapDIGBirWNphMDJ9AV6XXcMmKZPzBQnE6CZcVzazEoBfFnTdtnYVgDk +qceyTHIVgbWKcnObghLw/Jfw3mBVCTBuyNLZlimDIHTwEZ+1ChihV4l4fVQV +NOaKWlYvqIL4S+Wt5G1qIGw77AZ7ujq4/jU/VtJHA+gS9D+LzC4Av7+U5PUX +NEFG9spos7IWIBlr3T6gfhFs3O1/um2oDYLLvF8uuOkAzcysvrPJuiDZUvWu +gJUe+Gkc9e7hth6YPRs5yp2rD+oafTquKhgAleNuySyrBuD+v1k7vjJD8J5n +KHfMygisNt16H3XUGNyny9+3XTAGivhLTlOrCXiyB7J60kyBynzBjc/eZuDZ +JP2Chpk5aGRq6ja5YAFyROY0zZUtAUmVqqpCzQo83sySzDS0BqPnTeKuu10C +ZYPejX1JNqBH0kvgm6UtKFAKlb2+bQumK6u5J3MugyZ/n1dQwQ44eR/XHPxu +B86o+7d/LLUH+yUxVzOsHEBF+8RReNQR7MzQVhxZcAQ/F46GOLc6AZpEuryA +NGeAIlsLE71dQHi6xJd1U1egfjgj4Z+GGwie4+j4q+QOShkpq1XVPECbVG25 +pKEnEDXIV+dy8wJq2c0Fl5K8waMEw5wGSx/A3yRfqLbtA7Smiy+V5/iC3Til +kT3CDzz71EZ787sfmHozz5lT+h9Y7RO00rHyB2mCR7w3+QLAWaH/tN7MB4Dv +po6XuFsDQVrWfLFwWhBoaFq+d847GPDqBI8UmF4B4pslurc1rgLavuizJUoh +QLBKvX5ONRQA6yOcbw3CQPQ8pmt0vQb4PjvFbySGA3mHLaarltfBTFXbgYPb +14H69KVy55wIkPBtfqaTiASvnU6+1P8eCfKTQIBxaRTQzriD6ayiwcBnpc4a +vhhA3z2+HjEfA4STGpTetsSCR3wfKodT48DUlfMPv3rFg3C2ufdqpgng2OPP +R7Q0EsHEe7FqZaUkYMc02BKjmgwe+Q6kuBqkAMV1hTearqnga3FUQHxiGsht +N0xUskwHIjx/vT78SgfBtxcXxXJugLxb1muRxE3ge9Annvn7TWB13W+QpTQD +2PzmEuq2zARUP+xYHPmywGo3zD83nwWWwyhFrrfcAj+Ovq+LSc0GH9+WvLzh +lQN6JwNerZnkghLbC5M/1fNA8hbjsQXFfDCiXPZUWLUAxLh/oaI2KASPfUrT +Z12KQNRHBge+xGJgleFFxWBZAqoYKMdzf5UAChEksZZdCuSTK/dUiDLw7s3N +CwMrZUD4TpJkf0k5GP8TQB1ueRss6wc68vFVgO+CBSrf5ypAr7jlIZmWSmCd +9bFVNrUK6NcKjmOvO4Cz5tSLPJO74PLU7J0c9XvgvqxIQaJiNahGbb09KjXg +syoKK9OvBdTWtiahLnVAOH7fsDHhPqCYVQ3/YFEPSgLfKtv+qgfyrlaBTdkN +YLW36yAN0fj/3U5juLHSCPr2Y9NSSh6A4swny+ctm4AOZdjDYd5mEDq6vVo2 +1wwYM9u25ppbwFjYVtdcSivQZ3uytOzZBkwDKJ+rmDwEjnK1/xHqj0BWctiR +M4qPgc4u66CjyhNA8ff7L6zfDmgehPGxuzwFv8svqaondID5u+O/8y06Qai5 +5f0TvzqBs6Pa0+DsLvBS7T5fH34GdhKc3umtPAPl0Q4/NEueg4yu7wObFt2g +cz/wUCpvD1Ce0c0zm+sBNfU8X3KaX4D0If63WSm94Nue978cz5eAU56sa9W4 +D9y+VEHMq70C41uMNwcUXgNvv+bPB1TeAMrENd9Pem/BiOfuXK3zO7AoIio/ +Ef8efJgTDXKw6AdlDTU837f6QRvXH2qUPQD+HPA+k4QHwYlIjptMK4MgRua4 +Hm3JB+AeTvfwvsUQcFdxcFDjHQaL+LbaoblhsHMtulereQQsZ5mPq6aMgjeu +iFnNcwworwl05hiPgy9GbxhT1D4CXc+RQwEKn8DD2wVLFcoTQGhZZTVI7zOI +if9wX835C7jPYiPuGz8JjmXKbYpbTIHQ0K74B1tT4HXUVT3y7GnQQUGuoI1n +QEhcmUn/8gxQonvR0FM8C1xeHy51s/gKvr5VebzHMwemv21uPP86B67+WW/Y +a5oH+k/L5reSFwCV/vETGx6LYCfXsVPJ+BtIYhf6JKO2BN6ujidzKiyDgqS+ +HVXlFTDNvezOpvcdKOwzhEw6rQJZKzIh6vgfwLRx33fLfA1otub+urK1Bl6W +dOf13PoJ+EmOBofxOmDLpuFNX14HdpSabFHFG4AoI0sUttgEazmcrK08W+D8 +lGLZla9boFXIubCh6RdYv/BnsyJ5G3ysPw5LPHaAoNS7rhWjXeBeUHnvo+pv +sBTAwfiE+APUj0HaeaW/4CXb7FK97j9w8U2ZerDTHqgkO8iVH7cPXqOYtXZz +MthjI+uosEUGRzzH5xJukcPKu/mOA4gCMtSpzeguU0Cpo/VBCsWUcIhs4r8p +cypoWjbp7s1zALoeTdKX+HoAUv2cSnBoooYlsvZUJsk0MDUGG2p70EKdRovu +W0Z0MGDOPCRClR7K76cm2xAMUMR5kzNWiRFyDIm7a+sehEPL2ezMToegzJ9o +Zsm4w1DjbK93rDkTFP8vc4h6iwlmL7ZJ6dxihpd1bl/JQCzQoM/m7uFlFnjO +dOfTvyJWyPC19FK+ORusm8/tOcnDDqdL+snnZtmhvr1tEEfTEZgS9pGNOpkD +urz2df/tzgnduRheKhhxweoVoC2iyg0zYxQOURI8sNZg/dQJJV44YfRy5ZsO +H1w1W/561/Eo7FJzYeiJ5YdiGT0/dMwF4NJqi8rbTQEodcj+GsstQRgjHJ5q +jISg5byB7/slIahWLaT4uOgYzNUw0DQxPw557NUFpriF4awDy4O8WWG4HjDn ++OrBCch/9PKJlqST0P/a0+gqdxGYZTf5ZslQFL6qvSjwXuUU1DsgfqMSi0H1 +GVn8QlEcmt5s9o7VOQ03DxU2KzmegcyTLdQWsRJww/S6D4e5JCT6C5ozNiXh +1qfR1yNZUlBTXPw2B5KGnBQCpLQlaXiWQ6IquEgGdop9l2M2Pwtl2RZDcrhl +oY6TnqPerCz0FvYxDnsgB5+ybss7JZ2DjvnHi43c5WFLwuhgpuF5qC6cvBmg +QoKdV/XZNTGAJUwdBk6KEDLFb24I6SCoSFcb98kBQ+oOH8ofMQT8E779c9JM +Ac6wqZ202FSAMroc3PlZivCxTfWjcagEg7h6KXWXlGBcDt8huSJleDbR7/gb +MxV481fImB63KrQuS+SknlWFOl5kapIP1GCORcHFI0nqkOno7Ufk7hrQPmlj +HBtegF91fvfxqmjCzqn6vO9IC576mOJCrXgRJknFXOnQ1oZLSjyW/g468MN0 +Fnl0jC6UpRPzv2OmB9kfNeYKbOpBZkdBV5ssfejQ/ncgHxpArlMa7w4tGcBE +sdWAjUJDWG07wxJnZgQTaSjl6LiNYSJ715vHM8Zw/uKtc7ONJjD6h97lF4mm +0IESjda5mcEIe5mZRQNzaHMiu+S5sgWcltEUvIEsoRGpLLxSwQrSJzqTWWlb +w7HWBYmDDpdghdIJcq4YG5i0xr3tY2YLudpnGBc2bKEMz6+2Y1mXoZ6SwJI1 +tINukuW5777ZwZdvS77UF9rDWzWQQsnMAQoqh2V2cTlC9ScbEb4zjtD8qdSp +W41OsPEdW1BgojPsVvuxaenmAn8fzF6+aeAKPe7YBbspu8HH3nx3zyJ3mCT+ +N1tNwQPmpeTH71z0hLz2LNSV9l7QbkKQoi7aG67K9F49b+YD3/GMXK/d8IFP +vbLoFjN9YcoyO6UA9IP0p8YcU7/5QZZQWQ2vwv8gn1vE+l9Tf1hfubRxhSsA +DmUIyZ+cCYA2Twf5LjQGQv3NhZQTiUGQd+4RK51bMCyKO/oLGlyBrP1W+szK +V+FC2inpMRgCidr8hnkiFIafE2TJuhgG3xP5n7H9Nfj6XjyVcnQ4fNgvsU9u +dh3uDyZv/bdxHU5Y7VvUZEbAipbPvDMgEn5jXZDW+RYJoUxNo1hhFGy4VT/b +ahoN353RMpLmioFMOdo/JqZjIJ/mFZa/DbHQ0/pVxUhCHAz9WCzT4hoPy1/3 +kS/oJ0DavBixNqVE+Cvd90kITIJ8rdffxBLJEEbtFEhdTPm/P7Jl1C4V9tyx +oB2LSoMa3UbRr0zTYeIUtTtpIx0az8rU+mTegBUlQedug5twZ+k92aFvN2HZ +GtXRbwUZkFri1bCfaSY8NFbUvMSZBcEL/6qb01lwwVqY9n7DLXjzwJOnsQnZ +cFWoyMjeNQd+HMk5dEM/FzJSfKa2UcqDvZ7r6vwwH2arVS+eIAqguYeg6Dut +QnghtDfdx64IRgxkH/SMKoZJjHL0GaYlsEFRZZpsowSO7UmTyWaWwueVswZO +oAwO19x8/3axDHI0EImVBeVwWOLdy9Omt2Fe8RxHOWcF7OPOsdWYroAsv0b2 +LjdUwtffnozJJVTBy4+bA5lc70CxiiReoH8XTlDazx5QugcXhGqHnoFqyG3K +Q92LayDnan6Lm1YtDB9086Czq4OnBRTYKKLuQ6/KD+mWpvWwdUPFrHe9HkrU +/jXczWiA514IeouARrhmLFGcstgI832ttu0LHsDkW0+eLJo0QZpI/hBLzmYo +cbOVe2+qGXYdTv3F1tACNanfbszHt0L54vncdpc2eE26TGxO7yFcy+foqlF8 +BDerS+2cwGPI9rX/uDN+AqOpXFRptNrhmLrHhbLLT2FjmiFvdmQHnE47zXnc +tBMGb9L2p6x3wojl9DvtGV3w0F+p5CXSMzg/W+GtvfgMSkpYOgoWPIeGNlkN +5SbdkDf04iQrZw+8L/ph+MFUD6yp1PzRW/8CEqYrh7Pje6Hda8mnbi4vYXnI +BEjT64P0L34XGyq+ghFU/T/pwGu48+21Cg1+A2fuxQyXa76FzqOvT4LL7+Bb +nkFh8cj3kHihXLJi0g+fK6RrGK33w+2WH/8iMgbggCrbvRrSILxr+Evh4OL/ +eR4Mfcn/AAvjzKoumQzBskQPlTccw/DE56UbrlPDcKeV8dvV+hHYNM59Wj1+ +FK6AzFkOlzE4EELSPq83Do9dY7z+W+EjPC4qH1lL+gT97BmdqtAEDJjYdFLQ +/AzNwxJohmy/QKeOx5JdEZNwTu2IaLPJFAwY+djFvT4FLQ9yGallTMPUkpcv +vUgz8FSZAOvbhRlol7WnXJA/CwUYqYu4TL5C8Xvh96I55uDg3T0d/qk5+JsY +mj1dPw/lE8y0tuMW4MwKE32P8yIcl3hiM6v7DYLOi5dLFZZgK9tHVn3SMvx5 +8Wa8OlqBSVnNuxMXvsNNmYpFD9tV6BjAhEwifsDnhysaw0zW4EDjIpj+uQYt +lhmr6TN+QgM63UVJ0jqkeXt8PnlhHZ6RL28yz9+Aad8Ks4aMN+HX0RhmxLEF +xZIPHRye3ILUoHRy6v4vOGxX4VYVtw1lPlVK+TnvwLycwmorlV24W+Zgs039 +Gw43Uc97vP8NsyJ0TZcK/0DGNdMTRX5/4aX9HbE27X/QmD+twVViD0b6M4XO +cexDTfxk+T4lGZIdUtWnCSdDS31Xa9n2yNCk+kzm5nVytFclFNxNQ4EOD5bc +K7tJgUCOgWudICX6UNgzTdNMiW5esjrff5EK4c1nmaLfqNDJC4X85xIPoB1/ +HzY+SWr0k7Kvm+wTNZKjKSmlTaJBp16RqVgp0KIswZ8Bx//QomTTIpD0mA4l +dvZPPI6gR+M8d1ZntBnQqfUy6zMCjOihxEbQ2x1GdE1HaGdt9CCqukLD9Lr9 +EEIcLP5p9w6j7sqAB+d1mVBBatvMyBsmdPlLbALQYUaMlOeeR39gRsvzF5P6 +rVjQfJx8N1piQTlRGnglhBXBY4NP/zKzocmYdJobNWyIPgN+ea3Fjj4527AN +/GBHNykup/XkHEG2e0N679U40Op5mnD23xyo2OSVZ2cjJ6o9mFi168OFmi+X +/1o+y43cX1J5P9/jRvlXOYNr3/EgCt4/I2O3eREDK/nDgAg+9PJr8tNmh6No +mvY89RsdfmTyWazgF78A8q9x7DtZIIBOkBVeZecVRBdvvA+cKBb8f59Fdnkn +hRCo+PPC84EQ+uBLyRmofAwN97I9+TB6DKVFcbLe8TmOzKcor7EfEkZPSZlO +RL0winJQU9c0PYFK9JMeWFKeRHY7wDav6SRy0dYRP+Mugk5qvxVVOCmKgrmO +VP1eFEW1hJV8Qv0pxHMxqIvzmhhiHf8TPqovjg67l7FviZ1GEXZ7N8sYz6Dw +4LhIls0zyAztbATPSCAWZoruAx6S6M9nmafXlyQR2jo10echhYytyjz21qXQ +KedDJTBMGk2TnNPKGWSQRt5JZcMiGbRyK+KRh+xZ5NTxap154CwKDhb84egr ++/8noN2ZfEQOXb32Kbm6Uw75HA7JXfQ+h3Q+Zeu7H5dHJdvyelZf5NGbXSHX +ucLzqK9aoVHKnoRapY1SPM8A5DC53vBiH6Dq2bfnPEYhyj6nWZrajNAvXrd5 +mzyMgirpr7PGEujy8uPz3lABPdoSvx/yUAHVKoYrapEU0a7U9aXfTxURs7VI +1B11JVRjY/DKb0gJ6TlWuF9xVEar203Un38ro427pnIdmSrokKZcjpKMKjqs +nTWUOKKK5iUtKp9cU0PX7+jM/hNTRy4u5dEBX9RRUUTTfa1bGmhUgbnjruEF +xFHUp/XoiCaS1KE8d3dSE0VUjj0or9NCKdej9MeiLiJr35EDQTbaKL6aWr5B +UQetbrx8/fCULpLmtrtld1APPeQ+U0uVoIcospZ3L9HqoxpHH6HUJH3Evyh3 +9z6LAbIxIt+cLjRA91G9gcppQ+T/RJt6u9MQSQ/paPCYGyHLTkaDD1tGqOd1 +kINStjFaCzzQn4xMUGrjp7+jiyYojgz8p5lrithdRb8y6JqhW6dtpVXpzZGF +8rUQgdfm6GZJhGDfDQuUGJMw5H7JEul/my2Qk7JChWYuc2b01ujTDaFYyiVr +tKGu+96l/xIajK/NfNJugxRvZ/Bym9sioUlXa8pRW0TBV23TYnYZvRHS0dP7 +chmVru/BH852qCZkmrtxyw55msa/bYuzR2XigmeOH3VAv/THWI48dEA6JgEm +DWaO6Ptp6Smuf46Is/1dtX+lE2rJmxlYMHJGDHNe6Xm0LujikUbD5i4XtDtC +dFy+7op+jV1qfaXihpqH69x4D7ujnxOcVtGT7ohaitFTqsUDDW7TLRpmeCLX +U5FJfEFeKEmMKqvrsje6+sLO6ZGoD1p41/lSrtIHxZ+1WPc94Yt4NnIfx9/z +Rde52T/lSPuhja/nVzqf+qE6delAAd3/kEzKn/XR2f/QTGLTCG2YP+LjP549 +zB2A3MquPLjcHoDmGC88GXAIREwF3ZZazEHI9YPspa1nQcjsUeuj7SvBaNvk +bEGI3BWUbF/lVr1zBQ2Y3Blq7LyKhBbR+NPUECQJ/w38swtFAQxBYcUoDI2y +bdENH72GrqknCgxQhyNqweC13q1wVLkUULgdcB2BlUSJjs3r6OAFXRnToAiU +HYroPv+LQKGULJte8ZGodzuXX5wjCjEfbak6ey8Kxf/IKL6rGI3cLxzlqv0c +jUqcq8TtrsUgofm3ZN+PxaIDGUWDfu9iUfXnzX9c1+LQ2Xc81PQy8YjSt6HI +/Xs8Cmh51+RSm4A6RgOCxf9LRMjmgtMsTkLuFKn6j5mSUeiNK16zi8ko7sKA +VXJvCvq2Oi69WJOKjokUxJ/KTUPN7zoUVdTSUX07v2/B83TEHVtI9UjlBvLN +uEnzqO8GeneX3vGRwU10rO/a6vjkTdS/8NxO3jcDqR6WCPhFnYm0QteGZEsz +kYZd1VkuhSy0dEjSoHs2C2WK1O1ZJt9CoeNDJ6hJ2ail2+vTt5VsdLbhpIVE +RQ46N5l7hMw+F/Vzlz6PPZGH2Au2rH78yENG00xSzh356E7npWXerAJ0dv1J +kYJvIWIP1eqnNCpCVPbpkbmoGF3LChbg4ShB7ebP2GkzSpAJc0nEfZZSlN+r +wHPmVinqv/0vsJSvDA3rkR8UuVuGzmYJKUzLl6OnrzYcvr8pR6qVtH2ejrdR +Da3/o2iKCuQXFZ5mfLsCfdQsqqPSqkTttoW3Wn9VooVBloXMqio0snTQtdv6 +DiK/SM/pzXUXke+fFOv4eBclh947OlV6Dx343Nm+51WNeG1yxS8o1SCL+Gfr +qzy1SPb8xAHBv7UohyN/iHm2DvG+ETDY6r+PDgwMXyezr0cHWPXI5abrkWV7 +UOo5+wYkmLvqJPStAUl0Ztxj+68RvXTQvHya/AH627sZkZzxAOlu3N41ONWE +qIaoHpT1NCFR++3CIsdmtJrs3+pG34L+lpcyize1oPdiIhO09q1oZOKNhwhH +G7o6pKHxoL8NnZp3EvuQ9hC9OObM9sDoEYpsuncxnP8xenvynp/j2mO0GSEf +ndn7BK0Ys3+DFe3ouVJ/WHrCU5RjRFb8zL8DWc+4cEfLdCIFy8BJrfpOZP7e +sn5IsgupMP4NBM1dqDVk6U8heoYOaxz9zv3qGXLiHP86YPEcdW8885n98Rzd +WoBcvgndSJVpxaXwZA/aaL+2mfSqB/n41Npd9nuB7gVd8Vfm70VerNUHzQd6 +ke5+OnoV/xL9NKfU6FTtQyq71XWOtK/Q+/O3SPP9r9CgHy21d/FrVKZxN/aM +/xskJ7iRbaT7FpUe2YlhkXqH6EeCOfO53iNzPxHdG1T9yMqnMPRHeD+ibNge +otzvRwx5eqtLEQP/36kV0jPaQfRKcuLwnYxBdOzgm+rHQh/Q7tYhzNfyAaGF +8e/ftYfQhaiH07pLQ8j4gYK6U9IwovddtzCWGkFXI118lCZGUM1+22/D5FH0 +PoI3q0FxDN34McIQ/XcMoWUHx60n48ht6ceyZNRHlCbEcM5e9xOK9Hss+0hw +AgmlvpF3/D2BsjsC/mWOf0Y0t/XaQjq+oNNGtwW0ayaRYy8l5tebQjrwjPHz +t1NoxJCNS0J3GvUJVVaGD02juOSDfwatZ9BF4PlbfXnm//pD4F7oLHpJbn+O +g/UrSh1s2H9Q+xU1atplb1+cQzfLtwYO/JxDxcc+3aLMm0cC2u3fjmgsIPF/ +hzac/iygBuePtLxNiyh85UOrjd+3///JxjdWcksocXDAmiBbRhNK3MNn+5dR +1T/Sb/fKFVQXeOYfW9R3xFrBHHHZaRWtB+pURev9QEmCqSnjAmuoyrkmlblw +De1qXdKg5vuJpJLkooZKfiKrlaC5XJF1lF/TuevftI5G1b/JxqhsIGMxTorl +sQ3ktczQ2eu7iQ4XFg6iw1tonSqswqdhC9VYijRHm/1CdF6C2cVU22h28zLF +YvM2qqNnHovx2EESD0LEy0R2UVWIgZ7z0i4y0TjzkazxN7roeak+P/wPctKn +YHUy/IuYx3wq007/Q5orP8IuHNpD/HlPT7zY2kPsIv4Pzn/dR6GOn2ZXPMjw +vPqJQa9lMvwot5urw5McT40fZPizQY59FPjHFK5R4B8Flfn3GSmxXMK0jXMx +JU4NGxROkKPC951rV+QGqbCjT9jDDL8D+PDdA8XPOaixx+UvPctd1DiDfMBf +2pcGf1X05+oQpsUxD+j1H03S4rv5FT+1i+mwwMlU1goHevyOb5t7RYIB1+Pd +Lj1yRrwVNSFEMc6Iq4vrn0m2HsQNHOcKDhUcwttugmLv4w7ja0uDjw0RE14o +kmN2fsSEP8V5tSHAjA1HJ2s2O5jxrXMn++5qsGC2v+/fhgyz4HVGwiXRiRXf +4Pxw/tcfVpxTCSanstjw6RbaHY+z7Phphv+Zp6PsuLfOldgNP4L/yL+gUDnN +gc/L5pOCX3Pgjwq8DjbHOLFw575GUignFnCdzyEb5cT9RZ1s3dJcOMHhUNrH +NC6ciwVWNFa5sDuZuRCbDjduTvMhKd7nxk5FrbrDzDy4wMoqfTiAB4eeqkfq +n3hwtpZXjYQSL5YvpFTNvMeL+c1Go66y8eHHnzN3F8L5MOetQK2ZFT5cMHtD +xtvyKO4UPx6R+foofkw1zWmG+PG+v+JWRz0/Tj7rxvqNRQAzHtNw09QRwC9G +WY7GJQrgnnZR87JeAdz+o1C/+IAgHnK3vhChIogL5i6lakULYh3w7ip5jyC+ +knY+oJJaCA9Td6yhC0JYTAZ4vk4WwkXCwUEGA0JYXcr67siRY/jkJf57ltbH +cGSK35m528ewgfHjncDvx/DPDMVxtnPH8foT+7pnEcex1Nwrh+i3xzFrWvG2 +NbcwhvIdPoYuwvhh3fqiS6sw/nlGOL6M5gT20iqIoTI/gQUrJEUyqk9gef+4 +Fwb7J7Dv3MVedaOT+Lied2ngvZN4VcVyYpZcBNOHyjNlWojgudsn55OaRDAF +ZwRn/2FR7O7H9p+jhyj243X9oPdKFOs93hfJFj2FTfIyA1DiKVxEaf9WY+UU +ZshyNX2qK4ZjbtzXLm8Sw8ySSf/+covjibXF3v5IcfxuN0Pw+Io4Fg8Nz/hr +chrnizE/tnl+Ghu+9NA0lDqDN9o7aT+XnMHdkxmDFCwSGKmw5b2KlsB6is7O +pF0JbHwhTLzmnCRmM1nWz/pPEv/i2e2zrJfEoi7KLyhWJfHDAJnoFHEpjKJP +ae+7S+Ggw3WBljVSePhOpl3FdynMHCwTPiUhjX/aJ6sz/SeNWb+GKsu3SuOj +Ed9prP5K4xgqinPhSjK43kzzekWCDLY/+dkOD8vg7F7w/XLgWRwX0Xa/jFcW +e1MFnDv1UhY3B4jZH7sihxtN5jwfSZzDDIF0v3lXzuGyxue8V+vk8ReXPleK +oPPYPyRsf0GVhCX2AzMu8QCcUucZnr8N8KBl2rvhjxD7tClqqfUgHPPVMOVk +K8ZPtMtpW+oJzN3Dc4jTXAEbXF1hWv6sgKe2WYgtJ0W84Zo1ZrapiGfNOmXO +xyrhO5l/eh7xKmP0dV6csk0ZP3vcee68mQqONeb6Gf1PBYfnDt05fEcVtxqG +7VGaqeFQnZXllIPquGpHtf/jS3UcYqEfwpWogbVExc5f1b+Aa1dMv5zh18RH +z8oPuW1oYvl/08L277SwS7hdik79Rfyi1j3CMVcbF475KM8k6OCuXdlVskhd +LHbb7dm+gh4u8eInP9yjhx0E8s/qautjn3UXt5lxfUxp3Nm97GaAGcYuRqWR +GeIwd8S4kWeIlUmFW5BkhBOCdw5lfTHCEwm67sfjjfExckt39nMm2JP62MuM +ZROs/Xql8E2FKa7uvR606miGH6W/MRcVN8dB0rPv63bMsTC9zXbDaws8jkRS +nCss8fm/Zb8PxFrhfyMa9j2e1vhfdn3jpNUlfOkIbXW6oQ2+OET+m17UFncE +HcsyrbHFcq4V2+9kLmMW45m/NzsuY2x6IeOFrh1e+cnZk/LVDgdu2nYdvGaP +b6Vpz3nwOuCl5faewQ4HbFUlct7FxRFXNvZfNj3ihD9za7e97vs/2zsdWY90 +xpnCF5/tKLpg7w7hq4dpXHEcGfl150FXrP9csFLmthtWSmu2vBPqjq97rj78 +Y+mBi2TjbzgqeeLzrY+D+SW9sIZ8+biDsDcO/Zlw/TyzD97/vn2rO8MHH3a5 +qufP7YsNgmNM3Cp8sZE8o0PfWT/M/emMTvNLP+ypLXHQ8PJ/OC27rufl3n9Y +3kB2EJX64/pUurcfNQLw6XtGeX1bAVj6Zr6f7J1A7Mid/F3TNgirHBE6KH80 +GKfvnbggPhOMnQ4czjeruYKZkuUSf4Rexe4MUfLCRiFYLNfNW0I6FIuoO9aq +coRh5SevZUopr2G5sBPsYdvXsEfQT+UjG+FYu2u53zjkOuYfaKIhyCNw0N9T +2CUpAjcC5r8bXJHYuL11+kBtJL6nP1v/TCUKn5P4Z6w3HYXbzVN+DkdGY4qD +FDMhojE4PffFW/fhGJwNamr7Y2MxY0zV6AiKwzJ0c3Q1v+PwK2b5wPD2eHxF +Zv5tRGwCvt8+qD1nnIh9yQ++/iyWhKcqujtKaJMxhVyVmeNKMu7RuBfpMJqC +vzSq7o71pWIbbUHj/edpmERVeJDBPh2L7CnMn1lMx1xP968m+97AIymtAmr7 +N3CMp5xy+I2b2NSWzctKJAN7Vw4bU3Zn4C5x0+k8h0xMJMXJaNFn4Rs03s2o +OQvPHkoQKHS8hR+9903I4snGV9OW3IxGs/FW9LkG2twcHMD4sWfGNhcfPX4v +n00iD585Z/B4gDIf+xtK6ulO5uMvDCWy3V0FmEGtnsq1uhAfuKIhFFxQhHMH +Ot+ezirGmYE7HF81S7BbgFWz8vsS/NwiemjEtBQHdTdld3wtxXMLsXKCgWVY +a6iZWoCxHJ+RlYmZrizHiV9ibJLVbmOLYP8wjeXb2K5pj57IqsBpyVWReSqV +uIWLtS12txIXNv6ekWyqwnX7V+71+t/B9UutkiHgLn6pvHo0jPYeDjzxoYFs +4h4elHV+QWqpxp2zYguXs2vwb6Ye87rwWuzgRnfawrsOi7LGqJc63cdMrOcf +T0nX4/L/snBYSz2ubE5mUccN2O0S20nbVw1YuVF0/G1TI1ayCaWZZWjCMo84 +4pJDmvHNPvvjKQdascn23e3e6jbsbuLWrOTzCHflC4iKGD/Bt1ijPr+yeoo7 +R5/+/qDSiduDHvDKenfh5xpH6n7VPcMB8uhpyYFurDnE+t+ofw8esFVitN57 +gU/xIwa22y/xyaKpSHKXV/hPtM8N3Ytv8NpxClo9w3c4+NeF0g6iH4+dPZn3 +3HUAj/UNGwveHcSBvUqutvsfsOgHsaDjXsNY365CWmJ7BC+Wh8XaFYzhQm6B +r89sPmK2gHdPrihP4JY9OZGxC1/wvM3Q5xrSFH7pU//K0GEaS/iPvNcun8He +H9dohHZncb1R283/nOfwbc/xW5Rr81hFq9rlQeYiXn9tMRZruoQZ7lnfqySt +4PJDssheYRVL60/ez5ddw+cNe2vnLv3EVU2xPKGF69jIpzp3bn0Do1MsPd22 +W9jUQkz+4+IvHHGEuoE6ZQezbDy7pK37Gw9UKpqPSP3FdfRMaj/l9jCHxMqR +ZEkyQlziq9IVc3KCdMJYviabgnjbNsJXvUJJxFjcPMhpcYAwll9kfzBNTWRw +DvgtRNISVcMZ3YOK9MTLOzQjNwUYCY+WXFoPwUOEntdPOqdjTIQ6Y21I5QVm +YjLnI9NENAtxW35uMXqElVj5HmNBUmAn0tL3ZxufHyFoahtxtx0ncfhJSo4j +PzdBUDL+avjDQzTlVHYs7fIRfhMLGB0SICRDHWb/SAsSgXVrkpkeQoRd8qZ+ +5JNjRBBNULT1cWGiAL2n+VhxgvC1Cz/9WkmEMLB8lCb8T5Q4MarkQz4qRlRl +RSkVDp4mpDc37W3XJQgL8kOU3rxShNvD4RMeRtIETZb6cGmZDHFMMFiuglaW +CE3p1haJlyPivi7vxhyWJ9Y/t/r7NpwnSBmqO63egDgdtUGndhERkvlruaIX +CGJUbeSYZpMCkUo7PO81okjwx93XUmZUJo4U7ynymaoQxrnZK65tqgSPbczZ ++1LqRNlx86CUbg0iyrDWoMtPk/A5MJIqjC8SO84Tp5pFdAiOR5Qv1Lj1iPfN +ta47UvrEi+6B07etDAgRBvuGjHxDwsD27tqJNSMihLu1b9jShHghRcqXmjIl +9mL99uevmRPBonIVHectCYmKgxdus1gT4YNZ/UUMNkSTNFL1yrAl3AKeaZo9 +uEw0Xn8g/3rejugxoL/ELeFA/NO0OFyf4khs1tXLHaZyJs6M3tobynAhqPHB +vEfYjbBoDBTLpvYg9mhT3lz+7klYihU+lNnyJoYKz+kLM/kSE/lNN2Lk/Yh0 ++w9N5AH/ESLngim2X/gTKd6mAR8lAonw0lsmpIYgIj3Zcqvj4hUibfF0qBRV +CBHILT3/33gosfrP8UjKu2vEFCmb7oPfdUJexaQpNj2C4HiPPhZ0RRKYY+iM +E000weD/A2naxxD6qtE7L0diCdqTNlah9vGE/8FieW6GRCKsYoYp8H0S8Use +C0Y1phCtCTIxJi1pBOPwgWeZq+mEwpFUijq2m0R2hEn2Y50Mwvq5FBdnUSYh +U3i8QpbqFuFt9tm/ODKbiKOdufmHO5e4RW9aw/g+j5h7ZkPRVFJAiMThsI0b +RQTD+tOfQQYlhNbNV/m7nqXEgpJBcWtBGdHimcBFNlVOqLpQfjh3voLI/uDf +9+luJTGsKT4UKXOHkPBhcZwcvUsIjwm4dOVUE+/+2ipzBtcS6hp3djeD7hMX +L8qdV3tbT6T35m3y/mwgVK1qn3eKPCDKqwKzEgKaCCHmH3XzY83E7UcGCrZG +rcRozxZ77rc24uqtQCe9vEdEvdjFTnuXJ8SFCwOcA8ZPiYfUCeFW0p1ES7rD +1XqtLuLqF+Yd7uBnRK9dfPRC23OiqyHuVPDhHuKKgcFvtbAXRJzB8r0FypeE +Pke5KV1FH2F6fNIy2O410fhNVFcAvyU89B8fO0R6T/wPzbmR/w== + "], { + Developer`PackedArrayForm, CompressedData[" +1:eJwd2FMMIEgWAMAd27Zt27Zt27Zt27Zt2/bsjm3raq6TSjrv/zFBw3YV2wb4 +559/7gb55//v7z8ggQjM33BQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjE +JBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQk +F7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQW +talDXepRnwY0pBGNaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe9 +6UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZ +w1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nD +XvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd +7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5 +w9/kD0BAAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQl +HvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf ++SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71 +aUBDGtGYJjSlGc1pQUta0Zo2/C3g7WhPBzrSic50oSvd6E4PetKL3vShL/3o +zwAGMojBDGEowxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jP +AhayiMUsYSnLWM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8B +DnKIwxzhKMc4zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4z7/8 +xwMe8ojHPOEpz3jOC17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OFv4w9A +QAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBC +EpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEK +UZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrR +mCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGY +IQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZgl +LGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc +5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73+Zf/eMBDHvGY +JzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/wd+gMQkEAEJghB +CUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xiUd8EpCQRCQmCUlJ +RnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlG +cUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZz +WtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBG +MJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclaw +klWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCS +U5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53ucd9/uU/HvCQRzzmCU95xnNe +8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD38X/gAEJBCBCUJQghGcEIQk +FKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQV +qUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSl +KUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGNaUJTmtGcFrSkFa1p +Q1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnD +WMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa +1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nO +cZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nD +W97xng985BOf+cJXvvGdH/zkF7/5w99jXwACEojABCEowQhOCEISitCEISzh +CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI +TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP +BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H +OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm +MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay +ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ +y1zhKte4zg1ucovb3OF/AVHuXg== + "], CompressedData[" +1:eJwNl1c8EHwYhe0VQkaUvWUkZP2HFWVEpCiJZKTM7MyQmU3K3ntTychMVmZE +ZCZFlB3J9109v3PxXpyr87zcdxz0LQkJCAimSQkIpJJOX58tcwY3jrqrVdgf +Am/NdgijHwJ58TjHGWIXQHySkEv+kQtoV1f2u7HtAprq2HmuOrsCUT7Fo/Mb +rqAmxNKZ0dUNvJRfQf/23YCjJFkcWZA7eJpuQKpE5wHoFG5kNWV4AP48ztm4 +c55gXKK/YuS9J+C2uOuacMcLEJUFHv9x5AX+PVWc+J75CJws2SotuuANXglZ +f8Nr3iChLse2/YUPEKgQz9LS8gX+vWIBv458Aderwuie136gI2LN6Y+CP1CR +MkhsTfEHzLSHoz3//EGIHsjmuRsAqNrCmsd6A0Bq/V24LfMYmALwJDL7MXjp +b3GthD4QcLIxtJsFBoJ/DI6KjbuBoFixPLzfPgj47IpM5i4HAcfhnBp9y2Bw +/4wL8fJiMJBRnmNzs34Czm88rKb9+QSc8jdbbXcNAeUlf68VEoaCGB+19Q8x +ocCA0Z5XizcMPB6M/Hi2PgzQKKqZJuiHAzviiOjw9XAQ6+r7SigmAnzpVs8J +ko4EqTXU2bVTkeBNAkHoQOhTwNXysGpVLgqInSch4/sZBTIvfT54mhcNxj74 +9XNLxgAFj1tKFbExgJcx3Ml7Kwb8o5HoSTKOBYbddsTUrbFAyRsI/RCJA978 +l5/hZ3GAYJaU9BRZPLD45OoT4R4PyoRsrTJX4oHnvF/AvTsJgDj64trO5wTg +4eglamyUCJ4NiHFkjScCq1xBqlnjJNC4LJkuOJMEvi0F/A6zfgZox0VDWDef +AXvuEr3vAclgP8W2kprxObjA7uj9rOg5+P2WgjBd5QUQkI4glpl5AeZ8hTud +/FIAbdgIqS1vKiicFyGX7k0Fnlyh0UtuacARMvxMFkgHB7bLe3cm04F2synb +rbgMEMQkyK8nmAnUOMGxnJBMkBDqpy/9IxM4bO7dpNfNAkXe7p80XmaBJ652 +PV85s0GF5HjIn4hsYCIq1hi7nw3iusxtm+7ngOsrP9YiZnIAae84Ic21XDDE +uvlabyAXkO79X0crDzh+rdC+05MHGMg8oL52PtilMDm6OJQPzhI9TzcyLgCX +Iqji4xcLwH2/0jbqh4VgruhM0DhJEXjVEpxF/qIIaJHV36g6VwxOrgfafP9Q +DOzPyBx12JeAPrfIIWOGUrAUU3qiub4UuLzj8KWwLAPlzst6eozloG+x+lpZ +Vzn4zky2LOtXAbQNtNyD2CvBdovBVqpPJTCawW4bM5WAMHzfME6tCji8JgXh +JVWAn8WQZ5mxGqSUS117418NLkxKex1frwbEI2dDd27XgGV6nRHfkRpwYpiO +6vWlWrD3J1iuuq0W/Kmz6vFBdWDluNHTM011gGxIsqYPvQSFhwajzu0vwawi +1YaE1itQ437owTz2ClCw1arK330NjIW500q2X4OFUhXVgPB6oF02cO8Dzxsw +L7HTWND8BqxFCN/lMW0Azo8ISa8SNoIDTZF3+oWNoCvKSl/GoAl0d2Z/ZiBq +BtaGpziI65oBl1aiBceDt0BaxLC9+UQLeCTBeJD6sAX4lqhMvfzYArKbal6x +KrSCfrMssZHMVlC8GCzxm7INmNkTED12bQMGbR0oYaENXHqRNHb+ajto6NM7 +4dnVDkgi957bwg5wh3T6wamXHcCzqP1nimQnILTlnv1b0Qm+y5vf15V8BzY5 +5Njz6t6BJH7y1eOwC5CHa8lnd3UB1fvso/aG70GGadNB6NJ7kAYk75A86gav +An6JbzP0AOPMTELH8h7wLntuK0ynF0DfM1lGv3rBkVcj50ZSH9hifk5jp9wP +jHrTombX+8EGZ47e3ewPgMyzNorOeADUk4tRHVEOgjWVR1w59wZBoUZqcEDv +IEiK1ntcIDEEjC5Hl/MkDYHfvaabBEdDYPLtq0g922GA1h4e4/o0DEo1L173 +vTgC5hZ7Kr0aRgD1UlANn+Qo0FyiM4osGgWMixd2Wvk+gmPCDhpj2R+B8L1Y +m0neMXDiftPUTMEYuBHuGL0nPg6crYjHz9ePg2IGQfcy9U+ghN0px2H8E2Ds +3iGMvT8B0np3y/iJJ8Gr/WQFlfRJgBQq6g7AZ6B3IqXYeuYzCDeU4U8NngLP +hfprKySmwei2rEP99DSgTNjcHIz+AkR5bzrQqs8A3sDdyxcIZoGh7Cfrituz +QMrtvat+6yxohY/qFfnngLZacZtHxBwIkv7pxLI1B6YXUvb5b88Dio6Gxeq+ +eaAwskfbDxYAmW5xZWDFAqh2XLi5xLcIyL1ijkjSFsEHk8zv6yxfga2GYver +xK+A7S5ZlR3zEiBidWXlfbEE6NiEFr5zfQMh6TeMR4u/AfHjptLbssug5TFf +6u33yyDBfFJE0OQ7YAyPXr+9+R3cNfjlyBH1A/T00la6i66A2gRwJuDDCvBo +3p7Vc1kFVFTT+ofsP0HEbndoWu9P8I76+4lLPmvgxts1+pNS60DK+dZZ3p/r +gNt7fbzV8BegppioEX71CygLJd0dY/sNfPwKnT76/wYT+ahG+vtvMIuZrhJd +3QBpihYj2q0boCd5iIxXchOc++J7OiFnEwQm0aZVnNwC60yddsExW+D0cMUw +/7FtQJ886ZgVug2kV2P1KCl3gPtC9Yx95A6w66TYWmDYBdw9r/u9UncBh0Yj +q7rwHnDLvrdlVL8HOC2oV99p/wGx9ZHEuQt/AOWUQB2J7z5oTDy3fXjqALy3 +OZDOazoA5PlFlnQWf8HFWXBgSH0InnAnr0fWHwIWnczOPtt/QJDNLlKM6wjc +Z3463zVxBOpiyr0ntQjgxA95bfIyAthbHBPjTkcImQ8Iu+XcCOE6t3Gn0RdC +GOHYVPD1IhEkMktb+llHBBk48y778xPDi6MtJKXPiCHTZ5FQf2oSGKnypJYm +iARGjJN2WPwjgZYkmVfiH5FCyxHdm2UHpDDP3EKt3ZcMCpz4NL5EQg79Jjo0 +RaLIYdHcMMpko4BG/zo6bhZTwF4B2tuOkBIG3XUn2RihhBQRH3m27ajg+MmB +rKhjx+C3zOqvI6XHoAmX6fDkFWoolyv7oX6fGj4okO0MKaCB47GkoiZGtPBm +pwCxLs1xmJ+vNOnx7jjcpXx1748yHTxvetVgJZsOstrk6HOS0cOLLe++ZN+n +h0LWom8DR+j/v39AMwgZYFS6lGxSMQN86CxL8JX1BFQNlgvqjTgB6Wdp5Y0J +GCHf9fZfae6MMEe97nPRb0bIw9Ef/tSeCQqSNf42XmOCMWsX73E5McMQw5Kq +jR1muHRya2vejwX25wV1E1OfhO8+J0jbpJyEhH+7SnnFWeH+38HTmh2scC9D +YGn9Fhucze1aED5gg84+x+1oUk/B5bkUo0ql03CoRPVI6PtpWHGLE0clssO5 +1hzf3QsckPjYQIX3PgckWLIxOF/DCVN2RJo55Lhgqoff94/JXDBU3aqv/4AL +prz9/PGEOTe8wL3bUfeeG9ZJvS9uPccDpZiVVi9k8MBJe361K7S8MFqJsXPD +jxcalYV9lt/ihfMrB7rn7/NB0vp/F/cW+eBItItOjDk//LfZp358jh9asusF +PrEQgIoGHq/JvwvA1UvGpHlOgvDwI9O246EgFNS8G+AbKQS/jHMzzXEIw3mt +7ajSWmHI+JhQbVtHBJ5fLyAa/CECSTNuMulHnIHBVMEXYiVEoa2w+5eccVFo +IuBWmRkoBic4Bk9kSInDRzcoVl9+E4dXrJlKCDIlYIS6cbGm+FloGTSv1BX1 +Pzt+SAb+PgtZzuouRlyThJLu47TrTZLQwIThzRvBczDrJlQ5jD8HL5TJGncS +ScGAb/4UPC5SUOaJag3PshQsT7t/ctxUGtYS9VzV/SQNB86qfU25KgPLFemL ++kdkIBUryeK24XnYGbegJPD5PLQ8NzjiaCELmb1en15e+59vP1Nm+MhB5383 +9wuPy8N/xDMtrHnysArjfFKkAIvytR8ETCrA7KM0vWwvRWj61/m4LweAisEF +SyLvAJxOeZ381gnCevzZwYAbQelmfuV/owhemO51+BSJoYaQrIcPnxI8voPy +3wYpQcPgiWH8TQlGDPSZHNNWhqSyzzckapRh5/bVhIbTKpAkMy6xMVQFBhzo +ZyjvqsAeB6JqYxtVeP/qY0HGKVU4bYHq/PXVoFnKZfuKXjUYNJzXWalxAZ42 +1IlJfHcBhn4oI3e4qA5DRr/2Xu5Xh8kW4kvqhhpwIkOn996sBmSXOGnaY38R +4iDCjUcEl2DEwwaduMRL8MGDr2Xc4prwa21vF+rRhErksn3/7mnBqA1tW3ca +bVh6J2C4uVYbrtQ9r1+5rQPL3rfeZDp+GZJb1PgZtF2G711+eTZ76sLIixTJ +r9j0YBsNfdRbLz1Y+OG4EMm0HuyeamyMU74CZTlubngUXoHM5nEtHfT6ULnx +qnOQjz7chQMF71b04bColdELEwN4lbNplHbQAAZK9r6XUr8KFzMOIOvbq9CO +4WbagIIhLJofqrKuN4THS+4Xbyhcg8ftS08/fnsN2uZvkglpXId34n8O7wxd +h1bMJ4wIzYzgMQ+5Lzd+G0FB+zNcLE+MoUST2WVNjhuQfqSKnvLNDXi/XiTK +xvgmLG9dtvT9exM+uEzVaJZjAps5K2UFLt+ClJF05Et/b8E+2rT5VxWmcCpF +ga7W6jZkjFev+UNnBoeszhR2OZrBkwnb3waHzaBa9M1WHllzGLhiP9yTZg5D +k1ypxsnuQCa2DyWGzndgMf+MjuHsHQhzGGYW9Szg7dSp/BMdFjBU5oPGb/m7 +UJGirvVp9V14g7/r4R8xS1h3bIrjQqkltJyp/hYgZgWfSqobt1ZZwZ+FYtZM +8taw/wuNY0y7NTxoZ1a6cMUGan6NOaExbwNplj2fF7ndgz+Sz+7409rCvR9n +380V2cIJtVmuuYv3IY+vbUrCyn3Yt16hxRD3ACb8U+t1BHZQ8UmgQtcPO6gV +W64qlmYPX3YLcTQYOMB0ypn3auSOkN6M4PCTlSO0vD/NV/DeEcJ1+ZBGUSeY +N076RiDeCXqYyeRuHjjBryDXT9LaGaoTkHxeG3WGxNRjKQoXHkJHdScCvtcP +YeTciew3Yi7wjCehO22+C3wzXDYqwe0Kz4RtOUlkuMKmjVv3OLjcoG60kyJt +rhus0WUeojvjDi0oCX3l6twhna0kcbKKB3Rq84lVGfGATATifVrWnnBAMr+3 +658nlNvg4up97gUpTnqN2so9gtXUVE6Nk4+gl1jcv4/+3tA/RYHyg4gPLFzI +ymn45AMFl//dexnuCyM9DYPHlPygD01zufSBH2QONGPdNvGHakd3vEKb/WFX +t1a9OU8AHKT/ZxEVGgBpCM8Zn/4dAIkHrvWwmjyGsnT+MLH7MUSBptFp8oH/ +76HatnJpIHwkI3sUyx0EUzWpXqQ9D4KrJeH0rozBsE+vlkE4Lhi27W2X9TA8 +gTMXHxvfT3oCQUP55mn2EHix2qzzd34InCcJC/orFQq3jcqv6XWEwvW8JyME +RmFQWi6TnGc9DLLEs7m/DwuHctEOXJRCEVCIRcfvT3cEVFv0i65wiITc2esD +yqxPYe5M6YWud08hiTy933WPKHhCYCOJSjwaKkwvyf75Fg13pwd1OQxiIP4o +fsW9Ngaa7UmMM56MhZ6PuqxJfGOhn2z0hMFSLByqLjSkvxIHS24XGWs1x8F4 +/bh6OvF42Fw3kuWYGQ9PY5PnXkwJUOl3bSB6mgCrHYRz+sgT4b1zhy9kghNh ++mKZUzhpErREqvFToUnQqbB0BB5/BvkPRZ1akp9B3zejzO78yXDmgGrGpS4Z +fo/jv9Z/8Tl0eUHnkzDzHGrOkPZ98XwB2X2vyrSypEA9ZnmhK/Up0GT7XXyu +aSq0yZj/PkSeBjvYL/P8qk2D+4+6mpit0uHurHz3rVMZkKaGcG569H+e5mEz +upQJA+PF1NyLM6Gynkj6BE0WbCdRy498mAW/cHOdSf+cBU/ON+mcVs+G74LM +A5lqsqHi3/BnyTw5cE1/r6w2IQcK0taqeVLmwvVRifM7/rlQOO9+g+JBLpSf +E7a/4ZEHMwPPalns5UGhd89qrR/lw7inAi6ehAXQbaWxqTi8AIoc65ekZSmE +3V/mZ17mF0KurwqXXssXQY47NhYCg0Ww3epYCpNtMVwmfTb2grwEirAIefYW +lsD8Hw8sm3RKoYp+OkHITin8bRMug3PKYI5/lfuhQTmUyXV9N0FRAZNO3apc +ba2AWuekSwpwJcyjbH71NLMSLoeu59URV0GJKatV0XtVMJ2dXp9w6P/sRvlL +SbEaytsGSu0XVMO++JYZRZYaOHacgY4prAayLXyVTzysgbQZs+J9LrVQJ5qY +s2etFgo3zLzIuF8Hj5OPJd5aqYNjHXdtmOxfwhyiwOFPmy+h+grlv3rvV5Aq +QjSgl+I1bND9Z8aV/BpqpVAw9onUw5X29aD5lnqYPyXI5HHjDUzIq8/I2n0D +N4hPerskN8A7d8kCyGAjdLOLIbf/2gjjbU6stcY2Qdo+4xRWlWa4cqWb8OlO +MzQ8lpstXfEWajuWv2c83wKf/PFraEtqgTol45pVf1rg18tsSz9NW2HgxIj2 +k3etcPltYkzo2TYY7DTLTJzWBv3QyRQS6na4sxJ8NtWnHR6DFmoTv9th8KvN +jF6bDrj9s8g2cL4DSj43FqW/3Qn1hKQHgr90wpoXfakbZu/gW+mPF+8tvYP8 +GhMbB/ZdkE7LV6BpvwvStlJ8eRv2HpKx/ApiOd0Ne9cD9seruuGUQGICk1bP +/56lzfP1Ww9MfLC6djO0F94SaeiIFu2DjSP760mjffBLwppyqH8/7H66deLR +2Q9wrr1KM2TxA9z7p2fcmToAiR7b8hSIDkJavbcj7E8HYZIP7+TI+iDcviqb +NnZ1CJL9ixmVahyCGo+fh/3hH4YP111Yz8cNQ9HJ7fN7BCNQNDh19bLzCKTb +yEq/tDQCb/Mep9kzGYXj47OGtmOjkIRKbrdS/yNk8H82NDX0ERbXi4scGYxB +5chzZcITYzCyWdXR3nwcPtpd2JpZHYcBhn9EYh99gqFk5g8TaSYgi3xsNkHO +BDxq0yT+pjgJ2yZvGN/6NAl91OwWPTw+wxsG63d0T0/BX3wkTLvtUzDHO/zt +E4dpiIqkK5g4v0CGmeqGhuEvcMb1l2Zs+AxUgueKr/POQj0SxepngbMw33F/ +gGlpFgqYjFjMaM5Bu4ktdqLqOTiodZ4g8tQ8nHn273ZEyDzUqTi/TLszD1sb +NFL4rRdgjxj/xy+TC9Bt946O5pVF6K1gxOrRswgnay+Xe6h/hU6ybxdMOr9C +LdeUbRmNJXjaK+8JU98SNGX7mE1z9Rtkq+xtPTvzDXJ5XuuOtVuG+r+Ojqsd +LUMq98rbNxO+Q8sK070V0R8wb3Ygjqr7B5zosrHos1mBvOePs2tQr0Ke2dNb +MTWrcK/LIqvF9CeMzVOz/EmzBv++HaeSaF2D9WlCK2ke65D9sYqHMNsvuDqx +3ifl9QtWlvIeeU39gl7M8jbUyr+huolE1XbBb0jLFzyqRr8Bt5s5uCh8NiBz +n6zs5ZUNuOJsxihgsgm/+j45ljGw+b8fUvW9v7AF/Vnn79Q0b8EPZzqBg8I2 +fOhnK0RTvw1tlwaM0hV2IFtjjLX02x14XVHz+pz6LnRlpU16NbQLfzUtHHXf +3oO8dkZzZ37vwY/NHPu/gv9AieYmPzGOfUhBrce1U78Pg+8ZkJoZH8BF0rAx +/78HkG9/qdE+5y9EV1MslS4fQhV2blKaw0Mo0Gl9Y7XiH2Q1p6nesTqCJCfH +XHjoCdDp72nye44EiNBYtZRyhAB5kN3gvCtLiGJiNqWZ0gmR4YHnrAg5EXrJ +l2hT40yEcMSpe02zROhNEe3H61eIUYd4zl5sBzGKMDB89EiBBIWkU97hqyFB +tUYK9GnipIiJ+JzuTikpSmE1UFcWJ0MXnO1CoqvJ0GYEN/WmPDn6fkpf3reD +HE1J586p6lMgAyPai9cXKJDXkBtPnzslYqw0T315nAqZtZcbnymhQl2b1p5Y +8xjSN8lMpvh5DL0Nv/sxNZ4aqWk0DjEgGvTXoPllwCoN0g95KUuYQYu8Xpom +FhkeR9ftEgcvUdChhIdXzVat6ZDKHS+P7m465OrCZbkmRo/6SN+02iTQozqZ +NS/1Q3oUn+w9mGjDgHxlxK5bjjGgTaa+/Xb1E2iz5CxBa/0JtHD1CvkDCUZk +qWpB87GAEbkxkztQ8zKhd/aPf/BkMSGOHrJsYR5mFPKHlONcPjN64Jege1mM +Bc2ITMbFvGJBCWqxVccunETTOQlfhz+eRCfIfT7/uceKOMku1yUQsiF/Iima +16lsyMFOe89D8RTS7HtK+XP6FNKYLL0qEnQaOZ7lcdIQZ0fPPyv63JxiRxNa +Kty+URxIhKoyrkuNEz3P936md8SJHhQ0qbHe5kKhbUul7S1ciEhWpqeWjxtt +JE9L7odzo49uAj1Zm9yI8KZ2X70pD9JhcXqn18eDsjOS0lwBL/ryMi9atoIX +Tdb5y+Tz8aHAWp7goVQ+9Me0d6SbhR89bpP9lJHIj9puL5feZRZA+UMuw8Iv +BFCw8U9JQm5BxJanyXlYLIjOcq/ePCsnhF5I8rOWvxdC7/Mn9sNMhJF8nzDb +p01htPZAnKIsSgQ9EOscZBc7gyRS7Q7xwBkETGWThV1FUc3nVvHfHGKobkzn +Y1mfGKK9Pifs7iuOFI18r1tKSyCa4gessWsSSKtBaybs2lnE4OSXRPz6LGri +zNhoOyWJlApPBH4MkETZYfJCl35IojwdNSZRw3PoGRQbjmw7h8qyy6DXOSm0 +M6YWTZwnhZLtNI3l2KQRzRvqCKE4adRF+Nd5kVoGkWfPt3iHy6A2D5FQomPn +0ZUZCZWQqPNIMDR78DSTLHKL2/L7mC6LqIU/UXackUMeRH3PDhrkkAz7q85o +XXnUSZeQm7Akjyz0RZs4AhSQXN8CgyqnIsoSShRgaVVELjJ+fyqtAEruVKUT +pIOo32PPNaYJouCxS29JHBD6IVBFk8qH0cGjJgaHLxhZi78O07qshKTVxreT +KpSQTO48heAJZWRgTaRD6amMMI1cmtacMsp1URb8q6WCmFhD7ITrVZDvZ6ZL +80KqyPl57opMiio6N5k3J0WnhvImLBlXQ9SQlKJMnz3RBWRamVnd53cBrc3U +jTITqCPXL4Z5poHq6EZI4lEdpQZaoxIVlojXQFOkv0anOC8iXk8L/uGKi8jz +4HIFj+oldNvvgff8xCVkTMVDK+Ciibybtc2IGLRQTOLp1cgaLWQvRVjy2Ugb +icgUspIS6aAeSxpFrgodFKWalqJmdhnFq9peDWfSRSKqrrRUA7pouJ8k0F5d +D73IYw6JKtBD78cYNDeorqD99NArBY5XkI9j78OGT1eQZ8rHCaCqj4zgeUKF +Sn00U0/V3MppgLKJSOBCrAHK2XInLSe7iuYZ/A4kfa8iou8cd/z2riId84Dp +fFdD1HFT3rV+2xA5fExIeu9xDWn//su89O8auiVz9zxf6HV0Ub89K5HRCJX1 +5Lrq5Bqh0tG3SrdljZHwYDbZTL8xQhV2KnPWN5BSZep3L9KbSK53wb41/yYi +P3+qs0fLBFlbwztlWyaI6MhNxT/rFnpzdHHlhr4pOnzfZG9Ifhsl4ir70Jbb +6K42cwwZNkMtHPcL/mWYoUkOxUp5YnOk8U1DtNPGHLUIU6yVD5ojTrlwNlLF +O+jHqPmZsYI7KCUq69dZFgvU+GMmji/MApUXXExsObRA0bfejDO63kUDXb+S +JdfvoiqSRg/BB5bIifmCF/mqJdrcuU22YG+FCqJWfvZuWaG9Ofxg1McaOfYU +Cx+nskGNcQcw+rkNkvvALmUjeg9NvW8nL2+7h17/4DrnamKLrB1rs4f/2CK3 +Cb6uzy/uIxkn0af5+AGSMXpmeWn5AUpyN9D4nGCHbLvjqh9esEdmFgS1Ivv2 +iP4lxfLJGgfU+Jrt7Rk5R8TRfpmD4Lkj6p6ubWX+64hyRGSFfMydEDmfHbdy +txOaQL4DjlLOiHHseBFbpjNqz0WPdI4/RAQMufdPBjxEbM+s98O3H6KtEBOS +ugcuaDFEtDN/yQUJ7kZNOFq4otL8p8p8C67IjHv8zrClG3o1zXHs6YobYi2K +cLZycUcjOdLIicADGfGVPW6J9kC3P2e8s+bxREoJnqSPXnsirXXealp9L7Tl +Olgvu+6FlG1HnxyLeYTSXyUSZ0p7I7d7YWnHpr2RJ4PaRcswHxQQnerfIe+L +FBPmdJXXfFGkM4/uVr4f2u66YHgg6Y+o/O4zVMX5I4YJm6eF2/7I9LuX6vqN +AHRC9ylRfFsA8pdmX8kSfYwk0gSdRZ4/Rk7qvBaKFIGIwYxsfsEzEJVZGNlJ +rQWi5qt6s/KWQYir+siFfCYIxVmFvyu9GYzySR+MKHwORux5PUdtt56gK7nj +LNcXniCPOqRP+SAEKfrm6K/uhqAJAXHREyGhaOGc4N1Y1jDkfJi95VURhk7J +Qd3Fi+HIum/x9vzXcCT2+HV0+JMIFDSw1bUhEoli5DddJEci0U65Ytgtv6fo +5aVC/yiJKJS2mGIxtRCF2He1em6nRiNrpuO/kkVjUBjdU6nzT2MQ2+9X04y/ +YpBMfdh9FcNYdIX0VXFfYyz62RjX0CoQh66dPGQ4Gx+H1pRMvQWI4pHkUOmp +2ofx6Psjf4flb/Eol1fSYMQ0AQmUEREGf0pA/hO3GGkNE1GcK3Ok32giijz7 +tu/HtSQUd+9YjvlUEvp7Cavv3H2GYgPKbzT8eoaG/17aavdLRvbr4Dkvw3PE +Hf1cba3gOWqdYronp/wCZU5/2mT+8gIR5BvpZvimIJOUS1bfeFKRv2FGPmlv +KvIJzSChd09DFHfJ/3EJpiPHcdU0nc/piPFMk3dFfAYaOHfqq4RQJur14OJv +DM1EoX7zZWErmagtauAwTy8Lzb4TXuR4nYUkv608JuLJRrEu9Xq3o7JRT9Ak +m9ph9v9+okreYp+DNAYLk+bnc1BmfUZ+g3Eu2tnVtrs5kouU6Ox7h3TzUDI1 +8S2JgTw0fyXWNfhKPrI1Pxz4OpaPOF02Y+7cLkAeLqaXaFcKUFzxz70Dz0L0 +6mERHaYuQu6mz1xXsoqQNLl9IJNiMSI+YXx8eLwYoaJ+2/MeJUin38HK6HQp +kjqiMLzcUYruh8TQSjiWIfOJC5v0XOXIzn16jXa0HJ3vanmEIiuQW87ZERO+ +SvSqV5eiP6gSldvk7Ht/q0S1lz8weWlXIVKNQKbhmirEkHKHPJ69Gmm1zGv3 +hlUjXSu1tLC9auRyJo58+l4NYoGlW6PTNWhFxEw44Gotipd5+v53fy06edfQ +UFazDi0V36y7012HjB8elwrWeok0Rkj9KwdfIvZ3Zq92jF4h+QY1M9vFV2j+ +g4kjx8PX6DuJ/WUB0nq0OvNnNPFFPaoq/3U1QOoNOlx7mHw48Aax8Bd95XRs +QErhaYT/TjSiJzsKUuUNjaj1wWV1DesmRFCdGTXL3IxYbnKvxPY0o6oWvu6H +j9+i/pzJeF3OFmQi792f5NeCDlhHC07PtyBzL72QNfVWtGOjwsVW3ooq1N54 +lLG0IVIdhx8vA9uQW1Q134WNNtRgZydubdGOOE6K2oiOtyMnTumoXJ0OZBRe +8GbmXQdiyam1XlPpRHRDw05zrZ2IqoearUf1HbJ7YETx5v07NBL7V6ddrwu9 +Fie12fvchc4wvlN+YPse+RU/kD339z2q/pd50jS2Gz3zOX+GRKQHRb1ZFZN/ +14NKMpVuMlj1Ijrnyw/yKPuQ4m5HCkVVH0pX/1Gob9KPyiOrJ18c+4C28Hei +P80f0Htxu4BgtwH0ceVtjijrINpACT/VPQeRSb1hWfrnQaRKckxJWWkIlY85 +6IOCIcRL/mM+jW4Ype2uhrp4D6PT0hFiAz+G0ePpgk+NN0dQ3h7pqvbACBK9 +cYc/+sIochN+kRnfPIpuaHyZsFX4iHK/blbw1//P9MdWHxXGUP8tx8KIt2PI +54FW+A2NcdSy2xZ5dXgcPbcUz4g0+4QER3l5mDc+oaZTHD9IQibQi+pzKnac +k4h3aHzNomESKco1nP134zNqOizquvLvMwrqDNt2yZtCXz5YBPjqTaM41cdv +go+mUZBU5qPs6i/ofIWo+M97M+hF/aDVW4ZZJNTv5vraeRbZWO+Pr43OIraG +2N8O8nMIiUS6XsqcQzpM5+6FUc4j5+UKfuQ6j5JKqG+4LcyjXWNRGuWrC0j7 +4peMsq4F1De3+6EXLqIQMu+6kpeLaP3awIdb576ihfo/exuVXxG233bzPreE +THaPbR57tYSeyCsH1KBviP1Uf1Zw9zdUQpirmnh9GdUG0XZtLy+jqCo9ggaf +7ygUmiv8YfqBPpBXyXdW/UDkWsRY+soKml68RmWytYKCWOem9VNW0SBgC5BQ +/4kcS6dUKbd/ovGwJMK9gjW0lxPFx3h7HQkHpl9VpPmFggY/x5y2+4X8255P +KQz8QjXP+lNypH6jMsm0x3df/EZfKZWeRRBvIAunFSlBhw3kYdpDoT69gYqO +E3Ls6mwive7Gj5daN9G5Pd01HdktdIn4ZtCJyi10gZWIqeTMNuK8eNafv3gb +9YgvUyWc2UGKKdnmFJU7iMWm4UWC7C56/HtVTqttF1G5T4phvT2k+65oKnBu +D82FlZ4Wc/uDdl+wAl3afRT5cozoqGgffdnTr7ty6QCtBjqz3Fo9QAZvIhxk +4/+iy25uYbvwEEmWlNXXrh6iqZnA2ScZ/5DAlq3dk2tHaHhYUHKJggAX5QWd +qbchwCVcDqi7hwDvt9IO8UoQYreDpRdjiYSYZb0+b/0fIa564qbrY0uEW86c +0476RISjLMULJS8R46S8H91ujcT4R4SKi905Euyylvyev4QEh/w+fqlSgBQz ++X2YZM8jxZX2Bu/9BMhweOVY+7diMhw0+Pq79TlyPCZI2M7QRI7dmVc0DjQp +sHP643npKQq8/lbPacSREgttsmiuUFBhG94sEJtLha2inidOqh7D9msB3NNL +x/Dy9QqJiqfUuFfGNNFajga/HRqvZP9Gg50nix98f06L3Y12VRb0juNSNWsu +BjI6bBc5QrJgSYcPWR/a/e6iw4t/mrs0RenxweDg0N84evxS7GIq0196PKql +GJljzYC5Y6Vu1X1kwK8ozvPeUD+B+wU+aWfVn8D0nOZ5LyQY8Srr3rVrhYz4 +S9LM6iIvE97Uaja8ns2E80e2vzbzMuMQX/IbYoXM2DOVfKJWggWvJnHuWr9h +wf4ynK+NL57E4B57XNrESfzyr5Cjhj0r/h1GWXefjA2TnqRHnNlsuKbrn6W7 +8inMubVBHr54CtdLuT62iziNz+dFvpE7z47p9n5wEH9lx+HZIiWLzzjwYD3X +yvZlTnzgxH0kSMqFn67F6JBZcuG0EG9K3i4uzDpdVBxxhhtHn1z8oxPHjf0n +Fhk8DrixUO1Fq5PWPFg7LLoBfuTBBkdCUrsXePGe5dOLV+t58asrFqN3Jfhw +gUI1rXwhH77lwBM7x8uP20o1jR2y+fFu2bHeTV4BXEy5X+1fKIBP145dFDor +iAt8mc8dvhHErb89ghguCWG56fL3jyaFMDUB/aG2gzB+Lmyd/IJcBPfLtUR6 +5ohge7ObmkcqZ/AOa06b8tIZrCClcP/6U1H8+u4p5etyYnhoobfX6JsYtr6T +xeXyQhznb51aar0igbPKr0uUk53F37mo/lRZncVsLJxx++/P4qPpatYkMUks +k7pNE58giWvyhHUJ/kniql+tPD/vncPLztnn7306h60uBeUGXZLCYWV+27pN +Urhvsol/Skoay4oZFiqUSePVr1fu+wjL4Avia59fFspgF7a/P/6InMfUGUH0 +NyrP497UdMMVOVkcYxKg29Yhi+tox8S3DORwIId2S9KSHLZ94PKwxVsew65v +ZqHMCthPs0mPrFYBuyYYtuobKmIybv+1J/uKOMiRYKIxB2B+Us/Lx69A3FbS +9vs5EcK0Oy9VPV8j3KzmWtrjjHEoT6LK2Ekl3MUvSZ/hpYRfdrmvD3xRwm6b +L+M9LyhjIyFZ1bJyZeybX/zJm00FTy4d9OyHqmCz4gBphX0VbG6aMXnZXhVf +ppyQ0fmqiknd73hp3lbDpxcls0ym1PDqQbrTC5ML2DvlWcSp2QuY0NXFec9K +HftaeiRr/lbHLcfJ7ov6aWBi3uTb9XQXcVVUGCFt/kW8Od5AcBFfwm/bRZSf +TF3CAik+K8s+mnjLtcA3llcLJ58rms/u18Jj1xyplL218U7ChnmshA5udlEz +a/img1PggNxy7uX/P6enWyrWurjnr6u6N4se3i+XIzntq4d7s7K0n3/Tw8Oa +E19orl7Bkn/cqhLar2BISkiqeV4ffzAvdNcq1cc8jw3ZXvMbYEEmjpDKbAOs +0AL+XOO9itl786wGCq7iwyTDFHzWEF/ucL820GiIbdlD7xXqXMM1FTETO/PX +MClxCdF37+v4F/XPpopTRnjY9GeY71sj/IOH5mWEjTEW6amPoWO5gadGPydf +6r2BOX+WVLsF38QCCWfMPl8wwXUEgYfN1LdwqHM4od3kLWx1dItbsMIUezOp +lZ2NuI19BCMYHGTNsOzrpxZqZWY4zV/VXkPQHIvLBZIW55nja7cmPmYK3cFp +1XPxFpV3cMdmtZgYtMCexbFHigMWuCedh3rY6i7+K2ksJ0NiibXI7kRUFFhi +pdoPztFXrPCd31rHhIis8UzIWfuhems82CNH8t3DBudOd00P4Xv4vSQt/Tat +LTY/8YijbckWPyZaulnRdR/z7S5YKVQ/wKPBHenL+Xb4hnpDvka+PSYebvv1 +s9IBN3MvFzZZOOL3Yn8HtLcdcYHo8zLfp07Yn/312RpRZ/xG0+a63ogzHnh9 +K7Et4CH2+HlX2UfOBZ9zk6I62HXBFmWMD5tbXPHR3L6Rfrwbfoif+Gs6uuOy +8lQxNSMPbGQn17mk5YlDjDi8FrW8sMmcHOmB0SN80sPcduuhN65YdOgpSPPB +zFmuqvtjvljXieaXA50/dhqN1RJv9sfb7mzlKq4B+E/84yyl84/x6eJTNzsJ +A/Hm7xfmHp8C8VY9QNQNQZhXfFYeFwfjPP4Vgan8J3i2dESuoSoEr1KCH229 +ofj5sfSN5e0wrBQbry0lGYHfRk/p1PtG4mqza8O5M09xPpXYIynDaPy3aZjQ +xDEG07U8GutXjsWVQxZzFZxx2EdsJ3WAKh5LWuXIUJAk4D4FLTdV6kTMRlnY +4cWXhJvKh8Rf6zzD6o8JIljCkrGKWH9x1/hzPFWGc44ppuCUl8xnQG0q7hfu +putWS8e7UdPdCmsZ2LKsgJZtIhOHTNzflu/OwisvQkLvv8/GcUJKCmXjOdiJ +bDOBdi8X8/75e6dKJB8PJZf/6HEswLIlxTivtxDbMPCUZIJiTGjgJSrTWYKv +5ZIxblmVYVul5Pow3grcWXG38LZvJa6PCLRHXlU4trQlx/JJNT6czNdeyanB +qOGk+N5ILR7lNGboZnmJK4jY+SodX+EnH/nNmWdf47zBv/w+1m8wUVbgqB9F +I7ZzEH32saMJJ37pUTFIf4tjikNL3XpbMAPBH+Zbn1rxTD0X6/5OG/4P75K/ +0g== + "]}, {Automatic}], + Editable->False, + SelectWithContents->True, + Selectable->False], "[", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "\[Equal]", "0"}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + InterpretationBox[ + RowBox[{ + TagBox["InterpolatingFunction", + "SummaryHead"], "[", + + DynamicModuleBox[{Typeset`open$$ = False, + Typeset`embedState$$ = "Ready"}, + TemplateBox[{PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$282924#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$282924#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + + InterpolatingFunction[{{4.23046178224774*^-25, + 0.24395920510017832`}}, { + 5, 7, 0, {1501}, {4}, 0, 0, 0, 0, Automatic, {}, {}, + False}, CompressedData[" +1:eJwNVlc4138DtbIrMzujFFFWpN9nfG0ie6/I3utvFZK9RyF7h8oIWQ2hSJrI +LGVlhCQjNHjfi/Oc51yci3MuznME7bwNHCnIyMjI/4/PB8jIvvW8CKmwniJx +EJys2rtTpLGvqRztedMkAXH/BHGlGVJb/Rn/oR8zJOq4BvK18lnSK8fbqU8u +fSWxx2p1XBGYI70zk8ty/TZHMvZ/EtP/cJ4k7qh3Y+vGAqlFv95SyG+RVFb/ +V6Xc4htJu7A9qldribRSNUlMqy6T1Awb6lQvrJAKXi5JaJt8J/lU9bkbeq6S +ZiW1/FpTf5DWHvZ+97ReI51UbPNn3V0jRaWLG0fk/SSVuzxIXVVcJ7F0/RTL +/LFOujrGbFJbvkGq51p2Cbq0SWpr+kYjLbBFKqFvl+H/tkWS1x2yjXr4i/SP +riG14sY2qdGZw/a97w6ptOD4WW2LXdKZSUMFL63fpMzPV6ujVf+Qtj69uDun +8ZekSd2d+834H0lpPFhoxWOPdOhrscHF1H2ShXKMrZw1GdD8yDM6vkMGIjmy +MlTzyEEtXU9mvSIF+Eud9tXwBwWYvmpU7VZOCSjieFWkL1EBI+MQ/SX+A2D1 +vMKHocUDgJxuHco9pAbCGoIpxjdogOuZHMdQX1qgVu9zfNucDlw+xrXHpkUP +sk31OEVUGQCPiVBljAYjCNb/QRVrfBC8rIr9GO1xCOSSbM9OpxwGmTb7H/as +mEAXjTKpZIcJ/Al8OUiXxwyKGO/m+ymygPZw6iLWHyzA0f0KuUg5Kxi+Jy/w +3ZoN5DqQFZTxs4NTsx3/JS6yA4Eidu5vbUfAcd7S5AM3OAB5mbSHqC8nWF6Y +Yi815wJ8TgfbH2tyg3vMtrGvVXjAsfbn5cIavMC5wsNXyJgPcBzayODzOAoS +JZI5AlP4gTKjnEavlQDg6T1d5LQjAJxqXrC8yxUEEV425WcVhYCKiJnZh1Uh +MFF53Wyu7Bj4FUH8q7I+DsImgxcs+IWBJCVkV1gUBvv0xE5+2wkQEimZ0px+ +EpQ9nf9vxEcEBBABtFrmokCpXDLMTvPU//Pf2/JSEQP/GKvLetTFweQ/MPnU +6DTop3mq0+J+Bqy0H/tLnyIButRE29OsJEEt+wTF6R1JsNyUZngzVwq0iC9W +/1KQBuP/olgzVqWBzym3+rIyGXCaTuqTnfVZkPnsqwwrvyxIvtXUurUgC5Qu +eo3qtMmBoKD3qY7p50DN9abQKB95oPjg9N9Ns/Pg1UgkptMkgUHZM04sKgDI +Ko6VOapDIGBirWNphMDJ9AV6XXcMmKZPzBQnE6CZcVzazEoBfFnTdtnYVgDk +qceyTHIVgbWKcnObghLw/Jfw3mBVCTBuyNLZlimDIHTwEZ+1ChihV4l4fVQV +NOaKWlYvqIL4S+Wt5G1qIGw77AZ7ujq4/jU/VtJHA+gS9D+LzC4Av7+U5PUX +NEFG9spos7IWIBlr3T6gfhFs3O1/um2oDYLLvF8uuOkAzcysvrPJuiDZUvWu +gJUe+Gkc9e7hth6YPRs5yp2rD+oafTquKhgAleNuySyrBuD+v1k7vjJD8J5n +KHfMygisNt16H3XUGNyny9+3XTAGivhLTlOrCXiyB7J60kyBynzBjc/eZuDZ +JP2Chpk5aGRq6ja5YAFyROY0zZUtAUmVqqpCzQo83sySzDS0BqPnTeKuu10C +ZYPejX1JNqBH0kvgm6UtKFAKlb2+bQumK6u5J3MugyZ/n1dQwQ44eR/XHPxu +B86o+7d/LLUH+yUxVzOsHEBF+8RReNQR7MzQVhxZcAQ/F46GOLc6AZpEuryA +NGeAIlsLE71dQHi6xJd1U1egfjgj4Z+GGwie4+j4q+QOShkpq1XVPECbVG25 +pKEnEDXIV+dy8wJq2c0Fl5K8waMEw5wGSx/A3yRfqLbtA7Smiy+V5/iC3Til +kT3CDzz71EZ787sfmHozz5lT+h9Y7RO00rHyB2mCR7w3+QLAWaH/tN7MB4Dv +po6XuFsDQVrWfLFwWhBoaFq+d847GPDqBI8UmF4B4pslurc1rgLavuizJUoh +QLBKvX5ONRQA6yOcbw3CQPQ8pmt0vQb4PjvFbySGA3mHLaarltfBTFXbgYPb +14H69KVy55wIkPBtfqaTiASvnU6+1P8eCfKTQIBxaRTQzriD6ayiwcBnpc4a +vhhA3z2+HjEfA4STGpTetsSCR3wfKodT48DUlfMPv3rFg3C2ufdqpgng2OPP +R7Q0EsHEe7FqZaUkYMc02BKjmgwe+Q6kuBqkAMV1hTearqnga3FUQHxiGsht +N0xUskwHIjx/vT78SgfBtxcXxXJugLxb1muRxE3ge9Annvn7TWB13W+QpTQD +2PzmEuq2zARUP+xYHPmywGo3zD83nwWWwyhFrrfcAj+Ovq+LSc0GH9+WvLzh +lQN6JwNerZnkghLbC5M/1fNA8hbjsQXFfDCiXPZUWLUAxLh/oaI2KASPfUrT +Z12KQNRHBge+xGJgleFFxWBZAqoYKMdzf5UAChEksZZdCuSTK/dUiDLw7s3N +CwMrZUD4TpJkf0k5GP8TQB1ueRss6wc68vFVgO+CBSrf5ypAr7jlIZmWSmCd +9bFVNrUK6NcKjmOvO4Cz5tSLPJO74PLU7J0c9XvgvqxIQaJiNahGbb09KjXg +syoKK9OvBdTWtiahLnVAOH7fsDHhPqCYVQ3/YFEPSgLfKtv+qgfyrlaBTdkN +YLW36yAN0fj/3U5juLHSCPr2Y9NSSh6A4swny+ctm4AOZdjDYd5mEDq6vVo2 +1wwYM9u25ppbwFjYVtdcSivQZ3uytOzZBkwDKJ+rmDwEjnK1/xHqj0BWctiR +M4qPgc4u66CjyhNA8ff7L6zfDmgehPGxuzwFv8svqaondID5u+O/8y06Qai5 +5f0TvzqBs6Pa0+DsLvBS7T5fH34GdhKc3umtPAPl0Q4/NEueg4yu7wObFt2g +cz/wUCpvD1Ce0c0zm+sBNfU8X3KaX4D0If63WSm94Nue978cz5eAU56sa9W4 +D9y+VEHMq70C41uMNwcUXgNvv+bPB1TeAMrENd9Pem/BiOfuXK3zO7AoIio/ +Ef8efJgTDXKw6AdlDTU837f6QRvXH2qUPQD+HPA+k4QHwYlIjptMK4MgRua4 +Hm3JB+AeTvfwvsUQcFdxcFDjHQaL+LbaoblhsHMtulereQQsZ5mPq6aMgjeu +iFnNcwworwl05hiPgy9GbxhT1D4CXc+RQwEKn8DD2wVLFcoTQGhZZTVI7zOI +if9wX835C7jPYiPuGz8JjmXKbYpbTIHQ0K74B1tT4HXUVT3y7GnQQUGuoI1n +QEhcmUn/8gxQonvR0FM8C1xeHy51s/gKvr5VebzHMwemv21uPP86B67+WW/Y +a5oH+k/L5reSFwCV/vETGx6LYCfXsVPJ+BtIYhf6JKO2BN6ujidzKiyDgqS+ +HVXlFTDNvezOpvcdKOwzhEw6rQJZKzIh6vgfwLRx33fLfA1otub+urK1Bl6W +dOf13PoJ+EmOBofxOmDLpuFNX14HdpSabFHFG4AoI0sUttgEazmcrK08W+D8 +lGLZla9boFXIubCh6RdYv/BnsyJ5G3ysPw5LPHaAoNS7rhWjXeBeUHnvo+pv +sBTAwfiE+APUj0HaeaW/4CXb7FK97j9w8U2ZerDTHqgkO8iVH7cPXqOYtXZz +MthjI+uosEUGRzzH5xJukcPKu/mOA4gCMtSpzeguU0Cpo/VBCsWUcIhs4r8p +cypoWjbp7s1zALoeTdKX+HoAUv2cSnBoooYlsvZUJsk0MDUGG2p70EKdRovu +W0Z0MGDOPCRClR7K76cm2xAMUMR5kzNWiRFyDIm7a+sehEPL2ezMToegzJ9o +Zsm4w1DjbK93rDkTFP8vc4h6iwlmL7ZJ6dxihpd1bl/JQCzQoM/m7uFlFnjO +dOfTvyJWyPC19FK+ORusm8/tOcnDDqdL+snnZtmhvr1tEEfTEZgS9pGNOpkD +urz2df/tzgnduRheKhhxweoVoC2iyg0zYxQOURI8sNZg/dQJJV44YfRy5ZsO +H1w1W/561/Eo7FJzYeiJ5YdiGT0/dMwF4NJqi8rbTQEodcj+GsstQRgjHJ5q +jISg5byB7/slIahWLaT4uOgYzNUw0DQxPw557NUFpriF4awDy4O8WWG4HjDn ++OrBCch/9PKJlqST0P/a0+gqdxGYZTf5ZslQFL6qvSjwXuUU1DsgfqMSi0H1 +GVn8QlEcmt5s9o7VOQ03DxU2KzmegcyTLdQWsRJww/S6D4e5JCT6C5ozNiXh +1qfR1yNZUlBTXPw2B5KGnBQCpLQlaXiWQ6IquEgGdop9l2M2Pwtl2RZDcrhl +oY6TnqPerCz0FvYxDnsgB5+ybss7JZ2DjvnHi43c5WFLwuhgpuF5qC6cvBmg +QoKdV/XZNTGAJUwdBk6KEDLFb24I6SCoSFcb98kBQ+oOH8ofMQT8E779c9JM +Ac6wqZ202FSAMroc3PlZivCxTfWjcagEg7h6KXWXlGBcDt8huSJleDbR7/gb +MxV481fImB63KrQuS+SknlWFOl5kapIP1GCORcHFI0nqkOno7Ufk7hrQPmlj +HBtegF91fvfxqmjCzqn6vO9IC576mOJCrXgRJknFXOnQ1oZLSjyW/g468MN0 +Fnl0jC6UpRPzv2OmB9kfNeYKbOpBZkdBV5ssfejQ/ncgHxpArlMa7w4tGcBE +sdWAjUJDWG07wxJnZgQTaSjl6LiNYSJ715vHM8Zw/uKtc7ONJjD6h97lF4mm +0IESjda5mcEIe5mZRQNzaHMiu+S5sgWcltEUvIEsoRGpLLxSwQrSJzqTWWlb +w7HWBYmDDpdghdIJcq4YG5i0xr3tY2YLudpnGBc2bKEMz6+2Y1mXoZ6SwJI1 +tINukuW5777ZwZdvS77UF9rDWzWQQsnMAQoqh2V2cTlC9ScbEb4zjtD8qdSp +W41OsPEdW1BgojPsVvuxaenmAn8fzF6+aeAKPe7YBbspu8HH3nx3zyJ3mCT+ +N1tNwQPmpeTH71z0hLz2LNSV9l7QbkKQoi7aG67K9F49b+YD3/GMXK/d8IFP +vbLoFjN9YcoyO6UA9IP0p8YcU7/5QZZQWQ2vwv8gn1vE+l9Tf1hfubRxhSsA +DmUIyZ+cCYA2Twf5LjQGQv3NhZQTiUGQd+4RK51bMCyKO/oLGlyBrP1W+szK +V+FC2inpMRgCidr8hnkiFIafE2TJuhgG3xP5n7H9Nfj6XjyVcnQ4fNgvsU9u +dh3uDyZv/bdxHU5Y7VvUZEbAipbPvDMgEn5jXZDW+RYJoUxNo1hhFGy4VT/b +ahoN353RMpLmioFMOdo/JqZjIJ/mFZa/DbHQ0/pVxUhCHAz9WCzT4hoPy1/3 +kS/oJ0DavBixNqVE+Cvd90kITIJ8rdffxBLJEEbtFEhdTPm/P7Jl1C4V9tyx +oB2LSoMa3UbRr0zTYeIUtTtpIx0az8rU+mTegBUlQedug5twZ+k92aFvN2HZ +GtXRbwUZkFri1bCfaSY8NFbUvMSZBcEL/6qb01lwwVqY9n7DLXjzwJOnsQnZ +cFWoyMjeNQd+HMk5dEM/FzJSfKa2UcqDvZ7r6vwwH2arVS+eIAqguYeg6Dut +QnghtDfdx64IRgxkH/SMKoZJjHL0GaYlsEFRZZpsowSO7UmTyWaWwueVswZO +oAwO19x8/3axDHI0EImVBeVwWOLdy9Omt2Fe8RxHOWcF7OPOsdWYroAsv0b2 +LjdUwtffnozJJVTBy4+bA5lc70CxiiReoH8XTlDazx5QugcXhGqHnoFqyG3K +Q92LayDnan6Lm1YtDB9086Czq4OnBRTYKKLuQ6/KD+mWpvWwdUPFrHe9HkrU +/jXczWiA514IeouARrhmLFGcstgI832ttu0LHsDkW0+eLJo0QZpI/hBLzmYo +cbOVe2+qGXYdTv3F1tACNanfbszHt0L54vncdpc2eE26TGxO7yFcy+foqlF8 +BDerS+2cwGPI9rX/uDN+AqOpXFRptNrhmLrHhbLLT2FjmiFvdmQHnE47zXnc +tBMGb9L2p6x3wojl9DvtGV3w0F+p5CXSMzg/W+GtvfgMSkpYOgoWPIeGNlkN +5SbdkDf04iQrZw+8L/ph+MFUD6yp1PzRW/8CEqYrh7Pje6Hda8mnbi4vYXnI +BEjT64P0L34XGyq+ghFU/T/pwGu48+21Cg1+A2fuxQyXa76FzqOvT4LL7+Bb +nkFh8cj3kHihXLJi0g+fK6RrGK33w+2WH/8iMgbggCrbvRrSILxr+Evh4OL/ +eR4Mfcn/AAvjzKoumQzBskQPlTccw/DE56UbrlPDcKeV8dvV+hHYNM59Wj1+ +FK6AzFkOlzE4EELSPq83Do9dY7z+W+EjPC4qH1lL+gT97BmdqtAEDJjYdFLQ +/AzNwxJohmy/QKeOx5JdEZNwTu2IaLPJFAwY+djFvT4FLQ9yGallTMPUkpcv +vUgz8FSZAOvbhRlol7WnXJA/CwUYqYu4TL5C8Xvh96I55uDg3T0d/qk5+JsY +mj1dPw/lE8y0tuMW4MwKE32P8yIcl3hiM6v7DYLOi5dLFZZgK9tHVn3SMvx5 +8Wa8OlqBSVnNuxMXvsNNmYpFD9tV6BjAhEwifsDnhysaw0zW4EDjIpj+uQYt +lhmr6TN+QgM63UVJ0jqkeXt8PnlhHZ6RL28yz9+Aad8Ks4aMN+HX0RhmxLEF +xZIPHRye3ILUoHRy6v4vOGxX4VYVtw1lPlVK+TnvwLycwmorlV24W+Zgs039 +Gw43Uc97vP8NsyJ0TZcK/0DGNdMTRX5/4aX9HbE27X/QmD+twVViD0b6M4XO +cexDTfxk+T4lGZIdUtWnCSdDS31Xa9n2yNCk+kzm5nVytFclFNxNQ4EOD5bc +K7tJgUCOgWudICX6UNgzTdNMiW5esjrff5EK4c1nmaLfqNDJC4X85xIPoB1/ +HzY+SWr0k7Kvm+wTNZKjKSmlTaJBp16RqVgp0KIswZ8Bx//QomTTIpD0mA4l +dvZPPI6gR+M8d1ZntBnQqfUy6zMCjOihxEbQ2x1GdE1HaGdt9CCqukLD9Lr9 +EEIcLP5p9w6j7sqAB+d1mVBBatvMyBsmdPlLbALQYUaMlOeeR39gRsvzF5P6 +rVjQfJx8N1piQTlRGnglhBXBY4NP/zKzocmYdJobNWyIPgN+ea3Fjj4527AN +/GBHNykup/XkHEG2e0N679U40Op5mnD23xyo2OSVZ2cjJ6o9mFi168OFmi+X +/1o+y43cX1J5P9/jRvlXOYNr3/EgCt4/I2O3eREDK/nDgAg+9PJr8tNmh6No +mvY89RsdfmTyWazgF78A8q9x7DtZIIBOkBVeZecVRBdvvA+cKBb8f59Fdnkn +hRCo+PPC84EQ+uBLyRmofAwN97I9+TB6DKVFcbLe8TmOzKcor7EfEkZPSZlO +RL0winJQU9c0PYFK9JMeWFKeRHY7wDav6SRy0dYRP+Mugk5qvxVVOCmKgrmO +VP1eFEW1hJV8Qv0pxHMxqIvzmhhiHf8TPqovjg67l7FviZ1GEXZ7N8sYz6Dw +4LhIls0zyAztbATPSCAWZoruAx6S6M9nmafXlyQR2jo10echhYytyjz21qXQ +KedDJTBMGk2TnNPKGWSQRt5JZcMiGbRyK+KRh+xZ5NTxap154CwKDhb84egr ++/8noN2ZfEQOXb32Kbm6Uw75HA7JXfQ+h3Q+Zeu7H5dHJdvyelZf5NGbXSHX +ucLzqK9aoVHKnoRapY1SPM8A5DC53vBiH6Dq2bfnPEYhyj6nWZrajNAvXrd5 +mzyMgirpr7PGEujy8uPz3lABPdoSvx/yUAHVKoYrapEU0a7U9aXfTxURs7VI +1B11JVRjY/DKb0gJ6TlWuF9xVEar203Un38ro427pnIdmSrokKZcjpKMKjqs +nTWUOKKK5iUtKp9cU0PX7+jM/hNTRy4u5dEBX9RRUUTTfa1bGmhUgbnjruEF +xFHUp/XoiCaS1KE8d3dSE0VUjj0or9NCKdej9MeiLiJr35EDQTbaKL6aWr5B +UQetbrx8/fCULpLmtrtld1APPeQ+U0uVoIcospZ3L9HqoxpHH6HUJH3Evyh3 +9z6LAbIxIt+cLjRA91G9gcppQ+T/RJt6u9MQSQ/paPCYGyHLTkaDD1tGqOd1 +kINStjFaCzzQn4xMUGrjp7+jiyYojgz8p5lrithdRb8y6JqhW6dtpVXpzZGF +8rUQgdfm6GZJhGDfDQuUGJMw5H7JEul/my2Qk7JChWYuc2b01ujTDaFYyiVr +tKGu+96l/xIajK/NfNJugxRvZ/Bym9sioUlXa8pRW0TBV23TYnYZvRHS0dP7 +chmVru/BH852qCZkmrtxyw55msa/bYuzR2XigmeOH3VAv/THWI48dEA6JgEm +DWaO6Ptp6Smuf46Is/1dtX+lE2rJmxlYMHJGDHNe6Xm0LujikUbD5i4XtDtC +dFy+7op+jV1qfaXihpqH69x4D7ujnxOcVtGT7ohaitFTqsUDDW7TLRpmeCLX +U5FJfEFeKEmMKqvrsje6+sLO6ZGoD1p41/lSrtIHxZ+1WPc94Yt4NnIfx9/z +Rde52T/lSPuhja/nVzqf+qE6delAAd3/kEzKn/XR2f/QTGLTCG2YP+LjP549 +zB2A3MquPLjcHoDmGC88GXAIREwF3ZZazEHI9YPspa1nQcjsUeuj7SvBaNvk +bEGI3BWUbF/lVr1zBQ2Y3Blq7LyKhBbR+NPUECQJ/w38swtFAQxBYcUoDI2y +bdENH72GrqknCgxQhyNqweC13q1wVLkUULgdcB2BlUSJjs3r6OAFXRnToAiU +HYroPv+LQKGULJte8ZGodzuXX5wjCjEfbak6ey8Kxf/IKL6rGI3cLxzlqv0c +jUqcq8TtrsUgofm3ZN+PxaIDGUWDfu9iUfXnzX9c1+LQ2Xc81PQy8YjSt6HI +/Xs8Cmh51+RSm4A6RgOCxf9LRMjmgtMsTkLuFKn6j5mSUeiNK16zi8ko7sKA +VXJvCvq2Oi69WJOKjokUxJ/KTUPN7zoUVdTSUX07v2/B83TEHVtI9UjlBvLN +uEnzqO8GeneX3vGRwU10rO/a6vjkTdS/8NxO3jcDqR6WCPhFnYm0QteGZEsz +kYZd1VkuhSy0dEjSoHs2C2WK1O1ZJt9CoeNDJ6hJ2ail2+vTt5VsdLbhpIVE +RQ46N5l7hMw+F/Vzlz6PPZGH2Au2rH78yENG00xSzh356E7npWXerAJ0dv1J +kYJvIWIP1eqnNCpCVPbpkbmoGF3LChbg4ShB7ebP2GkzSpAJc0nEfZZSlN+r +wHPmVinqv/0vsJSvDA3rkR8UuVuGzmYJKUzLl6OnrzYcvr8pR6qVtH2ejrdR +Da3/o2iKCuQXFZ5mfLsCfdQsqqPSqkTttoW3Wn9VooVBloXMqio0snTQtdv6 +DiK/SM/pzXUXke+fFOv4eBclh947OlV6Dx343Nm+51WNeG1yxS8o1SCL+Gfr +qzy1SPb8xAHBv7UohyN/iHm2DvG+ETDY6r+PDgwMXyezr0cHWPXI5abrkWV7 +UOo5+wYkmLvqJPStAUl0Ztxj+68RvXTQvHya/AH627sZkZzxAOlu3N41ONWE +qIaoHpT1NCFR++3CIsdmtJrs3+pG34L+lpcyize1oPdiIhO09q1oZOKNhwhH +G7o6pKHxoL8NnZp3EvuQ9hC9OObM9sDoEYpsuncxnP8xenvynp/j2mO0GSEf +ndn7BK0Ys3+DFe3ouVJ/WHrCU5RjRFb8zL8DWc+4cEfLdCIFy8BJrfpOZP7e +sn5IsgupMP4NBM1dqDVk6U8heoYOaxz9zv3qGXLiHP86YPEcdW8885n98Rzd +WoBcvgndSJVpxaXwZA/aaL+2mfSqB/n41Npd9nuB7gVd8Vfm70VerNUHzQd6 +ke5+OnoV/xL9NKfU6FTtQyq71XWOtK/Q+/O3SPP9r9CgHy21d/FrVKZxN/aM +/xskJ7iRbaT7FpUe2YlhkXqH6EeCOfO53iNzPxHdG1T9yMqnMPRHeD+ibNge +otzvRwx5eqtLEQP/36kV0jPaQfRKcuLwnYxBdOzgm+rHQh/Q7tYhzNfyAaGF +8e/ftYfQhaiH07pLQ8j4gYK6U9IwovddtzCWGkFXI118lCZGUM1+22/D5FH0 +PoI3q0FxDN34McIQ/XcMoWUHx60n48ht6ceyZNRHlCbEcM5e9xOK9Hss+0hw +AgmlvpF3/D2BsjsC/mWOf0Y0t/XaQjq+oNNGtwW0ayaRYy8l5tebQjrwjPHz +t1NoxJCNS0J3GvUJVVaGD02juOSDfwatZ9BF4PlbfXnm//pD4F7oLHpJbn+O +g/UrSh1s2H9Q+xU1atplb1+cQzfLtwYO/JxDxcc+3aLMm0cC2u3fjmgsIPF/ +hzac/iygBuePtLxNiyh85UOrjd+3///JxjdWcksocXDAmiBbRhNK3MNn+5dR +1T/Sb/fKFVQXeOYfW9R3xFrBHHHZaRWtB+pURev9QEmCqSnjAmuoyrkmlblw +De1qXdKg5vuJpJLkooZKfiKrlaC5XJF1lF/TuevftI5G1b/JxqhsIGMxTorl +sQ3ktczQ2eu7iQ4XFg6iw1tonSqswqdhC9VYijRHm/1CdF6C2cVU22h28zLF +YvM2qqNnHovx2EESD0LEy0R2UVWIgZ7z0i4y0TjzkazxN7roeak+P/wPctKn +YHUy/IuYx3wq007/Q5orP8IuHNpD/HlPT7zY2kPsIv4Pzn/dR6GOn2ZXPMjw +vPqJQa9lMvwot5urw5McT40fZPizQY59FPjHFK5R4B8Flfn3GSmxXMK0jXMx +JU4NGxROkKPC951rV+QGqbCjT9jDDL8D+PDdA8XPOaixx+UvPctd1DiDfMBf +2pcGf1X05+oQpsUxD+j1H03S4rv5FT+1i+mwwMlU1goHevyOb5t7RYIB1+Pd +Lj1yRrwVNSFEMc6Iq4vrn0m2HsQNHOcKDhUcwttugmLv4w7ja0uDjw0RE14o +kmN2fsSEP8V5tSHAjA1HJ2s2O5jxrXMn++5qsGC2v+/fhgyz4HVGwiXRiRXf +4Pxw/tcfVpxTCSanstjw6RbaHY+z7Phphv+Zp6PsuLfOldgNP4L/yL+gUDnN +gc/L5pOCX3Pgjwq8DjbHOLFw575GUignFnCdzyEb5cT9RZ1s3dJcOMHhUNrH +NC6ciwVWNFa5sDuZuRCbDjduTvMhKd7nxk5FrbrDzDy4wMoqfTiAB4eeqkfq +n3hwtpZXjYQSL5YvpFTNvMeL+c1Go66y8eHHnzN3F8L5MOetQK2ZFT5cMHtD +xtvyKO4UPx6R+foofkw1zWmG+PG+v+JWRz0/Tj7rxvqNRQAzHtNw09QRwC9G +WY7GJQrgnnZR87JeAdz+o1C/+IAgHnK3vhChIogL5i6lakULYh3w7ip5jyC+ +knY+oJJaCA9Td6yhC0JYTAZ4vk4WwkXCwUEGA0JYXcr67siRY/jkJf57ltbH +cGSK35m528ewgfHjncDvx/DPDMVxtnPH8foT+7pnEcex1Nwrh+i3xzFrWvG2 +NbcwhvIdPoYuwvhh3fqiS6sw/nlGOL6M5gT20iqIoTI/gQUrJEUyqk9gef+4 +Fwb7J7Dv3MVedaOT+Lied2ngvZN4VcVyYpZcBNOHyjNlWojgudsn55OaRDAF +ZwRn/2FR7O7H9p+jhyj243X9oPdKFOs93hfJFj2FTfIyA1DiKVxEaf9WY+UU +ZshyNX2qK4ZjbtzXLm8Sw8ySSf/+covjibXF3v5IcfxuN0Pw+Io4Fg8Nz/hr +chrnizE/tnl+Ghu+9NA0lDqDN9o7aT+XnMHdkxmDFCwSGKmw5b2KlsB6is7O +pF0JbHwhTLzmnCRmM1nWz/pPEv/i2e2zrJfEoi7KLyhWJfHDAJnoFHEpjKJP +ae+7S+Ggw3WBljVSePhOpl3FdynMHCwTPiUhjX/aJ6sz/SeNWb+GKsu3SuOj +Ed9prP5K4xgqinPhSjK43kzzekWCDLY/+dkOD8vg7F7w/XLgWRwX0Xa/jFcW +e1MFnDv1UhY3B4jZH7sihxtN5jwfSZzDDIF0v3lXzuGyxue8V+vk8ReXPleK +oPPYPyRsf0GVhCX2AzMu8QCcUucZnr8N8KBl2rvhjxD7tClqqfUgHPPVMOVk +K8ZPtMtpW+oJzN3Dc4jTXAEbXF1hWv6sgKe2WYgtJ0W84Zo1ZrapiGfNOmXO +xyrhO5l/eh7xKmP0dV6csk0ZP3vcee68mQqONeb6Gf1PBYfnDt05fEcVtxqG +7VGaqeFQnZXllIPquGpHtf/jS3UcYqEfwpWogbVExc5f1b+Aa1dMv5zh18RH +z8oPuW1oYvl/08L277SwS7hdik79Rfyi1j3CMVcbF475KM8k6OCuXdlVskhd +LHbb7dm+gh4u8eInP9yjhx0E8s/qautjn3UXt5lxfUxp3Nm97GaAGcYuRqWR +GeIwd8S4kWeIlUmFW5BkhBOCdw5lfTHCEwm67sfjjfExckt39nMm2JP62MuM +ZROs/Xql8E2FKa7uvR606miGH6W/MRcVN8dB0rPv63bMsTC9zXbDaws8jkRS +nCss8fm/Zb8PxFrhfyMa9j2e1vhfdn3jpNUlfOkIbXW6oQ2+OET+m17UFncE +HcsyrbHFcq4V2+9kLmMW45m/NzsuY2x6IeOFrh1e+cnZk/LVDgdu2nYdvGaP +b6Vpz3nwOuCl5faewQ4HbFUlct7FxRFXNvZfNj3ihD9za7e97vs/2zsdWY90 +xpnCF5/tKLpg7w7hq4dpXHEcGfl150FXrP9csFLmthtWSmu2vBPqjq97rj78 +Y+mBi2TjbzgqeeLzrY+D+SW9sIZ8+biDsDcO/Zlw/TyzD97/vn2rO8MHH3a5 +qufP7YsNgmNM3Cp8sZE8o0PfWT/M/emMTvNLP+ypLXHQ8PJ/OC27rufl3n9Y +3kB2EJX64/pUurcfNQLw6XtGeX1bAVj6Zr6f7J1A7Mid/F3TNgirHBE6KH80 +GKfvnbggPhOMnQ4czjeruYKZkuUSf4Rexe4MUfLCRiFYLNfNW0I6FIuoO9aq +coRh5SevZUopr2G5sBPsYdvXsEfQT+UjG+FYu2u53zjkOuYfaKIhyCNw0N9T +2CUpAjcC5r8bXJHYuL11+kBtJL6nP1v/TCUKn5P4Z6w3HYXbzVN+DkdGY4qD +FDMhojE4PffFW/fhGJwNamr7Y2MxY0zV6AiKwzJ0c3Q1v+PwK2b5wPD2eHxF +Zv5tRGwCvt8+qD1nnIh9yQ++/iyWhKcqujtKaJMxhVyVmeNKMu7RuBfpMJqC +vzSq7o71pWIbbUHj/edpmERVeJDBPh2L7CnMn1lMx1xP968m+97AIymtAmr7 +N3CMp5xy+I2b2NSWzctKJAN7Vw4bU3Zn4C5x0+k8h0xMJMXJaNFn4Rs03s2o +OQvPHkoQKHS8hR+9903I4snGV9OW3IxGs/FW9LkG2twcHMD4sWfGNhcfPX4v +n00iD585Z/B4gDIf+xtK6ulO5uMvDCWy3V0FmEGtnsq1uhAfuKIhFFxQhHMH +Ot+ezirGmYE7HF81S7BbgFWz8vsS/NwiemjEtBQHdTdld3wtxXMLsXKCgWVY +a6iZWoCxHJ+RlYmZrizHiV9ibJLVbmOLYP8wjeXb2K5pj57IqsBpyVWReSqV +uIWLtS12txIXNv6ekWyqwnX7V+71+t/B9UutkiHgLn6pvHo0jPYeDjzxoYFs +4h4elHV+QWqpxp2zYguXs2vwb6Ye87rwWuzgRnfawrsOi7LGqJc63cdMrOcf +T0nX4/L/snBYSz2ubE5mUccN2O0S20nbVw1YuVF0/G1TI1ayCaWZZWjCMo84 +4pJDmvHNPvvjKQdascn23e3e6jbsbuLWrOTzCHflC4iKGD/Bt1ijPr+yeoo7 +R5/+/qDSiduDHvDKenfh5xpH6n7VPcMB8uhpyYFurDnE+t+ofw8esFVitN57 +gU/xIwa22y/xyaKpSHKXV/hPtM8N3Ytv8NpxClo9w3c4+NeF0g6iH4+dPZn3 +3HUAj/UNGwveHcSBvUqutvsfsOgHsaDjXsNY365CWmJ7BC+Wh8XaFYzhQm6B +r89sPmK2gHdPrihP4JY9OZGxC1/wvM3Q5xrSFH7pU//K0GEaS/iPvNcun8He +H9dohHZncb1R283/nOfwbc/xW5Rr81hFq9rlQeYiXn9tMRZruoQZ7lnfqySt +4PJDssheYRVL60/ez5ddw+cNe2vnLv3EVU2xPKGF69jIpzp3bn0Do1MsPd22 +W9jUQkz+4+IvHHGEuoE6ZQezbDy7pK37Gw9UKpqPSP3FdfRMaj/l9jCHxMqR +ZEkyQlziq9IVc3KCdMJYviabgnjbNsJXvUJJxFjcPMhpcYAwll9kfzBNTWRw +DvgtRNISVcMZ3YOK9MTLOzQjNwUYCY+WXFoPwUOEntdPOqdjTIQ6Y21I5QVm +YjLnI9NENAtxW35uMXqElVj5HmNBUmAn0tL3ZxufHyFoahtxtx0ncfhJSo4j +PzdBUDL+avjDQzTlVHYs7fIRfhMLGB0SICRDHWb/SAsSgXVrkpkeQoRd8qZ+ +5JNjRBBNULT1cWGiAL2n+VhxgvC1Cz/9WkmEMLB8lCb8T5Q4MarkQz4qRlRl +RSkVDp4mpDc37W3XJQgL8kOU3rxShNvD4RMeRtIETZb6cGmZDHFMMFiuglaW +CE3p1haJlyPivi7vxhyWJ9Y/t/r7NpwnSBmqO63egDgdtUGndhERkvlruaIX +CGJUbeSYZpMCkUo7PO81okjwx93XUmZUJo4U7ynymaoQxrnZK65tqgSPbczZ ++1LqRNlx86CUbg0iyrDWoMtPk/A5MJIqjC8SO84Tp5pFdAiOR5Qv1Lj1iPfN +ta47UvrEi+6B07etDAgRBvuGjHxDwsD27tqJNSMihLu1b9jShHghRcqXmjIl +9mL99uevmRPBonIVHectCYmKgxdus1gT4YNZ/UUMNkSTNFL1yrAl3AKeaZo9 +uEw0Xn8g/3rejugxoL/ELeFA/NO0OFyf4khs1tXLHaZyJs6M3tobynAhqPHB +vEfYjbBoDBTLpvYg9mhT3lz+7klYihU+lNnyJoYKz+kLM/kSE/lNN2Lk/Yh0 ++w9N5AH/ESLngim2X/gTKd6mAR8lAonw0lsmpIYgIj3Zcqvj4hUibfF0qBRV +CBHILT3/33gosfrP8UjKu2vEFCmb7oPfdUJexaQpNj2C4HiPPhZ0RRKYY+iM +E000weD/A2naxxD6qtE7L0diCdqTNlah9vGE/8FieW6GRCKsYoYp8H0S8Use +C0Y1phCtCTIxJi1pBOPwgWeZq+mEwpFUijq2m0R2hEn2Y50Mwvq5FBdnUSYh +U3i8QpbqFuFt9tm/ODKbiKOdufmHO5e4RW9aw/g+j5h7ZkPRVFJAiMThsI0b +RQTD+tOfQQYlhNbNV/m7nqXEgpJBcWtBGdHimcBFNlVOqLpQfjh3voLI/uDf +9+luJTGsKT4UKXOHkPBhcZwcvUsIjwm4dOVUE+/+2ipzBtcS6hp3djeD7hMX +L8qdV3tbT6T35m3y/mwgVK1qn3eKPCDKqwKzEgKaCCHmH3XzY83E7UcGCrZG +rcRozxZ77rc24uqtQCe9vEdEvdjFTnuXJ8SFCwOcA8ZPiYfUCeFW0p1ES7rD +1XqtLuLqF+Yd7uBnRK9dfPRC23OiqyHuVPDhHuKKgcFvtbAXRJzB8r0FypeE +Pke5KV1FH2F6fNIy2O410fhNVFcAvyU89B8fO0R6T/wPzbmR/w== + "], { + Developer`PackedArrayForm, CompressedData[" +1:eJwd2FMMIEgWAMAd27Zt27Zt27Zt27Zt2/bsjm3raq6TSjrv/zFBw3YV2wb4 +559/7gb55//v7z8ggQjM33BQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjE +JBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQk +F7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQW +talDXepRnwY0pBGNaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe9 +6UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZ +w1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nD +XvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd +7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5 +w9/kD0BAAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQl +HvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf ++SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71 +aUBDGtGYJjSlGc1pQUta0Zo2/C3g7WhPBzrSic50oSvd6E4PetKL3vShL/3o +zwAGMojBDGEowxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jP +AhayiMUsYSnLWM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8B +DnKIwxzhKMc4zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4z7/8 +xwMe8ojHPOEpz3jOC17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OFv4w9A +QAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBC +EpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEK +UZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrR +mCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGY +IQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZgl +LGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc +5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73+Zf/eMBDHvGY +JzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/wd+gMQkEAEJghB +CUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xiUd8EpCQRCQmCUlJ +RnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlG +cUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZz +WtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBG +MJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclaw +klWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCS +U5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53ucd9/uU/HvCQRzzmCU95xnNe +8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD38X/gAEJBCBCUJQghGcEIQk +FKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQV +qUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSl +KUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGNaUJTmtGcFrSkFa1p +Q1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnD +WMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa +1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nO +cZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nD +W97xng985BOf+cJXvvGdH/zkF7/5w99jXwACEojABCEowQhOCEISitCEISzh +CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI +TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP +BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H +OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm +MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay +ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ +y1zhKte4zg1ucovb3OF/AVHuXg== + "], CompressedData[" +1:eJwNl1c8EHwYhe0VQkaUvWUkZP2HFWVEpCiJZKTM7MyQmU3K3ntTychMVmZE +ZCZFlB3J9109v3PxXpyr87zcdxz0LQkJCAimSQkIpJJOX58tcwY3jrqrVdgf +Am/NdgijHwJ58TjHGWIXQHySkEv+kQtoV1f2u7HtAprq2HmuOrsCUT7Fo/Mb +rqAmxNKZ0dUNvJRfQf/23YCjJFkcWZA7eJpuQKpE5wHoFG5kNWV4AP48ztm4 +c55gXKK/YuS9J+C2uOuacMcLEJUFHv9x5AX+PVWc+J75CJws2SotuuANXglZ +f8Nr3iChLse2/YUPEKgQz9LS8gX+vWIBv458Aderwuie136gI2LN6Y+CP1CR +MkhsTfEHzLSHoz3//EGIHsjmuRsAqNrCmsd6A0Bq/V24LfMYmALwJDL7MXjp +b3GthD4QcLIxtJsFBoJ/DI6KjbuBoFixPLzfPgj47IpM5i4HAcfhnBp9y2Bw +/4wL8fJiMJBRnmNzs34Czm88rKb9+QSc8jdbbXcNAeUlf68VEoaCGB+19Q8x +ocCA0Z5XizcMPB6M/Hi2PgzQKKqZJuiHAzviiOjw9XAQ6+r7SigmAnzpVs8J +ko4EqTXU2bVTkeBNAkHoQOhTwNXysGpVLgqInSch4/sZBTIvfT54mhcNxj74 +9XNLxgAFj1tKFbExgJcx3Ml7Kwb8o5HoSTKOBYbddsTUrbFAyRsI/RCJA978 +l5/hZ3GAYJaU9BRZPLD45OoT4R4PyoRsrTJX4oHnvF/AvTsJgDj64trO5wTg +4eglamyUCJ4NiHFkjScCq1xBqlnjJNC4LJkuOJMEvi0F/A6zfgZox0VDWDef +AXvuEr3vAclgP8W2kprxObjA7uj9rOg5+P2WgjBd5QUQkI4glpl5AeZ8hTud +/FIAbdgIqS1vKiicFyGX7k0Fnlyh0UtuacARMvxMFkgHB7bLe3cm04F2synb +rbgMEMQkyK8nmAnUOMGxnJBMkBDqpy/9IxM4bO7dpNfNAkXe7p80XmaBJ652 +PV85s0GF5HjIn4hsYCIq1hi7nw3iusxtm+7ngOsrP9YiZnIAae84Ic21XDDE +uvlabyAXkO79X0crDzh+rdC+05MHGMg8oL52PtilMDm6OJQPzhI9TzcyLgCX +Iqji4xcLwH2/0jbqh4VgruhM0DhJEXjVEpxF/qIIaJHV36g6VwxOrgfafP9Q +DOzPyBx12JeAPrfIIWOGUrAUU3qiub4UuLzj8KWwLAPlzst6eozloG+x+lpZ +Vzn4zky2LOtXAbQNtNyD2CvBdovBVqpPJTCawW4bM5WAMHzfME6tCji8JgXh +JVWAn8WQZ5mxGqSUS117418NLkxKex1frwbEI2dDd27XgGV6nRHfkRpwYpiO +6vWlWrD3J1iuuq0W/Kmz6vFBdWDluNHTM011gGxIsqYPvQSFhwajzu0vwawi +1YaE1itQ437owTz2ClCw1arK330NjIW500q2X4OFUhXVgPB6oF02cO8Dzxsw +L7HTWND8BqxFCN/lMW0Azo8ISa8SNoIDTZF3+oWNoCvKSl/GoAl0d2Z/ZiBq +BtaGpziI65oBl1aiBceDt0BaxLC9+UQLeCTBeJD6sAX4lqhMvfzYArKbal6x +KrSCfrMssZHMVlC8GCzxm7INmNkTED12bQMGbR0oYaENXHqRNHb+ajto6NM7 +4dnVDkgi957bwg5wh3T6wamXHcCzqP1nimQnILTlnv1b0Qm+y5vf15V8BzY5 +5Njz6t6BJH7y1eOwC5CHa8lnd3UB1fvso/aG70GGadNB6NJ7kAYk75A86gav +An6JbzP0AOPMTELH8h7wLntuK0ynF0DfM1lGv3rBkVcj50ZSH9hifk5jp9wP +jHrTombX+8EGZ47e3ewPgMyzNorOeADUk4tRHVEOgjWVR1w59wZBoUZqcEDv +IEiK1ntcIDEEjC5Hl/MkDYHfvaabBEdDYPLtq0g922GA1h4e4/o0DEo1L173 +vTgC5hZ7Kr0aRgD1UlANn+Qo0FyiM4osGgWMixd2Wvk+gmPCDhpj2R+B8L1Y +m0neMXDiftPUTMEYuBHuGL0nPg6crYjHz9ePg2IGQfcy9U+ghN0px2H8E2Ds +3iGMvT8B0np3y/iJJ8Gr/WQFlfRJgBQq6g7AZ6B3IqXYeuYzCDeU4U8NngLP +hfprKySmwei2rEP99DSgTNjcHIz+AkR5bzrQqs8A3sDdyxcIZoGh7Cfrituz +QMrtvat+6yxohY/qFfnngLZacZtHxBwIkv7pxLI1B6YXUvb5b88Dio6Gxeq+ +eaAwskfbDxYAmW5xZWDFAqh2XLi5xLcIyL1ijkjSFsEHk8zv6yxfga2GYver +xK+A7S5ZlR3zEiBidWXlfbEE6NiEFr5zfQMh6TeMR4u/AfHjptLbssug5TFf +6u33yyDBfFJE0OQ7YAyPXr+9+R3cNfjlyBH1A/T00la6i66A2gRwJuDDCvBo +3p7Vc1kFVFTT+ofsP0HEbndoWu9P8I76+4lLPmvgxts1+pNS60DK+dZZ3p/r +gNt7fbzV8BegppioEX71CygLJd0dY/sNfPwKnT76/wYT+ahG+vtvMIuZrhJd +3QBpihYj2q0boCd5iIxXchOc++J7OiFnEwQm0aZVnNwC60yddsExW+D0cMUw +/7FtQJ886ZgVug2kV2P1KCl3gPtC9Yx95A6w66TYWmDYBdw9r/u9UncBh0Yj +q7rwHnDLvrdlVL8HOC2oV99p/wGx9ZHEuQt/AOWUQB2J7z5oTDy3fXjqALy3 +OZDOazoA5PlFlnQWf8HFWXBgSH0InnAnr0fWHwIWnczOPtt/QJDNLlKM6wjc +Z3463zVxBOpiyr0ntQjgxA95bfIyAthbHBPjTkcImQ8Iu+XcCOE6t3Gn0RdC +GOHYVPD1IhEkMktb+llHBBk48y778xPDi6MtJKXPiCHTZ5FQf2oSGKnypJYm +iARGjJN2WPwjgZYkmVfiH5FCyxHdm2UHpDDP3EKt3ZcMCpz4NL5EQg79Jjo0 +RaLIYdHcMMpko4BG/zo6bhZTwF4B2tuOkBIG3XUn2RihhBQRH3m27ajg+MmB +rKhjx+C3zOqvI6XHoAmX6fDkFWoolyv7oX6fGj4okO0MKaCB47GkoiZGtPBm +pwCxLs1xmJ+vNOnx7jjcpXx1748yHTxvetVgJZsOstrk6HOS0cOLLe++ZN+n +h0LWom8DR+j/v39AMwgZYFS6lGxSMQN86CxL8JX1BFQNlgvqjTgB6Wdp5Y0J +GCHf9fZfae6MMEe97nPRb0bIw9Ef/tSeCQqSNf42XmOCMWsX73E5McMQw5Kq +jR1muHRya2vejwX25wV1E1OfhO8+J0jbpJyEhH+7SnnFWeH+38HTmh2scC9D +YGn9Fhucze1aED5gg84+x+1oUk/B5bkUo0ql03CoRPVI6PtpWHGLE0clssO5 +1hzf3QsckPjYQIX3PgckWLIxOF/DCVN2RJo55Lhgqoff94/JXDBU3aqv/4AL +prz9/PGEOTe8wL3bUfeeG9ZJvS9uPccDpZiVVi9k8MBJe361K7S8MFqJsXPD +jxcalYV9lt/ihfMrB7rn7/NB0vp/F/cW+eBItItOjDk//LfZp358jh9asusF +PrEQgIoGHq/JvwvA1UvGpHlOgvDwI9O246EgFNS8G+AbKQS/jHMzzXEIw3mt +7ajSWmHI+JhQbVtHBJ5fLyAa/CECSTNuMulHnIHBVMEXYiVEoa2w+5eccVFo +IuBWmRkoBic4Bk9kSInDRzcoVl9+E4dXrJlKCDIlYIS6cbGm+FloGTSv1BX1 +Pzt+SAb+PgtZzuouRlyThJLu47TrTZLQwIThzRvBczDrJlQ5jD8HL5TJGncS +ScGAb/4UPC5SUOaJag3PshQsT7t/ctxUGtYS9VzV/SQNB86qfU25KgPLFemL ++kdkIBUryeK24XnYGbegJPD5PLQ8NzjiaCELmb1en15e+59vP1Nm+MhB5383 +9wuPy8N/xDMtrHnysArjfFKkAIvytR8ETCrA7KM0vWwvRWj61/m4LweAisEF +SyLvAJxOeZ381gnCevzZwYAbQelmfuV/owhemO51+BSJoYaQrIcPnxI8voPy +3wYpQcPgiWH8TQlGDPSZHNNWhqSyzzckapRh5/bVhIbTKpAkMy6xMVQFBhzo +ZyjvqsAeB6JqYxtVeP/qY0HGKVU4bYHq/PXVoFnKZfuKXjUYNJzXWalxAZ42 +1IlJfHcBhn4oI3e4qA5DRr/2Xu5Xh8kW4kvqhhpwIkOn996sBmSXOGnaY38R +4iDCjUcEl2DEwwaduMRL8MGDr2Xc4prwa21vF+rRhErksn3/7mnBqA1tW3ca +bVh6J2C4uVYbrtQ9r1+5rQPL3rfeZDp+GZJb1PgZtF2G711+eTZ76sLIixTJ +r9j0YBsNfdRbLz1Y+OG4EMm0HuyeamyMU74CZTlubngUXoHM5nEtHfT6ULnx +qnOQjz7chQMF71b04bColdELEwN4lbNplHbQAAZK9r6XUr8KFzMOIOvbq9CO +4WbagIIhLJofqrKuN4THS+4Xbyhcg8ftS08/fnsN2uZvkglpXId34n8O7wxd +h1bMJ4wIzYzgMQ+5Lzd+G0FB+zNcLE+MoUST2WVNjhuQfqSKnvLNDXi/XiTK +xvgmLG9dtvT9exM+uEzVaJZjAps5K2UFLt+ClJF05Et/b8E+2rT5VxWmcCpF +ga7W6jZkjFev+UNnBoeszhR2OZrBkwnb3waHzaBa9M1WHllzGLhiP9yTZg5D +k1ypxsnuQCa2DyWGzndgMf+MjuHsHQhzGGYW9Szg7dSp/BMdFjBU5oPGb/m7 +UJGirvVp9V14g7/r4R8xS1h3bIrjQqkltJyp/hYgZgWfSqobt1ZZwZ+FYtZM +8taw/wuNY0y7NTxoZ1a6cMUGan6NOaExbwNplj2fF7ndgz+Sz+7409rCvR9n +380V2cIJtVmuuYv3IY+vbUrCyn3Yt16hxRD3ACb8U+t1BHZQ8UmgQtcPO6gV +W64qlmYPX3YLcTQYOMB0ypn3auSOkN6M4PCTlSO0vD/NV/DeEcJ1+ZBGUSeY +N076RiDeCXqYyeRuHjjBryDXT9LaGaoTkHxeG3WGxNRjKQoXHkJHdScCvtcP +YeTciew3Yi7wjCehO22+C3wzXDYqwe0Kz4RtOUlkuMKmjVv3OLjcoG60kyJt +rhus0WUeojvjDi0oCX3l6twhna0kcbKKB3Rq84lVGfGATATifVrWnnBAMr+3 +658nlNvg4up97gUpTnqN2so9gtXUVE6Nk4+gl1jcv4/+3tA/RYHyg4gPLFzI +ymn45AMFl//dexnuCyM9DYPHlPygD01zufSBH2QONGPdNvGHakd3vEKb/WFX +t1a9OU8AHKT/ZxEVGgBpCM8Zn/4dAIkHrvWwmjyGsnT+MLH7MUSBptFp8oH/ +76HatnJpIHwkI3sUyx0EUzWpXqQ9D4KrJeH0rozBsE+vlkE4Lhi27W2X9TA8 +gTMXHxvfT3oCQUP55mn2EHix2qzzd34InCcJC/orFQq3jcqv6XWEwvW8JyME +RmFQWi6TnGc9DLLEs7m/DwuHctEOXJRCEVCIRcfvT3cEVFv0i65wiITc2esD +yqxPYe5M6YWud08hiTy933WPKHhCYCOJSjwaKkwvyf75Fg13pwd1OQxiIP4o +fsW9Ngaa7UmMM56MhZ6PuqxJfGOhn2z0hMFSLByqLjSkvxIHS24XGWs1x8F4 +/bh6OvF42Fw3kuWYGQ9PY5PnXkwJUOl3bSB6mgCrHYRz+sgT4b1zhy9kghNh ++mKZUzhpErREqvFToUnQqbB0BB5/BvkPRZ1akp9B3zejzO78yXDmgGrGpS4Z +fo/jv9Z/8Tl0eUHnkzDzHGrOkPZ98XwB2X2vyrSypEA9ZnmhK/Up0GT7XXyu +aSq0yZj/PkSeBjvYL/P8qk2D+4+6mpit0uHurHz3rVMZkKaGcG569H+e5mEz +upQJA+PF1NyLM6Gynkj6BE0WbCdRy498mAW/cHOdSf+cBU/ON+mcVs+G74LM +A5lqsqHi3/BnyTw5cE1/r6w2IQcK0taqeVLmwvVRifM7/rlQOO9+g+JBLpSf +E7a/4ZEHMwPPalns5UGhd89qrR/lw7inAi6ehAXQbaWxqTi8AIoc65ekZSmE +3V/mZ17mF0KurwqXXssXQY47NhYCg0Ww3epYCpNtMVwmfTb2grwEirAIefYW +lsD8Hw8sm3RKoYp+OkHITin8bRMug3PKYI5/lfuhQTmUyXV9N0FRAZNO3apc +ba2AWuekSwpwJcyjbH71NLMSLoeu59URV0GJKatV0XtVMJ2dXp9w6P/sRvlL +SbEaytsGSu0XVMO++JYZRZYaOHacgY4prAayLXyVTzysgbQZs+J9LrVQJ5qY +s2etFgo3zLzIuF8Hj5OPJd5aqYNjHXdtmOxfwhyiwOFPmy+h+grlv3rvV5Aq +QjSgl+I1bND9Z8aV/BpqpVAw9onUw5X29aD5lnqYPyXI5HHjDUzIq8/I2n0D +N4hPerskN8A7d8kCyGAjdLOLIbf/2gjjbU6stcY2Qdo+4xRWlWa4cqWb8OlO +MzQ8lpstXfEWajuWv2c83wKf/PFraEtqgTol45pVf1rg18tsSz9NW2HgxIj2 +k3etcPltYkzo2TYY7DTLTJzWBv3QyRQS6na4sxJ8NtWnHR6DFmoTv9th8KvN +jF6bDrj9s8g2cL4DSj43FqW/3Qn1hKQHgr90wpoXfakbZu/gW+mPF+8tvYP8 +GhMbB/ZdkE7LV6BpvwvStlJ8eRv2HpKx/ApiOd0Ne9cD9seruuGUQGICk1bP +/56lzfP1Ww9MfLC6djO0F94SaeiIFu2DjSP760mjffBLwppyqH8/7H66deLR +2Q9wrr1KM2TxA9z7p2fcmToAiR7b8hSIDkJavbcj7E8HYZIP7+TI+iDcviqb +NnZ1CJL9ixmVahyCGo+fh/3hH4YP111Yz8cNQ9HJ7fN7BCNQNDh19bLzCKTb +yEq/tDQCb/Mep9kzGYXj47OGtmOjkIRKbrdS/yNk8H82NDX0ERbXi4scGYxB +5chzZcITYzCyWdXR3nwcPtpd2JpZHYcBhn9EYh99gqFk5g8TaSYgi3xsNkHO +BDxq0yT+pjgJ2yZvGN/6NAl91OwWPTw+wxsG63d0T0/BX3wkTLvtUzDHO/zt +E4dpiIqkK5g4v0CGmeqGhuEvcMb1l2Zs+AxUgueKr/POQj0SxepngbMw33F/ +gGlpFgqYjFjMaM5Bu4ktdqLqOTiodZ4g8tQ8nHn273ZEyDzUqTi/TLszD1sb +NFL4rRdgjxj/xy+TC9Bt946O5pVF6K1gxOrRswgnay+Xe6h/hU6ybxdMOr9C +LdeUbRmNJXjaK+8JU98SNGX7mE1z9Rtkq+xtPTvzDXJ5XuuOtVuG+r+Ojqsd +LUMq98rbNxO+Q8sK070V0R8wb3Ygjqr7B5zosrHos1mBvOePs2tQr0Ke2dNb +MTWrcK/LIqvF9CeMzVOz/EmzBv++HaeSaF2D9WlCK2ke65D9sYqHMNsvuDqx +3ifl9QtWlvIeeU39gl7M8jbUyr+huolE1XbBb0jLFzyqRr8Bt5s5uCh8NiBz +n6zs5ZUNuOJsxihgsgm/+j45ljGw+b8fUvW9v7AF/Vnn79Q0b8EPZzqBg8I2 +fOhnK0RTvw1tlwaM0hV2IFtjjLX02x14XVHz+pz6LnRlpU16NbQLfzUtHHXf +3oO8dkZzZ37vwY/NHPu/gv9AieYmPzGOfUhBrce1U78Pg+8ZkJoZH8BF0rAx +/78HkG9/qdE+5y9EV1MslS4fQhV2blKaw0Mo0Gl9Y7XiH2Q1p6nesTqCJCfH +XHjoCdDp72nye44EiNBYtZRyhAB5kN3gvCtLiGJiNqWZ0gmR4YHnrAg5EXrJ +l2hT40yEcMSpe02zROhNEe3H61eIUYd4zl5sBzGKMDB89EiBBIWkU97hqyFB +tUYK9GnipIiJ+JzuTikpSmE1UFcWJ0MXnO1CoqvJ0GYEN/WmPDn6fkpf3reD +HE1J586p6lMgAyPai9cXKJDXkBtPnzslYqw0T315nAqZtZcbnymhQl2b1p5Y +8xjSN8lMpvh5DL0Nv/sxNZ4aqWk0DjEgGvTXoPllwCoN0g95KUuYQYu8Xpom +FhkeR9ftEgcvUdChhIdXzVat6ZDKHS+P7m465OrCZbkmRo/6SN+02iTQozqZ +NS/1Q3oUn+w9mGjDgHxlxK5bjjGgTaa+/Xb1E2iz5CxBa/0JtHD1CvkDCUZk +qWpB87GAEbkxkztQ8zKhd/aPf/BkMSGOHrJsYR5mFPKHlONcPjN64Jege1mM +Bc2ITMbFvGJBCWqxVccunETTOQlfhz+eRCfIfT7/uceKOMku1yUQsiF/Iima +16lsyMFOe89D8RTS7HtK+XP6FNKYLL0qEnQaOZ7lcdIQZ0fPPyv63JxiRxNa +Kty+URxIhKoyrkuNEz3P936md8SJHhQ0qbHe5kKhbUul7S1ciEhWpqeWjxtt +JE9L7odzo49uAj1Zm9yI8KZ2X70pD9JhcXqn18eDsjOS0lwBL/ryMi9atoIX +Tdb5y+Tz8aHAWp7goVQ+9Me0d6SbhR89bpP9lJHIj9puL5feZRZA+UMuw8Iv +BFCw8U9JQm5BxJanyXlYLIjOcq/ePCsnhF5I8rOWvxdC7/Mn9sNMhJF8nzDb +p01htPZAnKIsSgQ9EOscZBc7gyRS7Q7xwBkETGWThV1FUc3nVvHfHGKobkzn +Y1mfGKK9Pifs7iuOFI18r1tKSyCa4gessWsSSKtBaybs2lnE4OSXRPz6LGri +zNhoOyWJlApPBH4MkETZYfJCl35IojwdNSZRw3PoGRQbjmw7h8qyy6DXOSm0 +M6YWTZwnhZLtNI3l2KQRzRvqCKE4adRF+Nd5kVoGkWfPt3iHy6A2D5FQomPn +0ZUZCZWQqPNIMDR78DSTLHKL2/L7mC6LqIU/UXackUMeRH3PDhrkkAz7q85o +XXnUSZeQm7Akjyz0RZs4AhSQXN8CgyqnIsoSShRgaVVELjJ+fyqtAEruVKUT +pIOo32PPNaYJouCxS29JHBD6IVBFk8qH0cGjJgaHLxhZi78O07qshKTVxreT +KpSQTO48heAJZWRgTaRD6amMMI1cmtacMsp1URb8q6WCmFhD7ITrVZDvZ6ZL +80KqyPl57opMiio6N5k3J0WnhvImLBlXQ9SQlKJMnz3RBWRamVnd53cBrc3U +jTITqCPXL4Z5poHq6EZI4lEdpQZaoxIVlojXQFOkv0anOC8iXk8L/uGKi8jz +4HIFj+oldNvvgff8xCVkTMVDK+Ciibybtc2IGLRQTOLp1cgaLWQvRVjy2Ugb +icgUspIS6aAeSxpFrgodFKWalqJmdhnFq9peDWfSRSKqrrRUA7pouJ8k0F5d +D73IYw6JKtBD78cYNDeorqD99NArBY5XkI9j78OGT1eQZ8rHCaCqj4zgeUKF +Sn00U0/V3MppgLKJSOBCrAHK2XInLSe7iuYZ/A4kfa8iou8cd/z2riId84Dp +fFdD1HFT3rV+2xA5fExIeu9xDWn//su89O8auiVz9zxf6HV0Ub89K5HRCJX1 +5Lrq5Bqh0tG3SrdljZHwYDbZTL8xQhV2KnPWN5BSZep3L9KbSK53wb41/yYi +P3+qs0fLBFlbwztlWyaI6MhNxT/rFnpzdHHlhr4pOnzfZG9Ifhsl4ir70Jbb +6K42cwwZNkMtHPcL/mWYoUkOxUp5YnOk8U1DtNPGHLUIU6yVD5ojTrlwNlLF +O+jHqPmZsYI7KCUq69dZFgvU+GMmji/MApUXXExsObRA0bfejDO63kUDXb+S +JdfvoiqSRg/BB5bIifmCF/mqJdrcuU22YG+FCqJWfvZuWaG9Ofxg1McaOfYU +Cx+nskGNcQcw+rkNkvvALmUjeg9NvW8nL2+7h17/4DrnamKLrB1rs4f/2CK3 +Cb6uzy/uIxkn0af5+AGSMXpmeWn5AUpyN9D4nGCHbLvjqh9esEdmFgS1Ivv2 +iP4lxfLJGgfU+Jrt7Rk5R8TRfpmD4Lkj6p6ubWX+64hyRGSFfMydEDmfHbdy +txOaQL4DjlLOiHHseBFbpjNqz0WPdI4/RAQMufdPBjxEbM+s98O3H6KtEBOS +ugcuaDFEtDN/yQUJ7kZNOFq4otL8p8p8C67IjHv8zrClG3o1zXHs6YobYi2K +cLZycUcjOdLIicADGfGVPW6J9kC3P2e8s+bxREoJnqSPXnsirXXealp9L7Tl +Olgvu+6FlG1HnxyLeYTSXyUSZ0p7I7d7YWnHpr2RJ4PaRcswHxQQnerfIe+L +FBPmdJXXfFGkM4/uVr4f2u66YHgg6Y+o/O4zVMX5I4YJm6eF2/7I9LuX6vqN +AHRC9ylRfFsA8pdmX8kSfYwk0gSdRZ4/Rk7qvBaKFIGIwYxsfsEzEJVZGNlJ +rQWi5qt6s/KWQYir+siFfCYIxVmFvyu9GYzySR+MKHwORux5PUdtt56gK7nj +LNcXniCPOqRP+SAEKfrm6K/uhqAJAXHREyGhaOGc4N1Y1jDkfJi95VURhk7J +Qd3Fi+HIum/x9vzXcCT2+HV0+JMIFDSw1bUhEoli5DddJEci0U65Ytgtv6fo +5aVC/yiJKJS2mGIxtRCF2He1em6nRiNrpuO/kkVjUBjdU6nzT2MQ2+9X04y/ +YpBMfdh9FcNYdIX0VXFfYyz62RjX0CoQh66dPGQ4Gx+H1pRMvQWI4pHkUOmp +2ofx6Psjf4flb/Eol1fSYMQ0AQmUEREGf0pA/hO3GGkNE1GcK3Ok32giijz7 +tu/HtSQUd+9YjvlUEvp7Cavv3H2GYgPKbzT8eoaG/17aavdLRvbr4Dkvw3PE +Hf1cba3gOWqdYronp/wCZU5/2mT+8gIR5BvpZvimIJOUS1bfeFKRv2FGPmlv +KvIJzSChd09DFHfJ/3EJpiPHcdU0nc/piPFMk3dFfAYaOHfqq4RQJur14OJv +DM1EoX7zZWErmagtauAwTy8Lzb4TXuR4nYUkv608JuLJRrEu9Xq3o7JRT9Ak +m9ph9v9+okreYp+DNAYLk+bnc1BmfUZ+g3Eu2tnVtrs5kouU6Ox7h3TzUDI1 +8S2JgTw0fyXWNfhKPrI1Pxz4OpaPOF02Y+7cLkAeLqaXaFcKUFzxz70Dz0L0 +6mERHaYuQu6mz1xXsoqQNLl9IJNiMSI+YXx8eLwYoaJ+2/MeJUin38HK6HQp +kjqiMLzcUYruh8TQSjiWIfOJC5v0XOXIzn16jXa0HJ3vanmEIiuQW87ZERO+ +SvSqV5eiP6gSldvk7Ht/q0S1lz8weWlXIVKNQKbhmirEkHKHPJ69Gmm1zGv3 +hlUjXSu1tLC9auRyJo58+l4NYoGlW6PTNWhFxEw44Gotipd5+v53fy06edfQ +UFazDi0V36y7012HjB8elwrWeok0Rkj9KwdfIvZ3Zq92jF4h+QY1M9vFV2j+ +g4kjx8PX6DuJ/WUB0nq0OvNnNPFFPaoq/3U1QOoNOlx7mHw48Aax8Bd95XRs +QErhaYT/TjSiJzsKUuUNjaj1wWV1DesmRFCdGTXL3IxYbnKvxPY0o6oWvu6H +j9+i/pzJeF3OFmQi792f5NeCDlhHC07PtyBzL72QNfVWtGOjwsVW3ooq1N54 +lLG0IVIdhx8vA9uQW1Q134WNNtRgZydubdGOOE6K2oiOtyMnTumoXJ0OZBRe +8GbmXQdiyam1XlPpRHRDw05zrZ2IqoearUf1HbJ7YETx5v07NBL7V6ddrwu9 +Fie12fvchc4wvlN+YPse+RU/kD339z2q/pd50jS2Gz3zOX+GRKQHRb1ZFZN/ +14NKMpVuMlj1Ijrnyw/yKPuQ4m5HCkVVH0pX/1Gob9KPyiOrJ18c+4C28Hei +P80f0Htxu4BgtwH0ceVtjijrINpACT/VPQeRSb1hWfrnQaRKckxJWWkIlY85 +6IOCIcRL/mM+jW4Ype2uhrp4D6PT0hFiAz+G0ePpgk+NN0dQ3h7pqvbACBK9 +cYc/+sIochN+kRnfPIpuaHyZsFX4iHK/blbw1//P9MdWHxXGUP8tx8KIt2PI +54FW+A2NcdSy2xZ5dXgcPbcUz4g0+4QER3l5mDc+oaZTHD9IQibQi+pzKnac +k4h3aHzNomESKco1nP134zNqOizquvLvMwrqDNt2yZtCXz5YBPjqTaM41cdv +go+mUZBU5qPs6i/ofIWo+M97M+hF/aDVW4ZZJNTv5vraeRbZWO+Pr43OIraG +2N8O8nMIiUS6XsqcQzpM5+6FUc4j5+UKfuQ6j5JKqG+4LcyjXWNRGuWrC0j7 +4peMsq4F1De3+6EXLqIQMu+6kpeLaP3awIdb576ihfo/exuVXxG233bzPreE +THaPbR57tYSeyCsH1KBviP1Uf1Zw9zdUQpirmnh9GdUG0XZtLy+jqCo9ggaf +7ygUmiv8YfqBPpBXyXdW/UDkWsRY+soKml68RmWytYKCWOem9VNW0SBgC5BQ +/4kcS6dUKbd/ovGwJMK9gjW0lxPFx3h7HQkHpl9VpPmFggY/x5y2+4X8255P +KQz8QjXP+lNypH6jMsm0x3df/EZfKZWeRRBvIAunFSlBhw3kYdpDoT69gYqO +E3Ls6mwive7Gj5daN9G5Pd01HdktdIn4ZtCJyi10gZWIqeTMNuK8eNafv3gb +9YgvUyWc2UGKKdnmFJU7iMWm4UWC7C56/HtVTqttF1G5T4phvT2k+65oKnBu +D82FlZ4Wc/uDdl+wAl3afRT5cozoqGgffdnTr7ty6QCtBjqz3Fo9QAZvIhxk +4/+iy25uYbvwEEmWlNXXrh6iqZnA2ScZ/5DAlq3dk2tHaHhYUHKJggAX5QWd +qbchwCVcDqi7hwDvt9IO8UoQYreDpRdjiYSYZb0+b/0fIa564qbrY0uEW86c +0476RISjLMULJS8R46S8H91ujcT4R4SKi905Euyylvyev4QEh/w+fqlSgBQz ++X2YZM8jxZX2Bu/9BMhweOVY+7diMhw0+Pq79TlyPCZI2M7QRI7dmVc0DjQp +sHP643npKQq8/lbPacSREgttsmiuUFBhG94sEJtLha2inidOqh7D9msB3NNL +x/Dy9QqJiqfUuFfGNNFajga/HRqvZP9Gg50nix98f06L3Y12VRb0juNSNWsu +BjI6bBc5QrJgSYcPWR/a/e6iw4t/mrs0RenxweDg0N84evxS7GIq0196PKql +GJljzYC5Y6Vu1X1kwK8ozvPeUD+B+wU+aWfVn8D0nOZ5LyQY8Srr3rVrhYz4 +S9LM6iIvE97Uaja8ns2E80e2vzbzMuMQX/IbYoXM2DOVfKJWggWvJnHuWr9h +wf4ynK+NL57E4B57XNrESfzyr5Cjhj0r/h1GWXefjA2TnqRHnNlsuKbrn6W7 +8inMubVBHr54CtdLuT62iziNz+dFvpE7z47p9n5wEH9lx+HZIiWLzzjwYD3X +yvZlTnzgxH0kSMqFn67F6JBZcuG0EG9K3i4uzDpdVBxxhhtHn1z8oxPHjf0n +Fhk8DrixUO1Fq5PWPFg7LLoBfuTBBkdCUrsXePGe5dOLV+t58asrFqN3Jfhw +gUI1rXwhH77lwBM7x8uP20o1jR2y+fFu2bHeTV4BXEy5X+1fKIBP145dFDor +iAt8mc8dvhHErb89ghguCWG56fL3jyaFMDUB/aG2gzB+Lmyd/IJcBPfLtUR6 +5ohge7ObmkcqZ/AOa06b8tIZrCClcP/6U1H8+u4p5etyYnhoobfX6JsYtr6T +xeXyQhznb51aar0igbPKr0uUk53F37mo/lRZncVsLJxx++/P4qPpatYkMUks +k7pNE58giWvyhHUJ/kniql+tPD/vncPLztnn7306h60uBeUGXZLCYWV+27pN +Urhvsol/Skoay4oZFiqUSePVr1fu+wjL4Avia59fFspgF7a/P/6InMfUGUH0 +NyrP497UdMMVOVkcYxKg29Yhi+tox8S3DORwIId2S9KSHLZ94PKwxVsew65v +ZqHMCthPs0mPrFYBuyYYtuobKmIybv+1J/uKOMiRYKIxB2B+Us/Lx69A3FbS +9vs5EcK0Oy9VPV8j3KzmWtrjjHEoT6LK2Ekl3MUvSZ/hpYRfdrmvD3xRwm6b +L+M9LyhjIyFZ1bJyZeybX/zJm00FTy4d9OyHqmCz4gBphX0VbG6aMXnZXhVf +ppyQ0fmqiknd73hp3lbDpxcls0ym1PDqQbrTC5ML2DvlWcSp2QuY0NXFec9K +HftaeiRr/lbHLcfJ7ov6aWBi3uTb9XQXcVVUGCFt/kW8Od5AcBFfwm/bRZSf +TF3CAik+K8s+mnjLtcA3llcLJ58rms/u18Jj1xyplL218U7ChnmshA5udlEz +a/img1PggNxy7uX/P6enWyrWurjnr6u6N4se3i+XIzntq4d7s7K0n3/Tw8Oa +E19orl7Bkn/cqhLar2BISkiqeV4ffzAvdNcq1cc8jw3ZXvMbYEEmjpDKbAOs +0AL+XOO9itl786wGCq7iwyTDFHzWEF/ucL820GiIbdlD7xXqXMM1FTETO/PX +MClxCdF37+v4F/XPpopTRnjY9GeY71sj/IOH5mWEjTEW6amPoWO5gadGPydf +6r2BOX+WVLsF38QCCWfMPl8wwXUEgYfN1LdwqHM4od3kLWx1dItbsMIUezOp +lZ2NuI19BCMYHGTNsOzrpxZqZWY4zV/VXkPQHIvLBZIW55nja7cmPmYK3cFp +1XPxFpV3cMdmtZgYtMCexbFHigMWuCedh3rY6i7+K2ksJ0NiibXI7kRUFFhi +pdoPztFXrPCd31rHhIis8UzIWfuhems82CNH8t3DBudOd00P4Xv4vSQt/Tat +LTY/8YijbckWPyZaulnRdR/z7S5YKVQ/wKPBHenL+Xb4hnpDvka+PSYebvv1 +s9IBN3MvFzZZOOL3Yn8HtLcdcYHo8zLfp07Yn/312RpRZ/xG0+a63ogzHnh9 +K7Et4CH2+HlX2UfOBZ9zk6I62HXBFmWMD5tbXPHR3L6Rfrwbfoif+Gs6uuOy +8lQxNSMPbGQn17mk5YlDjDi8FrW8sMmcHOmB0SN80sPcduuhN65YdOgpSPPB +zFmuqvtjvljXieaXA50/dhqN1RJv9sfb7mzlKq4B+E/84yyl84/x6eJTNzsJ +A/Hm7xfmHp8C8VY9QNQNQZhXfFYeFwfjPP4Vgan8J3i2dESuoSoEr1KCH229 +ofj5sfSN5e0wrBQbry0lGYHfRk/p1PtG4mqza8O5M09xPpXYIynDaPy3aZjQ +xDEG07U8GutXjsWVQxZzFZxx2EdsJ3WAKh5LWuXIUJAk4D4FLTdV6kTMRlnY +4cWXhJvKh8Rf6zzD6o8JIljCkrGKWH9x1/hzPFWGc44ppuCUl8xnQG0q7hfu +putWS8e7UdPdCmsZ2LKsgJZtIhOHTNzflu/OwisvQkLvv8/GcUJKCmXjOdiJ +bDOBdi8X8/75e6dKJB8PJZf/6HEswLIlxTivtxDbMPCUZIJiTGjgJSrTWYKv +5ZIxblmVYVul5Pow3grcWXG38LZvJa6PCLRHXlU4trQlx/JJNT6czNdeyanB +qOGk+N5ILR7lNGboZnmJK4jY+SodX+EnH/nNmWdf47zBv/w+1m8wUVbgqB9F +I7ZzEH32saMJJ37pUTFIf4tjikNL3XpbMAPBH+Zbn1rxTD0X6/5OG/4P75K/ +0g== + "]}, {Automatic}], + Editable->False, + SelectWithContents->True, + Selectable->False], "[", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r"}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"400", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r"}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "r"}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r"}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", "600"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{ + InterpretationBox[ + RowBox[{ + TagBox["InterpolatingFunction", + "SummaryHead"], "[", + + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = + "Ready"}, + TemplateBox[{PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$282981#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$282981#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + + InterpolatingFunction[{{4.23046178224774*^-25, + 0.24395920510017832`}}, { + 5, 7, 0, {1501}, {4}, 0, 0, 0, 0, Automatic, {}, {}, + False}, CompressedData[" +1:eJwNVlc4138DtbIrMzujFFFWpN9nfG0ie6/I3utvFZK9RyF7h8oIWQ2hSJrI +LGVlhCQjNHjfi/Oc51yci3MuznME7bwNHCnIyMjI/4/PB8jIvvW8CKmwniJx +EJys2rtTpLGvqRztedMkAXH/BHGlGVJb/Rn/oR8zJOq4BvK18lnSK8fbqU8u +fSWxx2p1XBGYI70zk8ty/TZHMvZ/EtP/cJ4k7qh3Y+vGAqlFv95SyG+RVFb/ +V6Xc4htJu7A9qldribRSNUlMqy6T1Awb6lQvrJAKXi5JaJt8J/lU9bkbeq6S +ZiW1/FpTf5DWHvZ+97ReI51UbPNn3V0jRaWLG0fk/SSVuzxIXVVcJ7F0/RTL +/LFOujrGbFJbvkGq51p2Cbq0SWpr+kYjLbBFKqFvl+H/tkWS1x2yjXr4i/SP +riG14sY2qdGZw/a97w6ptOD4WW2LXdKZSUMFL63fpMzPV6ujVf+Qtj69uDun +8ZekSd2d+834H0lpPFhoxWOPdOhrscHF1H2ShXKMrZw1GdD8yDM6vkMGIjmy +MlTzyEEtXU9mvSIF+Eud9tXwBwWYvmpU7VZOCSjieFWkL1EBI+MQ/SX+A2D1 +vMKHocUDgJxuHco9pAbCGoIpxjdogOuZHMdQX1qgVu9zfNucDlw+xrXHpkUP +sk31OEVUGQCPiVBljAYjCNb/QRVrfBC8rIr9GO1xCOSSbM9OpxwGmTb7H/as +mEAXjTKpZIcJ/Al8OUiXxwyKGO/m+ymygPZw6iLWHyzA0f0KuUg5Kxi+Jy/w +3ZoN5DqQFZTxs4NTsx3/JS6yA4Eidu5vbUfAcd7S5AM3OAB5mbSHqC8nWF6Y +Yi815wJ8TgfbH2tyg3vMtrGvVXjAsfbn5cIavMC5wsNXyJgPcBzayODzOAoS +JZI5AlP4gTKjnEavlQDg6T1d5LQjAJxqXrC8yxUEEV425WcVhYCKiJnZh1Uh +MFF53Wyu7Bj4FUH8q7I+DsImgxcs+IWBJCVkV1gUBvv0xE5+2wkQEimZ0px+ +EpQ9nf9vxEcEBBABtFrmokCpXDLMTvPU//Pf2/JSEQP/GKvLetTFweQ/MPnU +6DTop3mq0+J+Bqy0H/tLnyIButRE29OsJEEt+wTF6R1JsNyUZngzVwq0iC9W +/1KQBuP/olgzVqWBzym3+rIyGXCaTuqTnfVZkPnsqwwrvyxIvtXUurUgC5Qu +eo3qtMmBoKD3qY7p50DN9abQKB95oPjg9N9Ns/Pg1UgkptMkgUHZM04sKgDI +Ko6VOapDIGBirWNphMDJ9AV6XXcMmKZPzBQnE6CZcVzazEoBfFnTdtnYVgDk +qceyTHIVgbWKcnObghLw/Jfw3mBVCTBuyNLZlimDIHTwEZ+1ChihV4l4fVQV +NOaKWlYvqIL4S+Wt5G1qIGw77AZ7ujq4/jU/VtJHA+gS9D+LzC4Av7+U5PUX +NEFG9spos7IWIBlr3T6gfhFs3O1/um2oDYLLvF8uuOkAzcysvrPJuiDZUvWu +gJUe+Gkc9e7hth6YPRs5yp2rD+oafTquKhgAleNuySyrBuD+v1k7vjJD8J5n +KHfMygisNt16H3XUGNyny9+3XTAGivhLTlOrCXiyB7J60kyBynzBjc/eZuDZ +JP2Chpk5aGRq6ja5YAFyROY0zZUtAUmVqqpCzQo83sySzDS0BqPnTeKuu10C +ZYPejX1JNqBH0kvgm6UtKFAKlb2+bQumK6u5J3MugyZ/n1dQwQ44eR/XHPxu +B86o+7d/LLUH+yUxVzOsHEBF+8RReNQR7MzQVhxZcAQ/F46GOLc6AZpEuryA +NGeAIlsLE71dQHi6xJd1U1egfjgj4Z+GGwie4+j4q+QOShkpq1XVPECbVG25 +pKEnEDXIV+dy8wJq2c0Fl5K8waMEw5wGSx/A3yRfqLbtA7Smiy+V5/iC3Til +kT3CDzz71EZ787sfmHozz5lT+h9Y7RO00rHyB2mCR7w3+QLAWaH/tN7MB4Dv +po6XuFsDQVrWfLFwWhBoaFq+d847GPDqBI8UmF4B4pslurc1rgLavuizJUoh +QLBKvX5ONRQA6yOcbw3CQPQ8pmt0vQb4PjvFbySGA3mHLaarltfBTFXbgYPb +14H69KVy55wIkPBtfqaTiASvnU6+1P8eCfKTQIBxaRTQzriD6ayiwcBnpc4a +vhhA3z2+HjEfA4STGpTetsSCR3wfKodT48DUlfMPv3rFg3C2ufdqpgng2OPP +R7Q0EsHEe7FqZaUkYMc02BKjmgwe+Q6kuBqkAMV1hTearqnga3FUQHxiGsht +N0xUskwHIjx/vT78SgfBtxcXxXJugLxb1muRxE3ge9Annvn7TWB13W+QpTQD +2PzmEuq2zARUP+xYHPmywGo3zD83nwWWwyhFrrfcAj+Ovq+LSc0GH9+WvLzh +lQN6JwNerZnkghLbC5M/1fNA8hbjsQXFfDCiXPZUWLUAxLh/oaI2KASPfUrT +Z12KQNRHBge+xGJgleFFxWBZAqoYKMdzf5UAChEksZZdCuSTK/dUiDLw7s3N +CwMrZUD4TpJkf0k5GP8TQB1ueRss6wc68vFVgO+CBSrf5ypAr7jlIZmWSmCd +9bFVNrUK6NcKjmOvO4Cz5tSLPJO74PLU7J0c9XvgvqxIQaJiNahGbb09KjXg +syoKK9OvBdTWtiahLnVAOH7fsDHhPqCYVQ3/YFEPSgLfKtv+qgfyrlaBTdkN +YLW36yAN0fj/3U5juLHSCPr2Y9NSSh6A4swny+ctm4AOZdjDYd5mEDq6vVo2 +1wwYM9u25ppbwFjYVtdcSivQZ3uytOzZBkwDKJ+rmDwEjnK1/xHqj0BWctiR +M4qPgc4u66CjyhNA8ff7L6zfDmgehPGxuzwFv8svqaondID5u+O/8y06Qai5 +5f0TvzqBs6Pa0+DsLvBS7T5fH34GdhKc3umtPAPl0Q4/NEueg4yu7wObFt2g +cz/wUCpvD1Ce0c0zm+sBNfU8X3KaX4D0If63WSm94Nue978cz5eAU56sa9W4 +D9y+VEHMq70C41uMNwcUXgNvv+bPB1TeAMrENd9Pem/BiOfuXK3zO7AoIio/ +Ef8efJgTDXKw6AdlDTU837f6QRvXH2qUPQD+HPA+k4QHwYlIjptMK4MgRua4 +Hm3JB+AeTvfwvsUQcFdxcFDjHQaL+LbaoblhsHMtulereQQsZ5mPq6aMgjeu +iFnNcwworwl05hiPgy9GbxhT1D4CXc+RQwEKn8DD2wVLFcoTQGhZZTVI7zOI +if9wX835C7jPYiPuGz8JjmXKbYpbTIHQ0K74B1tT4HXUVT3y7GnQQUGuoI1n +QEhcmUn/8gxQonvR0FM8C1xeHy51s/gKvr5VebzHMwemv21uPP86B67+WW/Y +a5oH+k/L5reSFwCV/vETGx6LYCfXsVPJ+BtIYhf6JKO2BN6ujidzKiyDgqS+ +HVXlFTDNvezOpvcdKOwzhEw6rQJZKzIh6vgfwLRx33fLfA1otub+urK1Bl6W +dOf13PoJ+EmOBofxOmDLpuFNX14HdpSabFHFG4AoI0sUttgEazmcrK08W+D8 +lGLZla9boFXIubCh6RdYv/BnsyJ5G3ysPw5LPHaAoNS7rhWjXeBeUHnvo+pv +sBTAwfiE+APUj0HaeaW/4CXb7FK97j9w8U2ZerDTHqgkO8iVH7cPXqOYtXZz +MthjI+uosEUGRzzH5xJukcPKu/mOA4gCMtSpzeguU0Cpo/VBCsWUcIhs4r8p +cypoWjbp7s1zALoeTdKX+HoAUv2cSnBoooYlsvZUJsk0MDUGG2p70EKdRovu +W0Z0MGDOPCRClR7K76cm2xAMUMR5kzNWiRFyDIm7a+sehEPL2ezMToegzJ9o +Zsm4w1DjbK93rDkTFP8vc4h6iwlmL7ZJ6dxihpd1bl/JQCzQoM/m7uFlFnjO +dOfTvyJWyPC19FK+ORusm8/tOcnDDqdL+snnZtmhvr1tEEfTEZgS9pGNOpkD +urz2df/tzgnduRheKhhxweoVoC2iyg0zYxQOURI8sNZg/dQJJV44YfRy5ZsO +H1w1W/561/Eo7FJzYeiJ5YdiGT0/dMwF4NJqi8rbTQEodcj+GsstQRgjHJ5q +jISg5byB7/slIahWLaT4uOgYzNUw0DQxPw557NUFpriF4awDy4O8WWG4HjDn ++OrBCch/9PKJlqST0P/a0+gqdxGYZTf5ZslQFL6qvSjwXuUU1DsgfqMSi0H1 +GVn8QlEcmt5s9o7VOQ03DxU2KzmegcyTLdQWsRJww/S6D4e5JCT6C5ozNiXh +1qfR1yNZUlBTXPw2B5KGnBQCpLQlaXiWQ6IquEgGdop9l2M2Pwtl2RZDcrhl +oY6TnqPerCz0FvYxDnsgB5+ybss7JZ2DjvnHi43c5WFLwuhgpuF5qC6cvBmg +QoKdV/XZNTGAJUwdBk6KEDLFb24I6SCoSFcb98kBQ+oOH8ofMQT8E779c9JM +Ac6wqZ202FSAMroc3PlZivCxTfWjcagEg7h6KXWXlGBcDt8huSJleDbR7/gb +MxV481fImB63KrQuS+SknlWFOl5kapIP1GCORcHFI0nqkOno7Ufk7hrQPmlj +HBtegF91fvfxqmjCzqn6vO9IC576mOJCrXgRJknFXOnQ1oZLSjyW/g468MN0 +Fnl0jC6UpRPzv2OmB9kfNeYKbOpBZkdBV5ssfejQ/ncgHxpArlMa7w4tGcBE +sdWAjUJDWG07wxJnZgQTaSjl6LiNYSJ715vHM8Zw/uKtc7ONJjD6h97lF4mm +0IESjda5mcEIe5mZRQNzaHMiu+S5sgWcltEUvIEsoRGpLLxSwQrSJzqTWWlb +w7HWBYmDDpdghdIJcq4YG5i0xr3tY2YLudpnGBc2bKEMz6+2Y1mXoZ6SwJI1 +tINukuW5777ZwZdvS77UF9rDWzWQQsnMAQoqh2V2cTlC9ScbEb4zjtD8qdSp +W41OsPEdW1BgojPsVvuxaenmAn8fzF6+aeAKPe7YBbspu8HH3nx3zyJ3mCT+ +N1tNwQPmpeTH71z0hLz2LNSV9l7QbkKQoi7aG67K9F49b+YD3/GMXK/d8IFP +vbLoFjN9YcoyO6UA9IP0p8YcU7/5QZZQWQ2vwv8gn1vE+l9Tf1hfubRxhSsA +DmUIyZ+cCYA2Twf5LjQGQv3NhZQTiUGQd+4RK51bMCyKO/oLGlyBrP1W+szK +V+FC2inpMRgCidr8hnkiFIafE2TJuhgG3xP5n7H9Nfj6XjyVcnQ4fNgvsU9u +dh3uDyZv/bdxHU5Y7VvUZEbAipbPvDMgEn5jXZDW+RYJoUxNo1hhFGy4VT/b +ahoN353RMpLmioFMOdo/JqZjIJ/mFZa/DbHQ0/pVxUhCHAz9WCzT4hoPy1/3 +kS/oJ0DavBixNqVE+Cvd90kITIJ8rdffxBLJEEbtFEhdTPm/P7Jl1C4V9tyx +oB2LSoMa3UbRr0zTYeIUtTtpIx0az8rU+mTegBUlQedug5twZ+k92aFvN2HZ +GtXRbwUZkFri1bCfaSY8NFbUvMSZBcEL/6qb01lwwVqY9n7DLXjzwJOnsQnZ +cFWoyMjeNQd+HMk5dEM/FzJSfKa2UcqDvZ7r6vwwH2arVS+eIAqguYeg6Dut +QnghtDfdx64IRgxkH/SMKoZJjHL0GaYlsEFRZZpsowSO7UmTyWaWwueVswZO +oAwO19x8/3axDHI0EImVBeVwWOLdy9Omt2Fe8RxHOWcF7OPOsdWYroAsv0b2 +LjdUwtffnozJJVTBy4+bA5lc70CxiiReoH8XTlDazx5QugcXhGqHnoFqyG3K +Q92LayDnan6Lm1YtDB9086Czq4OnBRTYKKLuQ6/KD+mWpvWwdUPFrHe9HkrU +/jXczWiA514IeouARrhmLFGcstgI832ttu0LHsDkW0+eLJo0QZpI/hBLzmYo +cbOVe2+qGXYdTv3F1tACNanfbszHt0L54vncdpc2eE26TGxO7yFcy+foqlF8 +BDerS+2cwGPI9rX/uDN+AqOpXFRptNrhmLrHhbLLT2FjmiFvdmQHnE47zXnc +tBMGb9L2p6x3wojl9DvtGV3w0F+p5CXSMzg/W+GtvfgMSkpYOgoWPIeGNlkN +5SbdkDf04iQrZw+8L/ph+MFUD6yp1PzRW/8CEqYrh7Pje6Hda8mnbi4vYXnI +BEjT64P0L34XGyq+ghFU/T/pwGu48+21Cg1+A2fuxQyXa76FzqOvT4LL7+Bb +nkFh8cj3kHihXLJi0g+fK6RrGK33w+2WH/8iMgbggCrbvRrSILxr+Evh4OL/ +eR4Mfcn/AAvjzKoumQzBskQPlTccw/DE56UbrlPDcKeV8dvV+hHYNM59Wj1+ +FK6AzFkOlzE4EELSPq83Do9dY7z+W+EjPC4qH1lL+gT97BmdqtAEDJjYdFLQ +/AzNwxJohmy/QKeOx5JdEZNwTu2IaLPJFAwY+djFvT4FLQ9yGallTMPUkpcv +vUgz8FSZAOvbhRlol7WnXJA/CwUYqYu4TL5C8Xvh96I55uDg3T0d/qk5+JsY +mj1dPw/lE8y0tuMW4MwKE32P8yIcl3hiM6v7DYLOi5dLFZZgK9tHVn3SMvx5 +8Wa8OlqBSVnNuxMXvsNNmYpFD9tV6BjAhEwifsDnhysaw0zW4EDjIpj+uQYt +lhmr6TN+QgM63UVJ0jqkeXt8PnlhHZ6RL28yz9+Aad8Ks4aMN+HX0RhmxLEF +xZIPHRye3ILUoHRy6v4vOGxX4VYVtw1lPlVK+TnvwLycwmorlV24W+Zgs039 +Gw43Uc97vP8NsyJ0TZcK/0DGNdMTRX5/4aX9HbE27X/QmD+twVViD0b6M4XO +cexDTfxk+T4lGZIdUtWnCSdDS31Xa9n2yNCk+kzm5nVytFclFNxNQ4EOD5bc +K7tJgUCOgWudICX6UNgzTdNMiW5esjrff5EK4c1nmaLfqNDJC4X85xIPoB1/ +HzY+SWr0k7Kvm+wTNZKjKSmlTaJBp16RqVgp0KIswZ8Bx//QomTTIpD0mA4l +dvZPPI6gR+M8d1ZntBnQqfUy6zMCjOihxEbQ2x1GdE1HaGdt9CCqukLD9Lr9 +EEIcLP5p9w6j7sqAB+d1mVBBatvMyBsmdPlLbALQYUaMlOeeR39gRsvzF5P6 +rVjQfJx8N1piQTlRGnglhBXBY4NP/zKzocmYdJobNWyIPgN+ea3Fjj4527AN +/GBHNykup/XkHEG2e0N679U40Op5mnD23xyo2OSVZ2cjJ6o9mFi168OFmi+X +/1o+y43cX1J5P9/jRvlXOYNr3/EgCt4/I2O3eREDK/nDgAg+9PJr8tNmh6No +mvY89RsdfmTyWazgF78A8q9x7DtZIIBOkBVeZecVRBdvvA+cKBb8f59Fdnkn +hRCo+PPC84EQ+uBLyRmofAwN97I9+TB6DKVFcbLe8TmOzKcor7EfEkZPSZlO +RL0winJQU9c0PYFK9JMeWFKeRHY7wDav6SRy0dYRP+Mugk5qvxVVOCmKgrmO +VP1eFEW1hJV8Qv0pxHMxqIvzmhhiHf8TPqovjg67l7FviZ1GEXZ7N8sYz6Dw +4LhIls0zyAztbATPSCAWZoruAx6S6M9nmafXlyQR2jo10echhYytyjz21qXQ +KedDJTBMGk2TnNPKGWSQRt5JZcMiGbRyK+KRh+xZ5NTxap154CwKDhb84egr ++/8noN2ZfEQOXb32Kbm6Uw75HA7JXfQ+h3Q+Zeu7H5dHJdvyelZf5NGbXSHX +ucLzqK9aoVHKnoRapY1SPM8A5DC53vBiH6Dq2bfnPEYhyj6nWZrajNAvXrd5 +mzyMgirpr7PGEujy8uPz3lABPdoSvx/yUAHVKoYrapEU0a7U9aXfTxURs7VI +1B11JVRjY/DKb0gJ6TlWuF9xVEar203Un38ro427pnIdmSrokKZcjpKMKjqs +nTWUOKKK5iUtKp9cU0PX7+jM/hNTRy4u5dEBX9RRUUTTfa1bGmhUgbnjruEF +xFHUp/XoiCaS1KE8d3dSE0VUjj0or9NCKdej9MeiLiJr35EDQTbaKL6aWr5B +UQetbrx8/fCULpLmtrtld1APPeQ+U0uVoIcospZ3L9HqoxpHH6HUJH3Evyh3 +9z6LAbIxIt+cLjRA91G9gcppQ+T/RJt6u9MQSQ/paPCYGyHLTkaDD1tGqOd1 +kINStjFaCzzQn4xMUGrjp7+jiyYojgz8p5lrithdRb8y6JqhW6dtpVXpzZGF +8rUQgdfm6GZJhGDfDQuUGJMw5H7JEul/my2Qk7JChWYuc2b01ujTDaFYyiVr +tKGu+96l/xIajK/NfNJugxRvZ/Bym9sioUlXa8pRW0TBV23TYnYZvRHS0dP7 +chmVru/BH852qCZkmrtxyw55msa/bYuzR2XigmeOH3VAv/THWI48dEA6JgEm +DWaO6Ptp6Smuf46Is/1dtX+lE2rJmxlYMHJGDHNe6Xm0LujikUbD5i4XtDtC +dFy+7op+jV1qfaXihpqH69x4D7ujnxOcVtGT7ohaitFTqsUDDW7TLRpmeCLX +U5FJfEFeKEmMKqvrsje6+sLO6ZGoD1p41/lSrtIHxZ+1WPc94Yt4NnIfx9/z +Rde52T/lSPuhja/nVzqf+qE6delAAd3/kEzKn/XR2f/QTGLTCG2YP+LjP549 +zB2A3MquPLjcHoDmGC88GXAIREwF3ZZazEHI9YPspa1nQcjsUeuj7SvBaNvk +bEGI3BWUbF/lVr1zBQ2Y3Blq7LyKhBbR+NPUECQJ/w38swtFAQxBYcUoDI2y +bdENH72GrqknCgxQhyNqweC13q1wVLkUULgdcB2BlUSJjs3r6OAFXRnToAiU +HYroPv+LQKGULJte8ZGodzuXX5wjCjEfbak6ey8Kxf/IKL6rGI3cLxzlqv0c +jUqcq8TtrsUgofm3ZN+PxaIDGUWDfu9iUfXnzX9c1+LQ2Xc81PQy8YjSt6HI +/Xs8Cmh51+RSm4A6RgOCxf9LRMjmgtMsTkLuFKn6j5mSUeiNK16zi8ko7sKA +VXJvCvq2Oi69WJOKjokUxJ/KTUPN7zoUVdTSUX07v2/B83TEHVtI9UjlBvLN +uEnzqO8GeneX3vGRwU10rO/a6vjkTdS/8NxO3jcDqR6WCPhFnYm0QteGZEsz +kYZd1VkuhSy0dEjSoHs2C2WK1O1ZJt9CoeNDJ6hJ2ail2+vTt5VsdLbhpIVE +RQ46N5l7hMw+F/Vzlz6PPZGH2Au2rH78yENG00xSzh356E7npWXerAJ0dv1J +kYJvIWIP1eqnNCpCVPbpkbmoGF3LChbg4ShB7ebP2GkzSpAJc0nEfZZSlN+r +wHPmVinqv/0vsJSvDA3rkR8UuVuGzmYJKUzLl6OnrzYcvr8pR6qVtH2ejrdR +Da3/o2iKCuQXFZ5mfLsCfdQsqqPSqkTttoW3Wn9VooVBloXMqio0snTQtdv6 +DiK/SM/pzXUXke+fFOv4eBclh947OlV6Dx343Nm+51WNeG1yxS8o1SCL+Gfr +qzy1SPb8xAHBv7UohyN/iHm2DvG+ETDY6r+PDgwMXyezr0cHWPXI5abrkWV7 +UOo5+wYkmLvqJPStAUl0Ztxj+68RvXTQvHya/AH627sZkZzxAOlu3N41ONWE +qIaoHpT1NCFR++3CIsdmtJrs3+pG34L+lpcyize1oPdiIhO09q1oZOKNhwhH +G7o6pKHxoL8NnZp3EvuQ9hC9OObM9sDoEYpsuncxnP8xenvynp/j2mO0GSEf +ndn7BK0Ys3+DFe3ouVJ/WHrCU5RjRFb8zL8DWc+4cEfLdCIFy8BJrfpOZP7e +sn5IsgupMP4NBM1dqDVk6U8heoYOaxz9zv3qGXLiHP86YPEcdW8885n98Rzd +WoBcvgndSJVpxaXwZA/aaL+2mfSqB/n41Npd9nuB7gVd8Vfm70VerNUHzQd6 +ke5+OnoV/xL9NKfU6FTtQyq71XWOtK/Q+/O3SPP9r9CgHy21d/FrVKZxN/aM +/xskJ7iRbaT7FpUe2YlhkXqH6EeCOfO53iNzPxHdG1T9yMqnMPRHeD+ibNge +otzvRwx5eqtLEQP/36kV0jPaQfRKcuLwnYxBdOzgm+rHQh/Q7tYhzNfyAaGF +8e/ftYfQhaiH07pLQ8j4gYK6U9IwovddtzCWGkFXI118lCZGUM1+22/D5FH0 +PoI3q0FxDN34McIQ/XcMoWUHx60n48ht6ceyZNRHlCbEcM5e9xOK9Hss+0hw +AgmlvpF3/D2BsjsC/mWOf0Y0t/XaQjq+oNNGtwW0ayaRYy8l5tebQjrwjPHz +t1NoxJCNS0J3GvUJVVaGD02juOSDfwatZ9BF4PlbfXnm//pD4F7oLHpJbn+O +g/UrSh1s2H9Q+xU1atplb1+cQzfLtwYO/JxDxcc+3aLMm0cC2u3fjmgsIPF/ +hzac/iygBuePtLxNiyh85UOrjd+3///JxjdWcksocXDAmiBbRhNK3MNn+5dR +1T/Sb/fKFVQXeOYfW9R3xFrBHHHZaRWtB+pURev9QEmCqSnjAmuoyrkmlblw +De1qXdKg5vuJpJLkooZKfiKrlaC5XJF1lF/TuevftI5G1b/JxqhsIGMxTorl +sQ3ktczQ2eu7iQ4XFg6iw1tonSqswqdhC9VYijRHm/1CdF6C2cVU22h28zLF +YvM2qqNnHovx2EESD0LEy0R2UVWIgZ7z0i4y0TjzkazxN7roeak+P/wPctKn +YHUy/IuYx3wq007/Q5orP8IuHNpD/HlPT7zY2kPsIv4Pzn/dR6GOn2ZXPMjw +vPqJQa9lMvwot5urw5McT40fZPizQY59FPjHFK5R4B8Flfn3GSmxXMK0jXMx +JU4NGxROkKPC951rV+QGqbCjT9jDDL8D+PDdA8XPOaixx+UvPctd1DiDfMBf +2pcGf1X05+oQpsUxD+j1H03S4rv5FT+1i+mwwMlU1goHevyOb5t7RYIB1+Pd +Lj1yRrwVNSFEMc6Iq4vrn0m2HsQNHOcKDhUcwttugmLv4w7ja0uDjw0RE14o +kmN2fsSEP8V5tSHAjA1HJ2s2O5jxrXMn++5qsGC2v+/fhgyz4HVGwiXRiRXf +4Pxw/tcfVpxTCSanstjw6RbaHY+z7Phphv+Zp6PsuLfOldgNP4L/yL+gUDnN +gc/L5pOCX3Pgjwq8DjbHOLFw575GUignFnCdzyEb5cT9RZ1s3dJcOMHhUNrH +NC6ciwVWNFa5sDuZuRCbDjduTvMhKd7nxk5FrbrDzDy4wMoqfTiAB4eeqkfq +n3hwtpZXjYQSL5YvpFTNvMeL+c1Go66y8eHHnzN3F8L5MOetQK2ZFT5cMHtD +xtvyKO4UPx6R+foofkw1zWmG+PG+v+JWRz0/Tj7rxvqNRQAzHtNw09QRwC9G +WY7GJQrgnnZR87JeAdz+o1C/+IAgHnK3vhChIogL5i6lakULYh3w7ip5jyC+ +knY+oJJaCA9Td6yhC0JYTAZ4vk4WwkXCwUEGA0JYXcr67siRY/jkJf57ltbH +cGSK35m528ewgfHjncDvx/DPDMVxtnPH8foT+7pnEcex1Nwrh+i3xzFrWvG2 +NbcwhvIdPoYuwvhh3fqiS6sw/nlGOL6M5gT20iqIoTI/gQUrJEUyqk9gef+4 +Fwb7J7Dv3MVedaOT+Lied2ngvZN4VcVyYpZcBNOHyjNlWojgudsn55OaRDAF +ZwRn/2FR7O7H9p+jhyj243X9oPdKFOs93hfJFj2FTfIyA1DiKVxEaf9WY+UU +ZshyNX2qK4ZjbtzXLm8Sw8ySSf/+covjibXF3v5IcfxuN0Pw+Io4Fg8Nz/hr +chrnizE/tnl+Ghu+9NA0lDqDN9o7aT+XnMHdkxmDFCwSGKmw5b2KlsB6is7O +pF0JbHwhTLzmnCRmM1nWz/pPEv/i2e2zrJfEoi7KLyhWJfHDAJnoFHEpjKJP +ae+7S+Ggw3WBljVSePhOpl3FdynMHCwTPiUhjX/aJ6sz/SeNWb+GKsu3SuOj +Ed9prP5K4xgqinPhSjK43kzzekWCDLY/+dkOD8vg7F7w/XLgWRwX0Xa/jFcW +e1MFnDv1UhY3B4jZH7sihxtN5jwfSZzDDIF0v3lXzuGyxue8V+vk8ReXPleK +oPPYPyRsf0GVhCX2AzMu8QCcUucZnr8N8KBl2rvhjxD7tClqqfUgHPPVMOVk +K8ZPtMtpW+oJzN3Dc4jTXAEbXF1hWv6sgKe2WYgtJ0W84Zo1ZrapiGfNOmXO +xyrhO5l/eh7xKmP0dV6csk0ZP3vcee68mQqONeb6Gf1PBYfnDt05fEcVtxqG +7VGaqeFQnZXllIPquGpHtf/jS3UcYqEfwpWogbVExc5f1b+Aa1dMv5zh18RH +z8oPuW1oYvl/08L277SwS7hdik79Rfyi1j3CMVcbF475KM8k6OCuXdlVskhd +LHbb7dm+gh4u8eInP9yjhx0E8s/qautjn3UXt5lxfUxp3Nm97GaAGcYuRqWR +GeIwd8S4kWeIlUmFW5BkhBOCdw5lfTHCEwm67sfjjfExckt39nMm2JP62MuM +ZROs/Xql8E2FKa7uvR606miGH6W/MRcVN8dB0rPv63bMsTC9zXbDaws8jkRS +nCss8fm/Zb8PxFrhfyMa9j2e1vhfdn3jpNUlfOkIbXW6oQ2+OET+m17UFncE +HcsyrbHFcq4V2+9kLmMW45m/NzsuY2x6IeOFrh1e+cnZk/LVDgdu2nYdvGaP +b6Vpz3nwOuCl5faewQ4HbFUlct7FxRFXNvZfNj3ihD9za7e97vs/2zsdWY90 +xpnCF5/tKLpg7w7hq4dpXHEcGfl150FXrP9csFLmthtWSmu2vBPqjq97rj78 +Y+mBi2TjbzgqeeLzrY+D+SW9sIZ8+biDsDcO/Zlw/TyzD97/vn2rO8MHH3a5 +qufP7YsNgmNM3Cp8sZE8o0PfWT/M/emMTvNLP+ypLXHQ8PJ/OC27rufl3n9Y +3kB2EJX64/pUurcfNQLw6XtGeX1bAVj6Zr6f7J1A7Mid/F3TNgirHBE6KH80 +GKfvnbggPhOMnQ4czjeruYKZkuUSf4Rexe4MUfLCRiFYLNfNW0I6FIuoO9aq +coRh5SevZUopr2G5sBPsYdvXsEfQT+UjG+FYu2u53zjkOuYfaKIhyCNw0N9T +2CUpAjcC5r8bXJHYuL11+kBtJL6nP1v/TCUKn5P4Z6w3HYXbzVN+DkdGY4qD +FDMhojE4PffFW/fhGJwNamr7Y2MxY0zV6AiKwzJ0c3Q1v+PwK2b5wPD2eHxF +Zv5tRGwCvt8+qD1nnIh9yQ++/iyWhKcqujtKaJMxhVyVmeNKMu7RuBfpMJqC +vzSq7o71pWIbbUHj/edpmERVeJDBPh2L7CnMn1lMx1xP968m+97AIymtAmr7 +N3CMp5xy+I2b2NSWzctKJAN7Vw4bU3Zn4C5x0+k8h0xMJMXJaNFn4Rs03s2o +OQvPHkoQKHS8hR+9903I4snGV9OW3IxGs/FW9LkG2twcHMD4sWfGNhcfPX4v +n00iD585Z/B4gDIf+xtK6ulO5uMvDCWy3V0FmEGtnsq1uhAfuKIhFFxQhHMH +Ot+ezirGmYE7HF81S7BbgFWz8vsS/NwiemjEtBQHdTdld3wtxXMLsXKCgWVY +a6iZWoCxHJ+RlYmZrizHiV9ibJLVbmOLYP8wjeXb2K5pj57IqsBpyVWReSqV +uIWLtS12txIXNv6ekWyqwnX7V+71+t/B9UutkiHgLn6pvHo0jPYeDjzxoYFs +4h4elHV+QWqpxp2zYguXs2vwb6Ye87rwWuzgRnfawrsOi7LGqJc63cdMrOcf +T0nX4/L/snBYSz2ubE5mUccN2O0S20nbVw1YuVF0/G1TI1ayCaWZZWjCMo84 +4pJDmvHNPvvjKQdascn23e3e6jbsbuLWrOTzCHflC4iKGD/Bt1ijPr+yeoo7 +R5/+/qDSiduDHvDKenfh5xpH6n7VPcMB8uhpyYFurDnE+t+ofw8esFVitN57 +gU/xIwa22y/xyaKpSHKXV/hPtM8N3Ytv8NpxClo9w3c4+NeF0g6iH4+dPZn3 +3HUAj/UNGwveHcSBvUqutvsfsOgHsaDjXsNY365CWmJ7BC+Wh8XaFYzhQm6B +r89sPmK2gHdPrihP4JY9OZGxC1/wvM3Q5xrSFH7pU//K0GEaS/iPvNcun8He +H9dohHZncb1R283/nOfwbc/xW5Rr81hFq9rlQeYiXn9tMRZruoQZ7lnfqySt +4PJDssheYRVL60/ez5ddw+cNe2vnLv3EVU2xPKGF69jIpzp3bn0Do1MsPd22 +W9jUQkz+4+IvHHGEuoE6ZQezbDy7pK37Gw9UKpqPSP3FdfRMaj/l9jCHxMqR +ZEkyQlziq9IVc3KCdMJYviabgnjbNsJXvUJJxFjcPMhpcYAwll9kfzBNTWRw +DvgtRNISVcMZ3YOK9MTLOzQjNwUYCY+WXFoPwUOEntdPOqdjTIQ6Y21I5QVm +YjLnI9NENAtxW35uMXqElVj5HmNBUmAn0tL3ZxufHyFoahtxtx0ncfhJSo4j +PzdBUDL+avjDQzTlVHYs7fIRfhMLGB0SICRDHWb/SAsSgXVrkpkeQoRd8qZ+ +5JNjRBBNULT1cWGiAL2n+VhxgvC1Cz/9WkmEMLB8lCb8T5Q4MarkQz4qRlRl +RSkVDp4mpDc37W3XJQgL8kOU3rxShNvD4RMeRtIETZb6cGmZDHFMMFiuglaW +CE3p1haJlyPivi7vxhyWJ9Y/t/r7NpwnSBmqO63egDgdtUGndhERkvlruaIX +CGJUbeSYZpMCkUo7PO81okjwx93XUmZUJo4U7ynymaoQxrnZK65tqgSPbczZ ++1LqRNlx86CUbg0iyrDWoMtPk/A5MJIqjC8SO84Tp5pFdAiOR5Qv1Lj1iPfN +ta47UvrEi+6B07etDAgRBvuGjHxDwsD27tqJNSMihLu1b9jShHghRcqXmjIl +9mL99uevmRPBonIVHectCYmKgxdus1gT4YNZ/UUMNkSTNFL1yrAl3AKeaZo9 +uEw0Xn8g/3rejugxoL/ELeFA/NO0OFyf4khs1tXLHaZyJs6M3tobynAhqPHB +vEfYjbBoDBTLpvYg9mhT3lz+7klYihU+lNnyJoYKz+kLM/kSE/lNN2Lk/Yh0 ++w9N5AH/ESLngim2X/gTKd6mAR8lAonw0lsmpIYgIj3Zcqvj4hUibfF0qBRV +CBHILT3/33gosfrP8UjKu2vEFCmb7oPfdUJexaQpNj2C4HiPPhZ0RRKYY+iM +E000weD/A2naxxD6qtE7L0diCdqTNlah9vGE/8FieW6GRCKsYoYp8H0S8Use +C0Y1phCtCTIxJi1pBOPwgWeZq+mEwpFUijq2m0R2hEn2Y50Mwvq5FBdnUSYh +U3i8QpbqFuFt9tm/ODKbiKOdufmHO5e4RW9aw/g+j5h7ZkPRVFJAiMThsI0b +RQTD+tOfQQYlhNbNV/m7nqXEgpJBcWtBGdHimcBFNlVOqLpQfjh3voLI/uDf +9+luJTGsKT4UKXOHkPBhcZwcvUsIjwm4dOVUE+/+2ipzBtcS6hp3djeD7hMX +L8qdV3tbT6T35m3y/mwgVK1qn3eKPCDKqwKzEgKaCCHmH3XzY83E7UcGCrZG +rcRozxZ77rc24uqtQCe9vEdEvdjFTnuXJ8SFCwOcA8ZPiYfUCeFW0p1ES7rD +1XqtLuLqF+Yd7uBnRK9dfPRC23OiqyHuVPDhHuKKgcFvtbAXRJzB8r0FypeE +Pke5KV1FH2F6fNIy2O410fhNVFcAvyU89B8fO0R6T/wPzbmR/w== + "], { + Developer`PackedArrayForm, CompressedData[" +1:eJwd2FMMIEgWAMAd27Zt27Zt27Zt27Zt2/bsjm3raq6TSjrv/zFBw3YV2wb4 +559/7gb55//v7z8ggQjM33BQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjE +JBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQk +F7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQW +talDXepRnwY0pBGNaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe9 +6UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZ +w1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nD +XvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd +7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5 +w9/kD0BAAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQl +HvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf ++SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71 +aUBDGtGYJjSlGc1pQUta0Zo2/C3g7WhPBzrSic50oSvd6E4PetKL3vShL/3o +zwAGMojBDGEowxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jP +AhayiMUsYSnLWM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8B +DnKIwxzhKMc4zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4z7/8 +xwMe8ojHPOEpz3jOC17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OFv4w9A +QAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBC +EpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEK +UZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrR +mCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGY +IQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZgl +LGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc +5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73+Zf/eMBDHvGY +JzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/wd+gMQkEAEJghB +CUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xiUd8EpCQRCQmCUlJ +RnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlG +cUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZz +WtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBG +MJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclaw +klWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCS +U5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53ucd9/uU/HvCQRzzmCU95xnNe +8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD38X/gAEJBCBCUJQghGcEIQk +FKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQV +qUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSl +KUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGNaUJTmtGcFrSkFa1p +Q1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnD +WMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa +1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nO +cZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nD +W97xng985BOf+cJXvvGdH/zkF7/5w99jXwACEojABCEowQhOCEISitCEISzh +CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI +TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP +BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H +OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm +MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay +ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ +y1zhKte4zg1ucovb3OF/AVHuXg== + "], CompressedData[" +1:eJwNl1c8EHwYhe0VQkaUvWUkZP2HFWVEpCiJZKTM7MyQmU3K3ntTychMVmZE +ZCZFlB3J9109v3PxXpyr87zcdxz0LQkJCAimSQkIpJJOX58tcwY3jrqrVdgf +Am/NdgijHwJ58TjHGWIXQHySkEv+kQtoV1f2u7HtAprq2HmuOrsCUT7Fo/Mb +rqAmxNKZ0dUNvJRfQf/23YCjJFkcWZA7eJpuQKpE5wHoFG5kNWV4AP48ztm4 +c55gXKK/YuS9J+C2uOuacMcLEJUFHv9x5AX+PVWc+J75CJws2SotuuANXglZ +f8Nr3iChLse2/YUPEKgQz9LS8gX+vWIBv458Aderwuie136gI2LN6Y+CP1CR +MkhsTfEHzLSHoz3//EGIHsjmuRsAqNrCmsd6A0Bq/V24LfMYmALwJDL7MXjp +b3GthD4QcLIxtJsFBoJ/DI6KjbuBoFixPLzfPgj47IpM5i4HAcfhnBp9y2Bw +/4wL8fJiMJBRnmNzs34Czm88rKb9+QSc8jdbbXcNAeUlf68VEoaCGB+19Q8x +ocCA0Z5XizcMPB6M/Hi2PgzQKKqZJuiHAzviiOjw9XAQ6+r7SigmAnzpVs8J +ko4EqTXU2bVTkeBNAkHoQOhTwNXysGpVLgqInSch4/sZBTIvfT54mhcNxj74 +9XNLxgAFj1tKFbExgJcx3Ml7Kwb8o5HoSTKOBYbddsTUrbFAyRsI/RCJA978 +l5/hZ3GAYJaU9BRZPLD45OoT4R4PyoRsrTJX4oHnvF/AvTsJgDj64trO5wTg +4eglamyUCJ4NiHFkjScCq1xBqlnjJNC4LJkuOJMEvi0F/A6zfgZox0VDWDef +AXvuEr3vAclgP8W2kprxObjA7uj9rOg5+P2WgjBd5QUQkI4glpl5AeZ8hTud +/FIAbdgIqS1vKiicFyGX7k0Fnlyh0UtuacARMvxMFkgHB7bLe3cm04F2synb +rbgMEMQkyK8nmAnUOMGxnJBMkBDqpy/9IxM4bO7dpNfNAkXe7p80XmaBJ652 +PV85s0GF5HjIn4hsYCIq1hi7nw3iusxtm+7ngOsrP9YiZnIAae84Ic21XDDE +uvlabyAXkO79X0crDzh+rdC+05MHGMg8oL52PtilMDm6OJQPzhI9TzcyLgCX +Iqji4xcLwH2/0jbqh4VgruhM0DhJEXjVEpxF/qIIaJHV36g6VwxOrgfafP9Q +DOzPyBx12JeAPrfIIWOGUrAUU3qiub4UuLzj8KWwLAPlzst6eozloG+x+lpZ +Vzn4zky2LOtXAbQNtNyD2CvBdovBVqpPJTCawW4bM5WAMHzfME6tCji8JgXh +JVWAn8WQZ5mxGqSUS117418NLkxKex1frwbEI2dDd27XgGV6nRHfkRpwYpiO +6vWlWrD3J1iuuq0W/Kmz6vFBdWDluNHTM011gGxIsqYPvQSFhwajzu0vwawi +1YaE1itQ437owTz2ClCw1arK330NjIW500q2X4OFUhXVgPB6oF02cO8Dzxsw +L7HTWND8BqxFCN/lMW0Azo8ISa8SNoIDTZF3+oWNoCvKSl/GoAl0d2Z/ZiBq +BtaGpziI65oBl1aiBceDt0BaxLC9+UQLeCTBeJD6sAX4lqhMvfzYArKbal6x +KrSCfrMssZHMVlC8GCzxm7INmNkTED12bQMGbR0oYaENXHqRNHb+ajto6NM7 +4dnVDkgi957bwg5wh3T6wamXHcCzqP1nimQnILTlnv1b0Qm+y5vf15V8BzY5 +5Njz6t6BJH7y1eOwC5CHa8lnd3UB1fvso/aG70GGadNB6NJ7kAYk75A86gav +An6JbzP0AOPMTELH8h7wLntuK0ynF0DfM1lGv3rBkVcj50ZSH9hifk5jp9wP +jHrTombX+8EGZ47e3ewPgMyzNorOeADUk4tRHVEOgjWVR1w59wZBoUZqcEDv +IEiK1ntcIDEEjC5Hl/MkDYHfvaabBEdDYPLtq0g922GA1h4e4/o0DEo1L173 +vTgC5hZ7Kr0aRgD1UlANn+Qo0FyiM4osGgWMixd2Wvk+gmPCDhpj2R+B8L1Y +m0neMXDiftPUTMEYuBHuGL0nPg6crYjHz9ePg2IGQfcy9U+ghN0px2H8E2Ds +3iGMvT8B0np3y/iJJ8Gr/WQFlfRJgBQq6g7AZ6B3IqXYeuYzCDeU4U8NngLP +hfprKySmwei2rEP99DSgTNjcHIz+AkR5bzrQqs8A3sDdyxcIZoGh7Cfrituz +QMrtvat+6yxohY/qFfnngLZacZtHxBwIkv7pxLI1B6YXUvb5b88Dio6Gxeq+ +eaAwskfbDxYAmW5xZWDFAqh2XLi5xLcIyL1ijkjSFsEHk8zv6yxfga2GYver +xK+A7S5ZlR3zEiBidWXlfbEE6NiEFr5zfQMh6TeMR4u/AfHjptLbssug5TFf +6u33yyDBfFJE0OQ7YAyPXr+9+R3cNfjlyBH1A/T00la6i66A2gRwJuDDCvBo +3p7Vc1kFVFTT+ofsP0HEbndoWu9P8I76+4lLPmvgxts1+pNS60DK+dZZ3p/r +gNt7fbzV8BegppioEX71CygLJd0dY/sNfPwKnT76/wYT+ahG+vtvMIuZrhJd +3QBpihYj2q0boCd5iIxXchOc++J7OiFnEwQm0aZVnNwC60yddsExW+D0cMUw +/7FtQJ886ZgVug2kV2P1KCl3gPtC9Yx95A6w66TYWmDYBdw9r/u9UncBh0Yj +q7rwHnDLvrdlVL8HOC2oV99p/wGx9ZHEuQt/AOWUQB2J7z5oTDy3fXjqALy3 +OZDOazoA5PlFlnQWf8HFWXBgSH0InnAnr0fWHwIWnczOPtt/QJDNLlKM6wjc +Z3463zVxBOpiyr0ntQjgxA95bfIyAthbHBPjTkcImQ8Iu+XcCOE6t3Gn0RdC +GOHYVPD1IhEkMktb+llHBBk48y778xPDi6MtJKXPiCHTZ5FQf2oSGKnypJYm +iARGjJN2WPwjgZYkmVfiH5FCyxHdm2UHpDDP3EKt3ZcMCpz4NL5EQg79Jjo0 +RaLIYdHcMMpko4BG/zo6bhZTwF4B2tuOkBIG3XUn2RihhBQRH3m27ajg+MmB +rKhjx+C3zOqvI6XHoAmX6fDkFWoolyv7oX6fGj4okO0MKaCB47GkoiZGtPBm +pwCxLs1xmJ+vNOnx7jjcpXx1748yHTxvetVgJZsOstrk6HOS0cOLLe++ZN+n +h0LWom8DR+j/v39AMwgZYFS6lGxSMQN86CxL8JX1BFQNlgvqjTgB6Wdp5Y0J +GCHf9fZfae6MMEe97nPRb0bIw9Ef/tSeCQqSNf42XmOCMWsX73E5McMQw5Kq +jR1muHRya2vejwX25wV1E1OfhO8+J0jbpJyEhH+7SnnFWeH+38HTmh2scC9D +YGn9Fhucze1aED5gg84+x+1oUk/B5bkUo0ql03CoRPVI6PtpWHGLE0clssO5 +1hzf3QsckPjYQIX3PgckWLIxOF/DCVN2RJo55Lhgqoff94/JXDBU3aqv/4AL +prz9/PGEOTe8wL3bUfeeG9ZJvS9uPccDpZiVVi9k8MBJe361K7S8MFqJsXPD +jxcalYV9lt/ihfMrB7rn7/NB0vp/F/cW+eBItItOjDk//LfZp358jh9asusF +PrEQgIoGHq/JvwvA1UvGpHlOgvDwI9O246EgFNS8G+AbKQS/jHMzzXEIw3mt +7ajSWmHI+JhQbVtHBJ5fLyAa/CECSTNuMulHnIHBVMEXYiVEoa2w+5eccVFo +IuBWmRkoBic4Bk9kSInDRzcoVl9+E4dXrJlKCDIlYIS6cbGm+FloGTSv1BX1 +Pzt+SAb+PgtZzuouRlyThJLu47TrTZLQwIThzRvBczDrJlQ5jD8HL5TJGncS +ScGAb/4UPC5SUOaJag3PshQsT7t/ctxUGtYS9VzV/SQNB86qfU25KgPLFemL ++kdkIBUryeK24XnYGbegJPD5PLQ8NzjiaCELmb1en15e+59vP1Nm+MhB5383 +9wuPy8N/xDMtrHnysArjfFKkAIvytR8ETCrA7KM0vWwvRWj61/m4LweAisEF +SyLvAJxOeZ381gnCevzZwYAbQelmfuV/owhemO51+BSJoYaQrIcPnxI8voPy +3wYpQcPgiWH8TQlGDPSZHNNWhqSyzzckapRh5/bVhIbTKpAkMy6xMVQFBhzo +ZyjvqsAeB6JqYxtVeP/qY0HGKVU4bYHq/PXVoFnKZfuKXjUYNJzXWalxAZ42 +1IlJfHcBhn4oI3e4qA5DRr/2Xu5Xh8kW4kvqhhpwIkOn996sBmSXOGnaY38R +4iDCjUcEl2DEwwaduMRL8MGDr2Xc4prwa21vF+rRhErksn3/7mnBqA1tW3ca +bVh6J2C4uVYbrtQ9r1+5rQPL3rfeZDp+GZJb1PgZtF2G711+eTZ76sLIixTJ +r9j0YBsNfdRbLz1Y+OG4EMm0HuyeamyMU74CZTlubngUXoHM5nEtHfT6ULnx +qnOQjz7chQMF71b04bColdELEwN4lbNplHbQAAZK9r6XUr8KFzMOIOvbq9CO +4WbagIIhLJofqrKuN4THS+4Xbyhcg8ftS08/fnsN2uZvkglpXId34n8O7wxd +h1bMJ4wIzYzgMQ+5Lzd+G0FB+zNcLE+MoUST2WVNjhuQfqSKnvLNDXi/XiTK +xvgmLG9dtvT9exM+uEzVaJZjAps5K2UFLt+ClJF05Et/b8E+2rT5VxWmcCpF +ga7W6jZkjFev+UNnBoeszhR2OZrBkwnb3waHzaBa9M1WHllzGLhiP9yTZg5D +k1ypxsnuQCa2DyWGzndgMf+MjuHsHQhzGGYW9Szg7dSp/BMdFjBU5oPGb/m7 +UJGirvVp9V14g7/r4R8xS1h3bIrjQqkltJyp/hYgZgWfSqobt1ZZwZ+FYtZM +8taw/wuNY0y7NTxoZ1a6cMUGan6NOaExbwNplj2fF7ndgz+Sz+7409rCvR9n +380V2cIJtVmuuYv3IY+vbUrCyn3Yt16hxRD3ACb8U+t1BHZQ8UmgQtcPO6gV +W64qlmYPX3YLcTQYOMB0ypn3auSOkN6M4PCTlSO0vD/NV/DeEcJ1+ZBGUSeY +N076RiDeCXqYyeRuHjjBryDXT9LaGaoTkHxeG3WGxNRjKQoXHkJHdScCvtcP +YeTciew3Yi7wjCehO22+C3wzXDYqwe0Kz4RtOUlkuMKmjVv3OLjcoG60kyJt +rhus0WUeojvjDi0oCX3l6twhna0kcbKKB3Rq84lVGfGATATifVrWnnBAMr+3 +658nlNvg4up97gUpTnqN2so9gtXUVE6Nk4+gl1jcv4/+3tA/RYHyg4gPLFzI +ymn45AMFl//dexnuCyM9DYPHlPygD01zufSBH2QONGPdNvGHakd3vEKb/WFX +t1a9OU8AHKT/ZxEVGgBpCM8Zn/4dAIkHrvWwmjyGsnT+MLH7MUSBptFp8oH/ +76HatnJpIHwkI3sUyx0EUzWpXqQ9D4KrJeH0rozBsE+vlkE4Lhi27W2X9TA8 +gTMXHxvfT3oCQUP55mn2EHix2qzzd34InCcJC/orFQq3jcqv6XWEwvW8JyME +RmFQWi6TnGc9DLLEs7m/DwuHctEOXJRCEVCIRcfvT3cEVFv0i65wiITc2esD +yqxPYe5M6YWud08hiTy933WPKHhCYCOJSjwaKkwvyf75Fg13pwd1OQxiIP4o +fsW9Ngaa7UmMM56MhZ6PuqxJfGOhn2z0hMFSLByqLjSkvxIHS24XGWs1x8F4 +/bh6OvF42Fw3kuWYGQ9PY5PnXkwJUOl3bSB6mgCrHYRz+sgT4b1zhy9kghNh ++mKZUzhpErREqvFToUnQqbB0BB5/BvkPRZ1akp9B3zejzO78yXDmgGrGpS4Z +fo/jv9Z/8Tl0eUHnkzDzHGrOkPZ98XwB2X2vyrSypEA9ZnmhK/Up0GT7XXyu +aSq0yZj/PkSeBjvYL/P8qk2D+4+6mpit0uHurHz3rVMZkKaGcG569H+e5mEz +upQJA+PF1NyLM6Gynkj6BE0WbCdRy498mAW/cHOdSf+cBU/ON+mcVs+G74LM +A5lqsqHi3/BnyTw5cE1/r6w2IQcK0taqeVLmwvVRifM7/rlQOO9+g+JBLpSf +E7a/4ZEHMwPPalns5UGhd89qrR/lw7inAi6ehAXQbaWxqTi8AIoc65ekZSmE +3V/mZ17mF0KurwqXXssXQY47NhYCg0Ww3epYCpNtMVwmfTb2grwEirAIefYW +lsD8Hw8sm3RKoYp+OkHITin8bRMug3PKYI5/lfuhQTmUyXV9N0FRAZNO3apc +ba2AWuekSwpwJcyjbH71NLMSLoeu59URV0GJKatV0XtVMJ2dXp9w6P/sRvlL +SbEaytsGSu0XVMO++JYZRZYaOHacgY4prAayLXyVTzysgbQZs+J9LrVQJ5qY +s2etFgo3zLzIuF8Hj5OPJd5aqYNjHXdtmOxfwhyiwOFPmy+h+grlv3rvV5Aq +QjSgl+I1bND9Z8aV/BpqpVAw9onUw5X29aD5lnqYPyXI5HHjDUzIq8/I2n0D +N4hPerskN8A7d8kCyGAjdLOLIbf/2gjjbU6stcY2Qdo+4xRWlWa4cqWb8OlO +MzQ8lpstXfEWajuWv2c83wKf/PFraEtqgTol45pVf1rg18tsSz9NW2HgxIj2 +k3etcPltYkzo2TYY7DTLTJzWBv3QyRQS6na4sxJ8NtWnHR6DFmoTv9th8KvN +jF6bDrj9s8g2cL4DSj43FqW/3Qn1hKQHgr90wpoXfakbZu/gW+mPF+8tvYP8 +GhMbB/ZdkE7LV6BpvwvStlJ8eRv2HpKx/ApiOd0Ne9cD9seruuGUQGICk1bP +/56lzfP1Ww9MfLC6djO0F94SaeiIFu2DjSP760mjffBLwppyqH8/7H66deLR +2Q9wrr1KM2TxA9z7p2fcmToAiR7b8hSIDkJavbcj7E8HYZIP7+TI+iDcviqb +NnZ1CJL9ixmVahyCGo+fh/3hH4YP111Yz8cNQ9HJ7fN7BCNQNDh19bLzCKTb +yEq/tDQCb/Mep9kzGYXj47OGtmOjkIRKbrdS/yNk8H82NDX0ERbXi4scGYxB +5chzZcITYzCyWdXR3nwcPtpd2JpZHYcBhn9EYh99gqFk5g8TaSYgi3xsNkHO +BDxq0yT+pjgJ2yZvGN/6NAl91OwWPTw+wxsG63d0T0/BX3wkTLvtUzDHO/zt +E4dpiIqkK5g4v0CGmeqGhuEvcMb1l2Zs+AxUgueKr/POQj0SxepngbMw33F/ +gGlpFgqYjFjMaM5Bu4ktdqLqOTiodZ4g8tQ8nHn273ZEyDzUqTi/TLszD1sb +NFL4rRdgjxj/xy+TC9Bt946O5pVF6K1gxOrRswgnay+Xe6h/hU6ybxdMOr9C +LdeUbRmNJXjaK+8JU98SNGX7mE1z9Rtkq+xtPTvzDXJ5XuuOtVuG+r+Ojqsd +LUMq98rbNxO+Q8sK070V0R8wb3Ygjqr7B5zosrHos1mBvOePs2tQr0Ke2dNb +MTWrcK/LIqvF9CeMzVOz/EmzBv++HaeSaF2D9WlCK2ke65D9sYqHMNsvuDqx +3ifl9QtWlvIeeU39gl7M8jbUyr+huolE1XbBb0jLFzyqRr8Bt5s5uCh8NiBz +n6zs5ZUNuOJsxihgsgm/+j45ljGw+b8fUvW9v7AF/Vnn79Q0b8EPZzqBg8I2 +fOhnK0RTvw1tlwaM0hV2IFtjjLX02x14XVHz+pz6LnRlpU16NbQLfzUtHHXf +3oO8dkZzZ37vwY/NHPu/gv9AieYmPzGOfUhBrce1U78Pg+8ZkJoZH8BF0rAx +/78HkG9/qdE+5y9EV1MslS4fQhV2blKaw0Mo0Gl9Y7XiH2Q1p6nesTqCJCfH +XHjoCdDp72nye44EiNBYtZRyhAB5kN3gvCtLiGJiNqWZ0gmR4YHnrAg5EXrJ +l2hT40yEcMSpe02zROhNEe3H61eIUYd4zl5sBzGKMDB89EiBBIWkU97hqyFB +tUYK9GnipIiJ+JzuTikpSmE1UFcWJ0MXnO1CoqvJ0GYEN/WmPDn6fkpf3reD +HE1J586p6lMgAyPai9cXKJDXkBtPnzslYqw0T315nAqZtZcbnymhQl2b1p5Y +8xjSN8lMpvh5DL0Nv/sxNZ4aqWk0DjEgGvTXoPllwCoN0g95KUuYQYu8Xpom +FhkeR9ftEgcvUdChhIdXzVat6ZDKHS+P7m465OrCZbkmRo/6SN+02iTQozqZ +NS/1Q3oUn+w9mGjDgHxlxK5bjjGgTaa+/Xb1E2iz5CxBa/0JtHD1CvkDCUZk +qWpB87GAEbkxkztQ8zKhd/aPf/BkMSGOHrJsYR5mFPKHlONcPjN64Jege1mM +Bc2ITMbFvGJBCWqxVccunETTOQlfhz+eRCfIfT7/uceKOMku1yUQsiF/Iima +16lsyMFOe89D8RTS7HtK+XP6FNKYLL0qEnQaOZ7lcdIQZ0fPPyv63JxiRxNa +Kty+URxIhKoyrkuNEz3P936md8SJHhQ0qbHe5kKhbUul7S1ciEhWpqeWjxtt +JE9L7odzo49uAj1Zm9yI8KZ2X70pD9JhcXqn18eDsjOS0lwBL/ryMi9atoIX +Tdb5y+Tz8aHAWp7goVQ+9Me0d6SbhR89bpP9lJHIj9puL5feZRZA+UMuw8Iv +BFCw8U9JQm5BxJanyXlYLIjOcq/ePCsnhF5I8rOWvxdC7/Mn9sNMhJF8nzDb +p01htPZAnKIsSgQ9EOscZBc7gyRS7Q7xwBkETGWThV1FUc3nVvHfHGKobkzn +Y1mfGKK9Pifs7iuOFI18r1tKSyCa4gessWsSSKtBaybs2lnE4OSXRPz6LGri +zNhoOyWJlApPBH4MkETZYfJCl35IojwdNSZRw3PoGRQbjmw7h8qyy6DXOSm0 +M6YWTZwnhZLtNI3l2KQRzRvqCKE4adRF+Nd5kVoGkWfPt3iHy6A2D5FQomPn +0ZUZCZWQqPNIMDR78DSTLHKL2/L7mC6LqIU/UXackUMeRH3PDhrkkAz7q85o +XXnUSZeQm7Akjyz0RZs4AhSQXN8CgyqnIsoSShRgaVVELjJ+fyqtAEruVKUT +pIOo32PPNaYJouCxS29JHBD6IVBFk8qH0cGjJgaHLxhZi78O07qshKTVxreT +KpSQTO48heAJZWRgTaRD6amMMI1cmtacMsp1URb8q6WCmFhD7ITrVZDvZ6ZL +80KqyPl57opMiio6N5k3J0WnhvImLBlXQ9SQlKJMnz3RBWRamVnd53cBrc3U +jTITqCPXL4Z5poHq6EZI4lEdpQZaoxIVlojXQFOkv0anOC8iXk8L/uGKi8jz +4HIFj+oldNvvgff8xCVkTMVDK+Ciibybtc2IGLRQTOLp1cgaLWQvRVjy2Ugb +icgUspIS6aAeSxpFrgodFKWalqJmdhnFq9peDWfSRSKqrrRUA7pouJ8k0F5d +D73IYw6JKtBD78cYNDeorqD99NArBY5XkI9j78OGT1eQZ8rHCaCqj4zgeUKF +Sn00U0/V3MppgLKJSOBCrAHK2XInLSe7iuYZ/A4kfa8iou8cd/z2riId84Dp +fFdD1HFT3rV+2xA5fExIeu9xDWn//su89O8auiVz9zxf6HV0Ub89K5HRCJX1 +5Lrq5Bqh0tG3SrdljZHwYDbZTL8xQhV2KnPWN5BSZep3L9KbSK53wb41/yYi +P3+qs0fLBFlbwztlWyaI6MhNxT/rFnpzdHHlhr4pOnzfZG9Ifhsl4ir70Jbb +6K42cwwZNkMtHPcL/mWYoUkOxUp5YnOk8U1DtNPGHLUIU6yVD5ojTrlwNlLF +O+jHqPmZsYI7KCUq69dZFgvU+GMmji/MApUXXExsObRA0bfejDO63kUDXb+S +JdfvoiqSRg/BB5bIifmCF/mqJdrcuU22YG+FCqJWfvZuWaG9Ofxg1McaOfYU +Cx+nskGNcQcw+rkNkvvALmUjeg9NvW8nL2+7h17/4DrnamKLrB1rs4f/2CK3 +Cb6uzy/uIxkn0af5+AGSMXpmeWn5AUpyN9D4nGCHbLvjqh9esEdmFgS1Ivv2 +iP4lxfLJGgfU+Jrt7Rk5R8TRfpmD4Lkj6p6ubWX+64hyRGSFfMydEDmfHbdy +txOaQL4DjlLOiHHseBFbpjNqz0WPdI4/RAQMufdPBjxEbM+s98O3H6KtEBOS +ugcuaDFEtDN/yQUJ7kZNOFq4otL8p8p8C67IjHv8zrClG3o1zXHs6YobYi2K +cLZycUcjOdLIicADGfGVPW6J9kC3P2e8s+bxREoJnqSPXnsirXXealp9L7Tl +Olgvu+6FlG1HnxyLeYTSXyUSZ0p7I7d7YWnHpr2RJ4PaRcswHxQQnerfIe+L +FBPmdJXXfFGkM4/uVr4f2u66YHgg6Y+o/O4zVMX5I4YJm6eF2/7I9LuX6vqN +AHRC9ylRfFsA8pdmX8kSfYwk0gSdRZ4/Rk7qvBaKFIGIwYxsfsEzEJVZGNlJ +rQWi5qt6s/KWQYir+siFfCYIxVmFvyu9GYzySR+MKHwORux5PUdtt56gK7nj +LNcXniCPOqRP+SAEKfrm6K/uhqAJAXHREyGhaOGc4N1Y1jDkfJi95VURhk7J +Qd3Fi+HIum/x9vzXcCT2+HV0+JMIFDSw1bUhEoli5DddJEci0U65Ytgtv6fo +5aVC/yiJKJS2mGIxtRCF2He1em6nRiNrpuO/kkVjUBjdU6nzT2MQ2+9X04y/ +YpBMfdh9FcNYdIX0VXFfYyz62RjX0CoQh66dPGQ4Gx+H1pRMvQWI4pHkUOmp +2ofx6Psjf4flb/Eol1fSYMQ0AQmUEREGf0pA/hO3GGkNE1GcK3Ok32giijz7 +tu/HtSQUd+9YjvlUEvp7Cavv3H2GYgPKbzT8eoaG/17aavdLRvbr4Dkvw3PE +Hf1cba3gOWqdYronp/wCZU5/2mT+8gIR5BvpZvimIJOUS1bfeFKRv2FGPmlv +KvIJzSChd09DFHfJ/3EJpiPHcdU0nc/piPFMk3dFfAYaOHfqq4RQJur14OJv +DM1EoX7zZWErmagtauAwTy8Lzb4TXuR4nYUkv608JuLJRrEu9Xq3o7JRT9Ak +m9ph9v9+okreYp+DNAYLk+bnc1BmfUZ+g3Eu2tnVtrs5kouU6Ox7h3TzUDI1 +8S2JgTw0fyXWNfhKPrI1Pxz4OpaPOF02Y+7cLkAeLqaXaFcKUFzxz70Dz0L0 +6mERHaYuQu6mz1xXsoqQNLl9IJNiMSI+YXx8eLwYoaJ+2/MeJUin38HK6HQp +kjqiMLzcUYruh8TQSjiWIfOJC5v0XOXIzn16jXa0HJ3vanmEIiuQW87ZERO+ +SvSqV5eiP6gSldvk7Ht/q0S1lz8weWlXIVKNQKbhmirEkHKHPJ69Gmm1zGv3 +hlUjXSu1tLC9auRyJo58+l4NYoGlW6PTNWhFxEw44Gotipd5+v53fy06edfQ +UFazDi0V36y7012HjB8elwrWeok0Rkj9KwdfIvZ3Zq92jF4h+QY1M9vFV2j+ +g4kjx8PX6DuJ/WUB0nq0OvNnNPFFPaoq/3U1QOoNOlx7mHw48Aax8Bd95XRs +QErhaYT/TjSiJzsKUuUNjaj1wWV1DesmRFCdGTXL3IxYbnKvxPY0o6oWvu6H +j9+i/pzJeF3OFmQi792f5NeCDlhHC07PtyBzL72QNfVWtGOjwsVW3ooq1N54 +lLG0IVIdhx8vA9uQW1Q134WNNtRgZydubdGOOE6K2oiOtyMnTumoXJ0OZBRe +8GbmXQdiyam1XlPpRHRDw05zrZ2IqoearUf1HbJ7YETx5v07NBL7V6ddrwu9 +Fie12fvchc4wvlN+YPse+RU/kD339z2q/pd50jS2Gz3zOX+GRKQHRb1ZFZN/ +14NKMpVuMlj1Ijrnyw/yKPuQ4m5HCkVVH0pX/1Gob9KPyiOrJ18c+4C28Hei +P80f0Htxu4BgtwH0ceVtjijrINpACT/VPQeRSb1hWfrnQaRKckxJWWkIlY85 +6IOCIcRL/mM+jW4Ype2uhrp4D6PT0hFiAz+G0ePpgk+NN0dQ3h7pqvbACBK9 +cYc/+sIochN+kRnfPIpuaHyZsFX4iHK/blbw1//P9MdWHxXGUP8tx8KIt2PI +54FW+A2NcdSy2xZ5dXgcPbcUz4g0+4QER3l5mDc+oaZTHD9IQibQi+pzKnac +k4h3aHzNomESKco1nP134zNqOizquvLvMwrqDNt2yZtCXz5YBPjqTaM41cdv +go+mUZBU5qPs6i/ofIWo+M97M+hF/aDVW4ZZJNTv5vraeRbZWO+Pr43OIraG +2N8O8nMIiUS6XsqcQzpM5+6FUc4j5+UKfuQ6j5JKqG+4LcyjXWNRGuWrC0j7 +4peMsq4F1De3+6EXLqIQMu+6kpeLaP3awIdb576ihfo/exuVXxG233bzPreE +THaPbR57tYSeyCsH1KBviP1Uf1Zw9zdUQpirmnh9GdUG0XZtLy+jqCo9ggaf +7ygUmiv8YfqBPpBXyXdW/UDkWsRY+soKml68RmWytYKCWOem9VNW0SBgC5BQ +/4kcS6dUKbd/ovGwJMK9gjW0lxPFx3h7HQkHpl9VpPmFggY/x5y2+4X8255P +KQz8QjXP+lNypH6jMsm0x3df/EZfKZWeRRBvIAunFSlBhw3kYdpDoT69gYqO +E3Ls6mwive7Gj5daN9G5Pd01HdktdIn4ZtCJyi10gZWIqeTMNuK8eNafv3gb +9YgvUyWc2UGKKdnmFJU7iMWm4UWC7C56/HtVTqttF1G5T4phvT2k+65oKnBu +D82FlZ4Wc/uDdl+wAl3afRT5cozoqGgffdnTr7ty6QCtBjqz3Fo9QAZvIhxk +4/+iy25uYbvwEEmWlNXXrh6iqZnA2ScZ/5DAlq3dk2tHaHhYUHKJggAX5QWd +qbchwCVcDqi7hwDvt9IO8UoQYreDpRdjiYSYZb0+b/0fIa564qbrY0uEW86c +0476RISjLMULJS8R46S8H91ujcT4R4SKi905Euyylvyev4QEh/w+fqlSgBQz ++X2YZM8jxZX2Bu/9BMhweOVY+7diMhw0+Pq79TlyPCZI2M7QRI7dmVc0DjQp +sHP643npKQq8/lbPacSREgttsmiuUFBhG94sEJtLha2inidOqh7D9msB3NNL +x/Dy9QqJiqfUuFfGNNFajga/HRqvZP9Gg50nix98f06L3Y12VRb0juNSNWsu +BjI6bBc5QrJgSYcPWR/a/e6iw4t/mrs0RenxweDg0N84evxS7GIq0196PKql +GJljzYC5Y6Vu1X1kwK8ozvPeUD+B+wU+aWfVn8D0nOZ5LyQY8Srr3rVrhYz4 +S9LM6iIvE97Uaja8ns2E80e2vzbzMuMQX/IbYoXM2DOVfKJWggWvJnHuWr9h +wf4ynK+NL57E4B57XNrESfzyr5Cjhj0r/h1GWXefjA2TnqRHnNlsuKbrn6W7 +8inMubVBHr54CtdLuT62iziNz+dFvpE7z47p9n5wEH9lx+HZIiWLzzjwYD3X +yvZlTnzgxH0kSMqFn67F6JBZcuG0EG9K3i4uzDpdVBxxhhtHn1z8oxPHjf0n +Fhk8DrixUO1Fq5PWPFg7LLoBfuTBBkdCUrsXePGe5dOLV+t58asrFqN3Jfhw +gUI1rXwhH77lwBM7x8uP20o1jR2y+fFu2bHeTV4BXEy5X+1fKIBP145dFDor +iAt8mc8dvhHErb89ghguCWG56fL3jyaFMDUB/aG2gzB+Lmyd/IJcBPfLtUR6 +5ohge7ObmkcqZ/AOa06b8tIZrCClcP/6U1H8+u4p5etyYnhoobfX6JsYtr6T +xeXyQhznb51aar0igbPKr0uUk53F37mo/lRZncVsLJxx++/P4qPpatYkMUks +k7pNE58giWvyhHUJ/kniql+tPD/vncPLztnn7306h60uBeUGXZLCYWV+27pN +Urhvsol/Skoay4oZFiqUSePVr1fu+wjL4Avia59fFspgF7a/P/6InMfUGUH0 +NyrP497UdMMVOVkcYxKg29Yhi+tox8S3DORwIId2S9KSHLZ94PKwxVsew65v +ZqHMCthPs0mPrFYBuyYYtuobKmIybv+1J/uKOMiRYKIxB2B+Us/Lx69A3FbS +9vs5EcK0Oy9VPV8j3KzmWtrjjHEoT6LK2Ekl3MUvSZ/hpYRfdrmvD3xRwm6b +L+M9LyhjIyFZ1bJyZeybX/zJm00FTy4d9OyHqmCz4gBphX0VbG6aMXnZXhVf +ppyQ0fmqiknd73hp3lbDpxcls0ym1PDqQbrTC5ML2DvlWcSp2QuY0NXFec9K +HftaeiRr/lbHLcfJ7ov6aWBi3uTb9XQXcVVUGCFt/kW8Od5AcBFfwm/bRZSf +TF3CAik+K8s+mnjLtcA3llcLJ58rms/u18Jj1xyplL218U7ChnmshA5udlEz +a/img1PggNxy7uX/P6enWyrWurjnr6u6N4se3i+XIzntq4d7s7K0n3/Tw8Oa +E19orl7Bkn/cqhLar2BISkiqeV4ffzAvdNcq1cc8jw3ZXvMbYEEmjpDKbAOs +0AL+XOO9itl786wGCq7iwyTDFHzWEF/ucL820GiIbdlD7xXqXMM1FTETO/PX +MClxCdF37+v4F/XPpopTRnjY9GeY71sj/IOH5mWEjTEW6amPoWO5gadGPydf +6r2BOX+WVLsF38QCCWfMPl8wwXUEgYfN1LdwqHM4od3kLWx1dItbsMIUezOp +lZ2NuI19BCMYHGTNsOzrpxZqZWY4zV/VXkPQHIvLBZIW55nja7cmPmYK3cFp +1XPxFpV3cMdmtZgYtMCexbFHigMWuCedh3rY6i7+K2ksJ0NiibXI7kRUFFhi +pdoPztFXrPCd31rHhIis8UzIWfuhems82CNH8t3DBudOd00P4Xv4vSQt/Tat +LTY/8YijbckWPyZaulnRdR/z7S5YKVQ/wKPBHenL+Xb4hnpDvka+PSYebvv1 +s9IBN3MvFzZZOOL3Yn8HtLcdcYHo8zLfp07Yn/312RpRZ/xG0+a63ogzHnh9 +K7Et4CH2+HlX2UfOBZ9zk6I62HXBFmWMD5tbXPHR3L6Rfrwbfoif+Gs6uuOy +8lQxNSMPbGQn17mk5YlDjDi8FrW8sMmcHOmB0SN80sPcduuhN65YdOgpSPPB +zFmuqvtjvljXieaXA50/dhqN1RJv9sfb7mzlKq4B+E/84yyl84/x6eJTNzsJ +A/Hm7xfmHp8C8VY9QNQNQZhXfFYeFwfjPP4Vgan8J3i2dESuoSoEr1KCH229 +ofj5sfSN5e0wrBQbry0lGYHfRk/p1PtG4mqza8O5M09xPpXYIynDaPy3aZjQ +xDEG07U8GutXjsWVQxZzFZxx2EdsJ3WAKh5LWuXIUJAk4D4FLTdV6kTMRlnY +4cWXhJvKh8Rf6zzD6o8JIljCkrGKWH9x1/hzPFWGc44ppuCUl8xnQG0q7hfu +putWS8e7UdPdCmsZ2LKsgJZtIhOHTNzflu/OwisvQkLvv8/GcUJKCmXjOdiJ +bDOBdi8X8/75e6dKJB8PJZf/6HEswLIlxTivtxDbMPCUZIJiTGjgJSrTWYKv +5ZIxblmVYVul5Pow3grcWXG38LZvJa6PCLRHXlU4trQlx/JJNT6czNdeyanB +qOGk+N5ILR7lNGboZnmJK4jY+SodX+EnH/nNmWdf47zBv/w+1m8wUVbgqB9F +I7ZzEH32saMJJ37pUTFIf4tjikNL3XpbMAPBH+Zbn1rxTD0X6/5OG/4P75K/ +0g== + "]}, {Automatic}], + Editable->False, + SelectWithContents->True, + Selectable->False], "[", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "]"}]}]}], ")"}]}]}]}, + { + RowBox[{ + RowBox[{"p", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", + FractionBox["81463", "118186921"]}]}, + { + RowBox[{ + RowBox[{"\[Lambda]", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", "0"}]}, + { + RowBox[{ + RowBox[{"w", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", + RowBox[{"-", + FractionBox["3", "25"]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", "0"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.752420503335231*^9, 3.752420529921417*^9}, + 3.752420672966015*^9}, + CellLabel-> + "Out[661]//TableForm=",ExpressionUUID->"b03d067d-eb76-4c36-b6b7-\ +0b21a3b69f99"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"eqsfin", "/.", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}], "\[Rule]", "0"}]}]], "Input", + CellLabel-> + "In[739]:=",ExpressionUUID->"62a018c4-c00e-4c32-b77a-350d0699c27f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + SuperscriptBox["r", "2"]], "\[Equal]", + RowBox[{ + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{ + InterpretationBox[ + RowBox[{ + TagBox["InterpolatingFunction", + "SummaryHead"], "[", + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = + "Ready"}, + TemplateBox[{PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$294590#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, Frame -> {\ +{True, True}, {True, True}}, FrameLabel -> {{None, None}, {None, None}}, + FrameStyle -> Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$294590#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + InterpolatingFunction[{{4.23046178224774*^-25, + 0.24395920510017832`}}, { + 5, 7, 0, {1501}, {4}, 0, 0, 0, 0, Automatic, {}, {}, + False}, CompressedData[" +1:eJwNVlc4138DtbIrMzujFFFWpN9nfG0ie6/I3utvFZK9RyF7h8oIWQ2hSJrI +LGVlhCQjNHjfi/Oc51yci3MuznME7bwNHCnIyMjI/4/PB8jIvvW8CKmwniJx +EJys2rtTpLGvqRztedMkAXH/BHGlGVJb/Rn/oR8zJOq4BvK18lnSK8fbqU8u +fSWxx2p1XBGYI70zk8ty/TZHMvZ/EtP/cJ4k7qh3Y+vGAqlFv95SyG+RVFb/ +V6Xc4htJu7A9qldribRSNUlMqy6T1Awb6lQvrJAKXi5JaJt8J/lU9bkbeq6S +ZiW1/FpTf5DWHvZ+97ReI51UbPNn3V0jRaWLG0fk/SSVuzxIXVVcJ7F0/RTL +/LFOujrGbFJbvkGq51p2Cbq0SWpr+kYjLbBFKqFvl+H/tkWS1x2yjXr4i/SP +riG14sY2qdGZw/a97w6ptOD4WW2LXdKZSUMFL63fpMzPV6ujVf+Qtj69uDun +8ZekSd2d+834H0lpPFhoxWOPdOhrscHF1H2ShXKMrZw1GdD8yDM6vkMGIjmy +MlTzyEEtXU9mvSIF+Eud9tXwBwWYvmpU7VZOCSjieFWkL1EBI+MQ/SX+A2D1 +vMKHocUDgJxuHco9pAbCGoIpxjdogOuZHMdQX1qgVu9zfNucDlw+xrXHpkUP +sk31OEVUGQCPiVBljAYjCNb/QRVrfBC8rIr9GO1xCOSSbM9OpxwGmTb7H/as +mEAXjTKpZIcJ/Al8OUiXxwyKGO/m+ymygPZw6iLWHyzA0f0KuUg5Kxi+Jy/w +3ZoN5DqQFZTxs4NTsx3/JS6yA4Eidu5vbUfAcd7S5AM3OAB5mbSHqC8nWF6Y +Yi815wJ8TgfbH2tyg3vMtrGvVXjAsfbn5cIavMC5wsNXyJgPcBzayODzOAoS +JZI5AlP4gTKjnEavlQDg6T1d5LQjAJxqXrC8yxUEEV425WcVhYCKiJnZh1Uh +MFF53Wyu7Bj4FUH8q7I+DsImgxcs+IWBJCVkV1gUBvv0xE5+2wkQEimZ0px+ +EpQ9nf9vxEcEBBABtFrmokCpXDLMTvPU//Pf2/JSEQP/GKvLetTFweQ/MPnU +6DTop3mq0+J+Bqy0H/tLnyIButRE29OsJEEt+wTF6R1JsNyUZngzVwq0iC9W +/1KQBuP/olgzVqWBzym3+rIyGXCaTuqTnfVZkPnsqwwrvyxIvtXUurUgC5Qu +eo3qtMmBoKD3qY7p50DN9abQKB95oPjg9N9Ns/Pg1UgkptMkgUHZM04sKgDI +Ko6VOapDIGBirWNphMDJ9AV6XXcMmKZPzBQnE6CZcVzazEoBfFnTdtnYVgDk +qceyTHIVgbWKcnObghLw/Jfw3mBVCTBuyNLZlimDIHTwEZ+1ChihV4l4fVQV +NOaKWlYvqIL4S+Wt5G1qIGw77AZ7ujq4/jU/VtJHA+gS9D+LzC4Av7+U5PUX +NEFG9spos7IWIBlr3T6gfhFs3O1/um2oDYLLvF8uuOkAzcysvrPJuiDZUvWu +gJUe+Gkc9e7hth6YPRs5yp2rD+oafTquKhgAleNuySyrBuD+v1k7vjJD8J5n +KHfMygisNt16H3XUGNyny9+3XTAGivhLTlOrCXiyB7J60kyBynzBjc/eZuDZ +JP2Chpk5aGRq6ja5YAFyROY0zZUtAUmVqqpCzQo83sySzDS0BqPnTeKuu10C +ZYPejX1JNqBH0kvgm6UtKFAKlb2+bQumK6u5J3MugyZ/n1dQwQ44eR/XHPxu +B86o+7d/LLUH+yUxVzOsHEBF+8RReNQR7MzQVhxZcAQ/F46GOLc6AZpEuryA +NGeAIlsLE71dQHi6xJd1U1egfjgj4Z+GGwie4+j4q+QOShkpq1XVPECbVG25 +pKEnEDXIV+dy8wJq2c0Fl5K8waMEw5wGSx/A3yRfqLbtA7Smiy+V5/iC3Til +kT3CDzz71EZ787sfmHozz5lT+h9Y7RO00rHyB2mCR7w3+QLAWaH/tN7MB4Dv +po6XuFsDQVrWfLFwWhBoaFq+d847GPDqBI8UmF4B4pslurc1rgLavuizJUoh +QLBKvX5ONRQA6yOcbw3CQPQ8pmt0vQb4PjvFbySGA3mHLaarltfBTFXbgYPb +14H69KVy55wIkPBtfqaTiASvnU6+1P8eCfKTQIBxaRTQzriD6ayiwcBnpc4a +vhhA3z2+HjEfA4STGpTetsSCR3wfKodT48DUlfMPv3rFg3C2ufdqpgng2OPP +R7Q0EsHEe7FqZaUkYMc02BKjmgwe+Q6kuBqkAMV1hTearqnga3FUQHxiGsht +N0xUskwHIjx/vT78SgfBtxcXxXJugLxb1muRxE3ge9Annvn7TWB13W+QpTQD +2PzmEuq2zARUP+xYHPmywGo3zD83nwWWwyhFrrfcAj+Ovq+LSc0GH9+WvLzh +lQN6JwNerZnkghLbC5M/1fNA8hbjsQXFfDCiXPZUWLUAxLh/oaI2KASPfUrT +Z12KQNRHBge+xGJgleFFxWBZAqoYKMdzf5UAChEksZZdCuSTK/dUiDLw7s3N +CwMrZUD4TpJkf0k5GP8TQB1ueRss6wc68vFVgO+CBSrf5ypAr7jlIZmWSmCd +9bFVNrUK6NcKjmOvO4Cz5tSLPJO74PLU7J0c9XvgvqxIQaJiNahGbb09KjXg +syoKK9OvBdTWtiahLnVAOH7fsDHhPqCYVQ3/YFEPSgLfKtv+qgfyrlaBTdkN +YLW36yAN0fj/3U5juLHSCPr2Y9NSSh6A4swny+ctm4AOZdjDYd5mEDq6vVo2 +1wwYM9u25ppbwFjYVtdcSivQZ3uytOzZBkwDKJ+rmDwEjnK1/xHqj0BWctiR +M4qPgc4u66CjyhNA8ff7L6zfDmgehPGxuzwFv8svqaondID5u+O/8y06Qai5 +5f0TvzqBs6Pa0+DsLvBS7T5fH34GdhKc3umtPAPl0Q4/NEueg4yu7wObFt2g +cz/wUCpvD1Ce0c0zm+sBNfU8X3KaX4D0If63WSm94Nue978cz5eAU56sa9W4 +D9y+VEHMq70C41uMNwcUXgNvv+bPB1TeAMrENd9Pem/BiOfuXK3zO7AoIio/ +Ef8efJgTDXKw6AdlDTU837f6QRvXH2qUPQD+HPA+k4QHwYlIjptMK4MgRua4 +Hm3JB+AeTvfwvsUQcFdxcFDjHQaL+LbaoblhsHMtulereQQsZ5mPq6aMgjeu +iFnNcwworwl05hiPgy9GbxhT1D4CXc+RQwEKn8DD2wVLFcoTQGhZZTVI7zOI +if9wX835C7jPYiPuGz8JjmXKbYpbTIHQ0K74B1tT4HXUVT3y7GnQQUGuoI1n +QEhcmUn/8gxQonvR0FM8C1xeHy51s/gKvr5VebzHMwemv21uPP86B67+WW/Y +a5oH+k/L5reSFwCV/vETGx6LYCfXsVPJ+BtIYhf6JKO2BN6ujidzKiyDgqS+ +HVXlFTDNvezOpvcdKOwzhEw6rQJZKzIh6vgfwLRx33fLfA1otub+urK1Bl6W +dOf13PoJ+EmOBofxOmDLpuFNX14HdpSabFHFG4AoI0sUttgEazmcrK08W+D8 +lGLZla9boFXIubCh6RdYv/BnsyJ5G3ysPw5LPHaAoNS7rhWjXeBeUHnvo+pv +sBTAwfiE+APUj0HaeaW/4CXb7FK97j9w8U2ZerDTHqgkO8iVH7cPXqOYtXZz +MthjI+uosEUGRzzH5xJukcPKu/mOA4gCMtSpzeguU0Cpo/VBCsWUcIhs4r8p +cypoWjbp7s1zALoeTdKX+HoAUv2cSnBoooYlsvZUJsk0MDUGG2p70EKdRovu +W0Z0MGDOPCRClR7K76cm2xAMUMR5kzNWiRFyDIm7a+sehEPL2ezMToegzJ9o +Zsm4w1DjbK93rDkTFP8vc4h6iwlmL7ZJ6dxihpd1bl/JQCzQoM/m7uFlFnjO +dOfTvyJWyPC19FK+ORusm8/tOcnDDqdL+snnZtmhvr1tEEfTEZgS9pGNOpkD +urz2df/tzgnduRheKhhxweoVoC2iyg0zYxQOURI8sNZg/dQJJV44YfRy5ZsO +H1w1W/561/Eo7FJzYeiJ5YdiGT0/dMwF4NJqi8rbTQEodcj+GsstQRgjHJ5q +jISg5byB7/slIahWLaT4uOgYzNUw0DQxPw557NUFpriF4awDy4O8WWG4HjDn ++OrBCch/9PKJlqST0P/a0+gqdxGYZTf5ZslQFL6qvSjwXuUU1DsgfqMSi0H1 +GVn8QlEcmt5s9o7VOQ03DxU2KzmegcyTLdQWsRJww/S6D4e5JCT6C5ozNiXh +1qfR1yNZUlBTXPw2B5KGnBQCpLQlaXiWQ6IquEgGdop9l2M2Pwtl2RZDcrhl +oY6TnqPerCz0FvYxDnsgB5+ybss7JZ2DjvnHi43c5WFLwuhgpuF5qC6cvBmg +QoKdV/XZNTGAJUwdBk6KEDLFb24I6SCoSFcb98kBQ+oOH8ofMQT8E779c9JM +Ac6wqZ202FSAMroc3PlZivCxTfWjcagEg7h6KXWXlGBcDt8huSJleDbR7/gb +MxV481fImB63KrQuS+SknlWFOl5kapIP1GCORcHFI0nqkOno7Ufk7hrQPmlj +HBtegF91fvfxqmjCzqn6vO9IC576mOJCrXgRJknFXOnQ1oZLSjyW/g468MN0 +Fnl0jC6UpRPzv2OmB9kfNeYKbOpBZkdBV5ssfejQ/ncgHxpArlMa7w4tGcBE +sdWAjUJDWG07wxJnZgQTaSjl6LiNYSJ715vHM8Zw/uKtc7ONJjD6h97lF4mm +0IESjda5mcEIe5mZRQNzaHMiu+S5sgWcltEUvIEsoRGpLLxSwQrSJzqTWWlb +w7HWBYmDDpdghdIJcq4YG5i0xr3tY2YLudpnGBc2bKEMz6+2Y1mXoZ6SwJI1 +tINukuW5777ZwZdvS77UF9rDWzWQQsnMAQoqh2V2cTlC9ScbEb4zjtD8qdSp +W41OsPEdW1BgojPsVvuxaenmAn8fzF6+aeAKPe7YBbspu8HH3nx3zyJ3mCT+ +N1tNwQPmpeTH71z0hLz2LNSV9l7QbkKQoi7aG67K9F49b+YD3/GMXK/d8IFP +vbLoFjN9YcoyO6UA9IP0p8YcU7/5QZZQWQ2vwv8gn1vE+l9Tf1hfubRxhSsA +DmUIyZ+cCYA2Twf5LjQGQv3NhZQTiUGQd+4RK51bMCyKO/oLGlyBrP1W+szK +V+FC2inpMRgCidr8hnkiFIafE2TJuhgG3xP5n7H9Nfj6XjyVcnQ4fNgvsU9u +dh3uDyZv/bdxHU5Y7VvUZEbAipbPvDMgEn5jXZDW+RYJoUxNo1hhFGy4VT/b +ahoN353RMpLmioFMOdo/JqZjIJ/mFZa/DbHQ0/pVxUhCHAz9WCzT4hoPy1/3 +kS/oJ0DavBixNqVE+Cvd90kITIJ8rdffxBLJEEbtFEhdTPm/P7Jl1C4V9tyx +oB2LSoMa3UbRr0zTYeIUtTtpIx0az8rU+mTegBUlQedug5twZ+k92aFvN2HZ +GtXRbwUZkFri1bCfaSY8NFbUvMSZBcEL/6qb01lwwVqY9n7DLXjzwJOnsQnZ +cFWoyMjeNQd+HMk5dEM/FzJSfKa2UcqDvZ7r6vwwH2arVS+eIAqguYeg6Dut +QnghtDfdx64IRgxkH/SMKoZJjHL0GaYlsEFRZZpsowSO7UmTyWaWwueVswZO +oAwO19x8/3axDHI0EImVBeVwWOLdy9Omt2Fe8RxHOWcF7OPOsdWYroAsv0b2 +LjdUwtffnozJJVTBy4+bA5lc70CxiiReoH8XTlDazx5QugcXhGqHnoFqyG3K +Q92LayDnan6Lm1YtDB9086Czq4OnBRTYKKLuQ6/KD+mWpvWwdUPFrHe9HkrU +/jXczWiA514IeouARrhmLFGcstgI832ttu0LHsDkW0+eLJo0QZpI/hBLzmYo +cbOVe2+qGXYdTv3F1tACNanfbszHt0L54vncdpc2eE26TGxO7yFcy+foqlF8 +BDerS+2cwGPI9rX/uDN+AqOpXFRptNrhmLrHhbLLT2FjmiFvdmQHnE47zXnc +tBMGb9L2p6x3wojl9DvtGV3w0F+p5CXSMzg/W+GtvfgMSkpYOgoWPIeGNlkN +5SbdkDf04iQrZw+8L/ph+MFUD6yp1PzRW/8CEqYrh7Pje6Hda8mnbi4vYXnI +BEjT64P0L34XGyq+ghFU/T/pwGu48+21Cg1+A2fuxQyXa76FzqOvT4LL7+Bb +nkFh8cj3kHihXLJi0g+fK6RrGK33w+2WH/8iMgbggCrbvRrSILxr+Evh4OL/ +eR4Mfcn/AAvjzKoumQzBskQPlTccw/DE56UbrlPDcKeV8dvV+hHYNM59Wj1+ +FK6AzFkOlzE4EELSPq83Do9dY7z+W+EjPC4qH1lL+gT97BmdqtAEDJjYdFLQ +/AzNwxJohmy/QKeOx5JdEZNwTu2IaLPJFAwY+djFvT4FLQ9yGallTMPUkpcv +vUgz8FSZAOvbhRlol7WnXJA/CwUYqYu4TL5C8Xvh96I55uDg3T0d/qk5+JsY +mj1dPw/lE8y0tuMW4MwKE32P8yIcl3hiM6v7DYLOi5dLFZZgK9tHVn3SMvx5 +8Wa8OlqBSVnNuxMXvsNNmYpFD9tV6BjAhEwifsDnhysaw0zW4EDjIpj+uQYt +lhmr6TN+QgM63UVJ0jqkeXt8PnlhHZ6RL28yz9+Aad8Ks4aMN+HX0RhmxLEF +xZIPHRye3ILUoHRy6v4vOGxX4VYVtw1lPlVK+TnvwLycwmorlV24W+Zgs039 +Gw43Uc97vP8NsyJ0TZcK/0DGNdMTRX5/4aX9HbE27X/QmD+twVViD0b6M4XO +cexDTfxk+T4lGZIdUtWnCSdDS31Xa9n2yNCk+kzm5nVytFclFNxNQ4EOD5bc +K7tJgUCOgWudICX6UNgzTdNMiW5esjrff5EK4c1nmaLfqNDJC4X85xIPoB1/ +HzY+SWr0k7Kvm+wTNZKjKSmlTaJBp16RqVgp0KIswZ8Bx//QomTTIpD0mA4l +dvZPPI6gR+M8d1ZntBnQqfUy6zMCjOihxEbQ2x1GdE1HaGdt9CCqukLD9Lr9 +EEIcLP5p9w6j7sqAB+d1mVBBatvMyBsmdPlLbALQYUaMlOeeR39gRsvzF5P6 +rVjQfJx8N1piQTlRGnglhBXBY4NP/zKzocmYdJobNWyIPgN+ea3Fjj4527AN +/GBHNykup/XkHEG2e0N679U40Op5mnD23xyo2OSVZ2cjJ6o9mFi168OFmi+X +/1o+y43cX1J5P9/jRvlXOYNr3/EgCt4/I2O3eREDK/nDgAg+9PJr8tNmh6No +mvY89RsdfmTyWazgF78A8q9x7DtZIIBOkBVeZecVRBdvvA+cKBb8f59Fdnkn +hRCo+PPC84EQ+uBLyRmofAwN97I9+TB6DKVFcbLe8TmOzKcor7EfEkZPSZlO +RL0winJQU9c0PYFK9JMeWFKeRHY7wDav6SRy0dYRP+Mugk5qvxVVOCmKgrmO +VP1eFEW1hJV8Qv0pxHMxqIvzmhhiHf8TPqovjg67l7FviZ1GEXZ7N8sYz6Dw +4LhIls0zyAztbATPSCAWZoruAx6S6M9nmafXlyQR2jo10echhYytyjz21qXQ +KedDJTBMGk2TnNPKGWSQRt5JZcMiGbRyK+KRh+xZ5NTxap154CwKDhb84egr ++/8noN2ZfEQOXb32Kbm6Uw75HA7JXfQ+h3Q+Zeu7H5dHJdvyelZf5NGbXSHX +ucLzqK9aoVHKnoRapY1SPM8A5DC53vBiH6Dq2bfnPEYhyj6nWZrajNAvXrd5 +mzyMgirpr7PGEujy8uPz3lABPdoSvx/yUAHVKoYrapEU0a7U9aXfTxURs7VI +1B11JVRjY/DKb0gJ6TlWuF9xVEar203Un38ro427pnIdmSrokKZcjpKMKjqs +nTWUOKKK5iUtKp9cU0PX7+jM/hNTRy4u5dEBX9RRUUTTfa1bGmhUgbnjruEF +xFHUp/XoiCaS1KE8d3dSE0VUjj0or9NCKdej9MeiLiJr35EDQTbaKL6aWr5B +UQetbrx8/fCULpLmtrtld1APPeQ+U0uVoIcospZ3L9HqoxpHH6HUJH3Evyh3 +9z6LAbIxIt+cLjRA91G9gcppQ+T/RJt6u9MQSQ/paPCYGyHLTkaDD1tGqOd1 +kINStjFaCzzQn4xMUGrjp7+jiyYojgz8p5lrithdRb8y6JqhW6dtpVXpzZGF +8rUQgdfm6GZJhGDfDQuUGJMw5H7JEul/my2Qk7JChWYuc2b01ujTDaFYyiVr +tKGu+96l/xIajK/NfNJugxRvZ/Bym9sioUlXa8pRW0TBV23TYnYZvRHS0dP7 +chmVru/BH852qCZkmrtxyw55msa/bYuzR2XigmeOH3VAv/THWI48dEA6JgEm +DWaO6Ptp6Smuf46Is/1dtX+lE2rJmxlYMHJGDHNe6Xm0LujikUbD5i4XtDtC +dFy+7op+jV1qfaXihpqH69x4D7ujnxOcVtGT7ohaitFTqsUDDW7TLRpmeCLX +U5FJfEFeKEmMKqvrsje6+sLO6ZGoD1p41/lSrtIHxZ+1WPc94Yt4NnIfx9/z +Rde52T/lSPuhja/nVzqf+qE6delAAd3/kEzKn/XR2f/QTGLTCG2YP+LjP549 +zB2A3MquPLjcHoDmGC88GXAIREwF3ZZazEHI9YPspa1nQcjsUeuj7SvBaNvk +bEGI3BWUbF/lVr1zBQ2Y3Blq7LyKhBbR+NPUECQJ/w38swtFAQxBYcUoDI2y +bdENH72GrqknCgxQhyNqweC13q1wVLkUULgdcB2BlUSJjs3r6OAFXRnToAiU +HYroPv+LQKGULJte8ZGodzuXX5wjCjEfbak6ey8Kxf/IKL6rGI3cLxzlqv0c +jUqcq8TtrsUgofm3ZN+PxaIDGUWDfu9iUfXnzX9c1+LQ2Xc81PQy8YjSt6HI +/Xs8Cmh51+RSm4A6RgOCxf9LRMjmgtMsTkLuFKn6j5mSUeiNK16zi8ko7sKA +VXJvCvq2Oi69WJOKjokUxJ/KTUPN7zoUVdTSUX07v2/B83TEHVtI9UjlBvLN +uEnzqO8GeneX3vGRwU10rO/a6vjkTdS/8NxO3jcDqR6WCPhFnYm0QteGZEsz +kYZd1VkuhSy0dEjSoHs2C2WK1O1ZJt9CoeNDJ6hJ2ail2+vTt5VsdLbhpIVE +RQ46N5l7hMw+F/Vzlz6PPZGH2Au2rH78yENG00xSzh356E7npWXerAJ0dv1J +kYJvIWIP1eqnNCpCVPbpkbmoGF3LChbg4ShB7ebP2GkzSpAJc0nEfZZSlN+r +wHPmVinqv/0vsJSvDA3rkR8UuVuGzmYJKUzLl6OnrzYcvr8pR6qVtH2ejrdR +Da3/o2iKCuQXFZ5mfLsCfdQsqqPSqkTttoW3Wn9VooVBloXMqio0snTQtdv6 +DiK/SM/pzXUXke+fFOv4eBclh947OlV6Dx343Nm+51WNeG1yxS8o1SCL+Gfr +qzy1SPb8xAHBv7UohyN/iHm2DvG+ETDY6r+PDgwMXyezr0cHWPXI5abrkWV7 +UOo5+wYkmLvqJPStAUl0Ztxj+68RvXTQvHya/AH627sZkZzxAOlu3N41ONWE +qIaoHpT1NCFR++3CIsdmtJrs3+pG34L+lpcyize1oPdiIhO09q1oZOKNhwhH +G7o6pKHxoL8NnZp3EvuQ9hC9OObM9sDoEYpsuncxnP8xenvynp/j2mO0GSEf +ndn7BK0Ys3+DFe3ouVJ/WHrCU5RjRFb8zL8DWc+4cEfLdCIFy8BJrfpOZP7e +sn5IsgupMP4NBM1dqDVk6U8heoYOaxz9zv3qGXLiHP86YPEcdW8885n98Rzd +WoBcvgndSJVpxaXwZA/aaL+2mfSqB/n41Npd9nuB7gVd8Vfm70VerNUHzQd6 +ke5+OnoV/xL9NKfU6FTtQyq71XWOtK/Q+/O3SPP9r9CgHy21d/FrVKZxN/aM +/xskJ7iRbaT7FpUe2YlhkXqH6EeCOfO53iNzPxHdG1T9yMqnMPRHeD+ibNge +otzvRwx5eqtLEQP/36kV0jPaQfRKcuLwnYxBdOzgm+rHQh/Q7tYhzNfyAaGF +8e/ftYfQhaiH07pLQ8j4gYK6U9IwovddtzCWGkFXI118lCZGUM1+22/D5FH0 +PoI3q0FxDN34McIQ/XcMoWUHx60n48ht6ceyZNRHlCbEcM5e9xOK9Hss+0hw +AgmlvpF3/D2BsjsC/mWOf0Y0t/XaQjq+oNNGtwW0ayaRYy8l5tebQjrwjPHz +t1NoxJCNS0J3GvUJVVaGD02juOSDfwatZ9BF4PlbfXnm//pD4F7oLHpJbn+O +g/UrSh1s2H9Q+xU1atplb1+cQzfLtwYO/JxDxcc+3aLMm0cC2u3fjmgsIPF/ +hzac/iygBuePtLxNiyh85UOrjd+3///JxjdWcksocXDAmiBbRhNK3MNn+5dR +1T/Sb/fKFVQXeOYfW9R3xFrBHHHZaRWtB+pURev9QEmCqSnjAmuoyrkmlblw +De1qXdKg5vuJpJLkooZKfiKrlaC5XJF1lF/TuevftI5G1b/JxqhsIGMxTorl +sQ3ktczQ2eu7iQ4XFg6iw1tonSqswqdhC9VYijRHm/1CdF6C2cVU22h28zLF +YvM2qqNnHovx2EESD0LEy0R2UVWIgZ7z0i4y0TjzkazxN7roeak+P/wPctKn +YHUy/IuYx3wq007/Q5orP8IuHNpD/HlPT7zY2kPsIv4Pzn/dR6GOn2ZXPMjw +vPqJQa9lMvwot5urw5McT40fZPizQY59FPjHFK5R4B8Flfn3GSmxXMK0jXMx +JU4NGxROkKPC951rV+QGqbCjT9jDDL8D+PDdA8XPOaixx+UvPctd1DiDfMBf +2pcGf1X05+oQpsUxD+j1H03S4rv5FT+1i+mwwMlU1goHevyOb5t7RYIB1+Pd +Lj1yRrwVNSFEMc6Iq4vrn0m2HsQNHOcKDhUcwttugmLv4w7ja0uDjw0RE14o +kmN2fsSEP8V5tSHAjA1HJ2s2O5jxrXMn++5qsGC2v+/fhgyz4HVGwiXRiRXf +4Pxw/tcfVpxTCSanstjw6RbaHY+z7Phphv+Zp6PsuLfOldgNP4L/yL+gUDnN +gc/L5pOCX3Pgjwq8DjbHOLFw575GUignFnCdzyEb5cT9RZ1s3dJcOMHhUNrH +NC6ciwVWNFa5sDuZuRCbDjduTvMhKd7nxk5FrbrDzDy4wMoqfTiAB4eeqkfq +n3hwtpZXjYQSL5YvpFTNvMeL+c1Go66y8eHHnzN3F8L5MOetQK2ZFT5cMHtD +xtvyKO4UPx6R+foofkw1zWmG+PG+v+JWRz0/Tj7rxvqNRQAzHtNw09QRwC9G +WY7GJQrgnnZR87JeAdz+o1C/+IAgHnK3vhChIogL5i6lakULYh3w7ip5jyC+ +knY+oJJaCA9Td6yhC0JYTAZ4vk4WwkXCwUEGA0JYXcr67siRY/jkJf57ltbH +cGSK35m528ewgfHjncDvx/DPDMVxtnPH8foT+7pnEcex1Nwrh+i3xzFrWvG2 +NbcwhvIdPoYuwvhh3fqiS6sw/nlGOL6M5gT20iqIoTI/gQUrJEUyqk9gef+4 +Fwb7J7Dv3MVedaOT+Lied2ngvZN4VcVyYpZcBNOHyjNlWojgudsn55OaRDAF +ZwRn/2FR7O7H9p+jhyj243X9oPdKFOs93hfJFj2FTfIyA1DiKVxEaf9WY+UU +ZshyNX2qK4ZjbtzXLm8Sw8ySSf/+covjibXF3v5IcfxuN0Pw+Io4Fg8Nz/hr +chrnizE/tnl+Ghu+9NA0lDqDN9o7aT+XnMHdkxmDFCwSGKmw5b2KlsB6is7O +pF0JbHwhTLzmnCRmM1nWz/pPEv/i2e2zrJfEoi7KLyhWJfHDAJnoFHEpjKJP +ae+7S+Ggw3WBljVSePhOpl3FdynMHCwTPiUhjX/aJ6sz/SeNWb+GKsu3SuOj +Ed9prP5K4xgqinPhSjK43kzzekWCDLY/+dkOD8vg7F7w/XLgWRwX0Xa/jFcW +e1MFnDv1UhY3B4jZH7sihxtN5jwfSZzDDIF0v3lXzuGyxue8V+vk8ReXPleK +oPPYPyRsf0GVhCX2AzMu8QCcUucZnr8N8KBl2rvhjxD7tClqqfUgHPPVMOVk +K8ZPtMtpW+oJzN3Dc4jTXAEbXF1hWv6sgKe2WYgtJ0W84Zo1ZrapiGfNOmXO +xyrhO5l/eh7xKmP0dV6csk0ZP3vcee68mQqONeb6Gf1PBYfnDt05fEcVtxqG +7VGaqeFQnZXllIPquGpHtf/jS3UcYqEfwpWogbVExc5f1b+Aa1dMv5zh18RH +z8oPuW1oYvl/08L277SwS7hdik79Rfyi1j3CMVcbF475KM8k6OCuXdlVskhd +LHbb7dm+gh4u8eInP9yjhx0E8s/qautjn3UXt5lxfUxp3Nm97GaAGcYuRqWR +GeIwd8S4kWeIlUmFW5BkhBOCdw5lfTHCEwm67sfjjfExckt39nMm2JP62MuM +ZROs/Xql8E2FKa7uvR606miGH6W/MRcVN8dB0rPv63bMsTC9zXbDaws8jkRS +nCss8fm/Zb8PxFrhfyMa9j2e1vhfdn3jpNUlfOkIbXW6oQ2+OET+m17UFncE +HcsyrbHFcq4V2+9kLmMW45m/NzsuY2x6IeOFrh1e+cnZk/LVDgdu2nYdvGaP +b6Vpz3nwOuCl5faewQ4HbFUlct7FxRFXNvZfNj3ihD9za7e97vs/2zsdWY90 +xpnCF5/tKLpg7w7hq4dpXHEcGfl150FXrP9csFLmthtWSmu2vBPqjq97rj78 +Y+mBi2TjbzgqeeLzrY+D+SW9sIZ8+biDsDcO/Zlw/TyzD97/vn2rO8MHH3a5 +qufP7YsNgmNM3Cp8sZE8o0PfWT/M/emMTvNLP+ypLXHQ8PJ/OC27rufl3n9Y +3kB2EJX64/pUurcfNQLw6XtGeX1bAVj6Zr6f7J1A7Mid/F3TNgirHBE6KH80 +GKfvnbggPhOMnQ4czjeruYKZkuUSf4Rexe4MUfLCRiFYLNfNW0I6FIuoO9aq +coRh5SevZUopr2G5sBPsYdvXsEfQT+UjG+FYu2u53zjkOuYfaKIhyCNw0N9T +2CUpAjcC5r8bXJHYuL11+kBtJL6nP1v/TCUKn5P4Z6w3HYXbzVN+DkdGY4qD +FDMhojE4PffFW/fhGJwNamr7Y2MxY0zV6AiKwzJ0c3Q1v+PwK2b5wPD2eHxF +Zv5tRGwCvt8+qD1nnIh9yQ++/iyWhKcqujtKaJMxhVyVmeNKMu7RuBfpMJqC +vzSq7o71pWIbbUHj/edpmERVeJDBPh2L7CnMn1lMx1xP968m+97AIymtAmr7 +N3CMp5xy+I2b2NSWzctKJAN7Vw4bU3Zn4C5x0+k8h0xMJMXJaNFn4Rs03s2o +OQvPHkoQKHS8hR+9903I4snGV9OW3IxGs/FW9LkG2twcHMD4sWfGNhcfPX4v +n00iD585Z/B4gDIf+xtK6ulO5uMvDCWy3V0FmEGtnsq1uhAfuKIhFFxQhHMH +Ot+ezirGmYE7HF81S7BbgFWz8vsS/NwiemjEtBQHdTdld3wtxXMLsXKCgWVY +a6iZWoCxHJ+RlYmZrizHiV9ibJLVbmOLYP8wjeXb2K5pj57IqsBpyVWReSqV +uIWLtS12txIXNv6ekWyqwnX7V+71+t/B9UutkiHgLn6pvHo0jPYeDjzxoYFs +4h4elHV+QWqpxp2zYguXs2vwb6Ye87rwWuzgRnfawrsOi7LGqJc63cdMrOcf +T0nX4/L/snBYSz2ubE5mUccN2O0S20nbVw1YuVF0/G1TI1ayCaWZZWjCMo84 +4pJDmvHNPvvjKQdascn23e3e6jbsbuLWrOTzCHflC4iKGD/Bt1ijPr+yeoo7 +R5/+/qDSiduDHvDKenfh5xpH6n7VPcMB8uhpyYFurDnE+t+ofw8esFVitN57 +gU/xIwa22y/xyaKpSHKXV/hPtM8N3Ytv8NpxClo9w3c4+NeF0g6iH4+dPZn3 +3HUAj/UNGwveHcSBvUqutvsfsOgHsaDjXsNY365CWmJ7BC+Wh8XaFYzhQm6B +r89sPmK2gHdPrihP4JY9OZGxC1/wvM3Q5xrSFH7pU//K0GEaS/iPvNcun8He +H9dohHZncb1R283/nOfwbc/xW5Rr81hFq9rlQeYiXn9tMRZruoQZ7lnfqySt +4PJDssheYRVL60/ez5ddw+cNe2vnLv3EVU2xPKGF69jIpzp3bn0Do1MsPd22 +W9jUQkz+4+IvHHGEuoE6ZQezbDy7pK37Gw9UKpqPSP3FdfRMaj/l9jCHxMqR +ZEkyQlziq9IVc3KCdMJYviabgnjbNsJXvUJJxFjcPMhpcYAwll9kfzBNTWRw +DvgtRNISVcMZ3YOK9MTLOzQjNwUYCY+WXFoPwUOEntdPOqdjTIQ6Y21I5QVm +YjLnI9NENAtxW35uMXqElVj5HmNBUmAn0tL3ZxufHyFoahtxtx0ncfhJSo4j +PzdBUDL+avjDQzTlVHYs7fIRfhMLGB0SICRDHWb/SAsSgXVrkpkeQoRd8qZ+ +5JNjRBBNULT1cWGiAL2n+VhxgvC1Cz/9WkmEMLB8lCb8T5Q4MarkQz4qRlRl +RSkVDp4mpDc37W3XJQgL8kOU3rxShNvD4RMeRtIETZb6cGmZDHFMMFiuglaW +CE3p1haJlyPivi7vxhyWJ9Y/t/r7NpwnSBmqO63egDgdtUGndhERkvlruaIX +CGJUbeSYZpMCkUo7PO81okjwx93XUmZUJo4U7ynymaoQxrnZK65tqgSPbczZ ++1LqRNlx86CUbg0iyrDWoMtPk/A5MJIqjC8SO84Tp5pFdAiOR5Qv1Lj1iPfN +ta47UvrEi+6B07etDAgRBvuGjHxDwsD27tqJNSMihLu1b9jShHghRcqXmjIl +9mL99uevmRPBonIVHectCYmKgxdus1gT4YNZ/UUMNkSTNFL1yrAl3AKeaZo9 +uEw0Xn8g/3rejugxoL/ELeFA/NO0OFyf4khs1tXLHaZyJs6M3tobynAhqPHB +vEfYjbBoDBTLpvYg9mhT3lz+7klYihU+lNnyJoYKz+kLM/kSE/lNN2Lk/Yh0 ++w9N5AH/ESLngim2X/gTKd6mAR8lAonw0lsmpIYgIj3Zcqvj4hUibfF0qBRV +CBHILT3/33gosfrP8UjKu2vEFCmb7oPfdUJexaQpNj2C4HiPPhZ0RRKYY+iM +E000weD/A2naxxD6qtE7L0diCdqTNlah9vGE/8FieW6GRCKsYoYp8H0S8Use +C0Y1phCtCTIxJi1pBOPwgWeZq+mEwpFUijq2m0R2hEn2Y50Mwvq5FBdnUSYh +U3i8QpbqFuFt9tm/ODKbiKOdufmHO5e4RW9aw/g+j5h7ZkPRVFJAiMThsI0b +RQTD+tOfQQYlhNbNV/m7nqXEgpJBcWtBGdHimcBFNlVOqLpQfjh3voLI/uDf +9+luJTGsKT4UKXOHkPBhcZwcvUsIjwm4dOVUE+/+2ipzBtcS6hp3djeD7hMX +L8qdV3tbT6T35m3y/mwgVK1qn3eKPCDKqwKzEgKaCCHmH3XzY83E7UcGCrZG +rcRozxZ77rc24uqtQCe9vEdEvdjFTnuXJ8SFCwOcA8ZPiYfUCeFW0p1ES7rD +1XqtLuLqF+Yd7uBnRK9dfPRC23OiqyHuVPDhHuKKgcFvtbAXRJzB8r0FypeE +Pke5KV1FH2F6fNIy2O410fhNVFcAvyU89B8fO0R6T/wPzbmR/w== + "], { + Developer`PackedArrayForm, CompressedData[" +1:eJwd2FMMIEgWAMAd27Zt27Zt27Zt27Zt2/bsjm3raq6TSjrv/zFBw3YV2wb4 +559/7gb55//v7z8ggQjM33BQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjE +JBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQk +F7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQW +talDXepRnwY0pBGNaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe9 +6UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZ +w1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nD +XvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd +7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5 +w9/kD0BAAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQl +HvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf ++SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71 +aUBDGtGYJjSlGc1pQUta0Zo2/C3g7WhPBzrSic50oSvd6E4PetKL3vShL/3o +zwAGMojBDGEowxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jP +AhayiMUsYSnLWM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8B +DnKIwxzhKMc4zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4z7/8 +xwMe8ojHPOEpz3jOC17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OFv4w9A +QAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBC +EpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEK +UZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrR +mCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGY +IQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZgl +LGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc +5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73+Zf/eMBDHvGY +JzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/wd+gMQkEAEJghB +CUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xiUd8EpCQRCQmCUlJ +RnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlG +cUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZz +WtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBG +MJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclaw +klWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCS +U5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53ucd9/uU/HvCQRzzmCU95xnNe +8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD38X/gAEJBCBCUJQghGcEIQk +FKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQV +qUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSl +KUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGNaUJTmtGcFrSkFa1p +Q1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnD +WMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa +1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nO +cZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nD +W97xng985BOf+cJXvvGdH/zkF7/5w99jXwACEojABCEowQhOCEISitCEISzh +CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI +TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP +BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H +OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm +MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay +ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ +y1zhKte4zg1ucovb3OF/AVHuXg== + "], CompressedData[" +1:eJwNl1c8EHwYhe0VQkaUvWUkZP2HFWVEpCiJZKTM7MyQmU3K3ntTychMVmZE +ZCZFlB3J9109v3PxXpyr87zcdxz0LQkJCAimSQkIpJJOX58tcwY3jrqrVdgf +Am/NdgijHwJ58TjHGWIXQHySkEv+kQtoV1f2u7HtAprq2HmuOrsCUT7Fo/Mb +rqAmxNKZ0dUNvJRfQf/23YCjJFkcWZA7eJpuQKpE5wHoFG5kNWV4AP48ztm4 +c55gXKK/YuS9J+C2uOuacMcLEJUFHv9x5AX+PVWc+J75CJws2SotuuANXglZ +f8Nr3iChLse2/YUPEKgQz9LS8gX+vWIBv458Aderwuie136gI2LN6Y+CP1CR +MkhsTfEHzLSHoz3//EGIHsjmuRsAqNrCmsd6A0Bq/V24LfMYmALwJDL7MXjp +b3GthD4QcLIxtJsFBoJ/DI6KjbuBoFixPLzfPgj47IpM5i4HAcfhnBp9y2Bw +/4wL8fJiMJBRnmNzs34Czm88rKb9+QSc8jdbbXcNAeUlf68VEoaCGB+19Q8x +ocCA0Z5XizcMPB6M/Hi2PgzQKKqZJuiHAzviiOjw9XAQ6+r7SigmAnzpVs8J +ko4EqTXU2bVTkeBNAkHoQOhTwNXysGpVLgqInSch4/sZBTIvfT54mhcNxj74 +9XNLxgAFj1tKFbExgJcx3Ml7Kwb8o5HoSTKOBYbddsTUrbFAyRsI/RCJA978 +l5/hZ3GAYJaU9BRZPLD45OoT4R4PyoRsrTJX4oHnvF/AvTsJgDj64trO5wTg +4eglamyUCJ4NiHFkjScCq1xBqlnjJNC4LJkuOJMEvi0F/A6zfgZox0VDWDef +AXvuEr3vAclgP8W2kprxObjA7uj9rOg5+P2WgjBd5QUQkI4glpl5AeZ8hTud +/FIAbdgIqS1vKiicFyGX7k0Fnlyh0UtuacARMvxMFkgHB7bLe3cm04F2synb +rbgMEMQkyK8nmAnUOMGxnJBMkBDqpy/9IxM4bO7dpNfNAkXe7p80XmaBJ652 +PV85s0GF5HjIn4hsYCIq1hi7nw3iusxtm+7ngOsrP9YiZnIAae84Ic21XDDE +uvlabyAXkO79X0crDzh+rdC+05MHGMg8oL52PtilMDm6OJQPzhI9TzcyLgCX +Iqji4xcLwH2/0jbqh4VgruhM0DhJEXjVEpxF/qIIaJHV36g6VwxOrgfafP9Q +DOzPyBx12JeAPrfIIWOGUrAUU3qiub4UuLzj8KWwLAPlzst6eozloG+x+lpZ +Vzn4zky2LOtXAbQNtNyD2CvBdovBVqpPJTCawW4bM5WAMHzfME6tCji8JgXh +JVWAn8WQZ5mxGqSUS117418NLkxKex1frwbEI2dDd27XgGV6nRHfkRpwYpiO +6vWlWrD3J1iuuq0W/Kmz6vFBdWDluNHTM011gGxIsqYPvQSFhwajzu0vwawi +1YaE1itQ437owTz2ClCw1arK330NjIW500q2X4OFUhXVgPB6oF02cO8Dzxsw +L7HTWND8BqxFCN/lMW0Azo8ISa8SNoIDTZF3+oWNoCvKSl/GoAl0d2Z/ZiBq +BtaGpziI65oBl1aiBceDt0BaxLC9+UQLeCTBeJD6sAX4lqhMvfzYArKbal6x +KrSCfrMssZHMVlC8GCzxm7INmNkTED12bQMGbR0oYaENXHqRNHb+ajto6NM7 +4dnVDkgi957bwg5wh3T6wamXHcCzqP1nimQnILTlnv1b0Qm+y5vf15V8BzY5 +5Njz6t6BJH7y1eOwC5CHa8lnd3UB1fvso/aG70GGadNB6NJ7kAYk75A86gav +An6JbzP0AOPMTELH8h7wLntuK0ynF0DfM1lGv3rBkVcj50ZSH9hifk5jp9wP +jHrTombX+8EGZ47e3ewPgMyzNorOeADUk4tRHVEOgjWVR1w59wZBoUZqcEDv +IEiK1ntcIDEEjC5Hl/MkDYHfvaabBEdDYPLtq0g922GA1h4e4/o0DEo1L173 +vTgC5hZ7Kr0aRgD1UlANn+Qo0FyiM4osGgWMixd2Wvk+gmPCDhpj2R+B8L1Y +m0neMXDiftPUTMEYuBHuGL0nPg6crYjHz9ePg2IGQfcy9U+ghN0px2H8E2Ds +3iGMvT8B0np3y/iJJ8Gr/WQFlfRJgBQq6g7AZ6B3IqXYeuYzCDeU4U8NngLP +hfprKySmwei2rEP99DSgTNjcHIz+AkR5bzrQqs8A3sDdyxcIZoGh7Cfrituz +QMrtvat+6yxohY/qFfnngLZacZtHxBwIkv7pxLI1B6YXUvb5b88Dio6Gxeq+ +eaAwskfbDxYAmW5xZWDFAqh2XLi5xLcIyL1ijkjSFsEHk8zv6yxfga2GYver +xK+A7S5ZlR3zEiBidWXlfbEE6NiEFr5zfQMh6TeMR4u/AfHjptLbssug5TFf +6u33yyDBfFJE0OQ7YAyPXr+9+R3cNfjlyBH1A/T00la6i66A2gRwJuDDCvBo +3p7Vc1kFVFTT+ofsP0HEbndoWu9P8I76+4lLPmvgxts1+pNS60DK+dZZ3p/r +gNt7fbzV8BegppioEX71CygLJd0dY/sNfPwKnT76/wYT+ahG+vtvMIuZrhJd +3QBpihYj2q0boCd5iIxXchOc++J7OiFnEwQm0aZVnNwC60yddsExW+D0cMUw +/7FtQJ886ZgVug2kV2P1KCl3gPtC9Yx95A6w66TYWmDYBdw9r/u9UncBh0Yj +q7rwHnDLvrdlVL8HOC2oV99p/wGx9ZHEuQt/AOWUQB2J7z5oTDy3fXjqALy3 +OZDOazoA5PlFlnQWf8HFWXBgSH0InnAnr0fWHwIWnczOPtt/QJDNLlKM6wjc +Z3463zVxBOpiyr0ntQjgxA95bfIyAthbHBPjTkcImQ8Iu+XcCOE6t3Gn0RdC +GOHYVPD1IhEkMktb+llHBBk48y778xPDi6MtJKXPiCHTZ5FQf2oSGKnypJYm +iARGjJN2WPwjgZYkmVfiH5FCyxHdm2UHpDDP3EKt3ZcMCpz4NL5EQg79Jjo0 +RaLIYdHcMMpko4BG/zo6bhZTwF4B2tuOkBIG3XUn2RihhBQRH3m27ajg+MmB +rKhjx+C3zOqvI6XHoAmX6fDkFWoolyv7oX6fGj4okO0MKaCB47GkoiZGtPBm +pwCxLs1xmJ+vNOnx7jjcpXx1748yHTxvetVgJZsOstrk6HOS0cOLLe++ZN+n +h0LWom8DR+j/v39AMwgZYFS6lGxSMQN86CxL8JX1BFQNlgvqjTgB6Wdp5Y0J +GCHf9fZfae6MMEe97nPRb0bIw9Ef/tSeCQqSNf42XmOCMWsX73E5McMQw5Kq +jR1muHRya2vejwX25wV1E1OfhO8+J0jbpJyEhH+7SnnFWeH+38HTmh2scC9D +YGn9Fhucze1aED5gg84+x+1oUk/B5bkUo0ql03CoRPVI6PtpWHGLE0clssO5 +1hzf3QsckPjYQIX3PgckWLIxOF/DCVN2RJo55Lhgqoff94/JXDBU3aqv/4AL +prz9/PGEOTe8wL3bUfeeG9ZJvS9uPccDpZiVVi9k8MBJe361K7S8MFqJsXPD +jxcalYV9lt/ihfMrB7rn7/NB0vp/F/cW+eBItItOjDk//LfZp358jh9asusF +PrEQgIoGHq/JvwvA1UvGpHlOgvDwI9O246EgFNS8G+AbKQS/jHMzzXEIw3mt +7ajSWmHI+JhQbVtHBJ5fLyAa/CECSTNuMulHnIHBVMEXYiVEoa2w+5eccVFo +IuBWmRkoBic4Bk9kSInDRzcoVl9+E4dXrJlKCDIlYIS6cbGm+FloGTSv1BX1 +Pzt+SAb+PgtZzuouRlyThJLu47TrTZLQwIThzRvBczDrJlQ5jD8HL5TJGncS +ScGAb/4UPC5SUOaJag3PshQsT7t/ctxUGtYS9VzV/SQNB86qfU25KgPLFemL ++kdkIBUryeK24XnYGbegJPD5PLQ8NzjiaCELmb1en15e+59vP1Nm+MhB5383 +9wuPy8N/xDMtrHnysArjfFKkAIvytR8ETCrA7KM0vWwvRWj61/m4LweAisEF +SyLvAJxOeZ381gnCevzZwYAbQelmfuV/owhemO51+BSJoYaQrIcPnxI8voPy +3wYpQcPgiWH8TQlGDPSZHNNWhqSyzzckapRh5/bVhIbTKpAkMy6xMVQFBhzo +ZyjvqsAeB6JqYxtVeP/qY0HGKVU4bYHq/PXVoFnKZfuKXjUYNJzXWalxAZ42 +1IlJfHcBhn4oI3e4qA5DRr/2Xu5Xh8kW4kvqhhpwIkOn996sBmSXOGnaY38R +4iDCjUcEl2DEwwaduMRL8MGDr2Xc4prwa21vF+rRhErksn3/7mnBqA1tW3ca +bVh6J2C4uVYbrtQ9r1+5rQPL3rfeZDp+GZJb1PgZtF2G711+eTZ76sLIixTJ +r9j0YBsNfdRbLz1Y+OG4EMm0HuyeamyMU74CZTlubngUXoHM5nEtHfT6ULnx +qnOQjz7chQMF71b04bColdELEwN4lbNplHbQAAZK9r6XUr8KFzMOIOvbq9CO +4WbagIIhLJofqrKuN4THS+4Xbyhcg8ftS08/fnsN2uZvkglpXId34n8O7wxd +h1bMJ4wIzYzgMQ+5Lzd+G0FB+zNcLE+MoUST2WVNjhuQfqSKnvLNDXi/XiTK +xvgmLG9dtvT9exM+uEzVaJZjAps5K2UFLt+ClJF05Et/b8E+2rT5VxWmcCpF +ga7W6jZkjFev+UNnBoeszhR2OZrBkwnb3waHzaBa9M1WHllzGLhiP9yTZg5D +k1ypxsnuQCa2DyWGzndgMf+MjuHsHQhzGGYW9Szg7dSp/BMdFjBU5oPGb/m7 +UJGirvVp9V14g7/r4R8xS1h3bIrjQqkltJyp/hYgZgWfSqobt1ZZwZ+FYtZM +8taw/wuNY0y7NTxoZ1a6cMUGan6NOaExbwNplj2fF7ndgz+Sz+7409rCvR9n +380V2cIJtVmuuYv3IY+vbUrCyn3Yt16hxRD3ACb8U+t1BHZQ8UmgQtcPO6gV +W64qlmYPX3YLcTQYOMB0ypn3auSOkN6M4PCTlSO0vD/NV/DeEcJ1+ZBGUSeY +N076RiDeCXqYyeRuHjjBryDXT9LaGaoTkHxeG3WGxNRjKQoXHkJHdScCvtcP +YeTciew3Yi7wjCehO22+C3wzXDYqwe0Kz4RtOUlkuMKmjVv3OLjcoG60kyJt +rhus0WUeojvjDi0oCX3l6twhna0kcbKKB3Rq84lVGfGATATifVrWnnBAMr+3 +658nlNvg4up97gUpTnqN2so9gtXUVE6Nk4+gl1jcv4/+3tA/RYHyg4gPLFzI +ymn45AMFl//dexnuCyM9DYPHlPygD01zufSBH2QONGPdNvGHakd3vEKb/WFX +t1a9OU8AHKT/ZxEVGgBpCM8Zn/4dAIkHrvWwmjyGsnT+MLH7MUSBptFp8oH/ +76HatnJpIHwkI3sUyx0EUzWpXqQ9D4KrJeH0rozBsE+vlkE4Lhi27W2X9TA8 +gTMXHxvfT3oCQUP55mn2EHix2qzzd34InCcJC/orFQq3jcqv6XWEwvW8JyME +RmFQWi6TnGc9DLLEs7m/DwuHctEOXJRCEVCIRcfvT3cEVFv0i65wiITc2esD +yqxPYe5M6YWud08hiTy933WPKHhCYCOJSjwaKkwvyf75Fg13pwd1OQxiIP4o +fsW9Ngaa7UmMM56MhZ6PuqxJfGOhn2z0hMFSLByqLjSkvxIHS24XGWs1x8F4 +/bh6OvF42Fw3kuWYGQ9PY5PnXkwJUOl3bSB6mgCrHYRz+sgT4b1zhy9kghNh ++mKZUzhpErREqvFToUnQqbB0BB5/BvkPRZ1akp9B3zejzO78yXDmgGrGpS4Z +fo/jv9Z/8Tl0eUHnkzDzHGrOkPZ98XwB2X2vyrSypEA9ZnmhK/Up0GT7XXyu +aSq0yZj/PkSeBjvYL/P8qk2D+4+6mpit0uHurHz3rVMZkKaGcG569H+e5mEz +upQJA+PF1NyLM6Gynkj6BE0WbCdRy498mAW/cHOdSf+cBU/ON+mcVs+G74LM +A5lqsqHi3/BnyTw5cE1/r6w2IQcK0taqeVLmwvVRifM7/rlQOO9+g+JBLpSf +E7a/4ZEHMwPPalns5UGhd89qrR/lw7inAi6ehAXQbaWxqTi8AIoc65ekZSmE +3V/mZ17mF0KurwqXXssXQY47NhYCg0Ww3epYCpNtMVwmfTb2grwEirAIefYW +lsD8Hw8sm3RKoYp+OkHITin8bRMug3PKYI5/lfuhQTmUyXV9N0FRAZNO3apc +ba2AWuekSwpwJcyjbH71NLMSLoeu59URV0GJKatV0XtVMJ2dXp9w6P/sRvlL +SbEaytsGSu0XVMO++JYZRZYaOHacgY4prAayLXyVTzysgbQZs+J9LrVQJ5qY +s2etFgo3zLzIuF8Hj5OPJd5aqYNjHXdtmOxfwhyiwOFPmy+h+grlv3rvV5Aq +QjSgl+I1bND9Z8aV/BpqpVAw9onUw5X29aD5lnqYPyXI5HHjDUzIq8/I2n0D +N4hPerskN8A7d8kCyGAjdLOLIbf/2gjjbU6stcY2Qdo+4xRWlWa4cqWb8OlO +MzQ8lpstXfEWajuWv2c83wKf/PFraEtqgTol45pVf1rg18tsSz9NW2HgxIj2 +k3etcPltYkzo2TYY7DTLTJzWBv3QyRQS6na4sxJ8NtWnHR6DFmoTv9th8KvN +jF6bDrj9s8g2cL4DSj43FqW/3Qn1hKQHgr90wpoXfakbZu/gW+mPF+8tvYP8 +GhMbB/ZdkE7LV6BpvwvStlJ8eRv2HpKx/ApiOd0Ne9cD9seruuGUQGICk1bP +/56lzfP1Ww9MfLC6djO0F94SaeiIFu2DjSP760mjffBLwppyqH8/7H66deLR +2Q9wrr1KM2TxA9z7p2fcmToAiR7b8hSIDkJavbcj7E8HYZIP7+TI+iDcviqb +NnZ1CJL9ixmVahyCGo+fh/3hH4YP111Yz8cNQ9HJ7fN7BCNQNDh19bLzCKTb +yEq/tDQCb/Mep9kzGYXj47OGtmOjkIRKbrdS/yNk8H82NDX0ERbXi4scGYxB +5chzZcITYzCyWdXR3nwcPtpd2JpZHYcBhn9EYh99gqFk5g8TaSYgi3xsNkHO +BDxq0yT+pjgJ2yZvGN/6NAl91OwWPTw+wxsG63d0T0/BX3wkTLvtUzDHO/zt +E4dpiIqkK5g4v0CGmeqGhuEvcMb1l2Zs+AxUgueKr/POQj0SxepngbMw33F/ +gGlpFgqYjFjMaM5Bu4ktdqLqOTiodZ4g8tQ8nHn273ZEyDzUqTi/TLszD1sb +NFL4rRdgjxj/xy+TC9Bt946O5pVF6K1gxOrRswgnay+Xe6h/hU6ybxdMOr9C +LdeUbRmNJXjaK+8JU98SNGX7mE1z9Rtkq+xtPTvzDXJ5XuuOtVuG+r+Ojqsd +LUMq98rbNxO+Q8sK070V0R8wb3Ygjqr7B5zosrHos1mBvOePs2tQr0Ke2dNb +MTWrcK/LIqvF9CeMzVOz/EmzBv++HaeSaF2D9WlCK2ke65D9sYqHMNsvuDqx +3ifl9QtWlvIeeU39gl7M8jbUyr+huolE1XbBb0jLFzyqRr8Bt5s5uCh8NiBz +n6zs5ZUNuOJsxihgsgm/+j45ljGw+b8fUvW9v7AF/Vnn79Q0b8EPZzqBg8I2 +fOhnK0RTvw1tlwaM0hV2IFtjjLX02x14XVHz+pz6LnRlpU16NbQLfzUtHHXf +3oO8dkZzZ37vwY/NHPu/gv9AieYmPzGOfUhBrce1U78Pg+8ZkJoZH8BF0rAx +/78HkG9/qdE+5y9EV1MslS4fQhV2blKaw0Mo0Gl9Y7XiH2Q1p6nesTqCJCfH +XHjoCdDp72nye44EiNBYtZRyhAB5kN3gvCtLiGJiNqWZ0gmR4YHnrAg5EXrJ +l2hT40yEcMSpe02zROhNEe3H61eIUYd4zl5sBzGKMDB89EiBBIWkU97hqyFB +tUYK9GnipIiJ+JzuTikpSmE1UFcWJ0MXnO1CoqvJ0GYEN/WmPDn6fkpf3reD +HE1J586p6lMgAyPai9cXKJDXkBtPnzslYqw0T315nAqZtZcbnymhQl2b1p5Y +8xjSN8lMpvh5DL0Nv/sxNZ4aqWk0DjEgGvTXoPllwCoN0g95KUuYQYu8Xpom +FhkeR9ftEgcvUdChhIdXzVat6ZDKHS+P7m465OrCZbkmRo/6SN+02iTQozqZ +NS/1Q3oUn+w9mGjDgHxlxK5bjjGgTaa+/Xb1E2iz5CxBa/0JtHD1CvkDCUZk +qWpB87GAEbkxkztQ8zKhd/aPf/BkMSGOHrJsYR5mFPKHlONcPjN64Jege1mM +Bc2ITMbFvGJBCWqxVccunETTOQlfhz+eRCfIfT7/uceKOMku1yUQsiF/Iima +16lsyMFOe89D8RTS7HtK+XP6FNKYLL0qEnQaOZ7lcdIQZ0fPPyv63JxiRxNa +Kty+URxIhKoyrkuNEz3P936md8SJHhQ0qbHe5kKhbUul7S1ciEhWpqeWjxtt +JE9L7odzo49uAj1Zm9yI8KZ2X70pD9JhcXqn18eDsjOS0lwBL/ryMi9atoIX +Tdb5y+Tz8aHAWp7goVQ+9Me0d6SbhR89bpP9lJHIj9puL5feZRZA+UMuw8Iv +BFCw8U9JQm5BxJanyXlYLIjOcq/ePCsnhF5I8rOWvxdC7/Mn9sNMhJF8nzDb +p01htPZAnKIsSgQ9EOscZBc7gyRS7Q7xwBkETGWThV1FUc3nVvHfHGKobkzn +Y1mfGKK9Pifs7iuOFI18r1tKSyCa4gessWsSSKtBaybs2lnE4OSXRPz6LGri +zNhoOyWJlApPBH4MkETZYfJCl35IojwdNSZRw3PoGRQbjmw7h8qyy6DXOSm0 +M6YWTZwnhZLtNI3l2KQRzRvqCKE4adRF+Nd5kVoGkWfPt3iHy6A2D5FQomPn +0ZUZCZWQqPNIMDR78DSTLHKL2/L7mC6LqIU/UXackUMeRH3PDhrkkAz7q85o +XXnUSZeQm7Akjyz0RZs4AhSQXN8CgyqnIsoSShRgaVVELjJ+fyqtAEruVKUT +pIOo32PPNaYJouCxS29JHBD6IVBFk8qH0cGjJgaHLxhZi78O07qshKTVxreT +KpSQTO48heAJZWRgTaRD6amMMI1cmtacMsp1URb8q6WCmFhD7ITrVZDvZ6ZL +80KqyPl57opMiio6N5k3J0WnhvImLBlXQ9SQlKJMnz3RBWRamVnd53cBrc3U +jTITqCPXL4Z5poHq6EZI4lEdpQZaoxIVlojXQFOkv0anOC8iXk8L/uGKi8jz +4HIFj+oldNvvgff8xCVkTMVDK+Ciibybtc2IGLRQTOLp1cgaLWQvRVjy2Ugb +icgUspIS6aAeSxpFrgodFKWalqJmdhnFq9peDWfSRSKqrrRUA7pouJ8k0F5d +D73IYw6JKtBD78cYNDeorqD99NArBY5XkI9j78OGT1eQZ8rHCaCqj4zgeUKF +Sn00U0/V3MppgLKJSOBCrAHK2XInLSe7iuYZ/A4kfa8iou8cd/z2riId84Dp +fFdD1HFT3rV+2xA5fExIeu9xDWn//su89O8auiVz9zxf6HV0Ub89K5HRCJX1 +5Lrq5Bqh0tG3SrdljZHwYDbZTL8xQhV2KnPWN5BSZep3L9KbSK53wb41/yYi +P3+qs0fLBFlbwztlWyaI6MhNxT/rFnpzdHHlhr4pOnzfZG9Ifhsl4ir70Jbb +6K42cwwZNkMtHPcL/mWYoUkOxUp5YnOk8U1DtNPGHLUIU6yVD5ojTrlwNlLF +O+jHqPmZsYI7KCUq69dZFgvU+GMmji/MApUXXExsObRA0bfejDO63kUDXb+S +JdfvoiqSRg/BB5bIifmCF/mqJdrcuU22YG+FCqJWfvZuWaG9Ofxg1McaOfYU +Cx+nskGNcQcw+rkNkvvALmUjeg9NvW8nL2+7h17/4DrnamKLrB1rs4f/2CK3 +Cb6uzy/uIxkn0af5+AGSMXpmeWn5AUpyN9D4nGCHbLvjqh9esEdmFgS1Ivv2 +iP4lxfLJGgfU+Jrt7Rk5R8TRfpmD4Lkj6p6ubWX+64hyRGSFfMydEDmfHbdy +txOaQL4DjlLOiHHseBFbpjNqz0WPdI4/RAQMufdPBjxEbM+s98O3H6KtEBOS +ugcuaDFEtDN/yQUJ7kZNOFq4otL8p8p8C67IjHv8zrClG3o1zXHs6YobYi2K +cLZycUcjOdLIicADGfGVPW6J9kC3P2e8s+bxREoJnqSPXnsirXXealp9L7Tl +Olgvu+6FlG1HnxyLeYTSXyUSZ0p7I7d7YWnHpr2RJ4PaRcswHxQQnerfIe+L +FBPmdJXXfFGkM4/uVr4f2u66YHgg6Y+o/O4zVMX5I4YJm6eF2/7I9LuX6vqN +AHRC9ylRfFsA8pdmX8kSfYwk0gSdRZ4/Rk7qvBaKFIGIwYxsfsEzEJVZGNlJ +rQWi5qt6s/KWQYir+siFfCYIxVmFvyu9GYzySR+MKHwORux5PUdtt56gK7nj +LNcXniCPOqRP+SAEKfrm6K/uhqAJAXHREyGhaOGc4N1Y1jDkfJi95VURhk7J +Qd3Fi+HIum/x9vzXcCT2+HV0+JMIFDSw1bUhEoli5DddJEci0U65Ytgtv6fo +5aVC/yiJKJS2mGIxtRCF2He1em6nRiNrpuO/kkVjUBjdU6nzT2MQ2+9X04y/ +YpBMfdh9FcNYdIX0VXFfYyz62RjX0CoQh66dPGQ4Gx+H1pRMvQWI4pHkUOmp +2ofx6Psjf4flb/Eol1fSYMQ0AQmUEREGf0pA/hO3GGkNE1GcK3Ok32giijz7 +tu/HtSQUd+9YjvlUEvp7Cavv3H2GYgPKbzT8eoaG/17aavdLRvbr4Dkvw3PE +Hf1cba3gOWqdYronp/wCZU5/2mT+8gIR5BvpZvimIJOUS1bfeFKRv2FGPmlv +KvIJzSChd09DFHfJ/3EJpiPHcdU0nc/piPFMk3dFfAYaOHfqq4RQJur14OJv +DM1EoX7zZWErmagtauAwTy8Lzb4TXuR4nYUkv608JuLJRrEu9Xq3o7JRT9Ak +m9ph9v9+okreYp+DNAYLk+bnc1BmfUZ+g3Eu2tnVtrs5kouU6Ox7h3TzUDI1 +8S2JgTw0fyXWNfhKPrI1Pxz4OpaPOF02Y+7cLkAeLqaXaFcKUFzxz70Dz0L0 +6mERHaYuQu6mz1xXsoqQNLl9IJNiMSI+YXx8eLwYoaJ+2/MeJUin38HK6HQp +kjqiMLzcUYruh8TQSjiWIfOJC5v0XOXIzn16jXa0HJ3vanmEIiuQW87ZERO+ +SvSqV5eiP6gSldvk7Ht/q0S1lz8weWlXIVKNQKbhmirEkHKHPJ69Gmm1zGv3 +hlUjXSu1tLC9auRyJo58+l4NYoGlW6PTNWhFxEw44Gotipd5+v53fy06edfQ +UFazDi0V36y7012HjB8elwrWeok0Rkj9KwdfIvZ3Zq92jF4h+QY1M9vFV2j+ +g4kjx8PX6DuJ/WUB0nq0OvNnNPFFPaoq/3U1QOoNOlx7mHw48Aax8Bd95XRs +QErhaYT/TjSiJzsKUuUNjaj1wWV1DesmRFCdGTXL3IxYbnKvxPY0o6oWvu6H +j9+i/pzJeF3OFmQi792f5NeCDlhHC07PtyBzL72QNfVWtGOjwsVW3ooq1N54 +lLG0IVIdhx8vA9uQW1Q134WNNtRgZydubdGOOE6K2oiOtyMnTumoXJ0OZBRe +8GbmXQdiyam1XlPpRHRDw05zrZ2IqoearUf1HbJ7YETx5v07NBL7V6ddrwu9 +Fie12fvchc4wvlN+YPse+RU/kD339z2q/pd50jS2Gz3zOX+GRKQHRb1ZFZN/ +14NKMpVuMlj1Ijrnyw/yKPuQ4m5HCkVVH0pX/1Gob9KPyiOrJ18c+4C28Hei +P80f0Htxu4BgtwH0ceVtjijrINpACT/VPQeRSb1hWfrnQaRKckxJWWkIlY85 +6IOCIcRL/mM+jW4Ype2uhrp4D6PT0hFiAz+G0ePpgk+NN0dQ3h7pqvbACBK9 +cYc/+sIochN+kRnfPIpuaHyZsFX4iHK/blbw1//P9MdWHxXGUP8tx8KIt2PI +54FW+A2NcdSy2xZ5dXgcPbcUz4g0+4QER3l5mDc+oaZTHD9IQibQi+pzKnac +k4h3aHzNomESKco1nP134zNqOizquvLvMwrqDNt2yZtCXz5YBPjqTaM41cdv +go+mUZBU5qPs6i/ofIWo+M97M+hF/aDVW4ZZJNTv5vraeRbZWO+Pr43OIraG +2N8O8nMIiUS6XsqcQzpM5+6FUc4j5+UKfuQ6j5JKqG+4LcyjXWNRGuWrC0j7 +4peMsq4F1De3+6EXLqIQMu+6kpeLaP3awIdb576ihfo/exuVXxG233bzPreE +THaPbR57tYSeyCsH1KBviP1Uf1Zw9zdUQpirmnh9GdUG0XZtLy+jqCo9ggaf +7ygUmiv8YfqBPpBXyXdW/UDkWsRY+soKml68RmWytYKCWOem9VNW0SBgC5BQ +/4kcS6dUKbd/ovGwJMK9gjW0lxPFx3h7HQkHpl9VpPmFggY/x5y2+4X8255P +KQz8QjXP+lNypH6jMsm0x3df/EZfKZWeRRBvIAunFSlBhw3kYdpDoT69gYqO +E3Ls6mwive7Gj5daN9G5Pd01HdktdIn4ZtCJyi10gZWIqeTMNuK8eNafv3gb +9YgvUyWc2UGKKdnmFJU7iMWm4UWC7C56/HtVTqttF1G5T4phvT2k+65oKnBu +D82FlZ4Wc/uDdl+wAl3afRT5cozoqGgffdnTr7ty6QCtBjqz3Fo9QAZvIhxk +4/+iy25uYbvwEEmWlNXXrh6iqZnA2ScZ/5DAlq3dk2tHaHhYUHKJggAX5QWd +qbchwCVcDqi7hwDvt9IO8UoQYreDpRdjiYSYZb0+b/0fIa564qbrY0uEW86c +0476RISjLMULJS8R46S8H91ujcT4R4SKi905Euyylvyev4QEh/w+fqlSgBQz ++X2YZM8jxZX2Bu/9BMhweOVY+7diMhw0+Pq79TlyPCZI2M7QRI7dmVc0DjQp +sHP643npKQq8/lbPacSREgttsmiuUFBhG94sEJtLha2inidOqh7D9msB3NNL +x/Dy9QqJiqfUuFfGNNFajga/HRqvZP9Gg50nix98f06L3Y12VRb0juNSNWsu +BjI6bBc5QrJgSYcPWR/a/e6iw4t/mrs0RenxweDg0N84evxS7GIq0196PKql +GJljzYC5Y6Vu1X1kwK8ozvPeUD+B+wU+aWfVn8D0nOZ5LyQY8Srr3rVrhYz4 +S9LM6iIvE97Uaja8ns2E80e2vzbzMuMQX/IbYoXM2DOVfKJWggWvJnHuWr9h +wf4ynK+NL57E4B57XNrESfzyr5Cjhj0r/h1GWXefjA2TnqRHnNlsuKbrn6W7 +8inMubVBHr54CtdLuT62iziNz+dFvpE7z47p9n5wEH9lx+HZIiWLzzjwYD3X +yvZlTnzgxH0kSMqFn67F6JBZcuG0EG9K3i4uzDpdVBxxhhtHn1z8oxPHjf0n +Fhk8DrixUO1Fq5PWPFg7LLoBfuTBBkdCUrsXePGe5dOLV+t58asrFqN3Jfhw +gUI1rXwhH77lwBM7x8uP20o1jR2y+fFu2bHeTV4BXEy5X+1fKIBP145dFDor +iAt8mc8dvhHErb89ghguCWG56fL3jyaFMDUB/aG2gzB+Lmyd/IJcBPfLtUR6 +5ohge7ObmkcqZ/AOa06b8tIZrCClcP/6U1H8+u4p5etyYnhoobfX6JsYtr6T +xeXyQhznb51aar0igbPKr0uUk53F37mo/lRZncVsLJxx++/P4qPpatYkMUks +k7pNE58giWvyhHUJ/kniql+tPD/vncPLztnn7306h60uBeUGXZLCYWV+27pN +Urhvsol/Skoay4oZFiqUSePVr1fu+wjL4Avia59fFspgF7a/P/6InMfUGUH0 +NyrP497UdMMVOVkcYxKg29Yhi+tox8S3DORwIId2S9KSHLZ94PKwxVsew65v +ZqHMCthPs0mPrFYBuyYYtuobKmIybv+1J/uKOMiRYKIxB2B+Us/Lx69A3FbS +9vs5EcK0Oy9VPV8j3KzmWtrjjHEoT6LK2Ekl3MUvSZ/hpYRfdrmvD3xRwm6b +L+M9LyhjIyFZ1bJyZeybX/zJm00FTy4d9OyHqmCz4gBphX0VbG6aMXnZXhVf +ppyQ0fmqiknd73hp3lbDpxcls0ym1PDqQbrTC5ML2DvlWcSp2QuY0NXFec9K +HftaeiRr/lbHLcfJ7ov6aWBi3uTb9XQXcVVUGCFt/kW8Od5AcBFfwm/bRZSf +TF3CAik+K8s+mnjLtcA3llcLJ58rms/u18Jj1xyplL218U7ChnmshA5udlEz +a/img1PggNxy7uX/P6enWyrWurjnr6u6N4se3i+XIzntq4d7s7K0n3/Tw8Oa +E19orl7Bkn/cqhLar2BISkiqeV4ffzAvdNcq1cc8jw3ZXvMbYEEmjpDKbAOs +0AL+XOO9itl786wGCq7iwyTDFHzWEF/ucL820GiIbdlD7xXqXMM1FTETO/PX +MClxCdF37+v4F/XPpopTRnjY9GeY71sj/IOH5mWEjTEW6amPoWO5gadGPydf +6r2BOX+WVLsF38QCCWfMPl8wwXUEgYfN1LdwqHM4od3kLWx1dItbsMIUezOp +lZ2NuI19BCMYHGTNsOzrpxZqZWY4zV/VXkPQHIvLBZIW55nja7cmPmYK3cFp +1XPxFpV3cMdmtZgYtMCexbFHigMWuCedh3rY6i7+K2ksJ0NiibXI7kRUFFhi +pdoPztFXrPCd31rHhIis8UzIWfuhems82CNH8t3DBudOd00P4Xv4vSQt/Tat +LTY/8YijbckWPyZaulnRdR/z7S5YKVQ/wKPBHenL+Xb4hnpDvka+PSYebvv1 +s9IBN3MvFzZZOOL3Yn8HtLcdcYHo8zLfp07Yn/312RpRZ/xG0+a63ogzHnh9 +K7Et4CH2+HlX2UfOBZ9zk6I62HXBFmWMD5tbXPHR3L6Rfrwbfoif+Gs6uuOy +8lQxNSMPbGQn17mk5YlDjDi8FrW8sMmcHOmB0SN80sPcduuhN65YdOgpSPPB +zFmuqvtjvljXieaXA50/dhqN1RJv9sfb7mzlKq4B+E/84yyl84/x6eJTNzsJ +A/Hm7xfmHp8C8VY9QNQNQZhXfFYeFwfjPP4Vgan8J3i2dESuoSoEr1KCH229 +ofj5sfSN5e0wrBQbry0lGYHfRk/p1PtG4mqza8O5M09xPpXYIynDaPy3aZjQ +xDEG07U8GutXjsWVQxZzFZxx2EdsJ3WAKh5LWuXIUJAk4D4FLTdV6kTMRlnY +4cWXhJvKh8Rf6zzD6o8JIljCkrGKWH9x1/hzPFWGc44ppuCUl8xnQG0q7hfu +putWS8e7UdPdCmsZ2LKsgJZtIhOHTNzflu/OwisvQkLvv8/GcUJKCmXjOdiJ +bDOBdi8X8/75e6dKJB8PJZf/6HEswLIlxTivtxDbMPCUZIJiTGjgJSrTWYKv +5ZIxblmVYVul5Pow3grcWXG38LZvJa6PCLRHXlU4trQlx/JJNT6czNdeyanB +qOGk+N5ILR7lNGboZnmJK4jY+SodX+EnH/nNmWdf47zBv/w+1m8wUVbgqB9F +I7ZzEH32saMJJ37pUTFIf4tjikNL3XpbMAPBH+Zbn1rxTD0X6/5OG/4P75K/ +0g== + "]}, {Automatic}], + Editable->False, + SelectWithContents->True, + Selectable->False], "[", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], + SuperscriptBox["r", "2"]]}], "+", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"]}], "\[Equal]", + RowBox[{ + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", + SqrtBox["3"]]}], "4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], " ", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}]}], "+", + RowBox[{ + InterpretationBox[ + RowBox[{ + TagBox["InterpolatingFunction", + "SummaryHead"], "[", + + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = + "Ready"}, + TemplateBox[{PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$294651#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$294651#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + InterpolatingFunction[{{4.23046178224774*^-25, + 0.24395920510017832`}}, { + 5, 7, 0, {1501}, {4}, 0, 0, 0, 0, Automatic, {}, {}, + False}, CompressedData[" +1:eJwNVlc4138DtbIrMzujFFFWpN9nfG0ie6/I3utvFZK9RyF7h8oIWQ2hSJrI +LGVlhCQjNHjfi/Oc51yci3MuznME7bwNHCnIyMjI/4/PB8jIvvW8CKmwniJx +EJys2rtTpLGvqRztedMkAXH/BHGlGVJb/Rn/oR8zJOq4BvK18lnSK8fbqU8u +fSWxx2p1XBGYI70zk8ty/TZHMvZ/EtP/cJ4k7qh3Y+vGAqlFv95SyG+RVFb/ +V6Xc4htJu7A9qldribRSNUlMqy6T1Awb6lQvrJAKXi5JaJt8J/lU9bkbeq6S +ZiW1/FpTf5DWHvZ+97ReI51UbPNn3V0jRaWLG0fk/SSVuzxIXVVcJ7F0/RTL +/LFOujrGbFJbvkGq51p2Cbq0SWpr+kYjLbBFKqFvl+H/tkWS1x2yjXr4i/SP +riG14sY2qdGZw/a97w6ptOD4WW2LXdKZSUMFL63fpMzPV6ujVf+Qtj69uDun +8ZekSd2d+834H0lpPFhoxWOPdOhrscHF1H2ShXKMrZw1GdD8yDM6vkMGIjmy +MlTzyEEtXU9mvSIF+Eud9tXwBwWYvmpU7VZOCSjieFWkL1EBI+MQ/SX+A2D1 +vMKHocUDgJxuHco9pAbCGoIpxjdogOuZHMdQX1qgVu9zfNucDlw+xrXHpkUP +sk31OEVUGQCPiVBljAYjCNb/QRVrfBC8rIr9GO1xCOSSbM9OpxwGmTb7H/as +mEAXjTKpZIcJ/Al8OUiXxwyKGO/m+ymygPZw6iLWHyzA0f0KuUg5Kxi+Jy/w +3ZoN5DqQFZTxs4NTsx3/JS6yA4Eidu5vbUfAcd7S5AM3OAB5mbSHqC8nWF6Y +Yi815wJ8TgfbH2tyg3vMtrGvVXjAsfbn5cIavMC5wsNXyJgPcBzayODzOAoS +JZI5AlP4gTKjnEavlQDg6T1d5LQjAJxqXrC8yxUEEV425WcVhYCKiJnZh1Uh +MFF53Wyu7Bj4FUH8q7I+DsImgxcs+IWBJCVkV1gUBvv0xE5+2wkQEimZ0px+ +EpQ9nf9vxEcEBBABtFrmokCpXDLMTvPU//Pf2/JSEQP/GKvLetTFweQ/MPnU +6DTop3mq0+J+Bqy0H/tLnyIButRE29OsJEEt+wTF6R1JsNyUZngzVwq0iC9W +/1KQBuP/olgzVqWBzym3+rIyGXCaTuqTnfVZkPnsqwwrvyxIvtXUurUgC5Qu +eo3qtMmBoKD3qY7p50DN9abQKB95oPjg9N9Ns/Pg1UgkptMkgUHZM04sKgDI +Ko6VOapDIGBirWNphMDJ9AV6XXcMmKZPzBQnE6CZcVzazEoBfFnTdtnYVgDk +qceyTHIVgbWKcnObghLw/Jfw3mBVCTBuyNLZlimDIHTwEZ+1ChihV4l4fVQV +NOaKWlYvqIL4S+Wt5G1qIGw77AZ7ujq4/jU/VtJHA+gS9D+LzC4Av7+U5PUX +NEFG9spos7IWIBlr3T6gfhFs3O1/um2oDYLLvF8uuOkAzcysvrPJuiDZUvWu +gJUe+Gkc9e7hth6YPRs5yp2rD+oafTquKhgAleNuySyrBuD+v1k7vjJD8J5n +KHfMygisNt16H3XUGNyny9+3XTAGivhLTlOrCXiyB7J60kyBynzBjc/eZuDZ +JP2Chpk5aGRq6ja5YAFyROY0zZUtAUmVqqpCzQo83sySzDS0BqPnTeKuu10C +ZYPejX1JNqBH0kvgm6UtKFAKlb2+bQumK6u5J3MugyZ/n1dQwQ44eR/XHPxu +B86o+7d/LLUH+yUxVzOsHEBF+8RReNQR7MzQVhxZcAQ/F46GOLc6AZpEuryA +NGeAIlsLE71dQHi6xJd1U1egfjgj4Z+GGwie4+j4q+QOShkpq1XVPECbVG25 +pKEnEDXIV+dy8wJq2c0Fl5K8waMEw5wGSx/A3yRfqLbtA7Smiy+V5/iC3Til +kT3CDzz71EZ787sfmHozz5lT+h9Y7RO00rHyB2mCR7w3+QLAWaH/tN7MB4Dv +po6XuFsDQVrWfLFwWhBoaFq+d847GPDqBI8UmF4B4pslurc1rgLavuizJUoh +QLBKvX5ONRQA6yOcbw3CQPQ8pmt0vQb4PjvFbySGA3mHLaarltfBTFXbgYPb +14H69KVy55wIkPBtfqaTiASvnU6+1P8eCfKTQIBxaRTQzriD6ayiwcBnpc4a +vhhA3z2+HjEfA4STGpTetsSCR3wfKodT48DUlfMPv3rFg3C2ufdqpgng2OPP +R7Q0EsHEe7FqZaUkYMc02BKjmgwe+Q6kuBqkAMV1hTearqnga3FUQHxiGsht +N0xUskwHIjx/vT78SgfBtxcXxXJugLxb1muRxE3ge9Annvn7TWB13W+QpTQD +2PzmEuq2zARUP+xYHPmywGo3zD83nwWWwyhFrrfcAj+Ovq+LSc0GH9+WvLzh +lQN6JwNerZnkghLbC5M/1fNA8hbjsQXFfDCiXPZUWLUAxLh/oaI2KASPfUrT +Z12KQNRHBge+xGJgleFFxWBZAqoYKMdzf5UAChEksZZdCuSTK/dUiDLw7s3N +CwMrZUD4TpJkf0k5GP8TQB1ueRss6wc68vFVgO+CBSrf5ypAr7jlIZmWSmCd +9bFVNrUK6NcKjmOvO4Cz5tSLPJO74PLU7J0c9XvgvqxIQaJiNahGbb09KjXg +syoKK9OvBdTWtiahLnVAOH7fsDHhPqCYVQ3/YFEPSgLfKtv+qgfyrlaBTdkN +YLW36yAN0fj/3U5juLHSCPr2Y9NSSh6A4swny+ctm4AOZdjDYd5mEDq6vVo2 +1wwYM9u25ppbwFjYVtdcSivQZ3uytOzZBkwDKJ+rmDwEjnK1/xHqj0BWctiR +M4qPgc4u66CjyhNA8ff7L6zfDmgehPGxuzwFv8svqaondID5u+O/8y06Qai5 +5f0TvzqBs6Pa0+DsLvBS7T5fH34GdhKc3umtPAPl0Q4/NEueg4yu7wObFt2g +cz/wUCpvD1Ce0c0zm+sBNfU8X3KaX4D0If63WSm94Nue978cz5eAU56sa9W4 +D9y+VEHMq70C41uMNwcUXgNvv+bPB1TeAMrENd9Pem/BiOfuXK3zO7AoIio/ +Ef8efJgTDXKw6AdlDTU837f6QRvXH2qUPQD+HPA+k4QHwYlIjptMK4MgRua4 +Hm3JB+AeTvfwvsUQcFdxcFDjHQaL+LbaoblhsHMtulereQQsZ5mPq6aMgjeu +iFnNcwworwl05hiPgy9GbxhT1D4CXc+RQwEKn8DD2wVLFcoTQGhZZTVI7zOI +if9wX835C7jPYiPuGz8JjmXKbYpbTIHQ0K74B1tT4HXUVT3y7GnQQUGuoI1n +QEhcmUn/8gxQonvR0FM8C1xeHy51s/gKvr5VebzHMwemv21uPP86B67+WW/Y +a5oH+k/L5reSFwCV/vETGx6LYCfXsVPJ+BtIYhf6JKO2BN6ujidzKiyDgqS+ +HVXlFTDNvezOpvcdKOwzhEw6rQJZKzIh6vgfwLRx33fLfA1otub+urK1Bl6W +dOf13PoJ+EmOBofxOmDLpuFNX14HdpSabFHFG4AoI0sUttgEazmcrK08W+D8 +lGLZla9boFXIubCh6RdYv/BnsyJ5G3ysPw5LPHaAoNS7rhWjXeBeUHnvo+pv +sBTAwfiE+APUj0HaeaW/4CXb7FK97j9w8U2ZerDTHqgkO8iVH7cPXqOYtXZz +MthjI+uosEUGRzzH5xJukcPKu/mOA4gCMtSpzeguU0Cpo/VBCsWUcIhs4r8p +cypoWjbp7s1zALoeTdKX+HoAUv2cSnBoooYlsvZUJsk0MDUGG2p70EKdRovu +W0Z0MGDOPCRClR7K76cm2xAMUMR5kzNWiRFyDIm7a+sehEPL2ezMToegzJ9o +Zsm4w1DjbK93rDkTFP8vc4h6iwlmL7ZJ6dxihpd1bl/JQCzQoM/m7uFlFnjO +dOfTvyJWyPC19FK+ORusm8/tOcnDDqdL+snnZtmhvr1tEEfTEZgS9pGNOpkD +urz2df/tzgnduRheKhhxweoVoC2iyg0zYxQOURI8sNZg/dQJJV44YfRy5ZsO +H1w1W/561/Eo7FJzYeiJ5YdiGT0/dMwF4NJqi8rbTQEodcj+GsstQRgjHJ5q +jISg5byB7/slIahWLaT4uOgYzNUw0DQxPw557NUFpriF4awDy4O8WWG4HjDn ++OrBCch/9PKJlqST0P/a0+gqdxGYZTf5ZslQFL6qvSjwXuUU1DsgfqMSi0H1 +GVn8QlEcmt5s9o7VOQ03DxU2KzmegcyTLdQWsRJww/S6D4e5JCT6C5ozNiXh +1qfR1yNZUlBTXPw2B5KGnBQCpLQlaXiWQ6IquEgGdop9l2M2Pwtl2RZDcrhl +oY6TnqPerCz0FvYxDnsgB5+ybss7JZ2DjvnHi43c5WFLwuhgpuF5qC6cvBmg +QoKdV/XZNTGAJUwdBk6KEDLFb24I6SCoSFcb98kBQ+oOH8ofMQT8E779c9JM +Ac6wqZ202FSAMroc3PlZivCxTfWjcagEg7h6KXWXlGBcDt8huSJleDbR7/gb +MxV481fImB63KrQuS+SknlWFOl5kapIP1GCORcHFI0nqkOno7Ufk7hrQPmlj +HBtegF91fvfxqmjCzqn6vO9IC576mOJCrXgRJknFXOnQ1oZLSjyW/g468MN0 +Fnl0jC6UpRPzv2OmB9kfNeYKbOpBZkdBV5ssfejQ/ncgHxpArlMa7w4tGcBE +sdWAjUJDWG07wxJnZgQTaSjl6LiNYSJ715vHM8Zw/uKtc7ONJjD6h97lF4mm +0IESjda5mcEIe5mZRQNzaHMiu+S5sgWcltEUvIEsoRGpLLxSwQrSJzqTWWlb +w7HWBYmDDpdghdIJcq4YG5i0xr3tY2YLudpnGBc2bKEMz6+2Y1mXoZ6SwJI1 +tINukuW5777ZwZdvS77UF9rDWzWQQsnMAQoqh2V2cTlC9ScbEb4zjtD8qdSp +W41OsPEdW1BgojPsVvuxaenmAn8fzF6+aeAKPe7YBbspu8HH3nx3zyJ3mCT+ +N1tNwQPmpeTH71z0hLz2LNSV9l7QbkKQoi7aG67K9F49b+YD3/GMXK/d8IFP +vbLoFjN9YcoyO6UA9IP0p8YcU7/5QZZQWQ2vwv8gn1vE+l9Tf1hfubRxhSsA +DmUIyZ+cCYA2Twf5LjQGQv3NhZQTiUGQd+4RK51bMCyKO/oLGlyBrP1W+szK +V+FC2inpMRgCidr8hnkiFIafE2TJuhgG3xP5n7H9Nfj6XjyVcnQ4fNgvsU9u +dh3uDyZv/bdxHU5Y7VvUZEbAipbPvDMgEn5jXZDW+RYJoUxNo1hhFGy4VT/b +ahoN353RMpLmioFMOdo/JqZjIJ/mFZa/DbHQ0/pVxUhCHAz9WCzT4hoPy1/3 +kS/oJ0DavBixNqVE+Cvd90kITIJ8rdffxBLJEEbtFEhdTPm/P7Jl1C4V9tyx +oB2LSoMa3UbRr0zTYeIUtTtpIx0az8rU+mTegBUlQedug5twZ+k92aFvN2HZ +GtXRbwUZkFri1bCfaSY8NFbUvMSZBcEL/6qb01lwwVqY9n7DLXjzwJOnsQnZ +cFWoyMjeNQd+HMk5dEM/FzJSfKa2UcqDvZ7r6vwwH2arVS+eIAqguYeg6Dut +QnghtDfdx64IRgxkH/SMKoZJjHL0GaYlsEFRZZpsowSO7UmTyWaWwueVswZO +oAwO19x8/3axDHI0EImVBeVwWOLdy9Omt2Fe8RxHOWcF7OPOsdWYroAsv0b2 +LjdUwtffnozJJVTBy4+bA5lc70CxiiReoH8XTlDazx5QugcXhGqHnoFqyG3K +Q92LayDnan6Lm1YtDB9086Czq4OnBRTYKKLuQ6/KD+mWpvWwdUPFrHe9HkrU +/jXczWiA514IeouARrhmLFGcstgI832ttu0LHsDkW0+eLJo0QZpI/hBLzmYo +cbOVe2+qGXYdTv3F1tACNanfbszHt0L54vncdpc2eE26TGxO7yFcy+foqlF8 +BDerS+2cwGPI9rX/uDN+AqOpXFRptNrhmLrHhbLLT2FjmiFvdmQHnE47zXnc +tBMGb9L2p6x3wojl9DvtGV3w0F+p5CXSMzg/W+GtvfgMSkpYOgoWPIeGNlkN +5SbdkDf04iQrZw+8L/ph+MFUD6yp1PzRW/8CEqYrh7Pje6Hda8mnbi4vYXnI +BEjT64P0L34XGyq+ghFU/T/pwGu48+21Cg1+A2fuxQyXa76FzqOvT4LL7+Bb +nkFh8cj3kHihXLJi0g+fK6RrGK33w+2WH/8iMgbggCrbvRrSILxr+Evh4OL/ +eR4Mfcn/AAvjzKoumQzBskQPlTccw/DE56UbrlPDcKeV8dvV+hHYNM59Wj1+ +FK6AzFkOlzE4EELSPq83Do9dY7z+W+EjPC4qH1lL+gT97BmdqtAEDJjYdFLQ +/AzNwxJohmy/QKeOx5JdEZNwTu2IaLPJFAwY+djFvT4FLQ9yGallTMPUkpcv +vUgz8FSZAOvbhRlol7WnXJA/CwUYqYu4TL5C8Xvh96I55uDg3T0d/qk5+JsY +mj1dPw/lE8y0tuMW4MwKE32P8yIcl3hiM6v7DYLOi5dLFZZgK9tHVn3SMvx5 +8Wa8OlqBSVnNuxMXvsNNmYpFD9tV6BjAhEwifsDnhysaw0zW4EDjIpj+uQYt +lhmr6TN+QgM63UVJ0jqkeXt8PnlhHZ6RL28yz9+Aad8Ks4aMN+HX0RhmxLEF +xZIPHRye3ILUoHRy6v4vOGxX4VYVtw1lPlVK+TnvwLycwmorlV24W+Zgs039 +Gw43Uc97vP8NsyJ0TZcK/0DGNdMTRX5/4aX9HbE27X/QmD+twVViD0b6M4XO +cexDTfxk+T4lGZIdUtWnCSdDS31Xa9n2yNCk+kzm5nVytFclFNxNQ4EOD5bc +K7tJgUCOgWudICX6UNgzTdNMiW5esjrff5EK4c1nmaLfqNDJC4X85xIPoB1/ +HzY+SWr0k7Kvm+wTNZKjKSmlTaJBp16RqVgp0KIswZ8Bx//QomTTIpD0mA4l +dvZPPI6gR+M8d1ZntBnQqfUy6zMCjOihxEbQ2x1GdE1HaGdt9CCqukLD9Lr9 +EEIcLP5p9w6j7sqAB+d1mVBBatvMyBsmdPlLbALQYUaMlOeeR39gRsvzF5P6 +rVjQfJx8N1piQTlRGnglhBXBY4NP/zKzocmYdJobNWyIPgN+ea3Fjj4527AN +/GBHNykup/XkHEG2e0N679U40Op5mnD23xyo2OSVZ2cjJ6o9mFi168OFmi+X +/1o+y43cX1J5P9/jRvlXOYNr3/EgCt4/I2O3eREDK/nDgAg+9PJr8tNmh6No +mvY89RsdfmTyWazgF78A8q9x7DtZIIBOkBVeZecVRBdvvA+cKBb8f59Fdnkn +hRCo+PPC84EQ+uBLyRmofAwN97I9+TB6DKVFcbLe8TmOzKcor7EfEkZPSZlO +RL0winJQU9c0PYFK9JMeWFKeRHY7wDav6SRy0dYRP+Mugk5qvxVVOCmKgrmO +VP1eFEW1hJV8Qv0pxHMxqIvzmhhiHf8TPqovjg67l7FviZ1GEXZ7N8sYz6Dw +4LhIls0zyAztbATPSCAWZoruAx6S6M9nmafXlyQR2jo10echhYytyjz21qXQ +KedDJTBMGk2TnNPKGWSQRt5JZcMiGbRyK+KRh+xZ5NTxap154CwKDhb84egr ++/8noN2ZfEQOXb32Kbm6Uw75HA7JXfQ+h3Q+Zeu7H5dHJdvyelZf5NGbXSHX +ucLzqK9aoVHKnoRapY1SPM8A5DC53vBiH6Dq2bfnPEYhyj6nWZrajNAvXrd5 +mzyMgirpr7PGEujy8uPz3lABPdoSvx/yUAHVKoYrapEU0a7U9aXfTxURs7VI +1B11JVRjY/DKb0gJ6TlWuF9xVEar203Un38ro427pnIdmSrokKZcjpKMKjqs +nTWUOKKK5iUtKp9cU0PX7+jM/hNTRy4u5dEBX9RRUUTTfa1bGmhUgbnjruEF +xFHUp/XoiCaS1KE8d3dSE0VUjj0or9NCKdej9MeiLiJr35EDQTbaKL6aWr5B +UQetbrx8/fCULpLmtrtld1APPeQ+U0uVoIcospZ3L9HqoxpHH6HUJH3Evyh3 +9z6LAbIxIt+cLjRA91G9gcppQ+T/RJt6u9MQSQ/paPCYGyHLTkaDD1tGqOd1 +kINStjFaCzzQn4xMUGrjp7+jiyYojgz8p5lrithdRb8y6JqhW6dtpVXpzZGF +8rUQgdfm6GZJhGDfDQuUGJMw5H7JEul/my2Qk7JChWYuc2b01ujTDaFYyiVr +tKGu+96l/xIajK/NfNJugxRvZ/Bym9sioUlXa8pRW0TBV23TYnYZvRHS0dP7 +chmVru/BH852qCZkmrtxyw55msa/bYuzR2XigmeOH3VAv/THWI48dEA6JgEm +DWaO6Ptp6Smuf46Is/1dtX+lE2rJmxlYMHJGDHNe6Xm0LujikUbD5i4XtDtC +dFy+7op+jV1qfaXihpqH69x4D7ujnxOcVtGT7ohaitFTqsUDDW7TLRpmeCLX +U5FJfEFeKEmMKqvrsje6+sLO6ZGoD1p41/lSrtIHxZ+1WPc94Yt4NnIfx9/z +Rde52T/lSPuhja/nVzqf+qE6delAAd3/kEzKn/XR2f/QTGLTCG2YP+LjP549 +zB2A3MquPLjcHoDmGC88GXAIREwF3ZZazEHI9YPspa1nQcjsUeuj7SvBaNvk +bEGI3BWUbF/lVr1zBQ2Y3Blq7LyKhBbR+NPUECQJ/w38swtFAQxBYcUoDI2y +bdENH72GrqknCgxQhyNqweC13q1wVLkUULgdcB2BlUSJjs3r6OAFXRnToAiU +HYroPv+LQKGULJte8ZGodzuXX5wjCjEfbak6ey8Kxf/IKL6rGI3cLxzlqv0c +jUqcq8TtrsUgofm3ZN+PxaIDGUWDfu9iUfXnzX9c1+LQ2Xc81PQy8YjSt6HI +/Xs8Cmh51+RSm4A6RgOCxf9LRMjmgtMsTkLuFKn6j5mSUeiNK16zi8ko7sKA +VXJvCvq2Oi69WJOKjokUxJ/KTUPN7zoUVdTSUX07v2/B83TEHVtI9UjlBvLN +uEnzqO8GeneX3vGRwU10rO/a6vjkTdS/8NxO3jcDqR6WCPhFnYm0QteGZEsz +kYZd1VkuhSy0dEjSoHs2C2WK1O1ZJt9CoeNDJ6hJ2ail2+vTt5VsdLbhpIVE +RQ46N5l7hMw+F/Vzlz6PPZGH2Au2rH78yENG00xSzh356E7npWXerAJ0dv1J +kYJvIWIP1eqnNCpCVPbpkbmoGF3LChbg4ShB7ebP2GkzSpAJc0nEfZZSlN+r +wHPmVinqv/0vsJSvDA3rkR8UuVuGzmYJKUzLl6OnrzYcvr8pR6qVtH2ejrdR +Da3/o2iKCuQXFZ5mfLsCfdQsqqPSqkTttoW3Wn9VooVBloXMqio0snTQtdv6 +DiK/SM/pzXUXke+fFOv4eBclh947OlV6Dx343Nm+51WNeG1yxS8o1SCL+Gfr +qzy1SPb8xAHBv7UohyN/iHm2DvG+ETDY6r+PDgwMXyezr0cHWPXI5abrkWV7 +UOo5+wYkmLvqJPStAUl0Ztxj+68RvXTQvHya/AH627sZkZzxAOlu3N41ONWE +qIaoHpT1NCFR++3CIsdmtJrs3+pG34L+lpcyize1oPdiIhO09q1oZOKNhwhH +G7o6pKHxoL8NnZp3EvuQ9hC9OObM9sDoEYpsuncxnP8xenvynp/j2mO0GSEf +ndn7BK0Ys3+DFe3ouVJ/WHrCU5RjRFb8zL8DWc+4cEfLdCIFy8BJrfpOZP7e +sn5IsgupMP4NBM1dqDVk6U8heoYOaxz9zv3qGXLiHP86YPEcdW8885n98Rzd +WoBcvgndSJVpxaXwZA/aaL+2mfSqB/n41Npd9nuB7gVd8Vfm70VerNUHzQd6 +ke5+OnoV/xL9NKfU6FTtQyq71XWOtK/Q+/O3SPP9r9CgHy21d/FrVKZxN/aM +/xskJ7iRbaT7FpUe2YlhkXqH6EeCOfO53iNzPxHdG1T9yMqnMPRHeD+ibNge +otzvRwx5eqtLEQP/36kV0jPaQfRKcuLwnYxBdOzgm+rHQh/Q7tYhzNfyAaGF +8e/ftYfQhaiH07pLQ8j4gYK6U9IwovddtzCWGkFXI118lCZGUM1+22/D5FH0 +PoI3q0FxDN34McIQ/XcMoWUHx60n48ht6ceyZNRHlCbEcM5e9xOK9Hss+0hw +AgmlvpF3/D2BsjsC/mWOf0Y0t/XaQjq+oNNGtwW0ayaRYy8l5tebQjrwjPHz +t1NoxJCNS0J3GvUJVVaGD02juOSDfwatZ9BF4PlbfXnm//pD4F7oLHpJbn+O +g/UrSh1s2H9Q+xU1atplb1+cQzfLtwYO/JxDxcc+3aLMm0cC2u3fjmgsIPF/ +hzac/iygBuePtLxNiyh85UOrjd+3///JxjdWcksocXDAmiBbRhNK3MNn+5dR +1T/Sb/fKFVQXeOYfW9R3xFrBHHHZaRWtB+pURev9QEmCqSnjAmuoyrkmlblw +De1qXdKg5vuJpJLkooZKfiKrlaC5XJF1lF/TuevftI5G1b/JxqhsIGMxTorl +sQ3ktczQ2eu7iQ4XFg6iw1tonSqswqdhC9VYijRHm/1CdF6C2cVU22h28zLF +YvM2qqNnHovx2EESD0LEy0R2UVWIgZ7z0i4y0TjzkazxN7roeak+P/wPctKn +YHUy/IuYx3wq007/Q5orP8IuHNpD/HlPT7zY2kPsIv4Pzn/dR6GOn2ZXPMjw +vPqJQa9lMvwot5urw5McT40fZPizQY59FPjHFK5R4B8Flfn3GSmxXMK0jXMx +JU4NGxROkKPC951rV+QGqbCjT9jDDL8D+PDdA8XPOaixx+UvPctd1DiDfMBf +2pcGf1X05+oQpsUxD+j1H03S4rv5FT+1i+mwwMlU1goHevyOb5t7RYIB1+Pd +Lj1yRrwVNSFEMc6Iq4vrn0m2HsQNHOcKDhUcwttugmLv4w7ja0uDjw0RE14o +kmN2fsSEP8V5tSHAjA1HJ2s2O5jxrXMn++5qsGC2v+/fhgyz4HVGwiXRiRXf +4Pxw/tcfVpxTCSanstjw6RbaHY+z7Phphv+Zp6PsuLfOldgNP4L/yL+gUDnN +gc/L5pOCX3Pgjwq8DjbHOLFw575GUignFnCdzyEb5cT9RZ1s3dJcOMHhUNrH +NC6ciwVWNFa5sDuZuRCbDjduTvMhKd7nxk5FrbrDzDy4wMoqfTiAB4eeqkfq +n3hwtpZXjYQSL5YvpFTNvMeL+c1Go66y8eHHnzN3F8L5MOetQK2ZFT5cMHtD +xtvyKO4UPx6R+foofkw1zWmG+PG+v+JWRz0/Tj7rxvqNRQAzHtNw09QRwC9G +WY7GJQrgnnZR87JeAdz+o1C/+IAgHnK3vhChIogL5i6lakULYh3w7ip5jyC+ +knY+oJJaCA9Td6yhC0JYTAZ4vk4WwkXCwUEGA0JYXcr67siRY/jkJf57ltbH +cGSK35m528ewgfHjncDvx/DPDMVxtnPH8foT+7pnEcex1Nwrh+i3xzFrWvG2 +NbcwhvIdPoYuwvhh3fqiS6sw/nlGOL6M5gT20iqIoTI/gQUrJEUyqk9gef+4 +Fwb7J7Dv3MVedaOT+Lied2ngvZN4VcVyYpZcBNOHyjNlWojgudsn55OaRDAF +ZwRn/2FR7O7H9p+jhyj243X9oPdKFOs93hfJFj2FTfIyA1DiKVxEaf9WY+UU +ZshyNX2qK4ZjbtzXLm8Sw8ySSf/+covjibXF3v5IcfxuN0Pw+Io4Fg8Nz/hr +chrnizE/tnl+Ghu+9NA0lDqDN9o7aT+XnMHdkxmDFCwSGKmw5b2KlsB6is7O +pF0JbHwhTLzmnCRmM1nWz/pPEv/i2e2zrJfEoi7KLyhWJfHDAJnoFHEpjKJP +ae+7S+Ggw3WBljVSePhOpl3FdynMHCwTPiUhjX/aJ6sz/SeNWb+GKsu3SuOj +Ed9prP5K4xgqinPhSjK43kzzekWCDLY/+dkOD8vg7F7w/XLgWRwX0Xa/jFcW +e1MFnDv1UhY3B4jZH7sihxtN5jwfSZzDDIF0v3lXzuGyxue8V+vk8ReXPleK +oPPYPyRsf0GVhCX2AzMu8QCcUucZnr8N8KBl2rvhjxD7tClqqfUgHPPVMOVk +K8ZPtMtpW+oJzN3Dc4jTXAEbXF1hWv6sgKe2WYgtJ0W84Zo1ZrapiGfNOmXO +xyrhO5l/eh7xKmP0dV6csk0ZP3vcee68mQqONeb6Gf1PBYfnDt05fEcVtxqG +7VGaqeFQnZXllIPquGpHtf/jS3UcYqEfwpWogbVExc5f1b+Aa1dMv5zh18RH +z8oPuW1oYvl/08L277SwS7hdik79Rfyi1j3CMVcbF475KM8k6OCuXdlVskhd +LHbb7dm+gh4u8eInP9yjhx0E8s/qautjn3UXt5lxfUxp3Nm97GaAGcYuRqWR +GeIwd8S4kWeIlUmFW5BkhBOCdw5lfTHCEwm67sfjjfExckt39nMm2JP62MuM +ZROs/Xql8E2FKa7uvR606miGH6W/MRcVN8dB0rPv63bMsTC9zXbDaws8jkRS +nCss8fm/Zb8PxFrhfyMa9j2e1vhfdn3jpNUlfOkIbXW6oQ2+OET+m17UFncE +HcsyrbHFcq4V2+9kLmMW45m/NzsuY2x6IeOFrh1e+cnZk/LVDgdu2nYdvGaP +b6Vpz3nwOuCl5faewQ4HbFUlct7FxRFXNvZfNj3ihD9za7e97vs/2zsdWY90 +xpnCF5/tKLpg7w7hq4dpXHEcGfl150FXrP9csFLmthtWSmu2vBPqjq97rj78 +Y+mBi2TjbzgqeeLzrY+D+SW9sIZ8+biDsDcO/Zlw/TyzD97/vn2rO8MHH3a5 +qufP7YsNgmNM3Cp8sZE8o0PfWT/M/emMTvNLP+ypLXHQ8PJ/OC27rufl3n9Y +3kB2EJX64/pUurcfNQLw6XtGeX1bAVj6Zr6f7J1A7Mid/F3TNgirHBE6KH80 +GKfvnbggPhOMnQ4czjeruYKZkuUSf4Rexe4MUfLCRiFYLNfNW0I6FIuoO9aq +coRh5SevZUopr2G5sBPsYdvXsEfQT+UjG+FYu2u53zjkOuYfaKIhyCNw0N9T +2CUpAjcC5r8bXJHYuL11+kBtJL6nP1v/TCUKn5P4Z6w3HYXbzVN+DkdGY4qD +FDMhojE4PffFW/fhGJwNamr7Y2MxY0zV6AiKwzJ0c3Q1v+PwK2b5wPD2eHxF +Zv5tRGwCvt8+qD1nnIh9yQ++/iyWhKcqujtKaJMxhVyVmeNKMu7RuBfpMJqC +vzSq7o71pWIbbUHj/edpmERVeJDBPh2L7CnMn1lMx1xP968m+97AIymtAmr7 +N3CMp5xy+I2b2NSWzctKJAN7Vw4bU3Zn4C5x0+k8h0xMJMXJaNFn4Rs03s2o +OQvPHkoQKHS8hR+9903I4snGV9OW3IxGs/FW9LkG2twcHMD4sWfGNhcfPX4v +n00iD585Z/B4gDIf+xtK6ulO5uMvDCWy3V0FmEGtnsq1uhAfuKIhFFxQhHMH +Ot+ezirGmYE7HF81S7BbgFWz8vsS/NwiemjEtBQHdTdld3wtxXMLsXKCgWVY +a6iZWoCxHJ+RlYmZrizHiV9ibJLVbmOLYP8wjeXb2K5pj57IqsBpyVWReSqV +uIWLtS12txIXNv6ekWyqwnX7V+71+t/B9UutkiHgLn6pvHo0jPYeDjzxoYFs +4h4elHV+QWqpxp2zYguXs2vwb6Ye87rwWuzgRnfawrsOi7LGqJc63cdMrOcf +T0nX4/L/snBYSz2ubE5mUccN2O0S20nbVw1YuVF0/G1TI1ayCaWZZWjCMo84 +4pJDmvHNPvvjKQdascn23e3e6jbsbuLWrOTzCHflC4iKGD/Bt1ijPr+yeoo7 +R5/+/qDSiduDHvDKenfh5xpH6n7VPcMB8uhpyYFurDnE+t+ofw8esFVitN57 +gU/xIwa22y/xyaKpSHKXV/hPtM8N3Ytv8NpxClo9w3c4+NeF0g6iH4+dPZn3 +3HUAj/UNGwveHcSBvUqutvsfsOgHsaDjXsNY365CWmJ7BC+Wh8XaFYzhQm6B +r89sPmK2gHdPrihP4JY9OZGxC1/wvM3Q5xrSFH7pU//K0GEaS/iPvNcun8He +H9dohHZncb1R283/nOfwbc/xW5Rr81hFq9rlQeYiXn9tMRZruoQZ7lnfqySt +4PJDssheYRVL60/ez5ddw+cNe2vnLv3EVU2xPKGF69jIpzp3bn0Do1MsPd22 +W9jUQkz+4+IvHHGEuoE6ZQezbDy7pK37Gw9UKpqPSP3FdfRMaj/l9jCHxMqR +ZEkyQlziq9IVc3KCdMJYviabgnjbNsJXvUJJxFjcPMhpcYAwll9kfzBNTWRw +DvgtRNISVcMZ3YOK9MTLOzQjNwUYCY+WXFoPwUOEntdPOqdjTIQ6Y21I5QVm +YjLnI9NENAtxW35uMXqElVj5HmNBUmAn0tL3ZxufHyFoahtxtx0ncfhJSo4j +PzdBUDL+avjDQzTlVHYs7fIRfhMLGB0SICRDHWb/SAsSgXVrkpkeQoRd8qZ+ +5JNjRBBNULT1cWGiAL2n+VhxgvC1Cz/9WkmEMLB8lCb8T5Q4MarkQz4qRlRl +RSkVDp4mpDc37W3XJQgL8kOU3rxShNvD4RMeRtIETZb6cGmZDHFMMFiuglaW +CE3p1haJlyPivi7vxhyWJ9Y/t/r7NpwnSBmqO63egDgdtUGndhERkvlruaIX +CGJUbeSYZpMCkUo7PO81okjwx93XUmZUJo4U7ynymaoQxrnZK65tqgSPbczZ ++1LqRNlx86CUbg0iyrDWoMtPk/A5MJIqjC8SO84Tp5pFdAiOR5Qv1Lj1iPfN +ta47UvrEi+6B07etDAgRBvuGjHxDwsD27tqJNSMihLu1b9jShHghRcqXmjIl +9mL99uevmRPBonIVHectCYmKgxdus1gT4YNZ/UUMNkSTNFL1yrAl3AKeaZo9 +uEw0Xn8g/3rejugxoL/ELeFA/NO0OFyf4khs1tXLHaZyJs6M3tobynAhqPHB +vEfYjbBoDBTLpvYg9mhT3lz+7klYihU+lNnyJoYKz+kLM/kSE/lNN2Lk/Yh0 ++w9N5AH/ESLngim2X/gTKd6mAR8lAonw0lsmpIYgIj3Zcqvj4hUibfF0qBRV +CBHILT3/33gosfrP8UjKu2vEFCmb7oPfdUJexaQpNj2C4HiPPhZ0RRKYY+iM +E000weD/A2naxxD6qtE7L0diCdqTNlah9vGE/8FieW6GRCKsYoYp8H0S8Use +C0Y1phCtCTIxJi1pBOPwgWeZq+mEwpFUijq2m0R2hEn2Y50Mwvq5FBdnUSYh +U3i8QpbqFuFt9tm/ODKbiKOdufmHO5e4RW9aw/g+j5h7ZkPRVFJAiMThsI0b +RQTD+tOfQQYlhNbNV/m7nqXEgpJBcWtBGdHimcBFNlVOqLpQfjh3voLI/uDf +9+luJTGsKT4UKXOHkPBhcZwcvUsIjwm4dOVUE+/+2ipzBtcS6hp3djeD7hMX +L8qdV3tbT6T35m3y/mwgVK1qn3eKPCDKqwKzEgKaCCHmH3XzY83E7UcGCrZG +rcRozxZ77rc24uqtQCe9vEdEvdjFTnuXJ8SFCwOcA8ZPiYfUCeFW0p1ES7rD +1XqtLuLqF+Yd7uBnRK9dfPRC23OiqyHuVPDhHuKKgcFvtbAXRJzB8r0FypeE +Pke5KV1FH2F6fNIy2O410fhNVFcAvyU89B8fO0R6T/wPzbmR/w== + "], { + Developer`PackedArrayForm, CompressedData[" +1:eJwd2FMMIEgWAMAd27Zt27Zt27Zt27Zt2/bsjm3raq6TSjrv/zFBw3YV2wb4 +559/7gb55//v7z8ggQjM33BQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjE +JBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQk +F7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQW +talDXepRnwY0pBGNaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe9 +6UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZ +w1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nD +XvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd +7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5 +w9/kD0BAAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQl +HvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf ++SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71 +aUBDGtGYJjSlGc1pQUta0Zo2/C3g7WhPBzrSic50oSvd6E4PetKL3vShL/3o +zwAGMojBDGEowxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jP +AhayiMUsYSnLWM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8B +DnKIwxzhKMc4zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4z7/8 +xwMe8ojHPOEpz3jOC17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OFv4w9A +QAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBC +EpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEK +UZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrR +mCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGY +IQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZgl +LGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc +5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73+Zf/eMBDHvGY +JzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/wd+gMQkEAEJghB +CUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xiUd8EpCQRCQmCUlJ +RnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlG +cUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZz +WtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBG +MJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclaw +klWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCS +U5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53ucd9/uU/HvCQRzzmCU95xnNe +8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD38X/gAEJBCBCUJQghGcEIQk +FKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQV +qUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSl +KUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGNaUJTmtGcFrSkFa1p +Q1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnD +WMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa +1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nO +cZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nD +W97xng985BOf+cJXvvGdH/zkF7/5w99jXwACEojABCEowQhOCEISitCEISzh +CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI +TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP +BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H +OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm +MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay +ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ +y1zhKte4zg1ucovb3OF/AVHuXg== + "], CompressedData[" +1:eJwNl1c8EHwYhe0VQkaUvWUkZP2HFWVEpCiJZKTM7MyQmU3K3ntTychMVmZE +ZCZFlB3J9109v3PxXpyr87zcdxz0LQkJCAimSQkIpJJOX58tcwY3jrqrVdgf +Am/NdgijHwJ58TjHGWIXQHySkEv+kQtoV1f2u7HtAprq2HmuOrsCUT7Fo/Mb +rqAmxNKZ0dUNvJRfQf/23YCjJFkcWZA7eJpuQKpE5wHoFG5kNWV4AP48ztm4 +c55gXKK/YuS9J+C2uOuacMcLEJUFHv9x5AX+PVWc+J75CJws2SotuuANXglZ +f8Nr3iChLse2/YUPEKgQz9LS8gX+vWIBv458Aderwuie136gI2LN6Y+CP1CR +MkhsTfEHzLSHoz3//EGIHsjmuRsAqNrCmsd6A0Bq/V24LfMYmALwJDL7MXjp +b3GthD4QcLIxtJsFBoJ/DI6KjbuBoFixPLzfPgj47IpM5i4HAcfhnBp9y2Bw +/4wL8fJiMJBRnmNzs34Czm88rKb9+QSc8jdbbXcNAeUlf68VEoaCGB+19Q8x +ocCA0Z5XizcMPB6M/Hi2PgzQKKqZJuiHAzviiOjw9XAQ6+r7SigmAnzpVs8J +ko4EqTXU2bVTkeBNAkHoQOhTwNXysGpVLgqInSch4/sZBTIvfT54mhcNxj74 +9XNLxgAFj1tKFbExgJcx3Ml7Kwb8o5HoSTKOBYbddsTUrbFAyRsI/RCJA978 +l5/hZ3GAYJaU9BRZPLD45OoT4R4PyoRsrTJX4oHnvF/AvTsJgDj64trO5wTg +4eglamyUCJ4NiHFkjScCq1xBqlnjJNC4LJkuOJMEvi0F/A6zfgZox0VDWDef +AXvuEr3vAclgP8W2kprxObjA7uj9rOg5+P2WgjBd5QUQkI4glpl5AeZ8hTud +/FIAbdgIqS1vKiicFyGX7k0Fnlyh0UtuacARMvxMFkgHB7bLe3cm04F2synb +rbgMEMQkyK8nmAnUOMGxnJBMkBDqpy/9IxM4bO7dpNfNAkXe7p80XmaBJ652 +PV85s0GF5HjIn4hsYCIq1hi7nw3iusxtm+7ngOsrP9YiZnIAae84Ic21XDDE +uvlabyAXkO79X0crDzh+rdC+05MHGMg8oL52PtilMDm6OJQPzhI9TzcyLgCX +Iqji4xcLwH2/0jbqh4VgruhM0DhJEXjVEpxF/qIIaJHV36g6VwxOrgfafP9Q +DOzPyBx12JeAPrfIIWOGUrAUU3qiub4UuLzj8KWwLAPlzst6eozloG+x+lpZ +Vzn4zky2LOtXAbQNtNyD2CvBdovBVqpPJTCawW4bM5WAMHzfME6tCji8JgXh +JVWAn8WQZ5mxGqSUS117418NLkxKex1frwbEI2dDd27XgGV6nRHfkRpwYpiO +6vWlWrD3J1iuuq0W/Kmz6vFBdWDluNHTM011gGxIsqYPvQSFhwajzu0vwawi +1YaE1itQ437owTz2ClCw1arK330NjIW500q2X4OFUhXVgPB6oF02cO8Dzxsw +L7HTWND8BqxFCN/lMW0Azo8ISa8SNoIDTZF3+oWNoCvKSl/GoAl0d2Z/ZiBq +BtaGpziI65oBl1aiBceDt0BaxLC9+UQLeCTBeJD6sAX4lqhMvfzYArKbal6x +KrSCfrMssZHMVlC8GCzxm7INmNkTED12bQMGbR0oYaENXHqRNHb+ajto6NM7 +4dnVDkgi957bwg5wh3T6wamXHcCzqP1nimQnILTlnv1b0Qm+y5vf15V8BzY5 +5Njz6t6BJH7y1eOwC5CHa8lnd3UB1fvso/aG70GGadNB6NJ7kAYk75A86gav +An6JbzP0AOPMTELH8h7wLntuK0ynF0DfM1lGv3rBkVcj50ZSH9hifk5jp9wP +jHrTombX+8EGZ47e3ewPgMyzNorOeADUk4tRHVEOgjWVR1w59wZBoUZqcEDv +IEiK1ntcIDEEjC5Hl/MkDYHfvaabBEdDYPLtq0g922GA1h4e4/o0DEo1L173 +vTgC5hZ7Kr0aRgD1UlANn+Qo0FyiM4osGgWMixd2Wvk+gmPCDhpj2R+B8L1Y +m0neMXDiftPUTMEYuBHuGL0nPg6crYjHz9ePg2IGQfcy9U+ghN0px2H8E2Ds +3iGMvT8B0np3y/iJJ8Gr/WQFlfRJgBQq6g7AZ6B3IqXYeuYzCDeU4U8NngLP +hfprKySmwei2rEP99DSgTNjcHIz+AkR5bzrQqs8A3sDdyxcIZoGh7Cfrituz +QMrtvat+6yxohY/qFfnngLZacZtHxBwIkv7pxLI1B6YXUvb5b88Dio6Gxeq+ +eaAwskfbDxYAmW5xZWDFAqh2XLi5xLcIyL1ijkjSFsEHk8zv6yxfga2GYver +xK+A7S5ZlR3zEiBidWXlfbEE6NiEFr5zfQMh6TeMR4u/AfHjptLbssug5TFf +6u33yyDBfFJE0OQ7YAyPXr+9+R3cNfjlyBH1A/T00la6i66A2gRwJuDDCvBo +3p7Vc1kFVFTT+ofsP0HEbndoWu9P8I76+4lLPmvgxts1+pNS60DK+dZZ3p/r +gNt7fbzV8BegppioEX71CygLJd0dY/sNfPwKnT76/wYT+ahG+vtvMIuZrhJd +3QBpihYj2q0boCd5iIxXchOc++J7OiFnEwQm0aZVnNwC60yddsExW+D0cMUw +/7FtQJ886ZgVug2kV2P1KCl3gPtC9Yx95A6w66TYWmDYBdw9r/u9UncBh0Yj +q7rwHnDLvrdlVL8HOC2oV99p/wGx9ZHEuQt/AOWUQB2J7z5oTDy3fXjqALy3 +OZDOazoA5PlFlnQWf8HFWXBgSH0InnAnr0fWHwIWnczOPtt/QJDNLlKM6wjc +Z3463zVxBOpiyr0ntQjgxA95bfIyAthbHBPjTkcImQ8Iu+XcCOE6t3Gn0RdC +GOHYVPD1IhEkMktb+llHBBk48y778xPDi6MtJKXPiCHTZ5FQf2oSGKnypJYm +iARGjJN2WPwjgZYkmVfiH5FCyxHdm2UHpDDP3EKt3ZcMCpz4NL5EQg79Jjo0 +RaLIYdHcMMpko4BG/zo6bhZTwF4B2tuOkBIG3XUn2RihhBQRH3m27ajg+MmB +rKhjx+C3zOqvI6XHoAmX6fDkFWoolyv7oX6fGj4okO0MKaCB47GkoiZGtPBm +pwCxLs1xmJ+vNOnx7jjcpXx1748yHTxvetVgJZsOstrk6HOS0cOLLe++ZN+n +h0LWom8DR+j/v39AMwgZYFS6lGxSMQN86CxL8JX1BFQNlgvqjTgB6Wdp5Y0J +GCHf9fZfae6MMEe97nPRb0bIw9Ef/tSeCQqSNf42XmOCMWsX73E5McMQw5Kq +jR1muHRya2vejwX25wV1E1OfhO8+J0jbpJyEhH+7SnnFWeH+38HTmh2scC9D +YGn9Fhucze1aED5gg84+x+1oUk/B5bkUo0ql03CoRPVI6PtpWHGLE0clssO5 +1hzf3QsckPjYQIX3PgckWLIxOF/DCVN2RJo55Lhgqoff94/JXDBU3aqv/4AL +prz9/PGEOTe8wL3bUfeeG9ZJvS9uPccDpZiVVi9k8MBJe361K7S8MFqJsXPD +jxcalYV9lt/ihfMrB7rn7/NB0vp/F/cW+eBItItOjDk//LfZp358jh9asusF +PrEQgIoGHq/JvwvA1UvGpHlOgvDwI9O246EgFNS8G+AbKQS/jHMzzXEIw3mt +7ajSWmHI+JhQbVtHBJ5fLyAa/CECSTNuMulHnIHBVMEXYiVEoa2w+5eccVFo +IuBWmRkoBic4Bk9kSInDRzcoVl9+E4dXrJlKCDIlYIS6cbGm+FloGTSv1BX1 +Pzt+SAb+PgtZzuouRlyThJLu47TrTZLQwIThzRvBczDrJlQ5jD8HL5TJGncS +ScGAb/4UPC5SUOaJag3PshQsT7t/ctxUGtYS9VzV/SQNB86qfU25KgPLFemL ++kdkIBUryeK24XnYGbegJPD5PLQ8NzjiaCELmb1en15e+59vP1Nm+MhB5383 +9wuPy8N/xDMtrHnysArjfFKkAIvytR8ETCrA7KM0vWwvRWj61/m4LweAisEF +SyLvAJxOeZ381gnCevzZwYAbQelmfuV/owhemO51+BSJoYaQrIcPnxI8voPy +3wYpQcPgiWH8TQlGDPSZHNNWhqSyzzckapRh5/bVhIbTKpAkMy6xMVQFBhzo +ZyjvqsAeB6JqYxtVeP/qY0HGKVU4bYHq/PXVoFnKZfuKXjUYNJzXWalxAZ42 +1IlJfHcBhn4oI3e4qA5DRr/2Xu5Xh8kW4kvqhhpwIkOn996sBmSXOGnaY38R +4iDCjUcEl2DEwwaduMRL8MGDr2Xc4prwa21vF+rRhErksn3/7mnBqA1tW3ca +bVh6J2C4uVYbrtQ9r1+5rQPL3rfeZDp+GZJb1PgZtF2G711+eTZ76sLIixTJ +r9j0YBsNfdRbLz1Y+OG4EMm0HuyeamyMU74CZTlubngUXoHM5nEtHfT6ULnx +qnOQjz7chQMF71b04bColdELEwN4lbNplHbQAAZK9r6XUr8KFzMOIOvbq9CO +4WbagIIhLJofqrKuN4THS+4Xbyhcg8ftS08/fnsN2uZvkglpXId34n8O7wxd +h1bMJ4wIzYzgMQ+5Lzd+G0FB+zNcLE+MoUST2WVNjhuQfqSKnvLNDXi/XiTK +xvgmLG9dtvT9exM+uEzVaJZjAps5K2UFLt+ClJF05Et/b8E+2rT5VxWmcCpF +ga7W6jZkjFev+UNnBoeszhR2OZrBkwnb3waHzaBa9M1WHllzGLhiP9yTZg5D +k1ypxsnuQCa2DyWGzndgMf+MjuHsHQhzGGYW9Szg7dSp/BMdFjBU5oPGb/m7 +UJGirvVp9V14g7/r4R8xS1h3bIrjQqkltJyp/hYgZgWfSqobt1ZZwZ+FYtZM +8taw/wuNY0y7NTxoZ1a6cMUGan6NOaExbwNplj2fF7ndgz+Sz+7409rCvR9n +380V2cIJtVmuuYv3IY+vbUrCyn3Yt16hxRD3ACb8U+t1BHZQ8UmgQtcPO6gV +W64qlmYPX3YLcTQYOMB0ypn3auSOkN6M4PCTlSO0vD/NV/DeEcJ1+ZBGUSeY +N076RiDeCXqYyeRuHjjBryDXT9LaGaoTkHxeG3WGxNRjKQoXHkJHdScCvtcP +YeTciew3Yi7wjCehO22+C3wzXDYqwe0Kz4RtOUlkuMKmjVv3OLjcoG60kyJt +rhus0WUeojvjDi0oCX3l6twhna0kcbKKB3Rq84lVGfGATATifVrWnnBAMr+3 +658nlNvg4up97gUpTnqN2so9gtXUVE6Nk4+gl1jcv4/+3tA/RYHyg4gPLFzI +ymn45AMFl//dexnuCyM9DYPHlPygD01zufSBH2QONGPdNvGHakd3vEKb/WFX +t1a9OU8AHKT/ZxEVGgBpCM8Zn/4dAIkHrvWwmjyGsnT+MLH7MUSBptFp8oH/ +76HatnJpIHwkI3sUyx0EUzWpXqQ9D4KrJeH0rozBsE+vlkE4Lhi27W2X9TA8 +gTMXHxvfT3oCQUP55mn2EHix2qzzd34InCcJC/orFQq3jcqv6XWEwvW8JyME +RmFQWi6TnGc9DLLEs7m/DwuHctEOXJRCEVCIRcfvT3cEVFv0i65wiITc2esD +yqxPYe5M6YWud08hiTy933WPKHhCYCOJSjwaKkwvyf75Fg13pwd1OQxiIP4o +fsW9Ngaa7UmMM56MhZ6PuqxJfGOhn2z0hMFSLByqLjSkvxIHS24XGWs1x8F4 +/bh6OvF42Fw3kuWYGQ9PY5PnXkwJUOl3bSB6mgCrHYRz+sgT4b1zhy9kghNh ++mKZUzhpErREqvFToUnQqbB0BB5/BvkPRZ1akp9B3zejzO78yXDmgGrGpS4Z +fo/jv9Z/8Tl0eUHnkzDzHGrOkPZ98XwB2X2vyrSypEA9ZnmhK/Up0GT7XXyu +aSq0yZj/PkSeBjvYL/P8qk2D+4+6mpit0uHurHz3rVMZkKaGcG569H+e5mEz +upQJA+PF1NyLM6Gynkj6BE0WbCdRy498mAW/cHOdSf+cBU/ON+mcVs+G74LM +A5lqsqHi3/BnyTw5cE1/r6w2IQcK0taqeVLmwvVRifM7/rlQOO9+g+JBLpSf +E7a/4ZEHMwPPalns5UGhd89qrR/lw7inAi6ehAXQbaWxqTi8AIoc65ekZSmE +3V/mZ17mF0KurwqXXssXQY47NhYCg0Ww3epYCpNtMVwmfTb2grwEirAIefYW +lsD8Hw8sm3RKoYp+OkHITin8bRMug3PKYI5/lfuhQTmUyXV9N0FRAZNO3apc +ba2AWuekSwpwJcyjbH71NLMSLoeu59URV0GJKatV0XtVMJ2dXp9w6P/sRvlL +SbEaytsGSu0XVMO++JYZRZYaOHacgY4prAayLXyVTzysgbQZs+J9LrVQJ5qY +s2etFgo3zLzIuF8Hj5OPJd5aqYNjHXdtmOxfwhyiwOFPmy+h+grlv3rvV5Aq +QjSgl+I1bND9Z8aV/BpqpVAw9onUw5X29aD5lnqYPyXI5HHjDUzIq8/I2n0D +N4hPerskN8A7d8kCyGAjdLOLIbf/2gjjbU6stcY2Qdo+4xRWlWa4cqWb8OlO +MzQ8lpstXfEWajuWv2c83wKf/PFraEtqgTol45pVf1rg18tsSz9NW2HgxIj2 +k3etcPltYkzo2TYY7DTLTJzWBv3QyRQS6na4sxJ8NtWnHR6DFmoTv9th8KvN +jF6bDrj9s8g2cL4DSj43FqW/3Qn1hKQHgr90wpoXfakbZu/gW+mPF+8tvYP8 +GhMbB/ZdkE7LV6BpvwvStlJ8eRv2HpKx/ApiOd0Ne9cD9seruuGUQGICk1bP +/56lzfP1Ww9MfLC6djO0F94SaeiIFu2DjSP760mjffBLwppyqH8/7H66deLR +2Q9wrr1KM2TxA9z7p2fcmToAiR7b8hSIDkJavbcj7E8HYZIP7+TI+iDcviqb +NnZ1CJL9ixmVahyCGo+fh/3hH4YP111Yz8cNQ9HJ7fN7BCNQNDh19bLzCKTb +yEq/tDQCb/Mep9kzGYXj47OGtmOjkIRKbrdS/yNk8H82NDX0ERbXi4scGYxB +5chzZcITYzCyWdXR3nwcPtpd2JpZHYcBhn9EYh99gqFk5g8TaSYgi3xsNkHO +BDxq0yT+pjgJ2yZvGN/6NAl91OwWPTw+wxsG63d0T0/BX3wkTLvtUzDHO/zt +E4dpiIqkK5g4v0CGmeqGhuEvcMb1l2Zs+AxUgueKr/POQj0SxepngbMw33F/ +gGlpFgqYjFjMaM5Bu4ktdqLqOTiodZ4g8tQ8nHn273ZEyDzUqTi/TLszD1sb +NFL4rRdgjxj/xy+TC9Bt946O5pVF6K1gxOrRswgnay+Xe6h/hU6ybxdMOr9C +LdeUbRmNJXjaK+8JU98SNGX7mE1z9Rtkq+xtPTvzDXJ5XuuOtVuG+r+Ojqsd +LUMq98rbNxO+Q8sK070V0R8wb3Ygjqr7B5zosrHos1mBvOePs2tQr0Ke2dNb +MTWrcK/LIqvF9CeMzVOz/EmzBv++HaeSaF2D9WlCK2ke65D9sYqHMNsvuDqx +3ifl9QtWlvIeeU39gl7M8jbUyr+huolE1XbBb0jLFzyqRr8Bt5s5uCh8NiBz +n6zs5ZUNuOJsxihgsgm/+j45ljGw+b8fUvW9v7AF/Vnn79Q0b8EPZzqBg8I2 +fOhnK0RTvw1tlwaM0hV2IFtjjLX02x14XVHz+pz6LnRlpU16NbQLfzUtHHXf +3oO8dkZzZ37vwY/NHPu/gv9AieYmPzGOfUhBrce1U78Pg+8ZkJoZH8BF0rAx +/78HkG9/qdE+5y9EV1MslS4fQhV2blKaw0Mo0Gl9Y7XiH2Q1p6nesTqCJCfH +XHjoCdDp72nye44EiNBYtZRyhAB5kN3gvCtLiGJiNqWZ0gmR4YHnrAg5EXrJ +l2hT40yEcMSpe02zROhNEe3H61eIUYd4zl5sBzGKMDB89EiBBIWkU97hqyFB +tUYK9GnipIiJ+JzuTikpSmE1UFcWJ0MXnO1CoqvJ0GYEN/WmPDn6fkpf3reD +HE1J586p6lMgAyPai9cXKJDXkBtPnzslYqw0T315nAqZtZcbnymhQl2b1p5Y +8xjSN8lMpvh5DL0Nv/sxNZ4aqWk0DjEgGvTXoPllwCoN0g95KUuYQYu8Xpom +FhkeR9ftEgcvUdChhIdXzVat6ZDKHS+P7m465OrCZbkmRo/6SN+02iTQozqZ +NS/1Q3oUn+w9mGjDgHxlxK5bjjGgTaa+/Xb1E2iz5CxBa/0JtHD1CvkDCUZk +qWpB87GAEbkxkztQ8zKhd/aPf/BkMSGOHrJsYR5mFPKHlONcPjN64Jege1mM +Bc2ITMbFvGJBCWqxVccunETTOQlfhz+eRCfIfT7/uceKOMku1yUQsiF/Iima +16lsyMFOe89D8RTS7HtK+XP6FNKYLL0qEnQaOZ7lcdIQZ0fPPyv63JxiRxNa +Kty+URxIhKoyrkuNEz3P936md8SJHhQ0qbHe5kKhbUul7S1ciEhWpqeWjxtt +JE9L7odzo49uAj1Zm9yI8KZ2X70pD9JhcXqn18eDsjOS0lwBL/ryMi9atoIX +Tdb5y+Tz8aHAWp7goVQ+9Me0d6SbhR89bpP9lJHIj9puL5feZRZA+UMuw8Iv +BFCw8U9JQm5BxJanyXlYLIjOcq/ePCsnhF5I8rOWvxdC7/Mn9sNMhJF8nzDb +p01htPZAnKIsSgQ9EOscZBc7gyRS7Q7xwBkETGWThV1FUc3nVvHfHGKobkzn +Y1mfGKK9Pifs7iuOFI18r1tKSyCa4gessWsSSKtBaybs2lnE4OSXRPz6LGri +zNhoOyWJlApPBH4MkETZYfJCl35IojwdNSZRw3PoGRQbjmw7h8qyy6DXOSm0 +M6YWTZwnhZLtNI3l2KQRzRvqCKE4adRF+Nd5kVoGkWfPt3iHy6A2D5FQomPn +0ZUZCZWQqPNIMDR78DSTLHKL2/L7mC6LqIU/UXackUMeRH3PDhrkkAz7q85o +XXnUSZeQm7Akjyz0RZs4AhSQXN8CgyqnIsoSShRgaVVELjJ+fyqtAEruVKUT +pIOo32PPNaYJouCxS29JHBD6IVBFk8qH0cGjJgaHLxhZi78O07qshKTVxreT +KpSQTO48heAJZWRgTaRD6amMMI1cmtacMsp1URb8q6WCmFhD7ITrVZDvZ6ZL +80KqyPl57opMiio6N5k3J0WnhvImLBlXQ9SQlKJMnz3RBWRamVnd53cBrc3U +jTITqCPXL4Z5poHq6EZI4lEdpQZaoxIVlojXQFOkv0anOC8iXk8L/uGKi8jz +4HIFj+oldNvvgff8xCVkTMVDK+Ciibybtc2IGLRQTOLp1cgaLWQvRVjy2Ugb +icgUspIS6aAeSxpFrgodFKWalqJmdhnFq9peDWfSRSKqrrRUA7pouJ8k0F5d +D73IYw6JKtBD78cYNDeorqD99NArBY5XkI9j78OGT1eQZ8rHCaCqj4zgeUKF +Sn00U0/V3MppgLKJSOBCrAHK2XInLSe7iuYZ/A4kfa8iou8cd/z2riId84Dp +fFdD1HFT3rV+2xA5fExIeu9xDWn//su89O8auiVz9zxf6HV0Ub89K5HRCJX1 +5Lrq5Bqh0tG3SrdljZHwYDbZTL8xQhV2KnPWN5BSZep3L9KbSK53wb41/yYi +P3+qs0fLBFlbwztlWyaI6MhNxT/rFnpzdHHlhr4pOnzfZG9Ifhsl4ir70Jbb +6K42cwwZNkMtHPcL/mWYoUkOxUp5YnOk8U1DtNPGHLUIU6yVD5ojTrlwNlLF +O+jHqPmZsYI7KCUq69dZFgvU+GMmji/MApUXXExsObRA0bfejDO63kUDXb+S +JdfvoiqSRg/BB5bIifmCF/mqJdrcuU22YG+FCqJWfvZuWaG9Ofxg1McaOfYU +Cx+nskGNcQcw+rkNkvvALmUjeg9NvW8nL2+7h17/4DrnamKLrB1rs4f/2CK3 +Cb6uzy/uIxkn0af5+AGSMXpmeWn5AUpyN9D4nGCHbLvjqh9esEdmFgS1Ivv2 +iP4lxfLJGgfU+Jrt7Rk5R8TRfpmD4Lkj6p6ubWX+64hyRGSFfMydEDmfHbdy +txOaQL4DjlLOiHHseBFbpjNqz0WPdI4/RAQMufdPBjxEbM+s98O3H6KtEBOS +ugcuaDFEtDN/yQUJ7kZNOFq4otL8p8p8C67IjHv8zrClG3o1zXHs6YobYi2K +cLZycUcjOdLIicADGfGVPW6J9kC3P2e8s+bxREoJnqSPXnsirXXealp9L7Tl +Olgvu+6FlG1HnxyLeYTSXyUSZ0p7I7d7YWnHpr2RJ4PaRcswHxQQnerfIe+L +FBPmdJXXfFGkM4/uVr4f2u66YHgg6Y+o/O4zVMX5I4YJm6eF2/7I9LuX6vqN +AHRC9ylRfFsA8pdmX8kSfYwk0gSdRZ4/Rk7qvBaKFIGIwYxsfsEzEJVZGNlJ +rQWi5qt6s/KWQYir+siFfCYIxVmFvyu9GYzySR+MKHwORux5PUdtt56gK7nj +LNcXniCPOqRP+SAEKfrm6K/uhqAJAXHREyGhaOGc4N1Y1jDkfJi95VURhk7J +Qd3Fi+HIum/x9vzXcCT2+HV0+JMIFDSw1bUhEoli5DddJEci0U65Ytgtv6fo +5aVC/yiJKJS2mGIxtRCF2He1em6nRiNrpuO/kkVjUBjdU6nzT2MQ2+9X04y/ +YpBMfdh9FcNYdIX0VXFfYyz62RjX0CoQh66dPGQ4Gx+H1pRMvQWI4pHkUOmp +2ofx6Psjf4flb/Eol1fSYMQ0AQmUEREGf0pA/hO3GGkNE1GcK3Ok32giijz7 +tu/HtSQUd+9YjvlUEvp7Cavv3H2GYgPKbzT8eoaG/17aavdLRvbr4Dkvw3PE +Hf1cba3gOWqdYronp/wCZU5/2mT+8gIR5BvpZvimIJOUS1bfeFKRv2FGPmlv +KvIJzSChd09DFHfJ/3EJpiPHcdU0nc/piPFMk3dFfAYaOHfqq4RQJur14OJv +DM1EoX7zZWErmagtauAwTy8Lzb4TXuR4nYUkv608JuLJRrEu9Xq3o7JRT9Ak +m9ph9v9+okreYp+DNAYLk+bnc1BmfUZ+g3Eu2tnVtrs5kouU6Ox7h3TzUDI1 +8S2JgTw0fyXWNfhKPrI1Pxz4OpaPOF02Y+7cLkAeLqaXaFcKUFzxz70Dz0L0 +6mERHaYuQu6mz1xXsoqQNLl9IJNiMSI+YXx8eLwYoaJ+2/MeJUin38HK6HQp +kjqiMLzcUYruh8TQSjiWIfOJC5v0XOXIzn16jXa0HJ3vanmEIiuQW87ZERO+ +SvSqV5eiP6gSldvk7Ht/q0S1lz8weWlXIVKNQKbhmirEkHKHPJ69Gmm1zGv3 +hlUjXSu1tLC9auRyJo58+l4NYoGlW6PTNWhFxEw44Gotipd5+v53fy06edfQ +UFazDi0V36y7012HjB8elwrWeok0Rkj9KwdfIvZ3Zq92jF4h+QY1M9vFV2j+ +g4kjx8PX6DuJ/WUB0nq0OvNnNPFFPaoq/3U1QOoNOlx7mHw48Aax8Bd95XRs +QErhaYT/TjSiJzsKUuUNjaj1wWV1DesmRFCdGTXL3IxYbnKvxPY0o6oWvu6H +j9+i/pzJeF3OFmQi792f5NeCDlhHC07PtyBzL72QNfVWtGOjwsVW3ooq1N54 +lLG0IVIdhx8vA9uQW1Q134WNNtRgZydubdGOOE6K2oiOtyMnTumoXJ0OZBRe +8GbmXQdiyam1XlPpRHRDw05zrZ2IqoearUf1HbJ7YETx5v07NBL7V6ddrwu9 +Fie12fvchc4wvlN+YPse+RU/kD339z2q/pd50jS2Gz3zOX+GRKQHRb1ZFZN/ +14NKMpVuMlj1Ijrnyw/yKPuQ4m5HCkVVH0pX/1Gob9KPyiOrJ18c+4C28Hei +P80f0Htxu4BgtwH0ceVtjijrINpACT/VPQeRSb1hWfrnQaRKckxJWWkIlY85 +6IOCIcRL/mM+jW4Ype2uhrp4D6PT0hFiAz+G0ePpgk+NN0dQ3h7pqvbACBK9 +cYc/+sIochN+kRnfPIpuaHyZsFX4iHK/blbw1//P9MdWHxXGUP8tx8KIt2PI +54FW+A2NcdSy2xZ5dXgcPbcUz4g0+4QER3l5mDc+oaZTHD9IQibQi+pzKnac +k4h3aHzNomESKco1nP134zNqOizquvLvMwrqDNt2yZtCXz5YBPjqTaM41cdv +go+mUZBU5qPs6i/ofIWo+M97M+hF/aDVW4ZZJNTv5vraeRbZWO+Pr43OIraG +2N8O8nMIiUS6XsqcQzpM5+6FUc4j5+UKfuQ6j5JKqG+4LcyjXWNRGuWrC0j7 +4peMsq4F1De3+6EXLqIQMu+6kpeLaP3awIdb576ihfo/exuVXxG233bzPreE +THaPbR57tYSeyCsH1KBviP1Uf1Zw9zdUQpirmnh9GdUG0XZtLy+jqCo9ggaf +7ygUmiv8YfqBPpBXyXdW/UDkWsRY+soKml68RmWytYKCWOem9VNW0SBgC5BQ +/4kcS6dUKbd/ovGwJMK9gjW0lxPFx3h7HQkHpl9VpPmFggY/x5y2+4X8255P +KQz8QjXP+lNypH6jMsm0x3df/EZfKZWeRRBvIAunFSlBhw3kYdpDoT69gYqO +E3Ls6mwive7Gj5daN9G5Pd01HdktdIn4ZtCJyi10gZWIqeTMNuK8eNafv3gb +9YgvUyWc2UGKKdnmFJU7iMWm4UWC7C56/HtVTqttF1G5T4phvT2k+65oKnBu +D82FlZ4Wc/uDdl+wAl3afRT5cozoqGgffdnTr7ty6QCtBjqz3Fo9QAZvIhxk +4/+iy25uYbvwEEmWlNXXrh6iqZnA2ScZ/5DAlq3dk2tHaHhYUHKJggAX5QWd +qbchwCVcDqi7hwDvt9IO8UoQYreDpRdjiYSYZb0+b/0fIa564qbrY0uEW86c +0476RISjLMULJS8R46S8H91ujcT4R4SKi905Euyylvyev4QEh/w+fqlSgBQz ++X2YZM8jxZX2Bu/9BMhweOVY+7diMhw0+Pq79TlyPCZI2M7QRI7dmVc0DjQp +sHP643npKQq8/lbPacSREgttsmiuUFBhG94sEJtLha2inidOqh7D9msB3NNL +x/Dy9QqJiqfUuFfGNNFajga/HRqvZP9Gg50nix98f06L3Y12VRb0juNSNWsu +BjI6bBc5QrJgSYcPWR/a/e6iw4t/mrs0RenxweDg0N84evxS7GIq0196PKql +GJljzYC5Y6Vu1X1kwK8ozvPeUD+B+wU+aWfVn8D0nOZ5LyQY8Srr3rVrhYz4 +S9LM6iIvE97Uaja8ns2E80e2vzbzMuMQX/IbYoXM2DOVfKJWggWvJnHuWr9h +wf4ynK+NL57E4B57XNrESfzyr5Cjhj0r/h1GWXefjA2TnqRHnNlsuKbrn6W7 +8inMubVBHr54CtdLuT62iziNz+dFvpE7z47p9n5wEH9lx+HZIiWLzzjwYD3X +yvZlTnzgxH0kSMqFn67F6JBZcuG0EG9K3i4uzDpdVBxxhhtHn1z8oxPHjf0n +Fhk8DrixUO1Fq5PWPFg7LLoBfuTBBkdCUrsXePGe5dOLV+t58asrFqN3Jfhw +gUI1rXwhH77lwBM7x8uP20o1jR2y+fFu2bHeTV4BXEy5X+1fKIBP145dFDor +iAt8mc8dvhHErb89ghguCWG56fL3jyaFMDUB/aG2gzB+Lmyd/IJcBPfLtUR6 +5ohge7ObmkcqZ/AOa06b8tIZrCClcP/6U1H8+u4p5etyYnhoobfX6JsYtr6T +xeXyQhznb51aar0igbPKr0uUk53F37mo/lRZncVsLJxx++/P4qPpatYkMUks +k7pNE58giWvyhHUJ/kniql+tPD/vncPLztnn7306h60uBeUGXZLCYWV+27pN +Urhvsol/Skoay4oZFiqUSePVr1fu+wjL4Avia59fFspgF7a/P/6InMfUGUH0 +NyrP497UdMMVOVkcYxKg29Yhi+tox8S3DORwIId2S9KSHLZ94PKwxVsew65v +ZqHMCthPs0mPrFYBuyYYtuobKmIybv+1J/uKOMiRYKIxB2B+Us/Lx69A3FbS +9vs5EcK0Oy9VPV8j3KzmWtrjjHEoT6LK2Ekl3MUvSZ/hpYRfdrmvD3xRwm6b +L+M9LyhjIyFZ1bJyZeybX/zJm00FTy4d9OyHqmCz4gBphX0VbG6aMXnZXhVf +ppyQ0fmqiknd73hp3lbDpxcls0ym1PDqQbrTC5ML2DvlWcSp2QuY0NXFec9K +HftaeiRr/lbHLcfJ7ov6aWBi3uTb9XQXcVVUGCFt/kW8Od5AcBFfwm/bRZSf +TF3CAik+K8s+mnjLtcA3llcLJ58rms/u18Jj1xyplL218U7ChnmshA5udlEz +a/img1PggNxy7uX/P6enWyrWurjnr6u6N4se3i+XIzntq4d7s7K0n3/Tw8Oa +E19orl7Bkn/cqhLar2BISkiqeV4ffzAvdNcq1cc8jw3ZXvMbYEEmjpDKbAOs +0AL+XOO9itl786wGCq7iwyTDFHzWEF/ucL820GiIbdlD7xXqXMM1FTETO/PX +MClxCdF37+v4F/XPpopTRnjY9GeY71sj/IOH5mWEjTEW6amPoWO5gadGPydf +6r2BOX+WVLsF38QCCWfMPl8wwXUEgYfN1LdwqHM4od3kLWx1dItbsMIUezOp +lZ2NuI19BCMYHGTNsOzrpxZqZWY4zV/VXkPQHIvLBZIW55nja7cmPmYK3cFp +1XPxFpV3cMdmtZgYtMCexbFHigMWuCedh3rY6i7+K2ksJ0NiibXI7kRUFFhi +pdoPztFXrPCd31rHhIis8UzIWfuhems82CNH8t3DBudOd00P4Xv4vSQt/Tat +LTY/8YijbckWPyZaulnRdR/z7S5YKVQ/wKPBHenL+Xb4hnpDvka+PSYebvv1 +s9IBN3MvFzZZOOL3Yn8HtLcdcYHo8zLfp07Yn/312RpRZ/xG0+a63ogzHnh9 +K7Et4CH2+HlX2UfOBZ9zk6I62HXBFmWMD5tbXPHR3L6Rfrwbfoif+Gs6uuOy +8lQxNSMPbGQn17mk5YlDjDi8FrW8sMmcHOmB0SN80sPcduuhN65YdOgpSPPB +zFmuqvtjvljXieaXA50/dhqN1RJv9sfb7mzlKq4B+E/84yyl84/x6eJTNzsJ +A/Hm7xfmHp8C8VY9QNQNQZhXfFYeFwfjPP4Vgan8J3i2dESuoSoEr1KCH229 +ofj5sfSN5e0wrBQbry0lGYHfRk/p1PtG4mqza8O5M09xPpXYIynDaPy3aZjQ +xDEG07U8GutXjsWVQxZzFZxx2EdsJ3WAKh5LWuXIUJAk4D4FLTdV6kTMRlnY +4cWXhJvKh8Rf6zzD6o8JIljCkrGKWH9x1/hzPFWGc44ppuCUl8xnQG0q7hfu +putWS8e7UdPdCmsZ2LKsgJZtIhOHTNzflu/OwisvQkLvv8/GcUJKCmXjOdiJ +bDOBdi8X8/75e6dKJB8PJZf/6HEswLIlxTivtxDbMPCUZIJiTGjgJSrTWYKv +5ZIxblmVYVul5Pow3grcWXG38LZvJa6PCLRHXlU4trQlx/JJNT6czNdeyanB +qOGk+N5ILR7lNGboZnmJK4jY+SodX+EnH/nNmWdf47zBv/w+1m8wUVbgqB9F +I7ZzEH32saMJJ37pUTFIf4tjikNL3XpbMAPBH+Zbn1rxTD0X6/5OG/4P75K/ +0g== + "]}, {Automatic}], + Editable->False, + SelectWithContents->True, + Selectable->False], "[", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "]"}]}], ")"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}]}], "-", + RowBox[{ + InterpretationBox[ + RowBox[{ + TagBox["InterpolatingFunction", + "SummaryHead"], "[", + + DynamicModuleBox[{Typeset`open$$ = False, Typeset`embedState$$ = + "Ready"}, + TemplateBox[{PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$294706#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{{{}, {}, + TagBox[{ + Directive[ + Opacity[1.], + RGBColor[0.368417, 0.506779, 0.709798], + AbsoluteThickness[1]], + LineBox[CompressedData[" +1:eJwVxXswGwYAB2DMVq5CdUrDndAeq5o1dGvVXH5q+pCmbKVaLSJttRek5IYu +nWLeOa26dV6xeLbi/QgJIeThGUs8zpxxu9arVuY99br2uu2P7z7rWxFXQnS0 +tLRc//P/KYINBl3pSBEQFXULFwYpopc2U7bUSBBjfVsTC39A5NnWhfTdBKTP +pZ72uZeEmq0EppMzF00OROY4g4vLjrSQtvIs5AcnCAibmTieUzVtoJ+NpF9u +mxLv/gxejTmDY5WPILHJksYoG6vswM9zn/IRnnV25uHrXHirjjZrvS2GF+mT +h6IyHiKFJaPKd6VwI9AXY+z50P1HLz+Q/ALkGqfN67NFYBjs0lMoAmw+WvRd +OlmCsFFXuo97JWwklEM9rFK8WWfq7rGrQa84EkqVl+HEAqnaIbYWHLmnfeLe +c7w5Lds+I6wHicV0Tblcjs/M/SlbKw3gNZbGz+cJINPN1TbdaISW76l6tboC +xgUqsyP7m0CUuHXwiVXo58vrooybwdb3C6B6V8OZVpPX5CBCs5iUNs2vQdyI +orDHQ4wnV0pWfnxdC7uuAhtLzxbs5Uw9CDKtx5Pg0A+3brdi575ZpRm5AX6h +7/1XQiWYMLrBlKoasEVtG6ax2nA1gv+xSXAjvMfDeLkp7SBO/PXttI4QhOHp +uWMZUkT6Fjhm8IRIjqIllpd3wCMgpaWc0oSR1amvt6WdaCfEj/z0qglJ42di +MuUyfF82EeET3YwHoi5tfZYcj6lDl56ZiUAXqfXur8lx1017baxOBGHxIt+V +rUDGec7ymrsYM9OJAdrvFahQjNXFzIrh4f/oJjNeiQ3np5oDnBYk2W4k9Rl0 +IY786ZCxRSs27VRL/VldYHYFkcjCVgwfFs2ePNiNRfeeoC/PS8ANtNDNLuxG +VG1pZcG8BFF/zN7Jt+5BCMGlxSG2Da6VtqvP6nswLhbeI1m2IyIkbt+OSy9S +9dTX96TtGLvmHPxB2osDl1iT+7+Twqw4fOadZx+02aUMzroUjy0/esHX9GEZ +B62OpnUgPL3urcCrHzvzLrsKYifsLv4eUTHZDyuvU/GS1k4cpgQcpwWqsJZH +u7hFk2GOG2Q4v6jCn4RIafqyDBaK6ISF6AH48PwMuOfkSP5i1SlrewDdN++w +NjPlGFifMXRI/g2m5rqG3JdyuP/tbM/ap8ZznaK03mMK5Lros8uy1RgJODdl +z1HgWvSKxzfWGrT0LWQY9StAnf/KP7VMg9ETmhtFxkoQa7dzZORBXLBhVlxl +KGFRZXHo1+ZBhKUuvJJUK9FuPWlu6DKEWRuSyd6WEv8CarXVJQ== + "]]}, + Annotation[#, + "Charting`Private`Tag$294706#1"]& ]}}, {}, {}}, { + DisplayFunction -> Identity, + Ticks -> {Automatic, Automatic}, + AxesOrigin -> {4.23046178224774*^-25, 0}, + FrameTicks -> {{{}, {}}, {{}, {}}}, + GridLines -> {None, None}, DisplayFunction -> Identity, + PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, PlotRangeClipping -> True, ImagePadding -> + All, DisplayFunction -> Identity, AspectRatio -> 1, + Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {0, 0}, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, + FrameLabel -> {{None, None}, {None, None}}, FrameStyle -> + Directive[ + Opacity[0.5], + Thickness[Tiny], + RGBColor[0.368417, 0.506779, 0.709798]], + FrameTicks -> {{None, None}, {None, None}}, + GridLines -> {None, None}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + Method -> { + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange -> {{4.23046178224774*^-25, + 0.24395920510017832`}, {0., 0.14816213591102131`}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.1], + Scaled[0.1]}, { + Scaled[0.1], + Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"4.23046178224774`*^-25", ",", + "0.24395920510017832`"}], "}"}], "}"}], + "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + DynamicModuleValues:>{}], "]"}], + InterpolatingFunction[{{4.23046178224774*^-25, + 0.24395920510017832`}}, { + 5, 7, 0, {1501}, {4}, 0, 0, 0, 0, Automatic, {}, {}, + False}, CompressedData[" +1:eJwNVlc4138DtbIrMzujFFFWpN9nfG0ie6/I3utvFZK9RyF7h8oIWQ2hSJrI +LGVlhCQjNHjfi/Oc51yci3MuznME7bwNHCnIyMjI/4/PB8jIvvW8CKmwniJx +EJys2rtTpLGvqRztedMkAXH/BHGlGVJb/Rn/oR8zJOq4BvK18lnSK8fbqU8u +fSWxx2p1XBGYI70zk8ty/TZHMvZ/EtP/cJ4k7qh3Y+vGAqlFv95SyG+RVFb/ +V6Xc4htJu7A9qldribRSNUlMqy6T1Awb6lQvrJAKXi5JaJt8J/lU9bkbeq6S +ZiW1/FpTf5DWHvZ+97ReI51UbPNn3V0jRaWLG0fk/SSVuzxIXVVcJ7F0/RTL +/LFOujrGbFJbvkGq51p2Cbq0SWpr+kYjLbBFKqFvl+H/tkWS1x2yjXr4i/SP +riG14sY2qdGZw/a97w6ptOD4WW2LXdKZSUMFL63fpMzPV6ujVf+Qtj69uDun +8ZekSd2d+834H0lpPFhoxWOPdOhrscHF1H2ShXKMrZw1GdD8yDM6vkMGIjmy +MlTzyEEtXU9mvSIF+Eud9tXwBwWYvmpU7VZOCSjieFWkL1EBI+MQ/SX+A2D1 +vMKHocUDgJxuHco9pAbCGoIpxjdogOuZHMdQX1qgVu9zfNucDlw+xrXHpkUP +sk31OEVUGQCPiVBljAYjCNb/QRVrfBC8rIr9GO1xCOSSbM9OpxwGmTb7H/as +mEAXjTKpZIcJ/Al8OUiXxwyKGO/m+ymygPZw6iLWHyzA0f0KuUg5Kxi+Jy/w +3ZoN5DqQFZTxs4NTsx3/JS6yA4Eidu5vbUfAcd7S5AM3OAB5mbSHqC8nWF6Y +Yi815wJ8TgfbH2tyg3vMtrGvVXjAsfbn5cIavMC5wsNXyJgPcBzayODzOAoS +JZI5AlP4gTKjnEavlQDg6T1d5LQjAJxqXrC8yxUEEV425WcVhYCKiJnZh1Uh +MFF53Wyu7Bj4FUH8q7I+DsImgxcs+IWBJCVkV1gUBvv0xE5+2wkQEimZ0px+ +EpQ9nf9vxEcEBBABtFrmokCpXDLMTvPU//Pf2/JSEQP/GKvLetTFweQ/MPnU +6DTop3mq0+J+Bqy0H/tLnyIButRE29OsJEEt+wTF6R1JsNyUZngzVwq0iC9W +/1KQBuP/olgzVqWBzym3+rIyGXCaTuqTnfVZkPnsqwwrvyxIvtXUurUgC5Qu +eo3qtMmBoKD3qY7p50DN9abQKB95oPjg9N9Ns/Pg1UgkptMkgUHZM04sKgDI +Ko6VOapDIGBirWNphMDJ9AV6XXcMmKZPzBQnE6CZcVzazEoBfFnTdtnYVgDk +qceyTHIVgbWKcnObghLw/Jfw3mBVCTBuyNLZlimDIHTwEZ+1ChihV4l4fVQV +NOaKWlYvqIL4S+Wt5G1qIGw77AZ7ujq4/jU/VtJHA+gS9D+LzC4Av7+U5PUX +NEFG9spos7IWIBlr3T6gfhFs3O1/um2oDYLLvF8uuOkAzcysvrPJuiDZUvWu +gJUe+Gkc9e7hth6YPRs5yp2rD+oafTquKhgAleNuySyrBuD+v1k7vjJD8J5n +KHfMygisNt16H3XUGNyny9+3XTAGivhLTlOrCXiyB7J60kyBynzBjc/eZuDZ +JP2Chpk5aGRq6ja5YAFyROY0zZUtAUmVqqpCzQo83sySzDS0BqPnTeKuu10C +ZYPejX1JNqBH0kvgm6UtKFAKlb2+bQumK6u5J3MugyZ/n1dQwQ44eR/XHPxu +B86o+7d/LLUH+yUxVzOsHEBF+8RReNQR7MzQVhxZcAQ/F46GOLc6AZpEuryA +NGeAIlsLE71dQHi6xJd1U1egfjgj4Z+GGwie4+j4q+QOShkpq1XVPECbVG25 +pKEnEDXIV+dy8wJq2c0Fl5K8waMEw5wGSx/A3yRfqLbtA7Smiy+V5/iC3Til +kT3CDzz71EZ787sfmHozz5lT+h9Y7RO00rHyB2mCR7w3+QLAWaH/tN7MB4Dv +po6XuFsDQVrWfLFwWhBoaFq+d847GPDqBI8UmF4B4pslurc1rgLavuizJUoh +QLBKvX5ONRQA6yOcbw3CQPQ8pmt0vQb4PjvFbySGA3mHLaarltfBTFXbgYPb +14H69KVy55wIkPBtfqaTiASvnU6+1P8eCfKTQIBxaRTQzriD6ayiwcBnpc4a +vhhA3z2+HjEfA4STGpTetsSCR3wfKodT48DUlfMPv3rFg3C2ufdqpgng2OPP +R7Q0EsHEe7FqZaUkYMc02BKjmgwe+Q6kuBqkAMV1hTearqnga3FUQHxiGsht +N0xUskwHIjx/vT78SgfBtxcXxXJugLxb1muRxE3ge9Annvn7TWB13W+QpTQD +2PzmEuq2zARUP+xYHPmywGo3zD83nwWWwyhFrrfcAj+Ovq+LSc0GH9+WvLzh +lQN6JwNerZnkghLbC5M/1fNA8hbjsQXFfDCiXPZUWLUAxLh/oaI2KASPfUrT +Z12KQNRHBge+xGJgleFFxWBZAqoYKMdzf5UAChEksZZdCuSTK/dUiDLw7s3N +CwMrZUD4TpJkf0k5GP8TQB1ueRss6wc68vFVgO+CBSrf5ypAr7jlIZmWSmCd +9bFVNrUK6NcKjmOvO4Cz5tSLPJO74PLU7J0c9XvgvqxIQaJiNahGbb09KjXg +syoKK9OvBdTWtiahLnVAOH7fsDHhPqCYVQ3/YFEPSgLfKtv+qgfyrlaBTdkN +YLW36yAN0fj/3U5juLHSCPr2Y9NSSh6A4swny+ctm4AOZdjDYd5mEDq6vVo2 +1wwYM9u25ppbwFjYVtdcSivQZ3uytOzZBkwDKJ+rmDwEjnK1/xHqj0BWctiR +M4qPgc4u66CjyhNA8ff7L6zfDmgehPGxuzwFv8svqaondID5u+O/8y06Qai5 +5f0TvzqBs6Pa0+DsLvBS7T5fH34GdhKc3umtPAPl0Q4/NEueg4yu7wObFt2g +cz/wUCpvD1Ce0c0zm+sBNfU8X3KaX4D0If63WSm94Nue978cz5eAU56sa9W4 +D9y+VEHMq70C41uMNwcUXgNvv+bPB1TeAMrENd9Pem/BiOfuXK3zO7AoIio/ +Ef8efJgTDXKw6AdlDTU837f6QRvXH2qUPQD+HPA+k4QHwYlIjptMK4MgRua4 +Hm3JB+AeTvfwvsUQcFdxcFDjHQaL+LbaoblhsHMtulereQQsZ5mPq6aMgjeu +iFnNcwworwl05hiPgy9GbxhT1D4CXc+RQwEKn8DD2wVLFcoTQGhZZTVI7zOI +if9wX835C7jPYiPuGz8JjmXKbYpbTIHQ0K74B1tT4HXUVT3y7GnQQUGuoI1n +QEhcmUn/8gxQonvR0FM8C1xeHy51s/gKvr5VebzHMwemv21uPP86B67+WW/Y +a5oH+k/L5reSFwCV/vETGx6LYCfXsVPJ+BtIYhf6JKO2BN6ujidzKiyDgqS+ +HVXlFTDNvezOpvcdKOwzhEw6rQJZKzIh6vgfwLRx33fLfA1otub+urK1Bl6W +dOf13PoJ+EmOBofxOmDLpuFNX14HdpSabFHFG4AoI0sUttgEazmcrK08W+D8 +lGLZla9boFXIubCh6RdYv/BnsyJ5G3ysPw5LPHaAoNS7rhWjXeBeUHnvo+pv +sBTAwfiE+APUj0HaeaW/4CXb7FK97j9w8U2ZerDTHqgkO8iVH7cPXqOYtXZz +MthjI+uosEUGRzzH5xJukcPKu/mOA4gCMtSpzeguU0Cpo/VBCsWUcIhs4r8p +cypoWjbp7s1zALoeTdKX+HoAUv2cSnBoooYlsvZUJsk0MDUGG2p70EKdRovu +W0Z0MGDOPCRClR7K76cm2xAMUMR5kzNWiRFyDIm7a+sehEPL2ezMToegzJ9o +Zsm4w1DjbK93rDkTFP8vc4h6iwlmL7ZJ6dxihpd1bl/JQCzQoM/m7uFlFnjO +dOfTvyJWyPC19FK+ORusm8/tOcnDDqdL+snnZtmhvr1tEEfTEZgS9pGNOpkD +urz2df/tzgnduRheKhhxweoVoC2iyg0zYxQOURI8sNZg/dQJJV44YfRy5ZsO +H1w1W/561/Eo7FJzYeiJ5YdiGT0/dMwF4NJqi8rbTQEodcj+GsstQRgjHJ5q +jISg5byB7/slIahWLaT4uOgYzNUw0DQxPw557NUFpriF4awDy4O8WWG4HjDn ++OrBCch/9PKJlqST0P/a0+gqdxGYZTf5ZslQFL6qvSjwXuUU1DsgfqMSi0H1 +GVn8QlEcmt5s9o7VOQ03DxU2KzmegcyTLdQWsRJww/S6D4e5JCT6C5ozNiXh +1qfR1yNZUlBTXPw2B5KGnBQCpLQlaXiWQ6IquEgGdop9l2M2Pwtl2RZDcrhl +oY6TnqPerCz0FvYxDnsgB5+ybss7JZ2DjvnHi43c5WFLwuhgpuF5qC6cvBmg +QoKdV/XZNTGAJUwdBk6KEDLFb24I6SCoSFcb98kBQ+oOH8ofMQT8E779c9JM +Ac6wqZ202FSAMroc3PlZivCxTfWjcagEg7h6KXWXlGBcDt8huSJleDbR7/gb +MxV481fImB63KrQuS+SknlWFOl5kapIP1GCORcHFI0nqkOno7Ufk7hrQPmlj +HBtegF91fvfxqmjCzqn6vO9IC576mOJCrXgRJknFXOnQ1oZLSjyW/g468MN0 +Fnl0jC6UpRPzv2OmB9kfNeYKbOpBZkdBV5ssfejQ/ncgHxpArlMa7w4tGcBE +sdWAjUJDWG07wxJnZgQTaSjl6LiNYSJ715vHM8Zw/uKtc7ONJjD6h97lF4mm +0IESjda5mcEIe5mZRQNzaHMiu+S5sgWcltEUvIEsoRGpLLxSwQrSJzqTWWlb +w7HWBYmDDpdghdIJcq4YG5i0xr3tY2YLudpnGBc2bKEMz6+2Y1mXoZ6SwJI1 +tINukuW5777ZwZdvS77UF9rDWzWQQsnMAQoqh2V2cTlC9ScbEb4zjtD8qdSp +W41OsPEdW1BgojPsVvuxaenmAn8fzF6+aeAKPe7YBbspu8HH3nx3zyJ3mCT+ +N1tNwQPmpeTH71z0hLz2LNSV9l7QbkKQoi7aG67K9F49b+YD3/GMXK/d8IFP +vbLoFjN9YcoyO6UA9IP0p8YcU7/5QZZQWQ2vwv8gn1vE+l9Tf1hfubRxhSsA +DmUIyZ+cCYA2Twf5LjQGQv3NhZQTiUGQd+4RK51bMCyKO/oLGlyBrP1W+szK +V+FC2inpMRgCidr8hnkiFIafE2TJuhgG3xP5n7H9Nfj6XjyVcnQ4fNgvsU9u +dh3uDyZv/bdxHU5Y7VvUZEbAipbPvDMgEn5jXZDW+RYJoUxNo1hhFGy4VT/b +ahoN353RMpLmioFMOdo/JqZjIJ/mFZa/DbHQ0/pVxUhCHAz9WCzT4hoPy1/3 +kS/oJ0DavBixNqVE+Cvd90kITIJ8rdffxBLJEEbtFEhdTPm/P7Jl1C4V9tyx +oB2LSoMa3UbRr0zTYeIUtTtpIx0az8rU+mTegBUlQedug5twZ+k92aFvN2HZ +GtXRbwUZkFri1bCfaSY8NFbUvMSZBcEL/6qb01lwwVqY9n7DLXjzwJOnsQnZ +cFWoyMjeNQd+HMk5dEM/FzJSfKa2UcqDvZ7r6vwwH2arVS+eIAqguYeg6Dut +QnghtDfdx64IRgxkH/SMKoZJjHL0GaYlsEFRZZpsowSO7UmTyWaWwueVswZO +oAwO19x8/3axDHI0EImVBeVwWOLdy9Omt2Fe8RxHOWcF7OPOsdWYroAsv0b2 +LjdUwtffnozJJVTBy4+bA5lc70CxiiReoH8XTlDazx5QugcXhGqHnoFqyG3K +Q92LayDnan6Lm1YtDB9086Czq4OnBRTYKKLuQ6/KD+mWpvWwdUPFrHe9HkrU +/jXczWiA514IeouARrhmLFGcstgI832ttu0LHsDkW0+eLJo0QZpI/hBLzmYo +cbOVe2+qGXYdTv3F1tACNanfbszHt0L54vncdpc2eE26TGxO7yFcy+foqlF8 +BDerS+2cwGPI9rX/uDN+AqOpXFRptNrhmLrHhbLLT2FjmiFvdmQHnE47zXnc +tBMGb9L2p6x3wojl9DvtGV3w0F+p5CXSMzg/W+GtvfgMSkpYOgoWPIeGNlkN +5SbdkDf04iQrZw+8L/ph+MFUD6yp1PzRW/8CEqYrh7Pje6Hda8mnbi4vYXnI +BEjT64P0L34XGyq+ghFU/T/pwGu48+21Cg1+A2fuxQyXa76FzqOvT4LL7+Bb +nkFh8cj3kHihXLJi0g+fK6RrGK33w+2WH/8iMgbggCrbvRrSILxr+Evh4OL/ +eR4Mfcn/AAvjzKoumQzBskQPlTccw/DE56UbrlPDcKeV8dvV+hHYNM59Wj1+ +FK6AzFkOlzE4EELSPq83Do9dY7z+W+EjPC4qH1lL+gT97BmdqtAEDJjYdFLQ +/AzNwxJohmy/QKeOx5JdEZNwTu2IaLPJFAwY+djFvT4FLQ9yGallTMPUkpcv +vUgz8FSZAOvbhRlol7WnXJA/CwUYqYu4TL5C8Xvh96I55uDg3T0d/qk5+JsY +mj1dPw/lE8y0tuMW4MwKE32P8yIcl3hiM6v7DYLOi5dLFZZgK9tHVn3SMvx5 +8Wa8OlqBSVnNuxMXvsNNmYpFD9tV6BjAhEwifsDnhysaw0zW4EDjIpj+uQYt +lhmr6TN+QgM63UVJ0jqkeXt8PnlhHZ6RL28yz9+Aad8Ks4aMN+HX0RhmxLEF +xZIPHRye3ILUoHRy6v4vOGxX4VYVtw1lPlVK+TnvwLycwmorlV24W+Zgs039 +Gw43Uc97vP8NsyJ0TZcK/0DGNdMTRX5/4aX9HbE27X/QmD+twVViD0b6M4XO +cexDTfxk+T4lGZIdUtWnCSdDS31Xa9n2yNCk+kzm5nVytFclFNxNQ4EOD5bc +K7tJgUCOgWudICX6UNgzTdNMiW5esjrff5EK4c1nmaLfqNDJC4X85xIPoB1/ +HzY+SWr0k7Kvm+wTNZKjKSmlTaJBp16RqVgp0KIswZ8Bx//QomTTIpD0mA4l +dvZPPI6gR+M8d1ZntBnQqfUy6zMCjOihxEbQ2x1GdE1HaGdt9CCqukLD9Lr9 +EEIcLP5p9w6j7sqAB+d1mVBBatvMyBsmdPlLbALQYUaMlOeeR39gRsvzF5P6 +rVjQfJx8N1piQTlRGnglhBXBY4NP/zKzocmYdJobNWyIPgN+ea3Fjj4527AN +/GBHNykup/XkHEG2e0N679U40Op5mnD23xyo2OSVZ2cjJ6o9mFi168OFmi+X +/1o+y43cX1J5P9/jRvlXOYNr3/EgCt4/I2O3eREDK/nDgAg+9PJr8tNmh6No +mvY89RsdfmTyWazgF78A8q9x7DtZIIBOkBVeZecVRBdvvA+cKBb8f59Fdnkn +hRCo+PPC84EQ+uBLyRmofAwN97I9+TB6DKVFcbLe8TmOzKcor7EfEkZPSZlO +RL0winJQU9c0PYFK9JMeWFKeRHY7wDav6SRy0dYRP+Mugk5qvxVVOCmKgrmO +VP1eFEW1hJV8Qv0pxHMxqIvzmhhiHf8TPqovjg67l7FviZ1GEXZ7N8sYz6Dw +4LhIls0zyAztbATPSCAWZoruAx6S6M9nmafXlyQR2jo10echhYytyjz21qXQ +KedDJTBMGk2TnNPKGWSQRt5JZcMiGbRyK+KRh+xZ5NTxap154CwKDhb84egr ++/8noN2ZfEQOXb32Kbm6Uw75HA7JXfQ+h3Q+Zeu7H5dHJdvyelZf5NGbXSHX +ucLzqK9aoVHKnoRapY1SPM8A5DC53vBiH6Dq2bfnPEYhyj6nWZrajNAvXrd5 +mzyMgirpr7PGEujy8uPz3lABPdoSvx/yUAHVKoYrapEU0a7U9aXfTxURs7VI +1B11JVRjY/DKb0gJ6TlWuF9xVEar203Un38ro427pnIdmSrokKZcjpKMKjqs +nTWUOKKK5iUtKp9cU0PX7+jM/hNTRy4u5dEBX9RRUUTTfa1bGmhUgbnjruEF +xFHUp/XoiCaS1KE8d3dSE0VUjj0or9NCKdej9MeiLiJr35EDQTbaKL6aWr5B +UQetbrx8/fCULpLmtrtld1APPeQ+U0uVoIcospZ3L9HqoxpHH6HUJH3Evyh3 +9z6LAbIxIt+cLjRA91G9gcppQ+T/RJt6u9MQSQ/paPCYGyHLTkaDD1tGqOd1 +kINStjFaCzzQn4xMUGrjp7+jiyYojgz8p5lrithdRb8y6JqhW6dtpVXpzZGF +8rUQgdfm6GZJhGDfDQuUGJMw5H7JEul/my2Qk7JChWYuc2b01ujTDaFYyiVr +tKGu+96l/xIajK/NfNJugxRvZ/Bym9sioUlXa8pRW0TBV23TYnYZvRHS0dP7 +chmVru/BH852qCZkmrtxyw55msa/bYuzR2XigmeOH3VAv/THWI48dEA6JgEm +DWaO6Ptp6Smuf46Is/1dtX+lE2rJmxlYMHJGDHNe6Xm0LujikUbD5i4XtDtC +dFy+7op+jV1qfaXihpqH69x4D7ujnxOcVtGT7ohaitFTqsUDDW7TLRpmeCLX +U5FJfEFeKEmMKqvrsje6+sLO6ZGoD1p41/lSrtIHxZ+1WPc94Yt4NnIfx9/z +Rde52T/lSPuhja/nVzqf+qE6delAAd3/kEzKn/XR2f/QTGLTCG2YP+LjP549 +zB2A3MquPLjcHoDmGC88GXAIREwF3ZZazEHI9YPspa1nQcjsUeuj7SvBaNvk +bEGI3BWUbF/lVr1zBQ2Y3Blq7LyKhBbR+NPUECQJ/w38swtFAQxBYcUoDI2y +bdENH72GrqknCgxQhyNqweC13q1wVLkUULgdcB2BlUSJjs3r6OAFXRnToAiU +HYroPv+LQKGULJte8ZGodzuXX5wjCjEfbak6ey8Kxf/IKL6rGI3cLxzlqv0c +jUqcq8TtrsUgofm3ZN+PxaIDGUWDfu9iUfXnzX9c1+LQ2Xc81PQy8YjSt6HI +/Xs8Cmh51+RSm4A6RgOCxf9LRMjmgtMsTkLuFKn6j5mSUeiNK16zi8ko7sKA +VXJvCvq2Oi69WJOKjokUxJ/KTUPN7zoUVdTSUX07v2/B83TEHVtI9UjlBvLN +uEnzqO8GeneX3vGRwU10rO/a6vjkTdS/8NxO3jcDqR6WCPhFnYm0QteGZEsz +kYZd1VkuhSy0dEjSoHs2C2WK1O1ZJt9CoeNDJ6hJ2ail2+vTt5VsdLbhpIVE +RQ46N5l7hMw+F/Vzlz6PPZGH2Au2rH78yENG00xSzh356E7npWXerAJ0dv1J +kYJvIWIP1eqnNCpCVPbpkbmoGF3LChbg4ShB7ebP2GkzSpAJc0nEfZZSlN+r +wHPmVinqv/0vsJSvDA3rkR8UuVuGzmYJKUzLl6OnrzYcvr8pR6qVtH2ejrdR +Da3/o2iKCuQXFZ5mfLsCfdQsqqPSqkTttoW3Wn9VooVBloXMqio0snTQtdv6 +DiK/SM/pzXUXke+fFOv4eBclh947OlV6Dx343Nm+51WNeG1yxS8o1SCL+Gfr +qzy1SPb8xAHBv7UohyN/iHm2DvG+ETDY6r+PDgwMXyezr0cHWPXI5abrkWV7 +UOo5+wYkmLvqJPStAUl0Ztxj+68RvXTQvHya/AH627sZkZzxAOlu3N41ONWE +qIaoHpT1NCFR++3CIsdmtJrs3+pG34L+lpcyize1oPdiIhO09q1oZOKNhwhH +G7o6pKHxoL8NnZp3EvuQ9hC9OObM9sDoEYpsuncxnP8xenvynp/j2mO0GSEf +ndn7BK0Ys3+DFe3ouVJ/WHrCU5RjRFb8zL8DWc+4cEfLdCIFy8BJrfpOZP7e +sn5IsgupMP4NBM1dqDVk6U8heoYOaxz9zv3qGXLiHP86YPEcdW8885n98Rzd +WoBcvgndSJVpxaXwZA/aaL+2mfSqB/n41Npd9nuB7gVd8Vfm70VerNUHzQd6 +ke5+OnoV/xL9NKfU6FTtQyq71XWOtK/Q+/O3SPP9r9CgHy21d/FrVKZxN/aM +/xskJ7iRbaT7FpUe2YlhkXqH6EeCOfO53iNzPxHdG1T9yMqnMPRHeD+ibNge +otzvRwx5eqtLEQP/36kV0jPaQfRKcuLwnYxBdOzgm+rHQh/Q7tYhzNfyAaGF +8e/ftYfQhaiH07pLQ8j4gYK6U9IwovddtzCWGkFXI118lCZGUM1+22/D5FH0 +PoI3q0FxDN34McIQ/XcMoWUHx60n48ht6ceyZNRHlCbEcM5e9xOK9Hss+0hw +AgmlvpF3/D2BsjsC/mWOf0Y0t/XaQjq+oNNGtwW0ayaRYy8l5tebQjrwjPHz +t1NoxJCNS0J3GvUJVVaGD02juOSDfwatZ9BF4PlbfXnm//pD4F7oLHpJbn+O +g/UrSh1s2H9Q+xU1atplb1+cQzfLtwYO/JxDxcc+3aLMm0cC2u3fjmgsIPF/ +hzac/iygBuePtLxNiyh85UOrjd+3///JxjdWcksocXDAmiBbRhNK3MNn+5dR +1T/Sb/fKFVQXeOYfW9R3xFrBHHHZaRWtB+pURev9QEmCqSnjAmuoyrkmlblw +De1qXdKg5vuJpJLkooZKfiKrlaC5XJF1lF/TuevftI5G1b/JxqhsIGMxTorl +sQ3ktczQ2eu7iQ4XFg6iw1tonSqswqdhC9VYijRHm/1CdF6C2cVU22h28zLF +YvM2qqNnHovx2EESD0LEy0R2UVWIgZ7z0i4y0TjzkazxN7roeak+P/wPctKn +YHUy/IuYx3wq007/Q5orP8IuHNpD/HlPT7zY2kPsIv4Pzn/dR6GOn2ZXPMjw +vPqJQa9lMvwot5urw5McT40fZPizQY59FPjHFK5R4B8Flfn3GSmxXMK0jXMx +JU4NGxROkKPC951rV+QGqbCjT9jDDL8D+PDdA8XPOaixx+UvPctd1DiDfMBf +2pcGf1X05+oQpsUxD+j1H03S4rv5FT+1i+mwwMlU1goHevyOb5t7RYIB1+Pd +Lj1yRrwVNSFEMc6Iq4vrn0m2HsQNHOcKDhUcwttugmLv4w7ja0uDjw0RE14o +kmN2fsSEP8V5tSHAjA1HJ2s2O5jxrXMn++5qsGC2v+/fhgyz4HVGwiXRiRXf +4Pxw/tcfVpxTCSanstjw6RbaHY+z7Phphv+Zp6PsuLfOldgNP4L/yL+gUDnN +gc/L5pOCX3Pgjwq8DjbHOLFw575GUignFnCdzyEb5cT9RZ1s3dJcOMHhUNrH +NC6ciwVWNFa5sDuZuRCbDjduTvMhKd7nxk5FrbrDzDy4wMoqfTiAB4eeqkfq +n3hwtpZXjYQSL5YvpFTNvMeL+c1Go66y8eHHnzN3F8L5MOetQK2ZFT5cMHtD +xtvyKO4UPx6R+foofkw1zWmG+PG+v+JWRz0/Tj7rxvqNRQAzHtNw09QRwC9G +WY7GJQrgnnZR87JeAdz+o1C/+IAgHnK3vhChIogL5i6lakULYh3w7ip5jyC+ +knY+oJJaCA9Td6yhC0JYTAZ4vk4WwkXCwUEGA0JYXcr67siRY/jkJf57ltbH +cGSK35m528ewgfHjncDvx/DPDMVxtnPH8foT+7pnEcex1Nwrh+i3xzFrWvG2 +NbcwhvIdPoYuwvhh3fqiS6sw/nlGOL6M5gT20iqIoTI/gQUrJEUyqk9gef+4 +Fwb7J7Dv3MVedaOT+Lied2ngvZN4VcVyYpZcBNOHyjNlWojgudsn55OaRDAF +ZwRn/2FR7O7H9p+jhyj243X9oPdKFOs93hfJFj2FTfIyA1DiKVxEaf9WY+UU +ZshyNX2qK4ZjbtzXLm8Sw8ySSf/+covjibXF3v5IcfxuN0Pw+Io4Fg8Nz/hr +chrnizE/tnl+Ghu+9NA0lDqDN9o7aT+XnMHdkxmDFCwSGKmw5b2KlsB6is7O +pF0JbHwhTLzmnCRmM1nWz/pPEv/i2e2zrJfEoi7KLyhWJfHDAJnoFHEpjKJP +ae+7S+Ggw3WBljVSePhOpl3FdynMHCwTPiUhjX/aJ6sz/SeNWb+GKsu3SuOj +Ed9prP5K4xgqinPhSjK43kzzekWCDLY/+dkOD8vg7F7w/XLgWRwX0Xa/jFcW +e1MFnDv1UhY3B4jZH7sihxtN5jwfSZzDDIF0v3lXzuGyxue8V+vk8ReXPleK +oPPYPyRsf0GVhCX2AzMu8QCcUucZnr8N8KBl2rvhjxD7tClqqfUgHPPVMOVk +K8ZPtMtpW+oJzN3Dc4jTXAEbXF1hWv6sgKe2WYgtJ0W84Zo1ZrapiGfNOmXO +xyrhO5l/eh7xKmP0dV6csk0ZP3vcee68mQqONeb6Gf1PBYfnDt05fEcVtxqG +7VGaqeFQnZXllIPquGpHtf/jS3UcYqEfwpWogbVExc5f1b+Aa1dMv5zh18RH +z8oPuW1oYvl/08L277SwS7hdik79Rfyi1j3CMVcbF475KM8k6OCuXdlVskhd +LHbb7dm+gh4u8eInP9yjhx0E8s/qautjn3UXt5lxfUxp3Nm97GaAGcYuRqWR +GeIwd8S4kWeIlUmFW5BkhBOCdw5lfTHCEwm67sfjjfExckt39nMm2JP62MuM +ZROs/Xql8E2FKa7uvR606miGH6W/MRcVN8dB0rPv63bMsTC9zXbDaws8jkRS +nCss8fm/Zb8PxFrhfyMa9j2e1vhfdn3jpNUlfOkIbXW6oQ2+OET+m17UFncE +HcsyrbHFcq4V2+9kLmMW45m/NzsuY2x6IeOFrh1e+cnZk/LVDgdu2nYdvGaP +b6Vpz3nwOuCl5faewQ4HbFUlct7FxRFXNvZfNj3ihD9za7e97vs/2zsdWY90 +xpnCF5/tKLpg7w7hq4dpXHEcGfl150FXrP9csFLmthtWSmu2vBPqjq97rj78 +Y+mBi2TjbzgqeeLzrY+D+SW9sIZ8+biDsDcO/Zlw/TyzD97/vn2rO8MHH3a5 +qufP7YsNgmNM3Cp8sZE8o0PfWT/M/emMTvNLP+ypLXHQ8PJ/OC27rufl3n9Y +3kB2EJX64/pUurcfNQLw6XtGeX1bAVj6Zr6f7J1A7Mid/F3TNgirHBE6KH80 +GKfvnbggPhOMnQ4czjeruYKZkuUSf4Rexe4MUfLCRiFYLNfNW0I6FIuoO9aq +coRh5SevZUopr2G5sBPsYdvXsEfQT+UjG+FYu2u53zjkOuYfaKIhyCNw0N9T +2CUpAjcC5r8bXJHYuL11+kBtJL6nP1v/TCUKn5P4Z6w3HYXbzVN+DkdGY4qD +FDMhojE4PffFW/fhGJwNamr7Y2MxY0zV6AiKwzJ0c3Q1v+PwK2b5wPD2eHxF +Zv5tRGwCvt8+qD1nnIh9yQ++/iyWhKcqujtKaJMxhVyVmeNKMu7RuBfpMJqC +vzSq7o71pWIbbUHj/edpmERVeJDBPh2L7CnMn1lMx1xP968m+97AIymtAmr7 +N3CMp5xy+I2b2NSWzctKJAN7Vw4bU3Zn4C5x0+k8h0xMJMXJaNFn4Rs03s2o +OQvPHkoQKHS8hR+9903I4snGV9OW3IxGs/FW9LkG2twcHMD4sWfGNhcfPX4v +n00iD585Z/B4gDIf+xtK6ulO5uMvDCWy3V0FmEGtnsq1uhAfuKIhFFxQhHMH +Ot+ezirGmYE7HF81S7BbgFWz8vsS/NwiemjEtBQHdTdld3wtxXMLsXKCgWVY +a6iZWoCxHJ+RlYmZrizHiV9ibJLVbmOLYP8wjeXb2K5pj57IqsBpyVWReSqV +uIWLtS12txIXNv6ekWyqwnX7V+71+t/B9UutkiHgLn6pvHo0jPYeDjzxoYFs +4h4elHV+QWqpxp2zYguXs2vwb6Ye87rwWuzgRnfawrsOi7LGqJc63cdMrOcf +T0nX4/L/snBYSz2ubE5mUccN2O0S20nbVw1YuVF0/G1TI1ayCaWZZWjCMo84 +4pJDmvHNPvvjKQdascn23e3e6jbsbuLWrOTzCHflC4iKGD/Bt1ijPr+yeoo7 +R5/+/qDSiduDHvDKenfh5xpH6n7VPcMB8uhpyYFurDnE+t+ofw8esFVitN57 +gU/xIwa22y/xyaKpSHKXV/hPtM8N3Ytv8NpxClo9w3c4+NeF0g6iH4+dPZn3 +3HUAj/UNGwveHcSBvUqutvsfsOgHsaDjXsNY365CWmJ7BC+Wh8XaFYzhQm6B +r89sPmK2gHdPrihP4JY9OZGxC1/wvM3Q5xrSFH7pU//K0GEaS/iPvNcun8He +H9dohHZncb1R283/nOfwbc/xW5Rr81hFq9rlQeYiXn9tMRZruoQZ7lnfqySt +4PJDssheYRVL60/ez5ddw+cNe2vnLv3EVU2xPKGF69jIpzp3bn0Do1MsPd22 +W9jUQkz+4+IvHHGEuoE6ZQezbDy7pK37Gw9UKpqPSP3FdfRMaj/l9jCHxMqR +ZEkyQlziq9IVc3KCdMJYviabgnjbNsJXvUJJxFjcPMhpcYAwll9kfzBNTWRw +DvgtRNISVcMZ3YOK9MTLOzQjNwUYCY+WXFoPwUOEntdPOqdjTIQ6Y21I5QVm +YjLnI9NENAtxW35uMXqElVj5HmNBUmAn0tL3ZxufHyFoahtxtx0ncfhJSo4j +PzdBUDL+avjDQzTlVHYs7fIRfhMLGB0SICRDHWb/SAsSgXVrkpkeQoRd8qZ+ +5JNjRBBNULT1cWGiAL2n+VhxgvC1Cz/9WkmEMLB8lCb8T5Q4MarkQz4qRlRl +RSkVDp4mpDc37W3XJQgL8kOU3rxShNvD4RMeRtIETZb6cGmZDHFMMFiuglaW +CE3p1haJlyPivi7vxhyWJ9Y/t/r7NpwnSBmqO63egDgdtUGndhERkvlruaIX +CGJUbeSYZpMCkUo7PO81okjwx93XUmZUJo4U7ynymaoQxrnZK65tqgSPbczZ ++1LqRNlx86CUbg0iyrDWoMtPk/A5MJIqjC8SO84Tp5pFdAiOR5Qv1Lj1iPfN +ta47UvrEi+6B07etDAgRBvuGjHxDwsD27tqJNSMihLu1b9jShHghRcqXmjIl +9mL99uevmRPBonIVHectCYmKgxdus1gT4YNZ/UUMNkSTNFL1yrAl3AKeaZo9 +uEw0Xn8g/3rejugxoL/ELeFA/NO0OFyf4khs1tXLHaZyJs6M3tobynAhqPHB +vEfYjbBoDBTLpvYg9mhT3lz+7klYihU+lNnyJoYKz+kLM/kSE/lNN2Lk/Yh0 ++w9N5AH/ESLngim2X/gTKd6mAR8lAonw0lsmpIYgIj3Zcqvj4hUibfF0qBRV +CBHILT3/33gosfrP8UjKu2vEFCmb7oPfdUJexaQpNj2C4HiPPhZ0RRKYY+iM +E000weD/A2naxxD6qtE7L0diCdqTNlah9vGE/8FieW6GRCKsYoYp8H0S8Use +C0Y1phCtCTIxJi1pBOPwgWeZq+mEwpFUijq2m0R2hEn2Y50Mwvq5FBdnUSYh +U3i8QpbqFuFt9tm/ODKbiKOdufmHO5e4RW9aw/g+j5h7ZkPRVFJAiMThsI0b +RQTD+tOfQQYlhNbNV/m7nqXEgpJBcWtBGdHimcBFNlVOqLpQfjh3voLI/uDf +9+luJTGsKT4UKXOHkPBhcZwcvUsIjwm4dOVUE+/+2ipzBtcS6hp3djeD7hMX +L8qdV3tbT6T35m3y/mwgVK1qn3eKPCDKqwKzEgKaCCHmH3XzY83E7UcGCrZG +rcRozxZ77rc24uqtQCe9vEdEvdjFTnuXJ8SFCwOcA8ZPiYfUCeFW0p1ES7rD +1XqtLuLqF+Yd7uBnRK9dfPRC23OiqyHuVPDhHuKKgcFvtbAXRJzB8r0FypeE +Pke5KV1FH2F6fNIy2O410fhNVFcAvyU89B8fO0R6T/wPzbmR/w== + "], { + Developer`PackedArrayForm, CompressedData[" +1:eJwd2FMMIEgWAMAd27Zt27Zt27Zt27Zt2/bsjm3raq6TSjrv/zFBw3YV2wb4 +559/7gb55//v7z8ggQjM33BQghGcEIQkFKEJQ1jCEZ4IRCQSkYlCVKIRnRjE +JBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQVqUlDWtKRngxkJBOZyUJWspGdHOQk +F7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSlKUNZylGeClSkEpWpQlWqUZ0a1KQW +talDXepRnwY0pBGNaUJTmtGcFrSkFa1pQ1va0Z4OdKQTnelCV7rRnR70pBe9 +6UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnDWMYxnglMZBKTmcJUpjGdGcxkFrOZ +w1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa1rGeDWxkE5vZwla2sZ0d7GQXu9nD +XvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nOcZ4LXOQSl7nCVa5xnRvc5Ba3ucNd +7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nDW97xng985BOf+cJXvvGdH/zkF7/5 +w9/kD0BAAhGYIAQlGMEJQUhCEZowhCUc4YlARCIRmShEJRrRiUFMYhGbOMQl +HvFJQEISkZgkJCUZyUlBSlKRmjSkJR3pyUBGMpGZLGQlG9nJQU5ykZs85CUf ++SlAQQpRmCIUpRjFKUFJSlGaMpSlHOWpQEUqUZkqVKUa1alBTWpRmzrUpR71 +aUBDGtGYJjSlGc1pQUta0Zo2/C3g7WhPBzrSic50oSvd6E4PetKL3vShL/3o +zwAGMojBDGEowxjOCEYyitGMYSzjGM8EJjKJyUxhKtOYzgxmMovZzGEu85jP +AhayiMUsYSnLWM4KVrKK1axhLetYzwY2sonNbGEr29jODnayi93sYS/72M8B +DnKIwxzhKMc4zglOcorTnOEs5zjPBS5yictc4SrXuM4NbnKL29zhLve4z7/8 +xwMe8ojHPOEpz3jOC17yite84S3veM8HPvKJz3zhK9/4zg9+8ovf/OFv4w9A +QAIRmCAEJRjBCUFIQhGaMIQlHOGJQEQiEZkoRCUa0YlBTGIRmzjEJR7xSUBC +EpGYJCQlGclJQUpSkZo0pCUd6clARjKRmSxkJRvZyUFOcpGbPOQlH/kpQEEK +UZgiFKUYxSlBSUpRmjKUpRzlqUBFKlGZKlSlGtWpQU1qUZs61KUe9WlAQxrR +mCY0pRnNaUFLWtGaNrSlHe3pQEc60ZkudKUb3elBT3rRmz70pR/9GcBABjGY +IQxlGMMZwUhGMZoxjGUc45nARCYxmSlMZRrTmcFMZjGbOcxlHvNZwEIWsZgl +LGUZy1nBSlaxmjWsZR3r2cBGNrGZLWxlG9vZwU52sZs97GUf+znAQQ5xmCMc +5RjHOcFJTnGaM5zlHOe5wEUucZkrXOUa17nBTW5xmzvc5R73+Zf/eMBDHvGY +JzzlGc95wUte8Zo3vOUd7/nARz7xmS985Rvf+cFPfvGbP/wd+gMQkEAEJghB +CUZwQhCSUIQmDGEJR3giEJFIRCYKUYlGdGIQk1jEJg5xiUd8EpCQRCQmCUlJ +RnJSkJJUpCYNaUlHejKQkUxkJgtZyUZ2cpCTXOQmD3nJR34KUJBCFKYIRSlG +cUpQklKUpgxlKUd5KlCRSlSmClWpRnVqUJNa1KYOdalHfRrQkEY0pglNaUZz +WtCSVrSmDW1pR3s60JFOdKYLXelGd3rQk170pg996Ud/BjCQQQxmCEMZxnBG +MJJRjGYMYxnHeCYwkUlMZgpTmcZ0ZjCTWcxmDnOZx3wWsJBFLGYJS1nGclaw +klWsZg1rWcd6NrCRTWxmC1vZxnZ2sJNd7GYPe9nHfg5wkEMc5ghHOcZxTnCS +U5zmDGc5x3kucJFLXOYKV7nGdW5wk1vc5g53ucd9/uU/HvCQRzzmCU95xnNe +8JJXvOYNb3nHez7wkU985gtf+cZ3fvCTX/zmD38X/gAEJBCBCUJQghGcEIQk +FKEJQ1jCEZ4IRCQSkYlCVKIRnRjEJBaxiUNc4hGfBCQkEYlJQlKSkZwUpCQV +qUlDWtKRngxkJBOZyUJWspGdHOQkF7nJQ17ykZ8CFKQQhSlCUYpRnBKUpBSl +KUNZylGeClSkEpWpQlWqUZ0a1KQWtalDXepRnwY0pBGNaUJTmtGcFrSkFa1p +Q1va0Z4OdKQTnelCV7rRnR70pBe96UNf+tGfAQxkEIMZwlCGMZwRjGQUoxnD +WMYxnglMZBKTmcJUpjGdGcxkFrOZw1zmMZ8FLGQRi1nCUpaxnBWsZBWrWcNa +1rGeDWxkE5vZwla2sZ0d7GQXu9nDXvaxnwMc5BCHOcJRjnGcE5zkFKc5w1nO +cZ4LXOQSl7nCVa5xnRvc5Ba3ucNd7nGff/mPBzzkEY95wlOe8ZwXvOQVr3nD +W97xng985BOf+cJXvvGdH/zkF7/5w99jXwACEojABCEowQhOCEISitCEISzh +CE8EIhKJyEQhKtGITgxiEovYxCEu8YhPAhKSiMQkISnJSE4KUpKK1KQhLelI +TwYykonMZCEr2chODnKSi9zkIS/5yE8BClKIwhShKMUoTglKUorSlKEs5ShP +BSpSicpUoSrVqE4NalKL2tShLvWoTwMa0ojGNKEpzWhOC1rSita0oS3taE8H +OtKJznShK93oTg960ove9KEv/ejPAAYyiMEMYSjDGM4IRjKK0YxhLOMYzwQm +MonJTGEq05jODGYyi9nMYS7zmM8CFrKIxSxhKctYzgpWsorVrGEt61jPBjay +ic1sYSvb2M4OdrKL3exhL/vYzwEOcojDHOEoxzjOCU5yitOc4SznOM8FLnKJ +y1zhKte4zg1ucovb3OF/AVHuXg== + "], CompressedData[" +1:eJwNl1c8EHwYhe0VQkaUvWUkZP2HFWVEpCiJZKTM7MyQmU3K3ntTychMVmZE +ZCZFlB3J9109v3PxXpyr87zcdxz0LQkJCAimSQkIpJJOX58tcwY3jrqrVdgf +Am/NdgijHwJ58TjHGWIXQHySkEv+kQtoV1f2u7HtAprq2HmuOrsCUT7Fo/Mb +rqAmxNKZ0dUNvJRfQf/23YCjJFkcWZA7eJpuQKpE5wHoFG5kNWV4AP48ztm4 +c55gXKK/YuS9J+C2uOuacMcLEJUFHv9x5AX+PVWc+J75CJws2SotuuANXglZ +f8Nr3iChLse2/YUPEKgQz9LS8gX+vWIBv458Aderwuie136gI2LN6Y+CP1CR +MkhsTfEHzLSHoz3//EGIHsjmuRsAqNrCmsd6A0Bq/V24LfMYmALwJDL7MXjp +b3GthD4QcLIxtJsFBoJ/DI6KjbuBoFixPLzfPgj47IpM5i4HAcfhnBp9y2Bw +/4wL8fJiMJBRnmNzs34Czm88rKb9+QSc8jdbbXcNAeUlf68VEoaCGB+19Q8x +ocCA0Z5XizcMPB6M/Hi2PgzQKKqZJuiHAzviiOjw9XAQ6+r7SigmAnzpVs8J +ko4EqTXU2bVTkeBNAkHoQOhTwNXysGpVLgqInSch4/sZBTIvfT54mhcNxj74 +9XNLxgAFj1tKFbExgJcx3Ml7Kwb8o5HoSTKOBYbddsTUrbFAyRsI/RCJA978 +l5/hZ3GAYJaU9BRZPLD45OoT4R4PyoRsrTJX4oHnvF/AvTsJgDj64trO5wTg +4eglamyUCJ4NiHFkjScCq1xBqlnjJNC4LJkuOJMEvi0F/A6zfgZox0VDWDef +AXvuEr3vAclgP8W2kprxObjA7uj9rOg5+P2WgjBd5QUQkI4glpl5AeZ8hTud +/FIAbdgIqS1vKiicFyGX7k0Fnlyh0UtuacARMvxMFkgHB7bLe3cm04F2synb +rbgMEMQkyK8nmAnUOMGxnJBMkBDqpy/9IxM4bO7dpNfNAkXe7p80XmaBJ652 +PV85s0GF5HjIn4hsYCIq1hi7nw3iusxtm+7ngOsrP9YiZnIAae84Ic21XDDE +uvlabyAXkO79X0crDzh+rdC+05MHGMg8oL52PtilMDm6OJQPzhI9TzcyLgCX +Iqji4xcLwH2/0jbqh4VgruhM0DhJEXjVEpxF/qIIaJHV36g6VwxOrgfafP9Q +DOzPyBx12JeAPrfIIWOGUrAUU3qiub4UuLzj8KWwLAPlzst6eozloG+x+lpZ +Vzn4zky2LOtXAbQNtNyD2CvBdovBVqpPJTCawW4bM5WAMHzfME6tCji8JgXh +JVWAn8WQZ5mxGqSUS117418NLkxKex1frwbEI2dDd27XgGV6nRHfkRpwYpiO +6vWlWrD3J1iuuq0W/Kmz6vFBdWDluNHTM011gGxIsqYPvQSFhwajzu0vwawi +1YaE1itQ437owTz2ClCw1arK330NjIW500q2X4OFUhXVgPB6oF02cO8Dzxsw +L7HTWND8BqxFCN/lMW0Azo8ISa8SNoIDTZF3+oWNoCvKSl/GoAl0d2Z/ZiBq +BtaGpziI65oBl1aiBceDt0BaxLC9+UQLeCTBeJD6sAX4lqhMvfzYArKbal6x +KrSCfrMssZHMVlC8GCzxm7INmNkTED12bQMGbR0oYaENXHqRNHb+ajto6NM7 +4dnVDkgi957bwg5wh3T6wamXHcCzqP1nimQnILTlnv1b0Qm+y5vf15V8BzY5 +5Njz6t6BJH7y1eOwC5CHa8lnd3UB1fvso/aG70GGadNB6NJ7kAYk75A86gav +An6JbzP0AOPMTELH8h7wLntuK0ynF0DfM1lGv3rBkVcj50ZSH9hifk5jp9wP +jHrTombX+8EGZ47e3ewPgMyzNorOeADUk4tRHVEOgjWVR1w59wZBoUZqcEDv +IEiK1ntcIDEEjC5Hl/MkDYHfvaabBEdDYPLtq0g922GA1h4e4/o0DEo1L173 +vTgC5hZ7Kr0aRgD1UlANn+Qo0FyiM4osGgWMixd2Wvk+gmPCDhpj2R+B8L1Y +m0neMXDiftPUTMEYuBHuGL0nPg6crYjHz9ePg2IGQfcy9U+ghN0px2H8E2Ds +3iGMvT8B0np3y/iJJ8Gr/WQFlfRJgBQq6g7AZ6B3IqXYeuYzCDeU4U8NngLP +hfprKySmwei2rEP99DSgTNjcHIz+AkR5bzrQqs8A3sDdyxcIZoGh7Cfrituz +QMrtvat+6yxohY/qFfnngLZacZtHxBwIkv7pxLI1B6YXUvb5b88Dio6Gxeq+ +eaAwskfbDxYAmW5xZWDFAqh2XLi5xLcIyL1ijkjSFsEHk8zv6yxfga2GYver +xK+A7S5ZlR3zEiBidWXlfbEE6NiEFr5zfQMh6TeMR4u/AfHjptLbssug5TFf +6u33yyDBfFJE0OQ7YAyPXr+9+R3cNfjlyBH1A/T00la6i66A2gRwJuDDCvBo +3p7Vc1kFVFTT+ofsP0HEbndoWu9P8I76+4lLPmvgxts1+pNS60DK+dZZ3p/r +gNt7fbzV8BegppioEX71CygLJd0dY/sNfPwKnT76/wYT+ahG+vtvMIuZrhJd +3QBpihYj2q0boCd5iIxXchOc++J7OiFnEwQm0aZVnNwC60yddsExW+D0cMUw +/7FtQJ886ZgVug2kV2P1KCl3gPtC9Yx95A6w66TYWmDYBdw9r/u9UncBh0Yj +q7rwHnDLvrdlVL8HOC2oV99p/wGx9ZHEuQt/AOWUQB2J7z5oTDy3fXjqALy3 +OZDOazoA5PlFlnQWf8HFWXBgSH0InnAnr0fWHwIWnczOPtt/QJDNLlKM6wjc +Z3463zVxBOpiyr0ntQjgxA95bfIyAthbHBPjTkcImQ8Iu+XcCOE6t3Gn0RdC +GOHYVPD1IhEkMktb+llHBBk48y778xPDi6MtJKXPiCHTZ5FQf2oSGKnypJYm +iARGjJN2WPwjgZYkmVfiH5FCyxHdm2UHpDDP3EKt3ZcMCpz4NL5EQg79Jjo0 +RaLIYdHcMMpko4BG/zo6bhZTwF4B2tuOkBIG3XUn2RihhBQRH3m27ajg+MmB +rKhjx+C3zOqvI6XHoAmX6fDkFWoolyv7oX6fGj4okO0MKaCB47GkoiZGtPBm +pwCxLs1xmJ+vNOnx7jjcpXx1748yHTxvetVgJZsOstrk6HOS0cOLLe++ZN+n +h0LWom8DR+j/v39AMwgZYFS6lGxSMQN86CxL8JX1BFQNlgvqjTgB6Wdp5Y0J +GCHf9fZfae6MMEe97nPRb0bIw9Ef/tSeCQqSNf42XmOCMWsX73E5McMQw5Kq +jR1muHRya2vejwX25wV1E1OfhO8+J0jbpJyEhH+7SnnFWeH+38HTmh2scC9D +YGn9Fhucze1aED5gg84+x+1oUk/B5bkUo0ql03CoRPVI6PtpWHGLE0clssO5 +1hzf3QsckPjYQIX3PgckWLIxOF/DCVN2RJo55Lhgqoff94/JXDBU3aqv/4AL +prz9/PGEOTe8wL3bUfeeG9ZJvS9uPccDpZiVVi9k8MBJe361K7S8MFqJsXPD +jxcalYV9lt/ihfMrB7rn7/NB0vp/F/cW+eBItItOjDk//LfZp358jh9asusF +PrEQgIoGHq/JvwvA1UvGpHlOgvDwI9O246EgFNS8G+AbKQS/jHMzzXEIw3mt +7ajSWmHI+JhQbVtHBJ5fLyAa/CECSTNuMulHnIHBVMEXYiVEoa2w+5eccVFo +IuBWmRkoBic4Bk9kSInDRzcoVl9+E4dXrJlKCDIlYIS6cbGm+FloGTSv1BX1 +Pzt+SAb+PgtZzuouRlyThJLu47TrTZLQwIThzRvBczDrJlQ5jD8HL5TJGncS +ScGAb/4UPC5SUOaJag3PshQsT7t/ctxUGtYS9VzV/SQNB86qfU25KgPLFemL ++kdkIBUryeK24XnYGbegJPD5PLQ8NzjiaCELmb1en15e+59vP1Nm+MhB5383 +9wuPy8N/xDMtrHnysArjfFKkAIvytR8ETCrA7KM0vWwvRWj61/m4LweAisEF +SyLvAJxOeZ381gnCevzZwYAbQelmfuV/owhemO51+BSJoYaQrIcPnxI8voPy +3wYpQcPgiWH8TQlGDPSZHNNWhqSyzzckapRh5/bVhIbTKpAkMy6xMVQFBhzo +ZyjvqsAeB6JqYxtVeP/qY0HGKVU4bYHq/PXVoFnKZfuKXjUYNJzXWalxAZ42 +1IlJfHcBhn4oI3e4qA5DRr/2Xu5Xh8kW4kvqhhpwIkOn996sBmSXOGnaY38R +4iDCjUcEl2DEwwaduMRL8MGDr2Xc4prwa21vF+rRhErksn3/7mnBqA1tW3ca +bVh6J2C4uVYbrtQ9r1+5rQPL3rfeZDp+GZJb1PgZtF2G711+eTZ76sLIixTJ +r9j0YBsNfdRbLz1Y+OG4EMm0HuyeamyMU74CZTlubngUXoHM5nEtHfT6ULnx +qnOQjz7chQMF71b04bColdELEwN4lbNplHbQAAZK9r6XUr8KFzMOIOvbq9CO +4WbagIIhLJofqrKuN4THS+4Xbyhcg8ftS08/fnsN2uZvkglpXId34n8O7wxd +h1bMJ4wIzYzgMQ+5Lzd+G0FB+zNcLE+MoUST2WVNjhuQfqSKnvLNDXi/XiTK +xvgmLG9dtvT9exM+uEzVaJZjAps5K2UFLt+ClJF05Et/b8E+2rT5VxWmcCpF +ga7W6jZkjFev+UNnBoeszhR2OZrBkwnb3waHzaBa9M1WHllzGLhiP9yTZg5D +k1ypxsnuQCa2DyWGzndgMf+MjuHsHQhzGGYW9Szg7dSp/BMdFjBU5oPGb/m7 +UJGirvVp9V14g7/r4R8xS1h3bIrjQqkltJyp/hYgZgWfSqobt1ZZwZ+FYtZM +8taw/wuNY0y7NTxoZ1a6cMUGan6NOaExbwNplj2fF7ndgz+Sz+7409rCvR9n +380V2cIJtVmuuYv3IY+vbUrCyn3Yt16hxRD3ACb8U+t1BHZQ8UmgQtcPO6gV +W64qlmYPX3YLcTQYOMB0ypn3auSOkN6M4PCTlSO0vD/NV/DeEcJ1+ZBGUSeY +N076RiDeCXqYyeRuHjjBryDXT9LaGaoTkHxeG3WGxNRjKQoXHkJHdScCvtcP +YeTciew3Yi7wjCehO22+C3wzXDYqwe0Kz4RtOUlkuMKmjVv3OLjcoG60kyJt +rhus0WUeojvjDi0oCX3l6twhna0kcbKKB3Rq84lVGfGATATifVrWnnBAMr+3 +658nlNvg4up97gUpTnqN2so9gtXUVE6Nk4+gl1jcv4/+3tA/RYHyg4gPLFzI +ymn45AMFl//dexnuCyM9DYPHlPygD01zufSBH2QONGPdNvGHakd3vEKb/WFX +t1a9OU8AHKT/ZxEVGgBpCM8Zn/4dAIkHrvWwmjyGsnT+MLH7MUSBptFp8oH/ +76HatnJpIHwkI3sUyx0EUzWpXqQ9D4KrJeH0rozBsE+vlkE4Lhi27W2X9TA8 +gTMXHxvfT3oCQUP55mn2EHix2qzzd34InCcJC/orFQq3jcqv6XWEwvW8JyME +RmFQWi6TnGc9DLLEs7m/DwuHctEOXJRCEVCIRcfvT3cEVFv0i65wiITc2esD +yqxPYe5M6YWud08hiTy933WPKHhCYCOJSjwaKkwvyf75Fg13pwd1OQxiIP4o +fsW9Ngaa7UmMM56MhZ6PuqxJfGOhn2z0hMFSLByqLjSkvxIHS24XGWs1x8F4 +/bh6OvF42Fw3kuWYGQ9PY5PnXkwJUOl3bSB6mgCrHYRz+sgT4b1zhy9kghNh ++mKZUzhpErREqvFToUnQqbB0BB5/BvkPRZ1akp9B3zejzO78yXDmgGrGpS4Z +fo/jv9Z/8Tl0eUHnkzDzHGrOkPZ98XwB2X2vyrSypEA9ZnmhK/Up0GT7XXyu +aSq0yZj/PkSeBjvYL/P8qk2D+4+6mpit0uHurHz3rVMZkKaGcG569H+e5mEz +upQJA+PF1NyLM6Gynkj6BE0WbCdRy498mAW/cHOdSf+cBU/ON+mcVs+G74LM +A5lqsqHi3/BnyTw5cE1/r6w2IQcK0taqeVLmwvVRifM7/rlQOO9+g+JBLpSf +E7a/4ZEHMwPPalns5UGhd89qrR/lw7inAi6ehAXQbaWxqTi8AIoc65ekZSmE +3V/mZ17mF0KurwqXXssXQY47NhYCg0Ww3epYCpNtMVwmfTb2grwEirAIefYW +lsD8Hw8sm3RKoYp+OkHITin8bRMug3PKYI5/lfuhQTmUyXV9N0FRAZNO3apc +ba2AWuekSwpwJcyjbH71NLMSLoeu59URV0GJKatV0XtVMJ2dXp9w6P/sRvlL +SbEaytsGSu0XVMO++JYZRZYaOHacgY4prAayLXyVTzysgbQZs+J9LrVQJ5qY +s2etFgo3zLzIuF8Hj5OPJd5aqYNjHXdtmOxfwhyiwOFPmy+h+grlv3rvV5Aq +QjSgl+I1bND9Z8aV/BpqpVAw9onUw5X29aD5lnqYPyXI5HHjDUzIq8/I2n0D +N4hPerskN8A7d8kCyGAjdLOLIbf/2gjjbU6stcY2Qdo+4xRWlWa4cqWb8OlO +MzQ8lpstXfEWajuWv2c83wKf/PFraEtqgTol45pVf1rg18tsSz9NW2HgxIj2 +k3etcPltYkzo2TYY7DTLTJzWBv3QyRQS6na4sxJ8NtWnHR6DFmoTv9th8KvN +jF6bDrj9s8g2cL4DSj43FqW/3Qn1hKQHgr90wpoXfakbZu/gW+mPF+8tvYP8 +GhMbB/ZdkE7LV6BpvwvStlJ8eRv2HpKx/ApiOd0Ne9cD9seruuGUQGICk1bP +/56lzfP1Ww9MfLC6djO0F94SaeiIFu2DjSP760mjffBLwppyqH8/7H66deLR +2Q9wrr1KM2TxA9z7p2fcmToAiR7b8hSIDkJavbcj7E8HYZIP7+TI+iDcviqb +NnZ1CJL9ixmVahyCGo+fh/3hH4YP111Yz8cNQ9HJ7fN7BCNQNDh19bLzCKTb +yEq/tDQCb/Mep9kzGYXj47OGtmOjkIRKbrdS/yNk8H82NDX0ERbXi4scGYxB +5chzZcITYzCyWdXR3nwcPtpd2JpZHYcBhn9EYh99gqFk5g8TaSYgi3xsNkHO +BDxq0yT+pjgJ2yZvGN/6NAl91OwWPTw+wxsG63d0T0/BX3wkTLvtUzDHO/zt +E4dpiIqkK5g4v0CGmeqGhuEvcMb1l2Zs+AxUgueKr/POQj0SxepngbMw33F/ +gGlpFgqYjFjMaM5Bu4ktdqLqOTiodZ4g8tQ8nHn273ZEyDzUqTi/TLszD1sb +NFL4rRdgjxj/xy+TC9Bt946O5pVF6K1gxOrRswgnay+Xe6h/hU6ybxdMOr9C +LdeUbRmNJXjaK+8JU98SNGX7mE1z9Rtkq+xtPTvzDXJ5XuuOtVuG+r+Ojqsd +LUMq98rbNxO+Q8sK070V0R8wb3Ygjqr7B5zosrHos1mBvOePs2tQr0Ke2dNb +MTWrcK/LIqvF9CeMzVOz/EmzBv++HaeSaF2D9WlCK2ke65D9sYqHMNsvuDqx +3ifl9QtWlvIeeU39gl7M8jbUyr+huolE1XbBb0jLFzyqRr8Bt5s5uCh8NiBz +n6zs5ZUNuOJsxihgsgm/+j45ljGw+b8fUvW9v7AF/Vnn79Q0b8EPZzqBg8I2 +fOhnK0RTvw1tlwaM0hV2IFtjjLX02x14XVHz+pz6LnRlpU16NbQLfzUtHHXf +3oO8dkZzZ37vwY/NHPu/gv9AieYmPzGOfUhBrce1U78Pg+8ZkJoZH8BF0rAx +/78HkG9/qdE+5y9EV1MslS4fQhV2blKaw0Mo0Gl9Y7XiH2Q1p6nesTqCJCfH +XHjoCdDp72nye44EiNBYtZRyhAB5kN3gvCtLiGJiNqWZ0gmR4YHnrAg5EXrJ +l2hT40yEcMSpe02zROhNEe3H61eIUYd4zl5sBzGKMDB89EiBBIWkU97hqyFB +tUYK9GnipIiJ+JzuTikpSmE1UFcWJ0MXnO1CoqvJ0GYEN/WmPDn6fkpf3reD +HE1J586p6lMgAyPai9cXKJDXkBtPnzslYqw0T315nAqZtZcbnymhQl2b1p5Y +8xjSN8lMpvh5DL0Nv/sxNZ4aqWk0DjEgGvTXoPllwCoN0g95KUuYQYu8Xpom +FhkeR9ftEgcvUdChhIdXzVat6ZDKHS+P7m465OrCZbkmRo/6SN+02iTQozqZ +NS/1Q3oUn+w9mGjDgHxlxK5bjjGgTaa+/Xb1E2iz5CxBa/0JtHD1CvkDCUZk +qWpB87GAEbkxkztQ8zKhd/aPf/BkMSGOHrJsYR5mFPKHlONcPjN64Jege1mM +Bc2ITMbFvGJBCWqxVccunETTOQlfhz+eRCfIfT7/uceKOMku1yUQsiF/Iima +16lsyMFOe89D8RTS7HtK+XP6FNKYLL0qEnQaOZ7lcdIQZ0fPPyv63JxiRxNa +Kty+URxIhKoyrkuNEz3P936md8SJHhQ0qbHe5kKhbUul7S1ciEhWpqeWjxtt +JE9L7odzo49uAj1Zm9yI8KZ2X70pD9JhcXqn18eDsjOS0lwBL/ryMi9atoIX +Tdb5y+Tz8aHAWp7goVQ+9Me0d6SbhR89bpP9lJHIj9puL5feZRZA+UMuw8Iv +BFCw8U9JQm5BxJanyXlYLIjOcq/ePCsnhF5I8rOWvxdC7/Mn9sNMhJF8nzDb +p01htPZAnKIsSgQ9EOscZBc7gyRS7Q7xwBkETGWThV1FUc3nVvHfHGKobkzn +Y1mfGKK9Pifs7iuOFI18r1tKSyCa4gessWsSSKtBaybs2lnE4OSXRPz6LGri +zNhoOyWJlApPBH4MkETZYfJCl35IojwdNSZRw3PoGRQbjmw7h8qyy6DXOSm0 +M6YWTZwnhZLtNI3l2KQRzRvqCKE4adRF+Nd5kVoGkWfPt3iHy6A2D5FQomPn +0ZUZCZWQqPNIMDR78DSTLHKL2/L7mC6LqIU/UXackUMeRH3PDhrkkAz7q85o +XXnUSZeQm7Akjyz0RZs4AhSQXN8CgyqnIsoSShRgaVVELjJ+fyqtAEruVKUT +pIOo32PPNaYJouCxS29JHBD6IVBFk8qH0cGjJgaHLxhZi78O07qshKTVxreT +KpSQTO48heAJZWRgTaRD6amMMI1cmtacMsp1URb8q6WCmFhD7ITrVZDvZ6ZL +80KqyPl57opMiio6N5k3J0WnhvImLBlXQ9SQlKJMnz3RBWRamVnd53cBrc3U +jTITqCPXL4Z5poHq6EZI4lEdpQZaoxIVlojXQFOkv0anOC8iXk8L/uGKi8jz +4HIFj+oldNvvgff8xCVkTMVDK+Ciibybtc2IGLRQTOLp1cgaLWQvRVjy2Ugb +icgUspIS6aAeSxpFrgodFKWalqJmdhnFq9peDWfSRSKqrrRUA7pouJ8k0F5d +D73IYw6JKtBD78cYNDeorqD99NArBY5XkI9j78OGT1eQZ8rHCaCqj4zgeUKF +Sn00U0/V3MppgLKJSOBCrAHK2XInLSe7iuYZ/A4kfa8iou8cd/z2riId84Dp +fFdD1HFT3rV+2xA5fExIeu9xDWn//su89O8auiVz9zxf6HV0Ub89K5HRCJX1 +5Lrq5Bqh0tG3SrdljZHwYDbZTL8xQhV2KnPWN5BSZep3L9KbSK53wb41/yYi +P3+qs0fLBFlbwztlWyaI6MhNxT/rFnpzdHHlhr4pOnzfZG9Ifhsl4ir70Jbb +6K42cwwZNkMtHPcL/mWYoUkOxUp5YnOk8U1DtNPGHLUIU6yVD5ojTrlwNlLF +O+jHqPmZsYI7KCUq69dZFgvU+GMmji/MApUXXExsObRA0bfejDO63kUDXb+S +JdfvoiqSRg/BB5bIifmCF/mqJdrcuU22YG+FCqJWfvZuWaG9Ofxg1McaOfYU +Cx+nskGNcQcw+rkNkvvALmUjeg9NvW8nL2+7h17/4DrnamKLrB1rs4f/2CK3 +Cb6uzy/uIxkn0af5+AGSMXpmeWn5AUpyN9D4nGCHbLvjqh9esEdmFgS1Ivv2 +iP4lxfLJGgfU+Jrt7Rk5R8TRfpmD4Lkj6p6ubWX+64hyRGSFfMydEDmfHbdy +txOaQL4DjlLOiHHseBFbpjNqz0WPdI4/RAQMufdPBjxEbM+s98O3H6KtEBOS +ugcuaDFEtDN/yQUJ7kZNOFq4otL8p8p8C67IjHv8zrClG3o1zXHs6YobYi2K +cLZycUcjOdLIicADGfGVPW6J9kC3P2e8s+bxREoJnqSPXnsirXXealp9L7Tl +Olgvu+6FlG1HnxyLeYTSXyUSZ0p7I7d7YWnHpr2RJ4PaRcswHxQQnerfIe+L +FBPmdJXXfFGkM4/uVr4f2u66YHgg6Y+o/O4zVMX5I4YJm6eF2/7I9LuX6vqN +AHRC9ylRfFsA8pdmX8kSfYwk0gSdRZ4/Rk7qvBaKFIGIwYxsfsEzEJVZGNlJ +rQWi5qt6s/KWQYir+siFfCYIxVmFvyu9GYzySR+MKHwORux5PUdtt56gK7nj +LNcXniCPOqRP+SAEKfrm6K/uhqAJAXHREyGhaOGc4N1Y1jDkfJi95VURhk7J +Qd3Fi+HIum/x9vzXcCT2+HV0+JMIFDSw1bUhEoli5DddJEci0U65Ytgtv6fo +5aVC/yiJKJS2mGIxtRCF2He1em6nRiNrpuO/kkVjUBjdU6nzT2MQ2+9X04y/ +YpBMfdh9FcNYdIX0VXFfYyz62RjX0CoQh66dPGQ4Gx+H1pRMvQWI4pHkUOmp +2ofx6Psjf4flb/Eol1fSYMQ0AQmUEREGf0pA/hO3GGkNE1GcK3Ok32giijz7 +tu/HtSQUd+9YjvlUEvp7Cavv3H2GYgPKbzT8eoaG/17aavdLRvbr4Dkvw3PE +Hf1cba3gOWqdYronp/wCZU5/2mT+8gIR5BvpZvimIJOUS1bfeFKRv2FGPmlv +KvIJzSChd09DFHfJ/3EJpiPHcdU0nc/piPFMk3dFfAYaOHfqq4RQJur14OJv +DM1EoX7zZWErmagtauAwTy8Lzb4TXuR4nYUkv608JuLJRrEu9Xq3o7JRT9Ak +m9ph9v9+okreYp+DNAYLk+bnc1BmfUZ+g3Eu2tnVtrs5kouU6Ox7h3TzUDI1 +8S2JgTw0fyXWNfhKPrI1Pxz4OpaPOF02Y+7cLkAeLqaXaFcKUFzxz70Dz0L0 +6mERHaYuQu6mz1xXsoqQNLl9IJNiMSI+YXx8eLwYoaJ+2/MeJUin38HK6HQp +kjqiMLzcUYruh8TQSjiWIfOJC5v0XOXIzn16jXa0HJ3vanmEIiuQW87ZERO+ +SvSqV5eiP6gSldvk7Ht/q0S1lz8weWlXIVKNQKbhmirEkHKHPJ69Gmm1zGv3 +hlUjXSu1tLC9auRyJo58+l4NYoGlW6PTNWhFxEw44Gotipd5+v53fy06edfQ +UFazDi0V36y7012HjB8elwrWeok0Rkj9KwdfIvZ3Zq92jF4h+QY1M9vFV2j+ +g4kjx8PX6DuJ/WUB0nq0OvNnNPFFPaoq/3U1QOoNOlx7mHw48Aax8Bd95XRs +QErhaYT/TjSiJzsKUuUNjaj1wWV1DesmRFCdGTXL3IxYbnKvxPY0o6oWvu6H +j9+i/pzJeF3OFmQi792f5NeCDlhHC07PtyBzL72QNfVWtGOjwsVW3ooq1N54 +lLG0IVIdhx8vA9uQW1Q134WNNtRgZydubdGOOE6K2oiOtyMnTumoXJ0OZBRe +8GbmXQdiyam1XlPpRHRDw05zrZ2IqoearUf1HbJ7YETx5v07NBL7V6ddrwu9 +Fie12fvchc4wvlN+YPse+RU/kD339z2q/pd50jS2Gz3zOX+GRKQHRb1ZFZN/ +14NKMpVuMlj1Ijrnyw/yKPuQ4m5HCkVVH0pX/1Gob9KPyiOrJ18c+4C28Hei +P80f0Htxu4BgtwH0ceVtjijrINpACT/VPQeRSb1hWfrnQaRKckxJWWkIlY85 +6IOCIcRL/mM+jW4Ype2uhrp4D6PT0hFiAz+G0ePpgk+NN0dQ3h7pqvbACBK9 +cYc/+sIochN+kRnfPIpuaHyZsFX4iHK/blbw1//P9MdWHxXGUP8tx8KIt2PI +54FW+A2NcdSy2xZ5dXgcPbcUz4g0+4QER3l5mDc+oaZTHD9IQibQi+pzKnac +k4h3aHzNomESKco1nP134zNqOizquvLvMwrqDNt2yZtCXz5YBPjqTaM41cdv +go+mUZBU5qPs6i/ofIWo+M97M+hF/aDVW4ZZJNTv5vraeRbZWO+Pr43OIraG +2N8O8nMIiUS6XsqcQzpM5+6FUc4j5+UKfuQ6j5JKqG+4LcyjXWNRGuWrC0j7 +4peMsq4F1De3+6EXLqIQMu+6kpeLaP3awIdb576ihfo/exuVXxG233bzPreE +THaPbR57tYSeyCsH1KBviP1Uf1Zw9zdUQpirmnh9GdUG0XZtLy+jqCo9ggaf +7ygUmiv8YfqBPpBXyXdW/UDkWsRY+soKml68RmWytYKCWOem9VNW0SBgC5BQ +/4kcS6dUKbd/ovGwJMK9gjW0lxPFx3h7HQkHpl9VpPmFggY/x5y2+4X8255P +KQz8QjXP+lNypH6jMsm0x3df/EZfKZWeRRBvIAunFSlBhw3kYdpDoT69gYqO +E3Ls6mwive7Gj5daN9G5Pd01HdktdIn4ZtCJyi10gZWIqeTMNuK8eNafv3gb +9YgvUyWc2UGKKdnmFJU7iMWm4UWC7C56/HtVTqttF1G5T4phvT2k+65oKnBu +D82FlZ4Wc/uDdl+wAl3afRT5cozoqGgffdnTr7ty6QCtBjqz3Fo9QAZvIhxk +4/+iy25uYbvwEEmWlNXXrh6iqZnA2ScZ/5DAlq3dk2tHaHhYUHKJggAX5QWd +qbchwCVcDqi7hwDvt9IO8UoQYreDpRdjiYSYZb0+b/0fIa564qbrY0uEW86c +0476RISjLMULJS8R46S8H91ujcT4R4SKi905Euyylvyev4QEh/w+fqlSgBQz ++X2YZM8jxZX2Bu/9BMhweOVY+7diMhw0+Pq79TlyPCZI2M7QRI7dmVc0DjQp +sHP643npKQq8/lbPacSREgttsmiuUFBhG94sEJtLha2inidOqh7D9msB3NNL +x/Dy9QqJiqfUuFfGNNFajga/HRqvZP9Gg50nix98f06L3Y12VRb0juNSNWsu +BjI6bBc5QrJgSYcPWR/a/e6iw4t/mrs0RenxweDg0N84evxS7GIq0196PKql +GJljzYC5Y6Vu1X1kwK8ozvPeUD+B+wU+aWfVn8D0nOZ5LyQY8Srr3rVrhYz4 +S9LM6iIvE97Uaja8ns2E80e2vzbzMuMQX/IbYoXM2DOVfKJWggWvJnHuWr9h +wf4ynK+NL57E4B57XNrESfzyr5Cjhj0r/h1GWXefjA2TnqRHnNlsuKbrn6W7 +8inMubVBHr54CtdLuT62iziNz+dFvpE7z47p9n5wEH9lx+HZIiWLzzjwYD3X +yvZlTnzgxH0kSMqFn67F6JBZcuG0EG9K3i4uzDpdVBxxhhtHn1z8oxPHjf0n +Fhk8DrixUO1Fq5PWPFg7LLoBfuTBBkdCUrsXePGe5dOLV+t58asrFqN3Jfhw +gUI1rXwhH77lwBM7x8uP20o1jR2y+fFu2bHeTV4BXEy5X+1fKIBP145dFDor +iAt8mc8dvhHErb89ghguCWG56fL3jyaFMDUB/aG2gzB+Lmyd/IJcBPfLtUR6 +5ohge7ObmkcqZ/AOa06b8tIZrCClcP/6U1H8+u4p5etyYnhoobfX6JsYtr6T +xeXyQhznb51aar0igbPKr0uUk53F37mo/lRZncVsLJxx++/P4qPpatYkMUks +k7pNE58giWvyhHUJ/kniql+tPD/vncPLztnn7306h60uBeUGXZLCYWV+27pN +Urhvsol/Skoay4oZFiqUSePVr1fu+wjL4Avia59fFspgF7a/P/6InMfUGUH0 +NyrP497UdMMVOVkcYxKg29Yhi+tox8S3DORwIId2S9KSHLZ94PKwxVsew65v +ZqHMCthPs0mPrFYBuyYYtuobKmIybv+1J/uKOMiRYKIxB2B+Us/Lx69A3FbS +9vs5EcK0Oy9VPV8j3KzmWtrjjHEoT6LK2Ekl3MUvSZ/hpYRfdrmvD3xRwm6b +L+M9LyhjIyFZ1bJyZeybX/zJm00FTy4d9OyHqmCz4gBphX0VbG6aMXnZXhVf +ppyQ0fmqiknd73hp3lbDpxcls0ym1PDqQbrTC5ML2DvlWcSp2QuY0NXFec9K +HftaeiRr/lbHLcfJ7ov6aWBi3uTb9XQXcVVUGCFt/kW8Od5AcBFfwm/bRZSf +TF3CAik+K8s+mnjLtcA3llcLJ58rms/u18Jj1xyplL218U7ChnmshA5udlEz +a/img1PggNxy7uX/P6enWyrWurjnr6u6N4se3i+XIzntq4d7s7K0n3/Tw8Oa +E19orl7Bkn/cqhLar2BISkiqeV4ffzAvdNcq1cc8jw3ZXvMbYEEmjpDKbAOs +0AL+XOO9itl786wGCq7iwyTDFHzWEF/ucL820GiIbdlD7xXqXMM1FTETO/PX +MClxCdF37+v4F/XPpopTRnjY9GeY71sj/IOH5mWEjTEW6amPoWO5gadGPydf +6r2BOX+WVLsF38QCCWfMPl8wwXUEgYfN1LdwqHM4od3kLWx1dItbsMIUezOp +lZ2NuI19BCMYHGTNsOzrpxZqZWY4zV/VXkPQHIvLBZIW55nja7cmPmYK3cFp +1XPxFpV3cMdmtZgYtMCexbFHigMWuCedh3rY6i7+K2ksJ0NiibXI7kRUFFhi +pdoPztFXrPCd31rHhIis8UzIWfuhems82CNH8t3DBudOd00P4Xv4vSQt/Tat +LTY/8YijbckWPyZaulnRdR/z7S5YKVQ/wKPBHenL+Xb4hnpDvka+PSYebvv1 +s9IBN3MvFzZZOOL3Yn8HtLcdcYHo8zLfp07Yn/312RpRZ/xG0+a63ogzHnh9 +K7Et4CH2+HlX2UfOBZ9zk6I62HXBFmWMD5tbXPHR3L6Rfrwbfoif+Gs6uuOy +8lQxNSMPbGQn17mk5YlDjDi8FrW8sMmcHOmB0SN80sPcduuhN65YdOgpSPPB +zFmuqvtjvljXieaXA50/dhqN1RJv9sfb7mzlKq4B+E/84yyl84/x6eJTNzsJ +A/Hm7xfmHp8C8VY9QNQNQZhXfFYeFwfjPP4Vgan8J3i2dESuoSoEr1KCH229 +ofj5sfSN5e0wrBQbry0lGYHfRk/p1PtG4mqza8O5M09xPpXYIynDaPy3aZjQ +xDEG07U8GutXjsWVQxZzFZxx2EdsJ3WAKh5LWuXIUJAk4D4FLTdV6kTMRlnY +4cWXhJvKh8Rf6zzD6o8JIljCkrGKWH9x1/hzPFWGc44ppuCUl8xnQG0q7hfu +putWS8e7UdPdCmsZ2LKsgJZtIhOHTNzflu/OwisvQkLvv8/GcUJKCmXjOdiJ +bDOBdi8X8/75e6dKJB8PJZf/6HEswLIlxTivtxDbMPCUZIJiTGjgJSrTWYKv +5ZIxblmVYVul5Pow3grcWXG38LZvJa6PCLRHXlU4trQlx/JJNT6czNdeyanB +qOGk+N5ILR7lNGboZnmJK4jY+SodX+EnH/nNmWdf47zBv/w+1m8wUVbgqB9F +I7ZzEH32saMJJ37pUTFIf4tjikNL3XpbMAPBH+Zbn1rxTD0X6/5OG/4P75K/ +0g== + "]}, {Automatic}], + Editable->False, + SelectWithContents->True, + Selectable->False], "[", + RowBox[{"Max", "[", + RowBox[{ + FractionBox["1", "1000000000000000"], ",", + RowBox[{"p", "[", "r", "]"}]}], "]"}], "]"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], + SqrtBox["3"]]}], ")"}]}]}], ",", + RowBox[{ + RowBox[{"p", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", + FractionBox["59441", "162924191"]}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"\[Phi]", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", + RowBox[{"-", + FractionBox["3", "25"]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", "0"}]}], "}"}]], "Output",\ + + CellChangeTimes->{3.752474290478297*^9}, + CellLabel-> + "Out[739]=",ExpressionUUID->"d1fad22a-6e90-4de0-a758-e28a9b87e6e0"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"eqsfin", "/.", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{"pc", ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "15"}], ")"}]}]}], "]"}]}]}], "//", "TableForm"}], + "]"}]], "Input", + CellChangeTimes->{{3.752420501750289*^9, 3.752420529540105*^9}, { + 3.752420699907206*^9, 3.752420770904365*^9}}, + CellLabel-> + "In[668]:=",ExpressionUUID->"d7bde1b9-aef9-431b-986b-f111fb067fb9"], + +Cell[BoxData[ + TagBox[ + TagBox[GridBox[{ + { + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "+", + RowBox[{"0.003150134607785513`", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], "\[Equal]", "0"}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", + RowBox[{"0.12369641877200098`", " ", + SuperscriptBox["r", "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r"}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"400", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r"}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "r"}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + FractionBox[ + RowBox[{"1303408", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"]}], "118186921"]}], ")"}]}], + RowBox[{"4", " ", "r"}]]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", "0.00001646380624115267`"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}]}]}, + { + RowBox[{ + RowBox[{"p", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", + FractionBox["81463", "118186921"]}]}, + { + RowBox[{ + RowBox[{"\[Lambda]", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", "0"}]}, + { + RowBox[{ + RowBox[{"w", "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", + RowBox[{"-", + FractionBox["3", "25"]}]}]}, + { + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", + FractionBox["1", "100000"], "]"}], "\[Equal]", "0"}]} + }, + GridBoxAlignment->{ + "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.5599999999999999]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], + Column], + Function[BoxForm`e$, + TableForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{{3.752420503335231*^9, 3.752420529921417*^9}, + 3.752420672966015*^9, {3.7524207286861753`*^9, 3.752420776706814*^9}}, + CellLabel-> + "Out[668]//TableForm=",ExpressionUUID->"18b8edda-7607-4b37-989e-\ +5a6258ce30af"] +}, Open ]], + +Cell[BoxData[" "], "Input", + CellChangeTimes->{ + 3.75242085586653*^9},ExpressionUUID->"6571a7e0-b424-4948-9253-090d2a1e9a76"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "50"}], "}"}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "2", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "50"}], "}"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.752392390635232*^9, 3.752392444836948*^9}, { + 3.752392596339136*^9, 3.7523926433977013`*^9}, {3.752412607908022*^9, + 3.7524126088096123`*^9}, {3.752412796766542*^9, 3.752412797523608*^9}, { + 3.752420460344535*^9, 3.752420468731535*^9}}, + CellLabel-> + "In[662]:=",ExpressionUUID->"74d06ffd-a5b1-401c-9bcb-37de47aeadda"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVknkw1f0fxa997Qkhe0jIfi1l/76t91qy3hAlSU+SLUsKSZJQWRJFshTy +SKEe2T8fkhQqWdITWbImSjdybfn1++PMmdfMmTNzZo6Md5DTMWYSiTTxR//3 +giltlySJaeOPx3P3d17xbtzcqjheFpBKPOYUd+TUZkfeVhuO7X75RI+P/X0J +DXnkbaGVfTD1PjFbuEEdX9RFglPHk/afqCAqZrMzq9Qs0VGzN4b3C58QS0S2 +fgLNETVmzPx7L6WGyLx5/tX8ohsSnGBWLYhqIAquR7EdXfdCAdqSxbm+mKiY +n0MKGn+jo89up3SVtRBHXnBbzgr5o9TZ0g7rwlaimXbTe9blFGoUeMr+6mYb +IZZLV+VZD0Mz+q2mlJR2Yvj6wdRTq2eQ4NHumLb4VwTv5WgefadzCK58qjeL +6iRUku50tzBdQNmDy5rg+5awSX5vkK6XgMYvxO09XNFNaHGI8o6JJKEVoaT9 +eWXviNrCnpcGu66iXcZZ6RKFvcSOdgHmau90ZNiTW+GR20fE9BnYPlXJQE5/ +33udc7OfMHYxlvXfkoliUiq5RFMGiPOFBc7K27LRDdkaBbekD8TEESFlR93b +qOxpk8XN+P+IZmn/BJ+wO+j9cMcFoahB4lPPjrZXIoVIXX1yhd93hGAZ93+1 +4lWC7o0tXSkljxLK3DNM5O776JHyihi1YpT45euM5W3+Qc/xpu7lsjHi5dvN +CxE+5WhhmjecrXCceDjgUPXjehVaI/OxFktNEAa75r5KRz5G7NHbMsxzJ4gB +kUnJQ8efIAk+saqLNyeJtnAjJWFaNbLSVZhnSpkmzL9PNlEi6hAtTim6kGeG +OMyYj8xJrUdeXao8JkkzhIxx1D/kRw3otJf27tj4L0RwN/+aze8mdDfR5Njv +yK/Eh33KRZfDW9DqB49Pq8e/E/nvvyzJbr5Al6S/xSkvfCeC3ss0Pn3bjji1 +QVDNcIE4KcYraVv0El2P6qnzfL5A3HKa8sw80IFKuJdZm/t+EDWRPP4eS6/R +SbVm1w8idGJJa+XDv1NvkIZTUtnCQTrBxp0zbTH0FtVnizvITNKJwfP580Kz +3eiNItyOW/pJLNfKlH9d60EZtlzfcvQWiQ3HyvLhS73ILbgHnpxbJKqykpt4 +BPrQ5xqfqXG2P+8VTZKVI/ejX5ZJZAvhX8TVKH/jluQBJHWsp51jL4O4VsLL +FFwxhMYTb4tJRzGIBlZWVdLhT6i03CdAFzMIukPiIT7+YaS5+EvgBGWFcPkc +zmiNHkGWF8U9O1xXif1K9PBYvTEUVOizePXMOkGVkCrPD5pA2m2qlOLGdaLQ +wqwzY2gCrc78ym4ibRA9NmT6gvUkitdIIr4lbhCKr054/1CeQrfww2T77N9E +o9oDhwOb02g0MIqP6xAJJl/IhNp8+4oCSfN5vdEkWGjRNrH1m0Pr6Z6qebkk +eMmRY1c5PYe2V5tYaw2RIPbEKd3yqXlkt8YRf8iDCdxWNTPql76jhss3lqsO +MMNJRf4JA1U6ooqyJ0SfZYZRGR/RH6fp6H1ZhCAlmxmau49O+LfQEf21O3no +AzOM8zRXN7n9RIqCMifZ3Vgg3UWBMZu2iLIKHg67u7DC0N1H2Y8Ul5Gc5o6A +XadZQezRpZqw88vocWva2vdMVrDpM2MTGVhGr6dCRS71s0Jd8FnO9UQGYlXV +d6qgsYF3bfCg9/IKOlX3oo3FmR1IvUfmGJvryLZnpLzcnhM0jK1FQyaZcAtj +MnMgkBPu1ZbkL0ox4z075mKYU/4w+WwXw40ZS/szHNy6OGGLEhtP0htmvMjG +v8RixQUbmeUNnzALztUzNfIw5QZ+UgPXRgMb5veiyicc4YbWV6xe9A02nJBg +t7UqlhtORLTtCgd2HNzrPsaOuaH3oNz3Xe3s2Dwg9NJjAx6Qd2JeoQ5y4PmC +otdcOrzgeNKZvncHN/ZuL3uqTeMFXZuEJg8/bvxhvjL/cCgvTKdpXhd5yo2f +6Tedqq7ihaV8moqXPQ/O6usXOqK2BQpZohP0k3ixMSeHZ63CX3AjvUKvRmwr +bq/RjtDawgenjikyrRwUwI/Lkv4Sl+KDgOSAL8NpAjj3znAxszofTKa3B6m0 +CeDgi4l97xz4wCVPhY+kvg2L2Q+Rg2/wwVXVsyGZHII4cOriXLk4PxixDzr2 +dglhQaHeI/JKArBh6BwvXyaKf3MormwxEACKVp5E01dR/GU1Om3JRgAe8Cyd +eqEqhtGoPH4eIABTbmdMNZ+I4ePlkRJHqwTg/MDzhLBWcVxvJjuQr7sNMj17 +jnWtSOIjIadsRSmCQNlZQjM/LIOlJ22FR10EIfNIsVJFvAwedVUcLflbECLn +HIX3lclgL6ORUO0EQeBCWRsyv/4w577b9m2CUCqldVwtTRZ75SnOXjITAvEn +h7vw653Yq2PkMp0QhlJrBZ+JAHnsJWvX2qkrAvunIyT0dVRwd9haxYSVCCwa +LhoL+qlgaC/N3XAXgcZtzLbC+Sp//sJyWv2cCEi/5KSkcqnikepaxYwWEZBP +FcTEqCr2tNqZ4m4tCoeHJcwmM9TxwWCG2xcPMdAqrgp6k0DGXc+KLZgDxODa +ryHap7tkbCjkrCkeIwbVZqzbFhAZS9Q/5NlXIAad/54zlVom40GWo6hyQgyc +JDWSE49rYvebr3eeCRCH8i1D+kMULeyK7n5jPy8BpOmQoYbf2ljfI4ezO1UC +bqe+E2oR0cFSjHTZ7AIJoM1bKeZr6uAp8gUX5WcS8DT/qvf4MR0cVnwY2bNJ +QuuOriuJHTo47apEyq0rkqAS7khJuLoHv3TPUlW6JQWjmrv4ni/txeXL1yg/ +S6Vgt0XeM4JHF6feuHSksU4KUp57W+VK62KXN2GZdoNSEGel/JNhrYsnTJw3 +QqR2gK6wug81TxeTdvO9bijaAXof752LJPRw7pr50xI3aTgsab51MEAfM7ji +hyK9pMFXrBbXxOjj/SKtzPa+0rDHWnfifKo+/kvHxH45Qhq22mQr91bq49hA +oxnKTWm4x9TLm0zXx8fGdMS+9EtD5tcv2e4hBlitXT5G2VkGCtc8ls77GOLk +/mNFm+4yEJkmVyoQaoinx4s6er1l4OXFF+qZFwxxAWnn9ugQGWBIumr75Rli +Af0dlV3pMvAfZJi6Dhji5fLtnwO6//TpPBV0sTTCzdc5LSv3ycLcAb4HeaLG +eDGt8pyqiywUzQ/eClUwxrtT3arLPGVh/eMITU/HGF+/UipXHCQLWkLvSm86 +GGOfeCpLTros6Ci5d9xNMMacpxObL/bLAv/GYCD3gjF2OMBp4HpoJ3C35pe9 +qSXw6A5Ojd/+csBva5cWnQF489BP0tcwOajyFeiMuwVYKnf43UC0HOhY7nsW +fwfwIZHq0KqrcqAtF0SKvg/4I593jU+5HPyeux6s2wC4j6nRuPOrHIjXeRd+ +GwP8ajxo3y2/XSAzEz17VsUEP74/4KfpKw9Ky8lye2tMMA+Pr9NykDw8UOYN +MG8wwT6BDL3GCHl4IRkzaodNsLCOKJflZXnA8e9cPdpNcNQz9/sHSuSBsl1g +0WnABJt/+jQeOyEPws5tKs2/TPB7gYmDb70U4Bg8K3+gZYpXzy3Y+R9QhP4r +B9TOlZhiY2uLa7NhSmCfsTovdckM6/D7Sdj7q4DPx/yEFgNzrPimg41xTQ0m +/qnb3Tdvjl/669v2OmmAi4545OA1C9wftNx0x5YM2zLL3h8VtcRjAT0Hkz00 +ARfyxzJKLbHlCSE5PzctqNFWH/l3NwWXHj4t4u+nDVJnc6y1qyjYYiNqLDhC +B7w6Ty1laVGx4a0vPb4he6D57KHWTw+oWEMt/Edc3F5Qj63SK1e1wjEtvrpp +sbrgTtdoWi2xwhzrJFrBWT2Y6WQdTZSyxqnkmtyey/rwmCJ7J6jQGgf79G9h +XDQArorQVklJG2x3nb+cyDQE6VKeG9rFNvj4cbpUcqERXLbuitVRtcUf9Qzq +228bw3LQmMPpR7bYmuNunMIDAt5eUneLMdqHuU/U6hnRAB7e7WqdbNuHeWVD +JHy7AVJ0w7dH29nhax/qheRcTcB83DhHYMoON1zbe++/PhMY6ZxhvD1tj33B +jCJ9yBRUxds/1/M44JYfcee9hkyB/jBQ9aqbA679JSgre8AMqn9t07hd7IDV +VnQGw0bNYP+X0DvkNQfssJqs2OJpDmaBX2c2bB0xnRF4NW/aHAJVErxb7zti +sk2x+0aABeyML3nCz+KEJXO3Nu3/agFpnNlUPXcnnDjLuYcItYTBjmGNL/VO +OH/vHjNZuiUY2PbnENudMe1DdX1CIAVacgYG60KdceLp59ToJQr47k5/a/rR +Gftu4zh5MpQKo0ZqeSyGNDxcp9t0J5wKfnNiZY1GNOzs5be1O4IKCkrbhsMJ +GjZ++PqJdjQVRC8ooBlTGhak3FjfiKfCYN60Z7cVDbdEyqSkZVFh6xrTzvuu +NCz22aCquo4KzSGUmpBQGk5LDGCZaaAC09adbRrhNMymnr9fDFGhKIF/7dtp +Gl6IYl6NeUaF3hKFkZORNPxC6JUptZMKC62Giccv0HCIlUvfx6E/+UwFz79T +aXjm+2X5LSNUCNtjMi+fTsOHsurOEGNUYJQHFU1fp2HquIRk0SQVFkN4rpzI +omGpc+PHAr5R4fIV0Au6Q8M3dgrV5i9Q4RY3Cxc5n4a5Oiy5e+hUoNI/kn4W +0PCicNmjPctU4NDo9I0oomG/pkHSiRUq3Lgz/kGvhIZHj25xvr1Ghaa7/KfW +79OwCzdR/HqDCrHU/WT8Dw13VgYvb27+2Z/1SDTuAQ3/D07M0do= + "]]}, + Annotation[#, "Charting`Private`Tag$283038#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->{520.74609375, Automatic}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 50}, {-0.0012615938673915944`, 0.}}, {{ + 0.00001, 50}, {-0.0012615938673915944`, 0.}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.752392401724881*^9, 3.752392445011245*^9}, + 3.752392643855624*^9, 3.752392723236087*^9, {3.75241260569595*^9, + 3.7524126092609243`*^9}, 3.75241276478483*^9, 3.752412797730137*^9, { + 3.7524204462757587`*^9, 3.752420469011427*^9}, 3.7524206775575457`*^9}, + CellLabel-> + "Out[662]=",ExpressionUUID->"8bb50e65-9c10-4b91-bd67-07c2d3473199"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVk3k01A8XxmXJUkqyzkxCkhaR7Nu9ESZZSiU7hUiWQlKWhEpkbFmqCZHy +Q5YWjPANIULfIVIqhKJFKrvK6/3jnns+557zPPec+1yZo35W7pwcHBwLS/X/ +nv1J1foK7bO+9Ue3uudih/QWVysMFfgkwD1vjcQQkwb9o3v+7m/2yoLEkNip +L4ZD+keNdl53SLgH7/aECQkUTumLfPK4cuh4CejuWNm92oALXA07dO/dfgjz +PTyFSWKroDpl9FEuowJkeaYVz/8nCiLDnIrZIU9ge5JgVG7IOvBRXZfH9CSA +Q6Mzqgc3gGv9TUZbQR2kTmi3PndUgIQv+a2mtxtg72hqV47IdqgWLl/ekt4I +mk9TJEpUVGBUu8HAhNEMOm8Nh+buqYGIKxneGN0CVcymYUUvLcC491WGIS9g +0cRu0PisHlzvm1FBz5dw2HAuWQAMYehCpIZzCQmDMlPSAywjmBO9ciizgA0r +/F5wSNnTYaN+WhLtdhe0F9veaxKyAN1OZok98xWk8MaFpSbvA6tjue030ruh +yGq145SSFYQzSvklGa8hpl68W/3OIbgmW7HJ5koviJ5fFi0SchgKymuM0qPf +wKfjnmIS7rbQ86H1gmhIH+x+qEiJ8XcEJaWRuTWe/TDNUi5z03KF3MGpuPwd +A0AGtOqZnnKD4q1zFHrJAIiMzr+qfOAOz4hFzcsFgxD5nu601coTJj6vPM1z +ewjEJjU/anP5wsIOIe48qWEYeXtnk/5lP1geujZlN3MYLH9//ugUexJoQpSy +qPQRuP488ZiovD/s0dz0fRnjM2zr4s01TDsNByO3hN5eMQqPqxytaeFB4NKm +uGLXlVHof/vDu9DrDAS5qG6OiB4Dz4zgwNH9ZyEnZpf7v3NfIeBtgm2tTRjM +99q/n/f4ASse1X922xAFF6XHI7dO/ABBrrTLtS1RwKeKItt1J2DKj23C9o+G +5JBOltOzCehlHjkl1X4R7grMcD999ROUpXf46ebEQIcC3oyc+g1JPQdns9sZ +kGLGP35DaxKyK74KiGQlgM3JTnwYNgk/7NaXpWslwscKt09DPFPAHZLBfX9N +EkwbX9lhJDYNpyZMNYrZySDl3tnMqzELy4KZ7DOJaTAUc5MiHTILx87/1JBf +lQ75RW4+msQs7PlgyisVnw4qk9PCx03mwIb/3vtPjAwwjqI6tR6ehwLdD/XN +t2+A3223yavBf6Bg+9Y2Ie4sGPANEeJ35EBz4Hc3tLsDvhzfM7tCObAmojfZ ++d4d+JPkpJjJ5EDxS6n5/ybvgPjjXaY733Gg2Bfv+oakPLBY4I12tF+GkTyc +3x3Yd+HJ5WszZbaceLd/Vv6I53+Qln3/g501N86IRivK/CoGs87+oiJLPlxl +WHru5X+PoW52JPW1Lx8GLLjkxbx/DOrrv4VzMpbm8s4rfNeUg7T37D6bNj7s +WibAW322HCZ51kxx7eFHybBoDjuzCmBqGejZGwhg0JOxc0ZzlfA9+047v9pK +pIxzhn3xrYbmCtUzOwWF8Ml+Ca69vXXwoODKKqqUEEY4R5Cxs3XAvPUhj1NJ +CDu1tvV2SdTDyaiYV+x9Quia4C8YYVsPFMt3O05eE8JUfRlJ9b568P0U9a2I +uga/yYSY1/Y3gIho1xH5LcJ4LOPtKr0vjfCPV2FOUEcY/+RX9L8SaIKx+dDE +qb3CeDd0YNRjaxPUDsgTz3yEsYnZczvMuwk8is7RXMuEsWEqwd12vAmqDGVf +Z2muRX3LkFSHiWY44n/KTNJEBCU+h9vlj7WA9IiZ2IC1CIqrqjGvLG+FgcMK +A3ePiaBepfyg9YZWcNHrD1C9JIK2vr3WDx2WmM/8pmWjCP4+ZDDt1rHEmQpf +LhqKYqpPuqXS/Rfg0tp/+ReIoYze+mnjg+0grfdkP8tSDD2d5TLjfdphoCSN +GuEshm2p2Sr3L7WDS6p5ieB5MbTyD3ILrFxilyc9CrVieGLfdOhqSge4TKdt +dNYVx4Vv+OL1qw6QPu7/Y6OZOHoWRqy0+doBA33mrG/24ih45FFy3rKX4FLH +bX4uRBzFklJ25Sku8VX/wNQqcbQNzc2QjlpiWYuGF5oSeF+9JCRvDQlk4ELJ +8B4JzA2Ojv1MJQGb85l/7STwtFpcBZc8uZQXriClMAkMfvZ3sVmLhP7HlQop +dRJYdO0N6etMggXfMdGiTglUeclgnfQkodZuLWfjkARa6vJy0E+RkLno0zfN +I4mpKaK9AZEkOO3ZwLAzlcQiudUZRTkkdNwkzwXYS+L9CCNrowIS9MfDPK56 +S6JCnC/jfhkJUim9WMuQxH/hn5THCBIYIxcVX2dJoo5C98+qJhL+aeykTJRK +4rWDE7027SS8fxf/W6ZLEn3+RcdNvSHBTElnQHtYEpM3lUT86ieh+sJo24Ep +Scz8pDJeMUICU97w7kVxCs5KKGhnTJCw8uxEcqYCBdti//CWTZEQ+uLW+Qot +CpIr0rcx5klwODlrM2ZPwVstRyYTudjQVp9nxOlDQe5umvYjXjboih5QoYZT +8FATDyV9BRuKPDjWqyZQUP3JcWPN1WygVd1fYZ5NQYM0cE0TZsPVlfaz7mUU +VAn4wF0qyoY/Tnwj4fUULA6yKo6SYIN32WN2ehcF69KzXq6msqGPy7W2dJiC +D381NFitY4OptVBhyxQFg9tPdJiuZ0NVfk36x+VUnPQ1kZyWZsOWBa/oBXEq +6j4cL7WSZcMNc4lTIpupOFindcFpAxsEshsdFbWpWLB3fJ+4HBvO/fI3Nd5L +xS8nMqrPLfGX3dIazg5UfNt/SvnSEtult28I9qEi2TY2oL7ErWPnhJLCqcgQ +2Fx3ZUlPW1fh738JVPTzWx8csuRXwOgeq8+mosCuG/v5ZNggORjZ01dGxfeJ +qtu2Le0bs1O5YbJ+yS9O6MhHGhtmL74vEXxFRXHfmtyNFDZ49sYy5UeW9Pl1 +en6IsaF3i+YVmKZi+RGuF1pr2UAPGzltw0vDitm3Y/Or2FD5MvnoKQkanvBX +6FcQYIOCLFrGbqZhX7yHjS83GzICv+vkatNQss8oyOcvCXzNNxSq99JwTKfa +zHrp3sGSdNFuBxoKo+Go9TcSDtfmjC8/T0M1D0aNYS8J2vY3+MgEGu75qBRY +uJQ3qdkk2evZNHxd/ZVSW0/Cpx0XrLfW05AkN6fvLiIhMM+51pJnHV57IyVV +HE5C4lUaIyNuHcpYjAl2byThuV2a4pYMKbwQ7KoY96cDimbiTX7nS6FuRCGn +/2gHJFy7eKSaJYXaJqcMTy39v3VHYKpFnxQ66HRYVxZ1wPCuA3/9pdbjnNsk +j5tTB3BsFmp/cmc9uuo0Na9sagfmwu7yuzbSOCfLsy8xrw1m+aPfnXORxuHV +y146p7bBIYkGTktPaew8aHMYL7bBKrVdljNnpLG19Ly4qnsbRPjqjZqkS+PM +pxMeQxvbwH1QjTLWLY1nIfKSacEL2N4sH771gAyuOZO4PKG2FWK73e8s2smg +mPiFVovSVvg8dKe166gMbjXZmkTLaYVsjg3iof4yeN9hgj14sRWEtdeXtiXJ +4BnT8h4hi1aYKRL/6EPKYOUJabkfAy3wNJnPuNRcdum/rZTkhVpgMrE0TNFa +Frd7MRz9OFtgc4LN4wInWSwI/aDZNPkckuPy5fL8ZDHyqXwO881zcIumc91I +kkWN6cBfY7nPgS8o5mlUtyw6CVNKJ7Wfwz5bPp3DjhvwP9OQOkP/ZhhYz6f8 +z1sOs15biHNxNsGi42+Or4FyaNbW69Y/0whSzA/s16Fy+HO+6EvD90ZwlHgc +UHZVDqkBzQF5bxrhrdDRCrciOUxZabC/pawRXi2r1n/xVQ6jyqlyca6N0DLk +Z57htREbFVZ/KGt7Bg/uvfZS8ZRHF9VcrZSHDbBihafVjJ886vaMfHIobAA3 +31mt6jPyyF2TenhbbgOIqUnyG1+WR56EMY93yQ0QUm93z/auPD5Pro2J8G+A +3e/fD0UMy2NtS+uKLpUG6BEednjpsgkLd8kInq6oh/mwCQtvWwWs/kHsPv6y +DvRNjeK/BG5B9ctZspNCT0FtjRfN0nsbBv2wzN+7vwYUOlp5ZuO34/E1ayvs +c6rgube2WZeVMna8PBhqYFoJ3X4zNbfMdqDmzN3aPotyGPTpdIi1V8HlVuZK +/YcegfFxUTkvm504sm3Vn/LsB5DvHCTh7aWKRWeeeJDDpWD0N2Tw5Bk11Dih +XKyWXAy6GWOdnv7q+O0prdP2USEobz/9MzJSAxeYUfMm5fkQXuepmRihiWJl +taxWjrvA+4fjYPZZLTQ6oZTP8MyFhB0VzM7L2vgqKafvx51sOOnWLTgbpYN2 +nylxWipMsEheUwSpujig+M37WWUaeHj8koq9rYdsDaUH6k5J8FZLp6r5pj7+ +zEyycCdiwJQ3J3JTISAapBtsqAsBgeOVWnoHEcuEFqf8LBxhpaw/zZNE9CfP +a48Sx4n43ipRucO70NzM8l/mxQvEk3iN3DevdqHfc8LjLsdVwhMNTaQdDVDs +psi2jmcpRN3PyPMu7wwwTWBmokH/OlE5LSIra2uIR0TEhNc9ziS2z6n1BQ4Y +InfIP2tH5xxi33ysQp3TbizzzRtcA3nEr1nfq5mfd2NU7NHKRe98YsfePLu/ +PkYY6qd3v/NWIbGOubrm0FcjfKTrpG+VX0zEfOFThwBjVC3W70/jKiOyNNQN +ZX8Zo82YjmNg1gPiYO/jqku+JrhoYfNtQecRERP0jB46ZYL3RkTHmTzlhOda +3hMnAuj4faQmnl5VQXxgadbcOk3H631x7Qt1FcQBF6/V5Bk67qcwWktaKgj9 +++0PVUPpeOiBxx/JNxWEiMm1P3+j6biJbw5nZiqIunMyjMQ0Otpu+mjbrVZJ +UD7qlD1m0ZH1PXOb9INKIjHGh2v0CR13Bs0qfmVVEjxKWYcotXTkzdYeL6+r +JCZCOOfD6+k4f6mwcB+7kmgSbTGgv6CjhXcONX6ikvDfY/3q7Ts6Cn+ef7tZ +iUWM/rgsL9hPx5mVL0kODRbhmMYKhkE6TiZaX+rVZxH0Idq6OyN0DDz6QDnW +gkVIhQ25+4zTsW1qMWrah0Vc2yBamTVBx3c97OCu0yyCv9VYoPMXHY8GViuW +hbGISbGCYvUZOopcW9XrG88ivGr6OI7P0bHHJ6HdIpVFDLgKHri5QEfDh/ZR +SrdYhLUA5LX/paO8UMScUB6LeFF6cmZxkY4myvzKv4tYxP8AwmReJw== + "]]}, + Annotation[#, "Charting`Private`Tag$283082#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + ImageSize->{520.74609375, Automatic}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 50}, {-0.10029525683165828`, + 0.2678542588323559}}, {{0.00001, 50}, {-0.10029525683165828`, + 0.2678542588323559}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.752392401724881*^9, 3.752392445011245*^9}, + 3.752392643855624*^9, 3.752392723236087*^9, {3.75241260569595*^9, + 3.7524126092609243`*^9}, 3.75241276478483*^9, 3.752412797730137*^9, { + 3.7524204462757587`*^9, 3.752420469011427*^9}, 3.752420677655203*^9}, + CellLabel-> + "Out[663]=",ExpressionUUID->"f636c3e9-3962-406a-8293-a9ad451f1629"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "0.5"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", + RowBox[{"Rationalize", "[", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pc", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "16"}], ")"}]}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rfin", "=", "20"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"RicGR", "=", + RowBox[{"-", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"8", "\[Pi]", + RowBox[{"(", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}], ")"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ")"}]}], + ",", + RowBox[{"10", "^", + RowBox[{"-", "15"}]}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{"myeqs\[Alpha]1", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "15"}], ")"}]}]}], "]"}]}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", + RowBox[{"Rationalize", "[", + RowBox[{"-", "0.12"}], "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"R", "'"}], "[", "rin", "]"}], "\[Equal]", "0"}]}], "}"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"eqsfin", "=", + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"test", "=", + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], ",", "4", + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"11", "/", "10"}], "RicGR"}], "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "True"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.752316417676708*^9, 3.752316426521112*^9}, { + 3.752316471868669*^9, 3.752316539977414*^9}, {3.752316623768167*^9, + 3.752316623893949*^9}, 3.752316688281028*^9, {3.752316828486504*^9, + 3.752316914306848*^9}, {3.7523220572176113`*^9, 3.752322150343884*^9}, { + 3.752322200594215*^9, 3.752322376396759*^9}, {3.752322410901619*^9, + 3.7523226147538967`*^9}, {3.752322729440486*^9, 3.752322741026124*^9}}, + CellLabel-> + "In[1111]:=",ExpressionUUID->"565cb846-dc0c-47cd-8837-be0b9a63f814"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "7"}], "}"}]}], "]"}], "\[IndentingNewLine]", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "1", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "4"}], "}"}]}], "]"}], "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"test", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "r"}], ",", "ricgr"}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "rfin"}], "}"}]}], "]"}]}], "Input", + CellChangeTimes->{{3.75232257154245*^9, 3.752322598734272*^9}, { + 3.752322871416922*^9, 3.752322917165543*^9}, 3.752323058461501*^9}, + CellLabel-> + "In[1148]:=",ExpressionUUID->"f5c10684-9ee2-4e6d-b4ea-10a8ee0924f6"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"r", "\[Rule]", "7.807979542293882`"}], "}"}]], "Output", + CellChangeTimes->{{3.7523223171108093`*^9, 3.752322365805702*^9}, { + 3.752322414014778*^9, 3.75232261736474*^9}, {3.7523227317442303`*^9, + 3.752322743514076*^9}, {3.752322869801609*^9, 3.7523229034049788`*^9}, + 3.752323058960722*^9}, + CellLabel-> + "Out[1148]=",ExpressionUUID->"83911146-5a34-441d-bcff-813934dd376f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"r", "\[Rule]", "8.114110568585492`"}], "}"}]], "Output", + CellChangeTimes->{{3.7523223171108093`*^9, 3.752322365805702*^9}, { + 3.752322414014778*^9, 3.75232261736474*^9}, {3.7523227317442303`*^9, + 3.752322743514076*^9}, {3.752322869801609*^9, 3.7523229034049788`*^9}, + 3.752323059052*^9}, + CellLabel-> + "Out[1149]=",ExpressionUUID->"3f440665-eddb-4969-b8d7-9d5d0cab60b3"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV13c8ld8fAHBZiZSIMsK1XfPaVM6nrBKykuy917VXoURmtkRRKZEikZGc +wpdEKhGJSkZSZISI/J7fX/f1fp37PM9nnXOfS3LyN3WlpaGhodLR0Pz/8+Gx +6R2D7yY1TQynJsZv5SKrr/z9feQI1OYrfu//PuZh88lWNAlRrYz+fSVcU2Uu +WT6chRgirD6NEUZSUc63hAoQ3NU/8YVwz50b1655FSOS2QGdT4Rl9kz8OPHh +JpKivun+SPi30SrT8c3bSCHB8fMQ4aZUZjFdUjnyvPkqZoBw7MsDWlo6lcjW +ac/9t4T1mCgO4FmFluck3F8R3i58s+W67kMUtLn7wQvCM8+lDK8N1aCg18/j +2gj3OtR9LPSqReMK6l+fEn64pel1daMOMZ8PeF1POPywaWK+YCNSZ2Y0riBs +M/KRM6+mCXnUWYzf/H8+Ua6lOdrNqEDegK6QMGNj+PNMD4xunGf4nvT/+KW2 +SRw7+wwtyzQ8iCXs9lfHX0/3ObIwnaUJI6x/9fWmzlAr2v64Xt+JcLPnXh2d +G21oUUrt6On/10P9TKq2VztaTdzTcYIw29BXHq2N/9Cga0mgIuFBzhVVEOxC +QSmvbTdvEvWf1IhB37uQityTx3OEm2pjOjRrXqIzI3mFnwlfN9tx6rB2D7qk +P8b0jLBLJl+ghsdrxDi26R9F2Lu6eqRo/xvE6npXzJOwyH6zWL6zbxAt71MP +C8J53/I7eXXforScD+lyhCMSSBY8Q32o63qtw8iNXKQw17ZWcOgdUsZJAR2E +Z065XeO+8Q6VK4uxVBO2Eb03sd+rH/3gsv4SRxjalYL2bQwg7Q8iTIKEGWmP +ZewV/ICOfjuoqltCxPuxW4cp7QMyUon2FiOsUnfy79+1Dyj/5669jITdPE67 +jb8bRsM22c/binNRR6/boZrEEUS51Z2kRvhi4cXpk78+o9X08xXbr+ei9Cb6 +1yTZL+ik9H9sn68R81vWUV7o8gV9Va6eriO8GKtvf/ntF0Sda/npSFhIyfRl +6L0xJMN3Gh4V5aLzVx1LdOzHkX8m/7RGYS4yShSOwrnjSIOFwWQHYZ7gyVPq +PeNo6a2exOBVYv4NPVlk1CeQ8PofQSrhrzTU0L0ck2h8Ml7pekEuOuIeazDe +MYUkftA9GMnPRTRKxX9iZWfQlz1bXN+ziXpNmt+1c5xBDyQvnikn3JDHbHko +ZwZVLZRzehIOWAupX12bQf9me9emsnLRlxaDUL//fqD3cW5eI5m56Nnx9SVr +m1m02S1dc/8y4aqKMF6deXR11GT2W3Iu8rt08WSy3TyKS+X8lEeYz9FBfC1s +HmH/C0iHcDg71+D7inm0qc1vVpKUi+RD4lSy2BZQp2BY7clLuahEw3KZaWQB +EUO9L/tiLor5jyFoJXAJ7U0w3yqPyUXx/85kT6YsoeP3uyyOEU5WffCov3QJ +7WBe4Z46R8xTucXvmvdLKF2E+asA4QdpZSH+Gr/R/ewD/qnRuejTqePh09uW +Ucb8SanjEbno0FTq2eGMFSQl0H3RKDAXHRUYu9ZVvoKKIx8WfqAS82+p3NLQ +uoI0dfbucSFs/nL0X97vFWRaXLY/LCAX+TyQjTWzXEXjKacu5/rlosLQN+d7 +BP6gvyP1Tx555aJ1xr2XWh6sodwNk39UJyL/oi+VL7vW0J8t7rARx1y0Qrn/ +9v3EGnJb1RfSJbxgo8v7i2cdmdNFse5zyEXTNeEPBBLX0VTHumiVbS56bzfa +H2v/F33Zcbm/3pI4Xx7fIWmxbaLCM9GVYka5SNYgSPek1CbiPWKuHmqYiyrH +kLe17iZyNvk+3m6Qi+7u/FAbFL2JLPsTLtufIPaDE8ux0ulN5KfHIpN8LBel +7grwY3j+D+nWd359dDQXKT0qGh1Xo4En5iBorpKL9v1Ck+d1aECpv6QrW5nI +jzz+k2RKA2/fJRb0KRHzcFNyw96bBlhpHSoMFXPRiazHPCPXaEDH88w5dflc +5ER9c7qfdhvYLz21+yaZizLk6Pvae7bBYuSQQz5fLgryLvvg/GEbZHy+ntfE +m4ssyvTHaKe2AQ0qHh3hIeZJIHMetrbBeElMET93Lirbxb/7KYUW6r3+duVx +5qKWWVWDujxagK4ZrTO7ctGPe94dtx3oQDDKK4+0lYOYuU4Ym/nRwT5pXne2 +fzlIIpY8TBNNB1IDFXT/NnKQm/n3Wet8OlhwDi8aWM9BYxtunOy9dHAgT5AS +upKDBg2dXM4dpId/u2m3R8/moLZflrSnuRjgjlKIZvZwDvp6Ri2VXoQB6k9E +5p75kINo2vdx1VAYYJU/PJ9/KAdpXnkvyWrIAHV3WK6UDuSgRjA3abvAAIbF +Ir4lb3JQVebJErkFBhgX2EG16MhBhYq6mkw9jPAipJ6htjoHTRk6/Qz5wAgn +azpJ5lU5SN7j3NXxKUbQ1XbuW7yfgzqKHq+0bNsObBf/+yl1LwfNM4hXhahu +h0eTL6dSb+cg3aHtguM3t4OB//wC09UctBjdta0lggnwUJHBWFwOOt5h8F+Q +ODM8X3k8/NogBzW8ve2xrsgM8tIntMgncpDY6D+WOGCGr6fNpS8cz0H0v6tN +088wQ+XOxCh53RzUQuL8cjeFGbbdzZ0PRzlI6ezo+ugvZphrS9J+RslBgkp+ +8scaWOC1APwU5MxBf25cLuQ7zgoHbbuXZt5no5sfRZ4/tGAFuxG6I9X92ciQ +s2lK14UVWleTQoL6iPVLExRqDCtYkfXSl14R6/7qL/6rY4Wpe6Omw+3E+qHx +335Cu4BDW+kF1GSjE4MqRs//7gK1v9dk3VKy0UlGfxrF02ww+6f0XZ1KNnrM +O8SabMsGN0zbp/cpZSN+yhHeMWc2SO5N7A2jZKOf1hwqlwPY4MfVWkaKdDZK +fljv/SOJDa7Q3qFPImWjdhuawVvNbBAuoM3ay5KN1B5l3t8rtAc2S1e6b37K +QkIOtVYrP/dAgGzfD7GzWaj41cFImaU9oJbHdIY2MgvxHWwrcFnbA4ba62Yf +Q7PQPq6+oT4GdmjyYp+9GJCFdvb8sqjiZ4dVs8m4p85ZaEVVyszDmB2EjXy+ +1B7PQt27b54YfsQOn5RL4xo5slAwvnyoJZIDSnz/nG8pzkS7tZWvRcdxgK2n +/8i1wkxU8WJ4U+MSBzixuQ1G5GeisbeiuD6XA57S2NwVv5yJjCaeHHlYzQHX +R24GWZ3LRBI7pnVLpzjg7TbPTB6bTDRiCibJpntBoORt6NLeTKQ1Ne9qQeaE +ys0rh4OiMlDAuNKRG/KcUDN6wOhpaAa6/iWc76cKJ9jJh3+gC8xAf4Zp3sVp +cUJxeaZFgkcGqnzNBvdtOOF20M5bDqcyEFejPA/9ZU74wSZ8xEM2A82kBPQ+ +XOKEEfWOfMcnl1EWZV6F9SkXMO7ZLsHimI5GdUzNPrdxwdH0tz7N5ulIwqrW +/+FLLlDnvFjtfCwd4fPhd08NcUHlf2hPjlw6+vmOhuf6EheUJ/49FLWZhnRC +92zKkvdBPB1JyTo/Df1pUmgzzt8HXHd0+PnbUpGtdsjJHOp+ELZNuXT6TzJq +qV4+qxu+HwRUS3fGfE9GggdCK/+c2w9m+w8euTqcjL4uh+6wTd0PYHc64V5z +MnIrC28TLdsP9nEidGqxySiAOVq1fmQ/THA0hv6kT0bn35wXGNbjhnPTphVn +6JNQmU3GLwF+Hgjfqa7vM5iArh6pumInwgMVrJa/DnUkoHSx3iPXyDxg6LFr +8F9tAgqeZ8nhUeUBUcXT+y2yEhDEJ6pxGvPA054zaycNEtDwvXNxzOd5YOi+ +77LN04to518fjuVJHiDfP7hLIjsebX1OaVb8yQPb+PfaLcTEo8X2CtfARR5o +WI26etcnHn1In67/9Y8HYiiTxl904tEdIRebmX28sHPs9nDA6gWE9K1vfz7O +C6uvOKKXLS6gwILjqi/v80Lpf/FfTzOeRxdyE0gZtbyQsL/ctGouDuVktrFY +POGF1NejTlPv49DjpMNfxl4Q62Kvg+buxKG/EZSktXFe8Iky5dfViUPxVtwf +JXj4oOnn/gnFyFiUx/v9XGICH6yWByUJxp5FZfvEPA3T+MCaPTvXR+csauBw +NuPI4YOZY5luRsxn0TDLqHjxDT5Y6bF61pcVjQQ23rx53MwHFi1h4aPXo9Dd +kQahqUU+oOmK7RO6FYEar13q0LY/AM3LbHaGDiHIht1FKt/1ACQbp2i8PBCC +aBJRxnfvA5AyzNH2dzgY6QasnEkPPwCjp2u54syDUd9Rl9nBzAPQpbb4SlE7 +CM18Q3u92w8AC53DF619VMSnsOqYKckPGhm5mRlkTxTb4bo5usQPuidf73oj +ro+OmNrfql/nh5LHuZ0nbuoh2k+WxzO3CYAq08busAM6KH75RK72bgHQPFWt +wcsF6JKIgsw9sgDcY/WcOHRcAmWe/2cT7igAnp/97fTCD+KbmvnN7MRhOyFw +5okaoxV2fpnh9HNAAMLbGN1c5KyxiEUyU8eIANz/9d81w9M2uMz3rHnEjAC0 +PXGT1bxlhy16KSu/aAXBVIU/NCDXEVtt7ku34BeEg0PCym/WXLGT9cRT4VOC +EPXxWkmzoB82MpwviLUUhIENWKUv8MPqaCNk1FoQqvUajCzZ/DGb8F7ZfCdB +GLZfHeTa8MctM1rXmQMEgZIe5zs8HoB5Im+dW0gWBI6Bqp6evEDM6FNlZZQu +CKcOTHt1vgzEC7ZPVO5lCsL8nM4vlX+B+MWRd3MuVwShLrCImeochEN30NkP +3RaEvpFhJnXxYPzuihPCzwThnO7v7Y7ZIbgl2Y+Xr10QWsR8I3VaQnBFdORq +eKcgsExv8WdNh+DzDllVCr2CsKGuY+t4MBTLS7QK3PkoCOSmLPGOD6GYj6f3 +L+1nQbAqWU8c3grF23cOD9p/FYQxtSkwFQ3Dn34tXOb+Lgg7bwsXefqF4dR6 +Ek3aiiDQp6M1ybUwHF4uM/J9TRBcXBJpT/CEY+dC9QbdTeL7a0up3RrhWCPG +JICGngSdF4QTvkeE42nduC9Be0jA2GWZmT4fjvvV0prf7CVB7q0du2/sjMCY +XHBFZj8JPubsU2OTiMB5ux4af+MnAQ1LmC+dbQTWfv/lmZU0CVR1bXxUcAQO +pz80fFaOBBrOVOOb/RH4vkL+UokCCcpLH4Wd+x6BuS4bin1TI8Fb2aM7E/dE +Yv2ndxHzIRJ4/j6MHolE4pgfdGdkEAkiYlvhpGokntZrSgnSIYE/NrF+bxWJ ++UI5b+cdI0EVV5XJc+9IbFIa0NJ4ggTVT1Xe8kZH4iYa8YUtExKM1N3WFSiM +xHOy55mFT5GAxUeX8qI8EgvbjgrrWpKAjzM2/Ut9JE5tzLZItSPBi7g9FfZ9 +kfjZtzn/KkcS/FTTDe74FImXOfWT+lxIwC/Q9aJoJhLbBdI07/cmQaLbL70r +NFE4q8R64KAfCer0juc+ZY7Cnb2P5+yoJOgwPlNjujcKy0v5km6HkSD2zb5n +PaJR2OXMC40XkSTw+8sw81AmChckCpv/OEuCY2YiFtuVo3Bv3TnfXXEkOKrC +JPHqYBSmnfiQQIknwdpl5gS6o1FYlV25xDyRBApr2gUVelHYBzIaw5JJIDKY +ntZqEIVL/H70XU0jQYpXZOYJkyg8UKT782kGCRxem7zXORWFmbtvMIxlk4B7 +iSPjoWUU1lzb4KfPJ8HfUOpyunUUDhK3VBO/SgKdzC70yTYK3z31yET/GgnS +fojdK7aPwiMXdnn7lpAgwOtQ6DuHKLynxjM+4xYJ7iw4fo1wjMK6X9qvPbpD +gsC9mYrZhCN3Cda/LydBZLNjtQDhB4ei3qxVkiD5DeNNAeL6ca/33/mqSeDW +p2+ebReF9xdQ6OARCbI8UzmjbKKwQWcqn/Njol8/mlQGz0Th2OVvygmNJHjX +Y8py1yIK1wlrnSxvJuaT0+r7rGkUnjG57tGDSWDTayNZbhSF+WPX4n61koDe +3lNs+HgUNn1gXsjeQQLZ6Z2acdpROHGkqla5iwRlaSffXNeMws3MLL2WPSQ4 +V1eNFNWi8Lya27eo1ySI0RVe0KREYRH35zTFfSRo+rrDoFUyCp/J5eNpHSBB +xm7FpqekKNy60GfANEKCgvCUC/xsUXhFQNZN6jMJ3h81bolnjMJSRkkxRl9J +kD8c2e2yEYlzKlBNzjQxP4YcKjlTkfjF0NXu+h8kiK8eujgxHIk3GVcmhudI +oPiqIrW6NxK7OVfuIy2TgE3+zNOntZGYfC3vbeIfEnyA+Kdvb0fi2fexKXN/ +SXAhVK3KIC8SB+uf2npCKwQiTWcEI0Mi8XnKvykLNiEwkvi20CEdiXW9p0ue +cgjBZoAESYw7Eu+43Wclsk8Ibuo+2rZIH4kz9pf1LhwQgsnOz7N9wxH4+tbJ +x6lSQqBFNqh5HROBndQ1ApZkhWDjjEN+hXsEFg0SIVspCIHVqHXpH6MIXDn1 +55q4uhBoMjSWLvBG4KZXNy626gpBybedg/5V4fh94ZL5H0chuJF2ed3zaRi+ +OjC6y95VCFKnUzPHi8Kw7e4XL/7zEALvlDapz1FheOJ80aFsfyE4aJwd6KAW +hhc9dURkzwrBf2k0W2X3QvEutfwl5ytCYHArN1o1OgTr9mtkve4VgtUG9YUD +rwKxqX5w0sZbIfDiHJalvxmI7Z/dj5UcEIJ0zdMvC0MDcXiloP+Fj0LwT86f +a5w/EFfEMxqoTgtBmBnT/jlvKt6l3MdQvE0YqIWNcTUL/vh9rmeEn5IwsO/J +ok9/6YndTl9xYL0qDIns/VydbGfwubUvDuRrwmBWq2H2T8MS5xZKOuqVCIM+ +fdL+na6ncfvnJse4O8LwML4v4EnDKSzkMeq0XCMMP8fXIobtTPGncCHX0W5h +uPr66ItDZnrY4mql5/1NYWgpT/R8W8WD/A4te76kEYEib+rBdwvC6OKnw17f +6ETA8+d/w/uSyKhW6LUXiVkEnu7wFC0cVETs9xa8c7lEIJzhdlBxCKDeJyp+ +Z+VEoItsm/ra1hDpjj4LNHQUAS//JcY1MWv0M/kKxwMXYp0pmW3+jzXKVguo +3eUhAtJk2raNLhv0JVtg5bWfCFwR/Wul62mHIvXPRZhGi4BJq60MR68DelB/ +MPZ0vgjw69Rov/jmjMxdOUgNV4l494hfiD7mgv6y/3i+/7oI3PxXUlR41wUd +87tKN1wqAsH8O8bZ3V3RV5G1BJsaEchUeCNRM+KGOLMepzm+EoFF8t7dIuWe +qBmly7a+EYES1tsx97c8kdOs62uhfhHIq0u4c/GUF3pwjHPPxLAITH+kLeHd +8kLHtoJy3KZFYEzJeenhcR8U7UMp9KYThU/td9WVnvghIZ4dh3oYRaEy0eDw +PIM/6ur8MiLNLAqH/PcJjJ/0R1zCGfxzbKLQdzJG3GPMH1V/mLsRwC8K3luV +51zPBqAJ3cq7IeqicNri38X581TUL/8uoeiQKKSsZJ+oKqaiNp51lzYkCvty +TGR2NVPRzTk90h5dUdB9spRfsURFDnnjBZWmomBuo19vaheIjGOZw9+dEoV3 +Kbb/GMMDEfKiWKxbisKBj3fULDMDEb9mDPsxe1HwoixzvWkNRCOTPCnj3qIg +jniGWEhBqOf1EU9mf1H4orzIdF01CD1p9NCjBIqCpNREzEvDIHQ17TFdTLgo +WBp07VoID0KWyqbRPBdFYcVGrsPnZRA6JhBhdeSSKNSyVch1jQYh1R0lah4p +orCcKVT9dD4IcY3O/q7LFIX/rI/R+3EGo3fxSb4m10WhoJ3l1eSZYNTqV30i +/IYoCGqL1m54BqMay0HJ4lJREN3soK2ICEYZ0qJTPytE4bsBu2hnfjCK5TJo +53ggCju5N0tV7gQjf5qgmxoPCassTRysDUZG/c/sLtWLAq1tHcf218FIs+Xb +oaomUZhSmm7p+RiMZO7u4n3/VBRSPX7fFJ8ORjujbQaF20VhUeVWadFWMHop +/OckfiMKgTEz07GSIaiJVUB26p0o+NQZl80qhKDyVZ2drINEv69pLswdDEGX +urNfWI2Kwtyj8NUHBiEovK7pTtwXIv/YxyW+5iHIvXgs/u64KJz8aFf1zDoE +6QbJHVn5LgrRjSyzwp4hSMXWQuDArCjMc5C5lfxDkKje2U2teVGY3DZVOhQc +gvZSSj96LYmC0qX32XsiQxA9b3dj5ooofPiX++PTuRD0m34xv2FNFK6UPn8E +F0LQ+Nz+0M8bomDGt7askhiC+oaQOSONGDz+Mvr0eXIIam11U5ChE4P39ezc +Y2khCBr4HuYzikFmh7jqy4wQhO/3ydEyi8GAnreRcnYI0rx16YEPqxgEbJML +F8oNQc1XNGUG2cTA9tjFN5l5IUgj/fe9I3vF4PUHFHohPwQ1XqggV+4Tg85H +c8mrhNUiHMq5eMUg5PsnhTnCj/24JOL4xSD2FHeuO2Ell547P0hikH7c8aMz +cb9HZ86LWoiKwaSgosJ4TghSOKlW+kxCDI62tb6YzApB1dpzQlLSYlAkvv7G +m4hXVqP0Rq6cGHztDYsJIfKplLMSpFEUg7u8aSx0RL5kUbZiLxUx+FdxqGpv +AtE/no4DA+piMJ+sVlYRF4Ik2KKL0GEiP/cvCv9Fh6A7DAq8FSAGGvUoxyUs +BIn8/VawV1sMtn9kYUuihqCb89f2x+iJQeOBm7MK3iFIcMos/7u+GOQ8Yghz +cglBxR93cJkbiUFt3uiffbYhqKgjhEPylBhwc1WKchmGIJ5mqaxsSzHYTcMW +Zq8dggoejrH9sxaDy9DCKk/MU16R4a53TmJgFh4Y7CFO9D+LLu2wmxjkuZZv +veELQdmJjSx3PcXg/pVE3dY9ISgjUHTH2QAxOFHeUwDrwWiXx8fEb0FikN84 +GNI7G4zSbDMZTcPEQOhnT+XUl2CUfGyTTvycGDA+DJuq/y8YxfMP/HuTIgZ6 +DJaUmaRgRLs35ezBy2JQHpkeNUjsv7gdRzZuZxHx/uIeNCX257nflWuRBWKw +9Xuge1k3GIW9jP8tUiYGvqfMQ/5uBKEVrBF0uUIMPry4TuvxPQgF180vrN0X +g8hvBotuA0EooMTmV2+tGNzK7zTkrwxCXqFKM+GtYrB41q/zgnkQshOa+Nwz +KgbSw0Jl9cT5Na1V7i4+JgZP9e783U2cb1RXv19xE2LQ9GiukIk4/+Lv/vmn +8kMMOlrfhY1KBKIKWVb+G3/EwL75LatkExUta6jYhHCIQ0pqsdz37gCUanZp +6MBxcbA5OlE46eSLuEIMHcINxIEvsmM6jccXFeexT/edFIdTEUtv7r71QTUf +ilYTLcRhw+L52cOaPmjI/iHXorM4vFdZEdy7xxsJ+wybd5wTB7iyV4K12AM1 +xUu/9asVhxm13BJTT2eU+hXyLteLw4BMvG3dfmdkD6esq5vEQb877OLbTidE +v3F2cuGZOEj3Hco4JOqEjIJerwW/Eoetgjd7WUYd0JhjoFDUlDjsTvjaOH/B +BjGhhqDE/RLwSW9hn94HE2SxpsVVEi0BWcmsHWmfZHCD07co+lgJuDt66o7w +Owrm7kke87ggAQ393Uee1CnhketvKynJEpDXcbRrOFQDO2rba7XlS0B+wlGD +9KWj2OdyZMBUjQTsSZHf/1vNCF8QffhS+rsE6FwIKIhbOIMn0s3lM39KwMO6 +ooj+K1ZY989q7vIvCTj6naPGFlljpm5Nx5YVCRD4XhbCkGyD0wN6Vk/SS0KH +pF/RCU57fPXJN5EgAUnoCg555kHjhKtN+GMaT0lC3JHz7DtT3LDVKpvQhKUk +MGn+6Il/6YYZrtH9t8tGEriviPpG7XDHVtPTzC5OksBWxarw6aI7pot5lLfL +XxKWno6p2YZ7YIvKYw+cL0nCsmpahJuWF6YxPWiSniIJpx6TLuhGeuF7qzK/ +G9IlYUBS60BuNbGuxaGxK1cSpk8qX43k9cYVH0b/a7ghCcwdu5JPzngT79dB +o6xPJEF7Iswl0NsX3610jVVrkQTDv8e7P17xxaamlsLOzyXh30Zfdtl/vvjO +tcOeDZ2S8OjcpWrnA37YWIlp2alfEnbOJRXb/OeH1z+s56cNSoJR5o74zlk/ +fDtmVqNhWBISSFmzlzn98frLvljWMUlQP9smqOrsj0sdr+1smJWEbbnXI9+s ++GOj7RlVX+clwWAhkrqTNQCvVZ43Zf0tCbIugy62/AHY6I/7Fad1SaDXCiqj +hwC8mq4gwrqdDG7s871OMQH4ppJopyozGSzV04Xd0wOwwfA+LydWMhRETBZz +XQvAJaKbVfUcZLhymt8ltDEA6zd3HnQSJAP2XelUmgvANOld36KFyZB7OCPd +eD0A19l3Z+eLkWHCerKSm5GKBele/+iRJkPQbxz3iI+KB/rf5H+TI0P4ibv0 +8eJUnHynT4tWkQyfGPeEb1Og4uXj7wtV1cmwUxUN0+pScQXvkJ7pITI0JPfd +SDhJxQ6zH5Z8EBl8BeNY6i2p+GXG6ImbOmSQzXydeMCLimOdPq82HyPD98ar +MWaBVKysNHZr8AQZJCrejytHUnHJ4MTfnaZkKGqf6Nm6RMUW5VNl4qfI8Ctb +VuvbZSpmiZo2O2pJBhWpQaaoPCoO5f95L8yODIfDGELLblKx9Pzs6SxHMgzE +aPDCXSoee/6L7r4LGf5ESLFcvE/FBq5L1l+9yNC53WSQo56KaVWXt2/6kmHI +1/yp7RMqrmdafbSPSoacJ1XbzDEV+wz/sVcIJsPLcNb7K61ULFS5zmIYRobF +1vwunQ4qHjy7Ue8eSYbbrqtOR7qoOPXkP+fzZ8lgMmya8L2bio+SaNiuxRL5 +guFRzV4qXl3c1lx/gQz5lgxl6A0VV7bTefQlkCEyfG/H7Fsqdspj2DubRAaD +hLSaY++oeJ/H9mfb08hwv/9vrHE/Ffeo7/ARyiADF5OTHsMAFZ9nYdl/OJsM +9xbVDrgTVh3d2X46jwyT9n68oYR/PtgVEFhAho3PzjYKhG/GsvGlFRHxZc/+ +LSTuZ2nK/qKsmAyVy8b7HhHPYxXZG9x6kwzLV7VehfVRcesyp+DobTLs+/L9 +8AwRb3jnvp7Vu2R4WDqQzPyaimULuMPZK8kgOUc/ONRDJf7/84rIVJEh8dIX +3VMvqfjKoQNv9GrIoFemQRPbScVGuwSinerIIJ9gSD7TTsX0XwQlzjaQgZ6h +afbLMypufCjUn/+EDCvSCcH7nlKx3wWR2JoWIv823pmNBioWOSUm/eo50c9u +3ajMWir+ICYx9K2dDHP/FC0Gqqg4/Y9kPO0LMqxp+1e8qKDitUKZEdVeMhzw +67vQUkzFD3zlLpm+JcML9S9+zwuo2AVRlHz7ySD9mL44OJuKe78qpd4cJuqp +IVn+8yIVx9eqqD0dJeKldi09PEfF6glqE4NfyFBl+9RFIoyKSyUPHWL9RoZG +M+dySXcqnmZ8dcl7hgw9thLia7ZULDNhO9A1S4YzBz4t+5hT8ePrMX4Jv8lw +7eL3d0eBijs52kq2tkmBE/so50MOKt65YDZryyAFsqlLmZXbqdi4d0K9mUkK +lJd4JE7+DcBDlxjfhe+Wgsj0L+IpYwF4ZvM4wyKfFNQFfwv7Xh6AZT8OmxgL +SkHHkuwTicIAHNTgff2BsBS8+axpxJ4agDcC01S9yVJgWnvpwJRPAGadfuM5 +oSoFmXQ/XhWRA7B83+ne96ZSkChWM2Qr44+Dq6Z5lC2kYNxY7GQOgz9uTI1w +zz4jBV+rVvNkR/3wUb1CGmMHKfhxNP1VVrIfNmv+pNDlS8R7yr5f9ZMvDr3j +mv/kkhTsP62w8NPTBzddWBnnTpWCw5RXW+NqPnjLIVE+/LIUGG7dGzXe7oMv +8ZZ3KeVJQVbL6mjGTW9ckPHz7/1bUsCsuWzc0+eFmyODHEpapOBTp8WRE7ye +WD/HbKb9OfH9hul7LFMeePC+YvD3dim4Krzb17XaAy9+WUpU6JaCf6bzht+1 +PLC4XnBV+6AUrEn9NDNxc8dZHCH/puelgKmvgvtagSv2qAwtoghLg9/5rFjV +Vke891PEUGuiNHBzb8vTaTHF8nTfaaVSpKGXJUPkkLgpNpSwlMlOl4adXNsP +rl42wQmBKuedc6Xh6fet1U4HY7zKuCRFf0saEg2YtmxoDPCwnE+MTos0PLiQ +59dNPYqL4+zEXvyWhiFnZc53H5c1m++8Mpb/Iw1CI16WLb9Z0VD3oagrf6XB +To0nYm/UfsTGxfvGg1YGjH/6XexuFEXnKwYjdrDJgNK4mPOYkRJyeWf8Sl9K +BgxEM3eEx2gR79Nawa8cZeBuMU9aXa8pykjYNvLXRQa22mm9j5maoeVvWIvs +IQMR8VRRpwEz9KziEEeinwzYBjPsIQ2bo1PyKjUQJQNjm6HxaaMWKPag5Pyj +HBn4fV5ZR/6lFRow2e1ztVMGqJ8tG0Y4HZHGo1fvXryUAUPmd0Hrho6oZG/q +wdVXMuAfe5Gl6aIj8hpkYjHvlwEvK9fdvL8dEY0tbQXrmAzk19dl6vc4IbLH +8rfYdRnorK4UzPd0QbHnPjq7y8gCrplKYjV1R/Ms5f0X5WXB3XOUeyrKHTkW +hOqUKspCWaM7y4nb7uho7R7xMXVZmC6fuFi/4o7oZvRmrHRlIX7bF+qOHA+U +cKo2wMheFvpe8GzubPBEK1/jxnycZCFCkXLRedgTuQWcNE1xlYXQJ6aKhzc8 +kV7KjOILb1koXXm1FabphZieC64eCZeFQ3ZnX242e6EU6bSzypmycPnKlujk +DW+00Wg1Z5YjCwFV4kkqzd7IR0/CPjBfFjaCj3DQv/dGBk5tUHVNFu5EpMqw +M/mgXVfW6CQrZEGnXHF13tUHnRPtDNa7LwtnRQ7+4472QXM1OZOu1bIwUMWT +2pzpg16/kuu8+VgW5If8uH2f+KAMOrdkvjZZsPr9OCWYyRfRZCr+1eiQBabT +JH0n4v2Yyr/N50yXLLwU7k7slPJFpupFhnmvZWFSq7Ni1cAXtXZ4ttT2yYLI +JrdUq40vUjBXlXs3QNTH9oEDnY8v4vDvY2MbkYXKDa1D3y/5oviN4jjZz7KQ +yngvIy3PF/1O8l00+CoLal6Cq2W3fFF/KVN/0jRRv9hWqmazL9JWeK999wfx +fN0evaZOX1SHb9V1zMmCk3/xo3t9vihvWDOfblkWxtrkfsxN+aLcoMK7rn9k +QSLH4xD9gi/K2fmnsfOvLLQ9/2AQuk74tnm35JYs7HkUt0OHzg9laz4cSaGV +g4apZ04BLH4oa5B1bpZBDvqkrQz+sBMO8No6uUMOqmsCn45w+6HMHZ1sNTvl +wH8ms/qAoB/KuCkstJdNDrwDbwg/ESV8MFYxlEMOrm383FdH9kOX+0e0h7jk +gF5ZKItFzg+l+6pbaPDIgX2o8dUWBcKMee5FB+Tgh8f0wV5lP5RWvBj+T1AO +Ch4+uaih5odS1U4mO4jIwQvbjSQ6DcJv7xW2isvB3PFDdpIH/VCKF9N9ESk5 +OHHJh7eScDKda0uCrBzkd46MpvzfRc9fT1PkIKFM478XxPVJyvxj+spysNKR +8dtJ3Q9d6o1crFSTgzPbdLOsVAm7D9LtPiQHct58L6qU/FAijRInFcmBgYp8 +mxPFDyUUZIi9OyoHwnkrj4JkCCvMqirrysGO0kO9XyX80MXu48fzj8uBHYgd +rxb2Q/Eud6zWDORAr1bafuQA4U1aH2tj4v6nDxi57/NDF/Lszz41k4NOqf2n +Tdj80Hm55nSB03LQezS95SoT4Rf7S+Ks5GCEF3q0aPxQ7PrbVh1HOWiKG9nx +eNYXxWTL9pe5yAF7XMeHmHFfdE46ZXKHhxwMBX67XDHki87aaTP1+snBrO44 +u8hzXxS9WsItHygHKfsXC4JqCWdskrNC5OB7cGGUaJkvimx9bGgRLQebHV+m +HiYTtuawb4iRg70fb2inRfmiiN/+ATwX5IBl9ujtHm9fFC4mmf0piejPtXaN +CH1fFJJcOOSWLwcayhfX82h8UbDwn+8vrsqBoX9sUfFPHxTcbP6XfF0O3JR5 +pdiGfFDgHCv/r1I5uN37QlPqvg8KMI11DquRA9o/4UfOGPsg/x8jwR/q5MCK +ZU3xoaoP8otXTzjYKAfx3VbtIfw+yPfx4t0tLAcz39RM9Ga8kReP61ziKznQ +9e1o44/yRjW/2A5Xv5GDepZvtJP23uhve3PK0Ds5mFLTypHT9kap/nslJYfl +oNAsks2cxRvdb29zfjklB+uPRYp+ZHuhcNVMH0YaeQhk2fCaTPdEfELfsq9u +k4fG62lvD/l4omc7Dz+RpZOHCRvuncLHPRHT1+kdpxnlodsmafL6Nk9UkApl +ZTvl4eyuG4sevsT/5bFfY8e45aECxhiW5N2RXY/OjlEeebgXPjmZtd0d0dYX +ylP55OFWwp39vaNuSD9VL6ZAQB76eScGuJPc0EeVYr4ZUXmwvPPtHv9HV7SR +YnQ6RUEe2Flv8N3ydUFI5X7PqxPy8HUunofDzBFV3NFvv2BI+Mdnt2geR8S1 +b/qJ+kl56LBmb84ac0Bzq0L3bpvKw5PL5xq6/RxQUeOVpLNn5OGIiEmZOIs9 +Wj8UryvjLg9DB7lkjU9Yo1ot62ep5+XB+Pi7wr+BZkjCZEftiUZ5UGtS49z9 +RxwVnJatXmuSB/JxlKg0KYyY7cwqy5rl4YsX0/WC2wLop9e1Urpn8vBYwfDW +o5Zd6GE8JfdJhzxEF9Pfm+HZgzUazoRK9ctD53HXq0oeSthAoEKN5Zc88NxM +fqy6dhw/FX2t1DgvD/fX7V/QzetjWenf8u6L8iAaESzMMnUCs6lrSrYtE/Xq +2fWx/rUhHjDt447akIfPU7e6Y3qMsV3C+vrMDgrUT+gIJcaY44BZ/acvRSiQ +8JTvtFW0NWbM2jdkLUYBxccVOfizNS5UmVj8KU6BsfruhstHbXBHzFmJ3VIU +EBpt5fRitMUH2KuzzSgUWBi8EPMhwQ6/VOH0GjlMARrmO6EltQ7Y4eNYvC+i +QN/PTHf9MQe8HPOg+B9QQFuFbHyN1RELdukNCGpTYK9xlNhBV0ccZh0JrvoU +GNwfI6jF5oRFYj9zzVlQ4Hj3A8mf5s64SaSSEmNJgUa3vvm+KGd8sivcgM2K +iEdAi8bypjOOZGc/r2BLAXmuE5c15pzx21Lt2VBnCpCq47eM41zwua7yti1/ +4v4RO4/r5rjivX6hnzKoFPhxIoX6qtYVl7NrrZGCiHqoWEnM9LvifusRWe1Q +Cmwosll95XDDUnO7rl6KpoBN9falZ6lueIg9OGBPEgX2NOfvGvR0x8qHL1m3 +J1PAIy9Urewi8X7oXqQblkqBasYtx8USd2zQ3M43epkChnPKK6sD7vi5K2fX +3TwK7L4XUFCr7oH5MyRrra9QQHmaTsjExANHNx0u3nWVAl3qWtGuHh5YZbdb +SPA1CtwPb9T7neOBKxoek6CUAua7bxrf+OaBt4+/3Ll0mwL/tj9wX1r3wC6s +n1dvl1Hg8KvLX5tYPTG/0/ZelntE/VPJjOUUTxyVytvYUkkBLd8rqq+PeuKh +x3Kl1AcU2Ple55OnmSfOZrGMHHxIASbepad/Az3xvLKPa/IjCnQH/Je/GOeJ +jRxijQ/XUeB5bZSEbYYnZqq7K3argQLJJaffpt7zxK6fm/dYNFGg9onzTZMG +T9y64+0GUzMF0twEipLaPXG03VqfH6YAA01EkelHT/zhEmsL6TkF2jr/BY1P +emKVR6Ty/lYKGAnScn37RcQzqpyT2E7MrwQ10HaNiGe7foxGBwXmp5SjdWm9 +sKGCnddsJwX0FZUlbzJ74QqbwFMlXcQ8lhoGBrB7YdeHV6UYXxHX6/B3uwh6 +4daPD7gaeylwosPzY7KYFxZkbNvm84YC6l6Ll4SlvfBZ+cGf/H0UkJpw+ShL +8cLDVj8G376jwIc79qOVyl5Y9eJWa/wABd65UIuuqXvhnCqOB6qDFPiUsk9y +22EvvPBBvGBmiAK86c15g8gLG9Efir82TIF+xcd/BY964Xuyxv7GI0R+/VrU +US0vzHTGxYruE7Ef/FM5WHWIeC+E6zz+TIHe9qJt1YRb76fKe45RgDvA1baD +sMBQCS/fODEPqw0njAlH09Yxvp6ggPSD478NtYl4pbsW4qaIft8si8PE81RP +j44oTVOgyFeTdBuIeOMWOr99p0DPD1O6LSLexXsMj67+oIDmAo31Kw0vfPI9 +93XDWSIeWnU7NlUvXEkjm0TziwJhW091Xih44R1SR4MfzVNA6baQ4bKMF3Y7 +ZWHvtkgBzNtZky/hhdtivPS5f1Mg0/l9fZUQUd+Kc8o9yxQwrtIqOcznhW8G +aiCnVQpcpPxX3czphYUPrhz784cCdwvrPrTt8sJiPb42IhsU0L2s4ue95Ynv +5ki6NW0S/Uq6Zb1z1ROTbSf9jbeI/aOj5Koy54ll5mwuRNMqwI7P0t/EiHl6 +8Hh/Gju9AkTkTi/MvvHE8jH9eXcZFADHeB9GHZ5Yic2gop9JAaaft72Nq/LE +GgoH30rvVoCmKdbNy9GeuHl9ZbiVTQGsr3Gy1vh54sNtNROW7ArA86Rzu6OD +JwZz8p94TgV4+Sxb1Z3YP3qh3AKjvAqQ1jGsI7DNE7/QHJAIOqAAFaFJTo9+ +eWD97ZkKOwQUQDLrVsbgqAc2usKkqyykAG9ig4feNnhg86ZVnzQJBSDvLI67 +6umB359/FCpMVgDRqMzEJ+Ye+PQJ/9hGKQUwc/Y5HIA8sNXIVPakrALI+oZW +5HF4YMd/A02HlRWg7s+zxMnH7tjvaC3T3BEFSKWSv9HMuOF55gD2eC0FWGxP +67va64ap76T4eHQUIGaV+vdNjRsOdrklp3tMAbqpm057I91wVEKWxXUjBah+ +V+/LRO+GL70MKDWyVoDtAscKKIyueLdkbc2IjQJse2Aidn7SBeclrj7zsiPi +XR+/HN3ugku1z40mOCpAkdBqCpU4f5+3pHBhdwU4zGMR4rfqjNdr7lySC1YA +JqvfQfr9TtincMSHLU0B2niTP0VYOOClNYGo6+kKsLcrJ9Ja2gFHWjonSWco +AHJSbdjc5oAvcc7cPpatACXGFu67ztjj25dXP8UWKMCPPdcVL23a4k8X2E0W +biuAVEGJrRzFGp/0Oabc16IAMjN76h4bncLXjd9xnH+mADaznGxxk+b4p5Ld +IqVVAYQ6jLh/R5nj5M2gqsz/iOdVVv8eKTPD7enFkiY9CmCwPxCt/jXBag9X +Drz5oABqHwuDImQNsdBKKWPvbwX4uPm5Ju2OJvF7t22oi6wIm0rJyJlDHXnQ +Kg3YSCuCdoiWlmalBhqJd+v7JaMI6waWNDbah1BrUncPJ0URGrZ9H9MKRCg9 +O/e5o6oiJM8WLG77ehSJlUneW9NSBINzSRK3+Y4jy16Tc5K2ikAO6u5gu2yK +uo3jo5rtFCFFtSOH+6cp0nz3OPykgyI8/7FFaTlmhkSGeINCnBWhzVrrQT+N +OVoYm3R/7qkI8brr0yw+p1DycoTJmVBFsJsbWzaTsUTNfDdFki4rgnLv264j +JraIW/73ln6mIlTOf02aK7NFoVq6H3dmK4LPnZLvk5u2SN5rJjMjTxEW9l68 +fL/MDpXWK2zlX1MEdgbpzIBFe5Ri2vbhzj1FyFFAwhUURzTtylnncV8R8lO2 +myxYOCLtCPcMchVRL9fYgTdRjuhfMYvegxpFCNdlXjzV7ogCZ81q6xoVgTmU +6uFi7ISsLk2kt3cqQtm9F0lrZs6ovlDFK6FLEZJ4lQcDA53R3qpLOse6FUGH +3/FVRIYz6h2Q3ujuVYSB7ap2st3O6KhwiOe7AUXQD43QEzrogopVOrVzBxXB +Q4R2688pF7RxnFvw9AdFuFNOs2IZ4IIeBzx9PzyiCAkJD67X3HJBki0M2l/H +FaFFotYM07uihLenBUoniX76VPn28bqirxPl667fFMF2J5neW8EVFbEYPfw+ +owhDkddWyXauiO1MHv/CgiIEsFp3DFe5Il+f6bWaJaIfn2JidrW5opcxGgPB +y4pgpuZ3rX3AFcXf+ZTy548iOH7KqHq85orGGuXdm9YVYcTj6r8FZjek+er8 +0egNReDz4/V4wOuGCr/0H9D8pwiBnW4lP6Tc0J8lsbWtLUWIicu1Kz/ohv4H +pC1xCw== + "]]}, + Annotation[#, "Charting`Private`Tag$218652#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwUl3c81d8fx1UIRZKVefe9JBGJ0vm8lRGKQlIpe8uekb33uHa0rKSUhMSH +b5pSMsqIVKJIRbLX7/7+uo/n4/P5nPM+r/frde45RGt3I7uNbGxsmVxsbP// +Lc5b6o8Zc8fGfok84Yspx85+lerpkg3EdHsfs38yzMKOOpp/Ok+Nx6yFDokN +sbi6ykTm1kAGxhN8PeUji7FdQTY3SXnYIzWaYz+L20uvFxY6X8Umz5PKPrB4 +9/ZvP/X7b2Bx0gYa3Sz+ZzDPpbtagn1dr1bvYHFDEg9Nm3gLO6KindfG4rA2 +ySNHtCoxkXYKesZiHS5FS3CqwnJGCHXNLN5MvoEXad/HJn+9YXvE4on/dh0v +7KvGqoZvyFez+K3lw48FzjXYR0e3YxUsvr+OnPNXHmIJdWl7brA44JBRbA7h +EXYw4u6jVBabD34Uyq5uwDC9gJDo/68nyK6YqdmIif5rar/EYs5HAf+lOzZj +QjGSt23+X/+uDYyjl1uw2xK1BaYstl/WctfR/g8LZxNN1WWxXn7HqlbfE+xX +9at5ORY3OglqaV1vxey+GetK/V8PtTNJms5PsTYpNZyPxfx9X8WOrDzDhjYH +eP0yyMJ6heb2A+EVZu+3Lfkmi4+OHgjFxl9hxIieTyksbqgJfY6q27Ah1XeC +QSwuMuY+dUizHbOsPyFgyGLbdAmvA44d2GiAwdL08SzM5d69wSui77ClLWo+ +/SymiBqHSVx+h63P+Pg2szj7e84Lce1OLN8zrzOBxYExRFOxvi4s5Os+rZ0s +3vu7dTFPvRs7Ex6ZunSMpfcp+8Kd17uxez1HMgZZbE69/U3UuQcrO5RvUshi +eKrsLbLyHuNykXETZTHnxqNpgoR+TG63QfcfPVa9H19rcSX3YzOk0ltPWazy +0HB5ebEfq7nf+DSHxfaOp+1HugcwDuWo3EMsfv7WXr06dhCrScrZH6qbhUUX +RP8w/DOMWZa+1f+sk4WlNLB3EOU/Y6CnvvEWi8+WPb9VYPsZ+zT9/owXi/+G +6Vmkdn7G+Aexu+vaWRhJ2ajN7/YXzOy+IgiyOCLf6pqWxQj23z2V80KaWZhB +LDmoOWsECy7jSuo8koWJ+YyeUmsfwdja/iwksrj6uNOW3WrfMAMyd87q4Szs +K5unn+COUUz0npLRqEYWpuEQdmzk+RgWpXDuViSWhbEpX10Ik5/A5P8Geskc +YOk1alJ+wWoC4w15GvpOLQurz+YxU2dOYKfe3GsIYrHHom/d/OIE1rX1mMQ7 +1SzsM37Mz+3ZT4zzo5yR3f4srEV3aeac+S9MuKP0h48yi6sq/MW1prAv8Qw6 +r3wW5hYXbZhwYQrbFlebdW13FiZhZUlf9J/CumYkBZVYHCAg3PuhYgqLKIoT +MZXLwhR8w1Uy+Kex37NaKkzZLOzaAbNZrsFprLsyOmuCloWFPuPwnvOawU4+ +W3Dils7CotbOZI4mzmAB4U+xGKksLGH/3Qc9xTNYzGmdvZtYnH3L9F/1hxns +YfZBj1WJLOxucpmv+4F/WGTHp64RsSzs0yndgB8bZjEhEw6XJOEsTH0s6fJA +2hz2KD453og3Czss/aXw1a057MqMY2rNVpb/zfbh9U/msF8BxqviLDZpG1rL +/jeHlbwzb/jBk4W53pUPMzabx2zmI5iuXFlYgd+7iHbpBexaTlCv0aYsbIlT +MA6/u4hJDiR+DF5gYgFXPle2vVrEvnvs2dYwz8TmFO90fvi2iI285OKdnWNi +0+ba4n/ElrBeN+6/jrNM7Ed1wF3p2CXs7pHxjVp/mdiHC0M9YRbL2OYsR5k3 +P5nY/dpS4hH+VSx17zth4U9MTP6Yt7bhrlVMbopzWmmIiVV+wVzOaa9ijl/d +nQwHmVj51v4a7+BV7NyOS1qhA0ysyHrL0eIfq5hDm6dG3wcmlsTn4cbx3xpG +lbaaMOpgYsoPrgyNqLLBe5ccY69mJibyBxuN0GKDrDkT9iCciS3JjkwSjdiA +qzcvLryJibXckFmxcGEDp9CKzMzHTEw/o1ZssJAN/inZ7iquY2LWnu9O92zc +AC+8TlZmVzGxtD3sXU/bN4DY9QvY/SIm5u1S1m/TvwF63t0ZzC1kYqZlel82 +jm2AR++2vYq4wsQkpNOnYH0DZAQtBxnmM7EyPqltTYob4fSc75aBLCaG/9p/ +7GH2RtAz3pVel8TEft52eV5iuQmGmvrzCgOZGI+w/gljt01QZPVv7WgAE2OE +yQ6wBW+CtaX02mk/JmZvMv7rXM4mmNocvYJ8mNiXFXshgbebgEsg0f2VGxPr +PW5tG3KQHU5R45TybZhY6x+zjaeFOeB0qoI94xgT+3pGNYmdwgFGShy2N/WY +GNtTEeFqRQ7gfZq4V1yXiaHcDzK8xzlAfCRjaps2E3sEJidbIznASv4C/RPG +xKrSDa/tmeYAw/KqcUUlJlagpI242jlBQLbY454oExs7bj3p288JF0TThdhF +mJiCY0j+yBgnSD3lNjcRYmLPr9TO4Rs2wwvzxPE/25nYFAe9ynf/ZpBf2/he +aAsT0+7bTBi5sRmoW8O+71jNxP4Gv9qAB3JB/UHHU++GMzHd58eeedN5QPaG +c/2Oa5lYfWeJ45ISD7ypdNOXKMrEaENrW8KBB3zPDX0lXcnE2P/dM0o5wwPW +L8JF5XIzMZwo9Lk8kQdEMu25ZdMyMeXLQ0tDf3jgVuufB+9DMzGCspvC0fot +4LtR5uDo+Uxs4XpqgYQuL3zli60rEczEbnyk/HfflBeK3Va9NgtkYseFGsa0 +bXnhhMSvM47bWM/jvil6hvICGra3I/OwnrurvXz2kBdiCJYXQ9YzsBvqI//c +SHxACxH+2jqegen3qhj8t8wHH3YZSEU3ZmCGnO5sSqf5Yc/xy1e6zmZgteJ9 +vAnn+SGNfS3s/ekMTEpRQ/yLDT/knNj6rtckA5s8t0Ml1YMfVPwN6noMMrCE ++3UuP+P5YZfqzcV7hzOwp+ZsvTcb+aHKzjNkSSYDU32QfkeQtB3kPiX2lcyl +YyTLmrNzk9vhfYyDpFxcOnb1zcFLu2e2w0splzuFUemYxMHWPNvF7WDh7ELa +Gp6OiQh39XVxCECF+dOCr4Hp2Nb2P6ZVUgKgV/xXx9UlHZvbv8vY8YQAxEvy +9KwcT8deb7uhP/BAANgDNzst86djPs2p6vilHRC6rojWk9OwbZr7CoPDd8Bm +27hLp+LTsIqXA6sH4naAiMVCUnlUGvalk9pcl7UDXr14pX0kKA0z+PZY4/69 +HaDR3KSh45iGMbh/aBeP7YANd6gamRpp2KARnEwwEoScVr3Th7+mYkfGpuxM +ZYUg3z7tum5MCuYxoqxxXUEI7jX5+WcFpWBFnwMkJlWEoJZWt9LnkYItDLB1 +hx8RAu5dWW0651Kwyg5+uGMuBJlF9Rwte1Iw4UcKYuypQqAoqtixtTcZm0j0 +eHt/RgisM7XQhFQylqE4pcLbJAwbzaKYwemJ2JCWkfFwqzBYOT2r0o9MxBhn +a9zvtwlDXqfRdV7fRKw5IqD8VJ8wqEiHeTqbJWKT3WxiRTPCoL05xzRCKhHT +8tu+Ki8rAp86An6olCdgCw17W0/kiMCDppWomXvx2JEO5jCpSAQsg6bK2a7H +Yykjc8v/ikVgbe6KF1t6PEbZ+lg5r1oEtlXWC772iMdOnj9S+uWNCMhsMDUs +3xOPVawbx3uxiwLiGrQ0qYjDzmv6GjI9RWFLytS32xmxGH5v9rJ2gCgE3eb2 +HQ+LxQiSfpULIaKgE2MVL+gei32d9eM+nyQK7jYfTcj6sZh9WUArtUwUVFJO +1CVtjMU8eIL31w2KwqKriEr8xRgs4l2E9IDOTuCO3fOfl1I0NqK+ySDJYCeM +PtotyicdjWneigxGp3ZCsNxRlRSeaIwzIqr/hvVOKPpT6n/0SxSWqBST6XJ5 +J3y96DOfkByFMbPjN69W7wTPAYaywJdIrMw87Y+0lBhczP68e9gzAsvXqMq9 +QBGDPzf6RX3ORWAptLcahbJisBeZfprQjMB8prYwxfaLwev9r3YGikRgEBWr +KnRCDAyEstL4H4djA7dDwnkixGAp0823ZTkMe5NWKKsbJwbUJzceKYyEYS2+ +jd2xKWLws9MpOLAtDCvFlqgcBWJgv0E+KzM3DPPu9m1bfyAGXU9eGg3sDcO2 +LrvumB0VA3zL2cYteAi2PpzYqDQpBuLV4U+sY0Owv08r7Lz+ioHuE8n5kydC +sP6UH3V/1ljjGzaemP18GSsl2ZpPiIiDClNKlmM1GMvbHMkhIyUO8Nhq79iT +YCxp8vpdB4o4GE7RYvXjgjGv2mG2UQVxiLI3pBduD2ad48+VDOuKQ6pauQm7 +VBC2d88lA6kT4uDZOV+PD1/CaIJ58+am4tA1Fycxcu0StvXTB90Ba3HIinfO +syRewtafzP4VdRKHmzO93+99DsT+lgleOe0uDsLCh1XNrwZifZ5Gv3uCxMHx +TNLyXelA7LWpZ86OCHFY68u8WNMbgOEH08AoThzOKWWImyYFYNWEqvG0FHFo +j9eT09oYgJVwvM3oYIoD90E9gxxHfyx3YvIgXwFrvOe2jwq6/bCkji2jx66L +Q2Zy+U+Ghh/mlae7v+2OOKyvmil9JftikVkxxLQa1nrMy0POJ/tgzPTWLaaP +xeGSoMfPlkVvrDb+0OcvL8VBe+nJBOWjF7YcqBi/OCIOdTZ7YuKbPbCtfm7e +zRPicLH0+0F/zAOT8rp9PnpaHOSw7muUKHcMnKl7t6+Lg6VdVrlp0UUs6uzO +jwwxCWD7OJR2hN8ZyzI1ffabIAHM1+p+BDUnrNQos6qGLgEfJ3ZVjdo7Yi/1 +eKNgnwSMe1yZePXOHuM9uGG32QkJEKh13yM6aINJ7UciUqclYEC3Z15W1gZT +UAra8O28BIi+djTLDrbGjHbNvnd3kYB1u7JVHXkrLFt8PCQ2RgKGv11Nbok5 +j5WJ0JyOJ0vA1S+HPx2zM8fqd9gY72BKgB2pZfmq/jlsYMsQ/ep1Cah7sbxr +854z2M/NYgJ25RLQWhKi9mOXGbay6fSKbJUEyAaW6/MpnMakV969q22UgFL/ +jRItx09hCgu8j4NbJaC8kr2Jz8EEO/xPr+RwmwRcoh4q2BVrjNlOPg182ysB +sQ06mlYfT2Llg/Wksb8SsI2Qbrbt+nHsUd/s1spFCVi0CG3SPnAMa+vZO+/J +Jgm3tHn+6A7rYZPtla9XeSXh6VCF5qj+UWz15fjDVkFJePKI9+fGHToY3zPa +tXhxSbB7lksXGNXCFJqu+QjJSALlH+8D0VtHMI1HQxc+7pGEd2lc/aX5hzGj +h2K611UkIXsP1UkrWwPzucOU3K0pCZ//CfQ3n8KwR4VxzzUtJOGwQu0bj1hV +zFzAdleOnSRcm1LNjt+5H2OLxdLGXSTB1niT+amGfZi2x9yZlABJkIxQ0H5I +U8LGv3Xin0MkwVMwU61sWhFLOnOHrBQtCeMP/hrOv1LAug7b/upNZzHeqiR9 +ZDfmW4cZyeZKwtnkhXP+sAsTlROvCy6ShK16RRnrp2SwC0JdYcTbrPGMqR3x +L6jYhoQ7o973JcHMUuzEHhIFK16L03teJwnnjjp8fZxBwnS8batEcUmocHX8 +r0GUiE18xwRdnkqCMuHY4ICdNJZsLh7Y1CYJj2+HiqBxCUyhc25oW6ckpF8h +G8hpiGLdWl2HrXtZ+unMqBvqC2J+DXfKaoYkoaNHwu3A7u3Yzj3xWzd/k4SY +w+sPb1vwYo03bT3PTEhCSlyCV6QZN2YpCh9uT0lC4oZagZM8nNimZPGDa3OS +MDbw4rb+iU1Y6Yb5qydWJSHJrYzcw7kB0/PrYr+5SQqmlpV+6e9bQ78m7jjN +ckuBuUNnCz61hNIs4t/q8LOeX3k4tZW6gJR6bJXyhaXgeQjH68bGWfThKORO +SkhBpMPp7btLZ1Bgk/gqIkvBv1NHCZI900hi77xVuowUyJ15/Dpz2xRqLu16 +PrJHCsqDhIdE1n8ja/G7u1RUpIDv1aXxfcW/UDm73ezAYSmYVr1s6LXtJ9IP +hLO7daVgnvSt8+qHcfT7l3hzqKEU5O/ldq679QPt6+2Ko5hLwfacpJ3fnMdQ +n/7dX37WUvDHT4Nuf2YUBbfEG71ylII3l2vmiae+oSe3QMLNVwoaGjzNgu2+ +IoPgu1V1KVKw5hgdsjIyhKan4gV5sqRg4616WTgziJh2doHmBVKQHuVrHtk3 +gAYMJI5sKJeCy9eDeILWetHl1vky47tS8Et0yPj8nQ+IoNq9tbRGCgImVto/ +O79HDsSED3r/ScHKTu6ez7zdiCfb7mDhCynQdnDtS//bie7yaFz780YKfiQt +Osp8f4f+zcw7MQekgMzuc7a99g3Kcex+O/ZZChZc1Hocpl6jA0N3ldS+s/R9 +S1j6oNaGwp7brQ7NSIHgiYnlfz3PkYaRxc26JSlQCSqSTjv4DG38ZKabvkEa +uJ0D49iaWlHUrH6W5jZpaLVimxz70oK0wrUOSglLQ3V/eETZNI44ebEv8xLS +8PyJKm97dSN6kasa20mWhvzJ5+EnfRpQHGXv7tuy0kBb231Po7cO6d7b1R2l +KA0PS4ritVAt4lGnBl5QlYYB+4CSY9o1KMlY9Nl2bWkIOWSl6P7zHjo+vN3l +5zFpMGtl+7569i7ic9my/ZmxNNCNngw6BdxG7+bY64rOSkOKyzdUsPEWSo9Y +Mw+wkoadV0o8ExJLkRHfwkYjR2kIv99kdG9XMRLMny7f5S4NrmiU9ubzdfSe ++tOAw08aanRno7VOXkXZ97/9+xQsDVNs5Z1L6lfQ6UOf8usjpcFN1IAfO5GH +RF/1QkaCNMjvPV/rFpSN+k06x1zSpeEK/zv79IZMlP+5LUkrVxoyDwlJfeNO +R+dcn+6VvioNHzt5OLStkpHEQlPfQok0FDfrDee4x6OhyLqQrkppuM+j/HvT +SDQq2nafUvlAGkrtRg7/dY1AFgUVbdEN0lD/+/S7+CehiEAv9rD4Txqu2vrW +9OcEoi/VhcJqL6VB7dkl9s5/vugGymkU6JAGIdJxFfPNnsimLc168r00WGx5 +ZOwp74kopglczwelga+sZu1IsS0a+xJ59+oIa74hq3sq1y1R2cXLJoET0qC4 +r8cv3t4KOS76LRlNS8Ov0C4B3y3mSDba45rcAqvfivpmkgcN0U9+Z23OdWmY +fnT92rPxw8j0reLcn40EcCf/8Xono4BUmPKvzDkJkNbSfdjsFxcucnbXlVfc +BEiXktziMKGAL0gz3FV4Caz9lutV5PAuvG+UcvgmPwE0Zns0rMQpeP1tohC/ +IAGSrqhB+zA/yvOU+hEsQoDA/ukvyYf6mi7tF388LkaAuoic+/aHJdHZVZEU +UykCnKvc1PoqQxA/0Cpo1UokgMxnB8eyW4JIPH67sgKVADEl7z9Mhe3GVwz4 +NhcyCGCxN3+/iL0aPii4ZYBbjgAfnKx/ROxioMaBzXf89hAgP5RYEvBLFRVe +Yw8b2UsAdu1tdwQxWRRiv8H4hAoBWnQOnb3cpYJfkFujNqkRYHO2hqzabgUc +/V1akDlEgMecah01BAUkXT//OhsIEDZafLOr1gRnC/lXtEmTAJuOY/LquAP6 +fGTa00OHALO2g/03F8xRC/dvzSE9Anz/19L3js8bv94xIaJnQIBqknHXv8C9 +KCLr+0TtSZZ+2zJbNASckPW5b03kU6z6u5ojfnVrIoPjU3lhZgRQSlsQ5c7z +xdWwFd+hcwRospgk65qcQhRFLqMDFgRorC7dc0zSEfGTBeVzrAmQe+aRpPJt +FRyfOFLE40GAmyO9gkdHTuMVg4aXHLwJsNwsXUGgWuNZb8+ZPvUjQEVjs9zB +IhsU1uKwl3iJABf1rtYfNrRGrtXefCGXCXDk4dD6GJ89LnbpZsh0AgGapei5 +d1M9cE7XqrMGKQQo+TTa9M1h5dD0+ccqt9MJcF/j8vWhMXs0aPhCgCuLAAfD +q7Q37zFELzW6f9vmEkD1QwjjUYIfXqM03PZfAQGOr/Lt8rZ2xq9Sf5ZKXSWA +PmO++STRCyWIzEcE3SDA5Zr/ylzmQ5Af9yaLvhICHPLvfZBsFIisl/kO7rtF +gOv1mmYxR5TQ8V9iIhmVBDDyPeLJeT8KVx2mzfyuIoC4M/FhYnEwTunc26H/ +gACkUN6X12csEX8rul1eS4CzEmLL9wuC0EqNXixHA8vfGhsao58Eox+lpjbW +TQRQ4+9eDx92QN251lhzCwGeMqr+I3z0w/EEN3GJpwT4T0/I90BXDF4RfGk+ +4AUBnlk/HtbxO4pnu8V0v28jwJbQk9P7OP1QhGVG1d63BLB69ZPnZ8Fl5GZU +lJjaSQDmZtPJ5gfe6IxmhcNkDwGKv3Q/vth6AddUqT2i20eABcmf5qpHE3AF +xhPp0o+sfoPl5+fHPXAJsbfLG4cJ0OOv+0K43RVt3jrQa/GV5cfakGIzgWD0 +d3X0QeMoAXI+8pWG1gegT3+mU3eOE4BL95hGlsNJ1PZl1cVvkuV/QZEqjqgw +/GE399HuPwQQcL+4XicWil97JkRRmCFAyp99cipFxiipjsiWPEeA+frO6AOm +ASjg1u7B8UXW+mc4sJt7g5BNgVq99iqrH3Ziw0dWnJFBshbzJhsRXg29Pzn+ +zAM/EHrSg42dCL9nGo7Ty2Nxmuf5Y+c3EyHf59HJDQpn8O02TowGHiI8OLBi +/5vphVZMfNlF+IiwZ/PmNy+Mg9AP7fDP3tuJoNY1/OLjtDfqUU1ufCdIhASu +LXVswcfwZtm83N2iRDgmaXkyICcar5Ao8UkQJwKpwEeYnZW/bL77J75LEeGa +C3ti97QdimBrktMkEcF+qN3DSi8QXfz7kus6lQiNyUoj5d/9kdm3nm+rDCJc +vcgjLX/0HNL88LnlrBwR2IdlO6izgXgAu/rA5T2s9V2tMWXbFoHf2Zszc20v +EdYnLde6uTXwr5Z/tz7dR4T4cUkb7kQvJJx6nPZdlQhWPGaE198DkV5TOcaj +TmSdb6/38815o9Cfm87sxojwTPTfLeZHGqrZaeF14jARTGafBzb3hOI/dBoS +vbWIEPnoztg5w0xcwk+oJPsoEeiMe0KlOoH4yWIP/JE+EWb9nEOZTBcU0/W6 +d9CACC7avRoVK5GogY0+vX6SCAEPx9/vv5mAfstH8JBPsd5vu4n0+xMQ+fwQ +WduMNV971hObq1HILFH1kNM5ln7NPUSePneU9CjTNOkCEf7aJvRXaPrhLd9/ +u1dZESGn+821VJMMfFZIL77Llgjh4ubRnlZMXFaz5MasAxEkJ5/Hzyxcxi94 +sTWKuhCB/9x91YVz1ijj2rn3B92I0DP3qGRxPhy9eFv7+4InERQDL3JP0eLR +ysp2rggfIvi/LOU9S0lACrsuEkv8WfVWLBtWT0Uh2zMvD7y8RIR3Mgv2E6Le +KC+WbPLzMhHOMq5p4ds88LcPQy7yhRPhhlRIR9vrVHzjt/4YxSgihLUFN5y3 +y8L3C+y7ZhJLBMftvxiX1MNxV0h75J9ABM/bFctRvUbomtvPrvxkIpxQ7R36 +OR+K3l/RnmxKI0LGKn8sV1ks4nl9neNLJhFGiz4MXjGPR2hxRYo9hwimLxHr +WhSNvOlmqvR8Iixertmk1+WLyk89OKlXSIQZj7/xvcu2+GAkn8vFa0ToJXD6 +V55NxLdXO0Wl3STCn/NFSiXnsnHtz08LH5QSoT6gMdXbNhK/xEeo+3CLCHnx +KmW6/qLornrQu8VKll8oGTsyWHkfcf4wLnGPCBYenpd4qDFINE9xEzwgQst0 +Pv1mVBw69iJJwqaWCEtveCejGNEobPb7vphHRBC3KHbXJgWgh+QjhrcaiXBc +c1uuA5cpPnGyyLG9mQgy+qabso7H4lJhi+F/nrD0ung/tUczBze6a1Ig8JwI +l74xo3b6RuOxg1U1+14RwfqcvcQObwO8kWfLW7N2IqhsFNz6FwLQlKr996AO +Vj/+7ukzvBGFKA7/sV3tIsLL6mOhzUWx6EyWhNiT96z8E4zr9wlHo5RWf6XR +PlY/ZrhCjwhcQk+mu45xDbL8o19n4LdBEZ+TlrffNUyErTbpLp+vROK7DOJD +Db4SwcDnlpWPWDZuGfwt13OUCP/9FZ6QcI/FmRVYNfMHEQ53TpdxXrTAX/bl +v677yfq+gJN9ItIHrXLOfRv4TYR/RpkxWwiRaO++k2ur00TwSHokuOVODLK3 +qRQhzrL6McTvd348CskWZnfGLhBhUH06Nn41EP36EJb4e5kIXcO1z3yKD+P3 ++F20Tq2z/CtEMziQHo376J1af7yRBLpuszuTopm4ahT2iMRJglsD3g9GIsPw +5SYZ73huEsSo+R/m6DBE+PyO3VNbSVDvtTj35E8wilBcGzPlJ0Gi+Gvk/isK +abv8uNa0gwRUTe4lsQvRiLuk6yxFhAQHLDtfdTBDUfunRsFEMRJUSxYfdH1t +idJEy95OS5IgXFZTl/vdJdzEKD3OjEiCNIK8Rm9EBi6SFHS4mUKCfXZ/r18w +iMUHntmtUBkkmDCeCincZI4XrRvWJu0iwW8Oy5cW6z7IWu2Ax4w8CR7cHL4b +Ux2BqN4U2bN7ScAI5NmaLBqNflTyfWvZRwLT0K9iGtXhqHJsoZCuRgLlg9d8 +tNg8kQdh5HSKOgn4mZt/Ks464Upn32yfxUjAYyGtGK+ViM9l1r0+d4QEe1vY +r0Wpp+ANb65HP9EmgX6Yvgr5shcesjkJk9EjQewfi4FthY5IQ8NvMfU4Cc5s +jPw3MhGK2IMsH8ydIMEP1c/sHnJR6GWN3sXzJiRoil4/XdcegZJ+K9OfniaB +xYJOY/Qdf2TIkP4ie44Ez6NHhcSLVHABa+6C9AskmKy7mD/6PgL/UDBjsmBF +AsW86q4776/i+e+H+CzsSPC2wvdCx/Z0/Py2ly+fOZKgNVlY3HfGGyfoVkfI +uZJg/+12ttAST/Qt4op6pjsJ1JaFrmGHY1B5Y8zcohcJ2rXHruw/lYJc5jzu +WfqRoHAb04U3Jg3JK5xzfhFIAj3Bl3DBIQX9ddKiyF8mQXQY/9kAhxhUe3PP +J2YYCRpfTJg/2emFAod25i5HksDpqfv5j4beuLoIu5F1LKv/uxoz1D+m4Wwn +f295lUCC5iCqASn1Kv40oe/ZnhSWH/1epdqey8Bjnz4JzU4nweLUxE6F6kBc +b61SbZVJgm3jg+3teQ6ITzVnxiaXBHBZqe1IXCTq8gy/01ZAgnI++QvPtyah +rNsuDopXSWD7WGubk08qMhs9Rcy9QYKbVT4+Bc2s+xPrKrVWQoKF7Nzct79j +0Gcz2Sy7W6z6Hz/9Pc7uh25mCBq2V5Lg2Q8v4bkdjrh9+xqX0j0SOAb9jd9B +T8JlOcef5D0gwcXlIrnb9wvw31h3MFsdCV5x2xB8UzPx+4FNKg4NLP4VoHyd +GIr7PCibetNEguljHSKOvWZI9Vd6hfJ/JPgy2DxX8y0MrdCCbQueksDocRX7 +n/Z41GxpL7XxJQk+bbI/yd6TjCLyT/Q5vmbpIVlkYbGUhLR7DmR0vCXB/T0O +vK4Qi4z0fOJXOkkQXPVVOnxjELJouRMm856Vhz/TNDWzPbirynd/0z4SnGof +PS/5OAIPqCS4R35k+fPwZ5/2AiYeRTprf+8TCX5mPbtzkjcPT8/NPD/0hQT+ +F1ZDWroS8CK+NyY8oyRY7guLbHVzwyuiOI/t/8HqV9HCdeddbqh2CTti+5OV +Rw93zb3XI1CrR+CB9N8kOPJ3XqisLB69G6tWxKdJENo2p5ZYlIQGzScZP/+x +/PDX4JliTCL60UUliC6QIINNtPX3hRg0e9RCRGuZBJ0kTzt5o0toY3Mun9ca +CfoG2j4urvHgfPu6OK5uIMOTaxs+r7iG42K3t6y+ZifDkpTIaS37TJxO1Pq3 +sJkMvjsDhXVVcnHlnJCf1C1kiGnQCy4STcCBt/6rER8Z7uw4dUSvwA0/Fjnd +H7qdDFseBWT5FrugM4uynZWCZLigwE0OyQlH9u62L/tFyLBfW+BEoW0c8hot +bOYUJ0OeSMflVycSUci53lolKTJUmx2iGpknoMRO/ruWRDL8Gb9QEhsbjXJ1 +9EqSKWTQecQb6VcSiIqbIq800MkgWsnxJlVaGt1Tasr8LkuGZbukR3n7wvCm +W3MJgvJk0PSevH9IMwNvk1aI0FAkQ8g22qSnYw7+Icsp0E2ZDMTv4TwltvH4 +1y03PQr2k+H2hfS1mEdu+J/wQYeXB8ggEWSQ03DUCa3MC1nMHiID06X/2qnC +MMTlZmhK0mDNf5gYd14pFgl+iztuqEkGudPMpHTBBEQ8+0QzWIcM5zgf1B3S +iEfy75YP3tIjwxktjom7j6LQAe19Sh+OkyGgneeB3UoA0m50k910kqVvn86G +jSOKyHhvOVHBhAwr+lFyxbQQ3LL8i+j502TIdTlYe145HXeVEudPOEuGytdn +yMY3s/EApsnmuvNk0NUR+JRfG4dH86SsjViSwenA6w39bW54RtiLWX5bMhy0 +H0tUFnJARXNsvw45kCGqUNTMxSYUVbge+ObsTIYIvUNxbQIxqO6r98eci2Rg +v8p7v/tHHHpqdqfrqQcZ1J7dnNipHIfevR17Ne1NBr/fR5+M/YtEg5qE/6T8 +yWBjPrWT+3QAGm84U69/iQzGlT8ft28+iOYUMqsCLpNBuUeoFOMOxjeWtZeW +hLHWm3eoyXZfGs4nyVnUFUmG0ugRyqWxLFw8E8tajyHDmm3GcR2+OJzBHZgk +l8DS8/XfA8Hv3HDl0OrIM8lk2PO82Flisx2C2Z+XYtLIMOlxX+F82WV03IXq +9SCTDM4vPZgfN0Sjs18uOH3OJkNwqOBCRnsssj+da8mbz/I7jdtZTDkWhSx+ +tpQtZPlvy9ozwVORKKtAxkrnGhm++nYkIecAVHnIy8r2JhlSZrR8+3WOo6fD +DVbhpWQQevX1i0iePz4Yvsm66BYZlJhixvV3kvAZ8jHrx5UsPxz2FBhzzsZ5 +njOt+6rIkM9co998H4+THIesZ6vJsIlk8033hzd+gIdmI1BLBo+/rUUm/qbo +ZKWbzZ5HZCDIlRilfQ9AjgZ1NscayWAgxql8fykChU2t2zg1k0FFBDWP2MSg +3IyjtjFPyPDKL/9SUVUMqlJOt735jJVP7e/1hE+R6PmHftuWl2To+PFryGQ4 +CH0KINkNvSaD13a2tql0GzQn5mK39JYMVedkJW5uvYjzNj2wE+li1duddmtj +bAxOsVixU35PBu3nLeEO3kxcfYOW/ck+MqRtSZW7lpOMm9xMtnf7SAazpjPt +2sJBuIvWB/vET6zx7BY91h/J4xHfpRzKv5Chp2ynSu5eb5Qf7+Dw7BsZDisJ +pz64H4aqd91z+Pqdlb+EiOL4t1Ho1ZsFh/UJMoTqvzzIMxWNPrtrOEr8JkNT +ZvRbT+EotLA9wVFtmgxjs9uHliJDEH9Nl6PpPzKIOOcJ3H59EdFNxZ2858mw +LYwUgdWcxdGCjVPaEhn4Y2wGxcXCcdP8Sqc7q2Q4v4ut/eXPNNxNfdapjY0C +Eove8306hXj0p0PO3zdRYK/yCYMn/hn4lbAYZ/bNFHh9w417hRaB15A6nIk8 +FIiY68K2V53E25+KuCBeCqi1Hzy5/sIXjdhbupzjp8B+p5qCz7RotMR1yyVg +BwWyguT8FjKSkMDtaZcsYQr8Ta5+jjHTkOzxA67VOykgWihl0+udjjT+RLh2 +SFDgjcT2Nosfacgs/bXrpDQFng9sWPg5kow8lAQvcpMpMFt+IdSNGIvi3ptf +pNEooDTMjGHfEYSu+pdcPCJDgaM3ePzln2ug2p2/L1rKUWAk/N4be/1g/O1j +FbfLeyhg4du+oCGVho+dD3XL30uBnZ9Tm35k5uOr6y/c6vZRoKN44cvDe4W4 +4A1+9x5VCqzvefNsbn8mLqd5xn36IEsvW5Oo1/JRuObYdXc+jFVfrSBFz98a +Pxc34b7rMAVeZH+gWcd4IC9ZJY+jWhTw7yJGe/tEoIT2IA+7oxQoFjGPkZmL +RzfcnnpE6FNg7m2OadzLFPSIn9fzqgEFtpS/Hfzqm4beVZ/ybDxJgTKOE8tb +FNLQD5Miz34TCtz/caL3ITUZsc2Pec6dpoB+0oayD+qxSCRvj9eOcxSw3e5t +Y6t/GckfDPBSuECBWs4rYpzs55D2UIvXcSsKDOi3VnNTffHJhNwdd20poHW0 +BP/8OAnPVPWo4XOkgLv8WMRPjjz8wJjOKXcXCoSkguMv4wL8c6b0XIcbBXKf +fmNXbUzDYzTmsxW8KHBic+vKjdQQfPeft/vTfSlQfcpSgPgfB95zpbRvOoAC +gyr709cPBqBLeiGBRsEUiFGQKLlnHI0IC6fEHoRSQMC/KDo9MRG9KNn9eEck +Bc4uv6GMPEtBbsYc5j4xFKB+yxod25iKBDcMrfTEUwDEv3R+OpyEGu7WFO5L +poDVEYs83pgYZGWehLLTKHDEvpBwMS8IcfHYDs9lUsDh/LLnr/oT6G7dwbDT +ORTgM9YZm1IOxIUyapOt3lCgoITDYut0MN6Ipcg/eUeB5K+jnS6Vqbj1L7sO +Ug8FJM3Y4+705+FcBYc8InspYPfsC6NEJwu/e1Ro+7cBCpyZCC+vd4nDTeYm +72t+ooDNjpcLVVOe+PLNp0YlXygg9Ozap8tmF9CNk1dmOEYpELaXqObWFISO +rnsz7X9QoC3ktEnv4Wj0u1J/34ufFKgRekqqmI9HWWfJH+h/WPly9u11Wk1E +6lzLfnF/Wfk4xXHypEki+vqwS2R8lgK+iVwrBSusPNhU1OsuUsBaZKYzei4c +7dkecaZiheUXJ6N72VFe6AN+ZomHjQrrd55xPVg7gQe7Kha4bKICNaO++fqe +MJwkxq3ezkmFIxnWJ1z90vBXLz4PyvFQIfl7g1zRrnzcw7f+cjIvFfQdBccN +72XgwuQ0qd/8VPi+yD33MicKb3zn0GwgSIUbiX+nJy864TYhmGWVCBXcZ5SC +l07aIR45kQ384lRY6/vWWTMVjO71/77uIUUFo3Y/HwP+aGQa+/xwJ5EK77rw +/HSJeLSqXDSiSKXCvf0TaucKE1DxV9+oDAYV/pRuVR7JiEd6acepM7uocEz7 ++G+r1Wg0dYj63HgPFTzFPl0lNISinJ8r9jV7qXDzx0WOqy9dEcrr2SykQoWx +UwRj/62W+DftynJfNVZ9KnE8MU/C8R6F7pgr6lQQi/6oGuuRhreKLdm2YlSw +eg6fqsTy8Gp24pGJw1QY9zad0+XNwG/81iFu16bC5HDYJkwoGs/oc1vfr0uF +GlMQ2W3qgYc/yRq6cIwKaqe/yPgQTiGPysbH0YZUUAkMUXxwzw9ZZo/kVRpR +4eKKsf+/6XB0IownoPsUFchYog63ZwzCnBVNl8yo0PbQPfnJ+zgkb2KmTDSn +wv7eBRl9QjySQqECRy2oMONkdfbtiVjExyidcrOmwh7v2Dp/h0i0uv3N2yw7 +Ksxvr3Mee3kJTS7PVDY6UuE6cz6uRtoODY6KJY64UOEjl799XZ0N3t6h4cTj +ToXz6q8bp9TD8cePHHUUvaiA/1Lb/bs4Fa+4mUo186XCB6qz+qBALp6fXLsp +NIAKPLOyPPfH0/AE/6EvJUFUUL90etvi1Ug80Iq9pT2ECisNY4U59y/ijvq7 +imbCWfq+3br496ApMttnFCwWTYVOqf2KtfO+6Kh04FmNOCpwaT2f6lUIR/u5 +r6k6JlLh4d2siSv20Yg281w4NYUK/orxFkaFsUh46Ne/h+lUCKsSWye8j0Uc +LwS7B5lUkPOQf6vIF4P+3Tt4f1MuFVQvRtLuHo1A3/KtU2ULqOBKVHcN5Q5E +3VHxF08Wsfx3Q2RZg8cGPXG7px9wnQoMLouKnjkbvNqsV+ZqMSsfyK1o7HEY +fv3w2ubnZVR4sCY+0uefgqfJUccmK6jw5cd/pvdEc/Aw4WNPd9ylgtYZuwWr +mlTcnc37xoH7VBA80/q5SCsCvzCRF2ZVQwWdSkM7zn/OuEFPy4W4OlY/3JFW +r9xphPDv6lUNVPCq8dxUr+mLdpfziX9ookLIfwUWDoFhSCJj3+JKCxWKY5+w +jThHoa3B5r3kp1QYdXilNOsXg1bsIh/qvaCCxZfZ7KeFMeinYUWmZxsVKCV3 +RQKGo9CAWqdn7hsqnB2fnVZRD0dt5AXD5ndUGFh6ZXHS0R818ErLj3VTIfJA +W3GPpBW6Na+1lbeX5c+51NlfNFs894vrhNIAFepHYrsAC8PjXme+PDvEypdn +n+hfs2Q84GFDafhnKrh9fEg23pWNO1z9ElU+QgXZxDe/whuScdN4LpuOMSoM +d9dM7mAPx7W992jMjVPBuiq+LsPNEVc5byot+YsKZov60gHzpxFV5/LqkSkq +NGXYGGfl+CBBxeKPzjNU+D2WJU3JDkXs4q8fpc9R4bnBqePjwZHoH/vfnPpF +Khg7vWz1sYpGI79F/YZXqPBpyUeqPyAadfVhJpxsNNCc5DQ62BqJnjyx37t7 +Ew1c1bZdaYEwBPUS93M4aaB+t9jU7b0Par7TtWcjDw2+bvLpD2wyRuhm3F1X +XhrsCOp4kG/phjfmot29/DR4S39xM+9pJH4g5d9tDUEa677msqeRMx1/FFkh +WylCA/QntJ+hkY6rBlreEhanwffDP6l4YRRe6ybMCJeiwT0VA0vPS564sm17 +6U8iDRISde5lzGmgB2ciqKZUGsxZrWUUT3mivYaqxS0M1vsvfLvPFVxG9zR/ +k3bJ0cBZgaei7GoEkj9QfD1rDw3S+OdjXdyiUOWeswQ2JRpQB1OGqQeikCyV +/6qzCg3k9F45b9oUgW6JPZd8r0YDK7HycOuMIMTgD76CHaLBINZ8ylvJDZVy +7BWvABp0/qudDVNTwSnL3/MENWnwpZB4WmXUF78xVSgaqkMD0wNF/Nb7YnHC +mHHOuB4NPOqKfi40ZuBXP3ILmxjQYOna/AVOxyu4VGczEz9Jg5nd88oioZn4 +lee+O2RO0WCoPSheb0csLta4KyPTjAZ9f/8NeUt54Xn3v/CvnaMBQU3d7bSn +GRIty0l1tKDBqaCxIZGESyj7ynG+bmsa9AaInEjPikaCGZuSD9nTYP50UMnI +eiLKjH20pdyJxrrPtf0SOpyGBC67JwhcpAGbl2KBbno6SvOicl/2oIG7s0P5 +9V/piM/xY+x3bxpk7dnOp3Q6HSWfT+c08qfBHX/LYeqVVLTVWCe68RINqk80 +qdwpTkAJR1c30UNoMFn6S4D+MhJxoQcR6eE0EPlh6nmZ1w/FKjltWImiwW3p +w5um6AzEKSMdZh9Hg7B9vH07TALwKKn3a+8SWf7Z5sUnkJeAbxRMvHwwlQY3 +VNW20vyy8HBujZWSDFZ/dohnPUsvwtnW5y7xZ9Ng4rdEq9iuQjzkX+XipTwa +eJq9SjiVycRXxq0DRq/QQPGBf2oBHo9fGhadN7xGA1shavfTgwH4Qs9b34ab +LP860frvCxNx/7aof5QyGshrOPNoXPFGc80HvFMraNB//OJyzc4I5PNwanrx +Dg2M0had44ri0N+KUg/b+zTApJJmWsxZ5/Fr5n/e1rD0vUCJOCybhn5nCbip +1bP8P5x/Z/VJGrqY+HLy5mMaSNuaR5QEpKHJsBAXvmYarD3kOFeQnYKc/ZQn +Ap7QQGLqKoegXwL64TLhOPKMBvsPv1gYTI1CDlbXvh9/RQOl2NVx9ZeBaMzU +1L6+nQZbJFqUuHLPIdtjW0dJ72jgZVT7S5fXHf+q8cQmuZsGJVjp72o8Crfa +H/B1/gMNYm6Eewc1p+Of5eStrAdoUGZkfnppQz5+gfRtuH2IBv+t+XF4dRTi +P47ccqB/ocHozZTANxVZuKed25/wbzQoQF/X9cuS8KUYJf/B76z8unZ+vEMP +xaPKF9ZUftJgE4h0ubpa4nxtTTHpv2nAOGXxXXqrA+v8EcE3Oc3qn4LVBQfe +YETgPZqtPcuqvzFWg/teFKqQ55W6vkADWHPQk22OR8onukqWl2kQXXS5VFU5 +GTV55uw2XWf545Cwr+m2VKSdaf7w3kY6nI5oFCk9kYre1RAPbeGkQ+HWZ4p6 +C8nozIexp3bcdHg/2l9mx8k6H87fPtaylQ7mWclXxYNikOtOzx4xfjokHPsT +kmoahmYPqJj77qBD4kb5vleKnijEfHmkQ5gOh07+duSs349zhbS4yIrRob0r +wsf/rD+efjV6JkqSDvnOilpO++Jwsf/0goYJdNiawLtTYFcmXvx126YDFDrM +dcW/u7m5AN/N/j6BSafDy7mfld3+eXgtNV/gjywdPKNTGl4IZOCgY5GvK08H +ubOBvgGDMXibI4VUrMj6/k4sJY7hhxsnjN9aU6ZDUn9ZSEC+Gj54+67iGVU6 +XHW3+TX43R3Zv/F+9OAgHZQPE4b9w0LQ1G9VDT6MDs8rVPN3ckajQP61l46H +6SDix9tQpR+PNu5tPdGqRYd9J5g8UtuTUJJxXJ+kLms9Li2RUabJSNj3uGXA +MTpAZuSZTRLJ6Gq2wI8uQzqEXvdYbrBKRIz6XvfdxnSo2Wss2E6PQ9X9V+Zj +TemwQf5t/Gm3SKS+bBX69QwdKv+Mzq84X0LPJOibD52nA9Esc0f8rB0yQJMp +OZZ00Iq9oD749jzeZ3Ff+K8NHWZ1MlT3fg7GrcP9io450GHV7oS3ckkC/vPG +QVqZMx2ct28ri5Zj4j5P2e5ucKODyszGgqZnBfja6LN95p50qLu0w9K8OAuP +3ZzYVOtDh4vKRm6Ej8k4v8wJre0BdLhs9NMz4kM4nq8n9MYliA796p0u3D9d +cbLrgMnzEDpQlv5beBFpiCqTrw4SIuiQJWuytjvaG6lU2doGRbPqj2s45EwJ +Q83vZCbfx9HhUse/pG7JaHT0729vhSQ6WHSL+03djUNdO2qWE1LpMDWd8+hT +bwI6ty8wcjSDDo0Hyw0acxPRN1O0BbLpQNq8ZF02nYDcAjZl5uex1hd0/iz+ +NQ4t5L0Um71CBwGtM2+lXaNR+OPkG4bX6JCROJo8kRyGeIaMZCtu0lnnk1m1 +oDQfxFwTqWYvo0OBZeyN//pNkBRhSM2igg5tR9VXRL854WUaN/57dIcOt+R2 +SFz4F4Yr2DjoCt6nw7tVtpSqD0l4Q5Rcp1sNHTjjHbR/bcvCk75CdmodHV6F +uD3bEpGHW8Cpc/ca6DDtfrz+PSUT31vkROhsooO+CGk3d20Czr5yeXS6hQ6p +PoGa4rph+IczGRUCT1l6tHUfU9jiit+qK3VXekGHNC13oZsdGihY6LGySRsd +Nr6rnM2X80AG3h2LPm/o8OmSa2tsVxAidI7gWe9Y+f09WzyTFYFm5Bcia7vp +oNr9UcZbIgY9T9qq2/uBleepF8t9wXEod4LAt9BPhy6B+dcH6+KR89F93aJD +LD11jnhWv45H6qW6uWqfWf2o/PPduCEO8bFfOH92hA6YpuvJ/ZEx6IuVFylo +jKXXbcI/b1okqmmO+V4wTgfRPBO/w0cvoxjJgsrGSTpMdpq73lnwRGZBVZ5D +f+gwcLL+pWXgSSTb36qy9pcODgEB/OK8DviKSt+y1Bwd4pJUXnc/vIx3MCdb +sEU6HOX5vqtEJB6/8ZctxnKFDicOCMjeU8/AfU4I6Yev0yG2lhi8ISwX174r +w39jIwM6RYLqhD0y8Z1b0fsnHAyIH8VVmxoS8Ukno/wRLgac1wn/LFERjuMv +7C3YtzIg8MNGPQ9zTzyNGkShbmMAX7gQzWRYFbeJTB3XEmDAL1n0tkXeEal8 +uXnXXogBFjcyeBoy/REXVu8dK8oAnR2yN695h6GBK+2q5eIMUJC7sL6NOwrd +Wfq8+lKKAeKpXfKQEIPCzGafjBMZ4Ke4wUl7PhYZ1XLH8VAZEDX/32bVE3GI +Iih1fBeDAZ/Kt8bKZsWiec+9Asd2MaBEoDtK6Xk0auvQ7nWVZ4D8Y7zFcSQC +Xdl97kqyIgOeFm1Rbem/jNwS3a3uKjMgWsllr8Uzb6QxHknr2M8A2o/FYWf6 +BSSok/vzzwEGLH8dqouwPoePFVfe40cMaEmpUh6z8sfrN/7nq6jBquezguM3 +rmg8wfL9ASNNBgwFqufz+qTi5vj4upcOSx8O7tldgVn4Hom1p5l6rPE7XHeY +VmbiGy8JJNQcZ8Bg7AvrzitJeE8vzfD9CQZcnd1lIzcagZfuOyg4Z8yAV+pm +F0xsfPCATMN+4dMM6IovdGraboLrTdsU7T/LAIHME96LxZZI0jDAxuw8A245 +P8jIvu6NpiqTGIGWDFCx76RyjAejJzzXf+XZsJ6f4O7xF4xATMeH1Q32DAhO +3vACZ/0/Ojx/5f/RiaV/RbWWi24MOkD5pL7iyoAvX8110z/FoK0RfzdIejBg +a27QhKZHDPo0zPnikDcDjmWkWeavRaH7h8STLvgxwFhmdkNpfASKKthzMjSQ +AX3BZ2MXSCHIdPGI8LVgBhQEXfSykfNF9dbfg9jDGJDj2av/w8Qa7WxP+OIY +yYCJBW9Bva8m+KV98jpvYhhw6GolKWjFFx8s6qxUTGAA3NBcik2Lwg9x+Qpk +JzPgyMh5X17jVLzIUzRgKY0BUre2OPXfyMLZPj4eusBkQHjntvqVpjTcStPi +SGsOAwYkzdZ+/IrBn9zZeItewICjHwOPnFm/hFNESvmSihjgydumWfvUFo8O +0/WZus6Aa6bzZtUDhmhsfLLfpIQBKw6xB8d3eqCjxmnYo3IGaMeXqiQtBqJb +jUolkpUMIFhk8ex/w9o/ab08EVUMyAY+NouQSOSaesljrJoBVWFy9af4o9Hb +BckPerWserCtIkqR0WiP9X8Hqx6x/Ji+j7GtNwqlvba9vqOJAW/bzKU2bo1E +f5W5Nge0MGBDOdGYQgpDJkW3XQdbGSBrcC1ZQikAPdxs2AUvGBDhkxtm/coF +CXv+3V/SxoByxofw6Mx9KGAgq5D7LQP01OwSVD854wNH1Da5dTLgvzPJ9mI+ +IfjBO4OOXT2sPK5MvXgxEIdfEQ57q9LHgHuD91FXezq+FkpWLvjIANPJwT2X +pTNwi/HneeufGJDA2V6a1huPtxg5r9t8ZeUl45kQNTQMJzXy2r0cZYCo8aY7 +mi4eeCT1fpvcOEvv4sUb5y9g+LcUE4X0SdZ+kHdPernVFmkvzGfN/mHl81i2 +VPoVH1RmVbB8ZoYBoVse3WJrCEZcr5EVPsfaD2T0ZNTPhyNn5a/PSUsM+Bo5 +rCFgGIleF0bLxa4yQGhSfyF3bxSS2yyT8ZNNBgab7drGNkehFI/2eUN2GShV +nTkj0BGBpvrdz9dsloG2fg/XvXFh6OSRHa2iW2RA5FHl+8f2l1B1ZS3jMp8M +JBa2Pjl93RMJCp9N+bJdBrp6y5cKNpxDfqGrM1pCMrDLrFH36h8zvPfHtTMV +ojKgPUJ7YWfsi6saaTbzSchAO8f9vunDkXj+4+8Ub2kZyFEx3ZY3noSvUBIT +ekky8K9ut+nLt5n4+RT5qYM0GRj+XvurMSkJx+c7T12TkYH3gXcciAaROMHK +9zH7bhmIab8Vlyjph4e3iRKdFGSg/0eFUJXPBfyrUmPMGyUZmFuT4RBkGiPN +QotJxf2s+azKd1t0uaESzk1G2QdkwDEhn+fyH3/E6VFat3SIpU9OfZVwQAhy +7NeV/B/D1R3PdReFNUiFJKWUSFS/PZTtdkJlhewysvf42XvPkBKFJKNQRkkS +pVtCRLQUSb3RIBklu/B+/7yfu855zvM8955Th0hQVnNIICM6Gj1THYtpUidB +8KUNF1zbYhC54tzwXg0SHHsisFAiGItSN+/XTdUmQeDjVe6WJ2PQWETPnV+6 +JNgZFqt4tTgK6Q6HbDM2IMHDaE759m+hqOr4zsh6YxK8AavLDjF+6OSsoORX +MxK4r8V2hsVOiDtvVYuABQmkUko+SEfLoirVGSeFUyQgB1Y6BYc44JPDw+vs +bUlwyLukRDwvCK9O+1CZ5kCCZWdrufrtcfimTJd+vTMJPOrsnXmfpmKz94// +fHEjgUyMvEhUbhZeFXnnooAXCU59bEnK9TyPb0qVKCj4kOD8GyEtc6MUbNae +3W/nT4J7v/PaLC/H4JWclMi0IGK/iXiHlas/rtgcIVkfSgLL/rdr18xYYJMH +nJYvESQYSx38b1jOGK2wsXMWiCHwO75q1X55DqrgMVmvEE+CeOWuCq3oYGRS +oXHTLonAg1ur/mZmFOIyUDqelkICAzXS58PZsah8ljZVl0YCzwGt7JCOeGSS +J5H1JZ0Eu9WEn1rQExGX2iZFgQskGJ4cs//3OBGVDXN/lM8mAWtyR6JLbCIy +TpuLtMslQYt9gXGNfwLi2v9TMu0KcZ/bFsGxLKL/ef+xpa6QBHHrc/ikRqKR +UeRL5y/XSHBmBcnrTW8YWpZqWi9wnQSLD1z25qn4obL2uzfly0mwd13P91Ru +e2TEuX7c7iYJVGtJM1NBKnhpc+7UmdvE/egdI77IE19/cCarroYE5yZu3Wa5 +RmADmyjFL/dIUG0TZyWWnogXeXw/8j8gwari3p+6Vufw9QqHKHlMgjTxgcxm +8wvYwMBst10jgadyinmWZwb+N6v19EwzCWTfz7vPZ53BJXkqLnWtJGhwKG3d +uSUe66sx+b60E/w4pnZq160Q/HdY8hZ/FwnCPeifVnm74JK0zQbyr0jQxHi9 +96agENbfzztt203w5QHPT281B7TwfiHrTA8JNkSUz57h9kPFkWOKdX0kmL0w +bnTiSyjSl/78cfAjCS7MeItfFotGC+2vo/gHCDw7bvNeS4hF1zgtu+W/kiA1 +ZRfpDTUe6W2pe2o7RAI7qQtm8oIJaOFBmcuZERLY51+NHWQmoGs2eXx1YyS4 +gZLLP6fFI901524N/iLBZWnh74fIcWi+IsaAf4rgC8XXcvOqGHTNwH9abpYE +zQ7GBd3sCKQ755Rtu0CC8qz+XQV9AWgu76TSmUUS5K5bL2r21w0VqR37dI+L +DIZ9h+/f/6yDdH4cjB5cRYYdgZ7NixnWeDaNLcW/hgzJk59OBtb446L90q1y +68igaOdmmHM8Buv0ibja8pNh9buiHN6UZDwTuY7/jCAZvNWvvlJuSscF0ou3 +7m0iwz90/Ujv8Uys1TFhMLiFDCo3yVXJhWfxNGdwmk+UTPivYtxhk0RcsOVt +tpwYGVwZnN7S2Eis1dCqZCtBBqXr0x7H27wxV9qzobDdZIg8G9b/4I0Jvnuq +IyNrDxmmdmpudV80RK6szoPVJDJc3Hq0WPuGO5JY9eLncyoZUq75f1inHYDe +dr/MGmKQgXxc4vbVwTCUXPJabaUMGUKGPq1q4Y9GENQ9sUOWDF36Zh9+LsSg +ac13uXIKZBgvO2TxRp7Qw/beowbKZGjlP34hqTUOWY+9/+N+kAxBTXklW0vj +0OZHH/ITVclwYmNs47meWNR+7qN20WEyDFmd3rdkFoOibP+bbdAgw886HYYn +JQod2D9wtUebWH+o068/LwSNcH/Rm9Qlw8zjsgiRRF9U0PP1L58BGd6qZW48 +Lu2ITG58L91rTIYjdw4IVazbj9aHDhuqmpHBaqWU0JmPdvixzsiyhTkZzp3N ++HY2NAAH7BwtD7Qiw4TptYF2dgym/hozPW9DxJPMlrd6dxoPNE6sqrQnw1el +ch5F4XR8MeP3rVYnMhQwbE8ElZ/HOg5/zAddyfDn80KytdgZvFJues2iBxlK +75Wc8EuKx/d4Z++IeJOh23z/vkPMcOzeN3eK7UcG5ahllTvZHCxZsbD+WCCR +350y3yv7jHFP+L97TiFk0JQTePF1zACl6i3ZxYST4WXVutwzv1yR6i4uwbwo +ot4DHiNmo35odnJFw71YMjRtXLRvFQlFFc2rnF8nkCHDblyubCES2V7kFh47 +TYb/dHkepbZHIxHnNY/XnCHyteGuv/gnBj1XWOsueY4MwcIkucigWBSzfv1W +lQwyZPW7BhiciEVyH/maTS+S4cVYcNOOizFo9KYAxyeHDCXMSyEj9GhUFCW4 +48xlMmxIo204dzQCmRkItZXmk6GTpt8R+yMI8UsJ+z0pIvTR1YSeqfmgJ9Ob +JT4Wk6HinYfinwp7FNQq8nz2OhnsXF4lfxFlI3rOtiChCjKIXKAuLtXY4i+u +26Vot8hQV2W6MC3mj7OVxV4erSZD0iWV1mPC0VhXQDzM9i4Zqucz5SkqSXj1 +Z4l94XUE/14205tWn8P1tyW7sx6QwST2l4d4WDr2jJWKqsYEXq3Mj1g1BUsZ +76F2NpIht6zycd7eOPx+z77eoWYyCGnsCSk8ForT5khxK9vI4Lb0bkhmhRdW +b6cwxTrIEFO0JlK5wBDP59L65brIIGwx2GD46zi66cFIMnhFhsL6U4kvTV2Q +/UHWfo9uMjyrmOCOLvVF2zbKfE7sIQP1Cg6d9gxGXYP7U4v6yJDJJcNrsTIC +xdXIyj/8SIaEHW0XvlVFIYUE+a89n8nweS6lseJpNBo3VTw3+YUM6Ws5X9NU +CT8jKSvzD5Fh3u2TS5ZUDBrm6UxyGyHD7afDF4RNohHtq+XbZ2OEnh/SDTcU +RyKfxvFd+36TwXrB6seSTCiqvRLpmTBF8PlMZ83mE/5oIVTwwddZMuAc8cNf +9rkjdKJwjdpfMhQPFm9tyjZGMbJso8IlMhwOuXpJ8akBbt3UVLC8ggLFsmz1 +m2wO5vttOGbJTYHtttOpG8TCsX7XV4UGXgqM8f4d0ayLx5nl/gmifBR4VMHZ +m3bxDO5N4nkTtIECju9246165/AOxyzxHiEKiJ0+6uz+IgnbqO1zP7CFAh1n +Vb/LlkfjEon6uoxtFAim9knw2gXgkUVN7skdFCiSzbm3/bQDpn/oO64vQQFO +9n/OCvU7sW+d25Wbuyng8Vx4aduUNaq78G+Eby+xn0I7YCvKQf98zsi5kSmw +IeSf+gHHAAT6O+Oe0SiQsa/tQ4FlKIqj3Xq5l0WB1GcPOh5xRaK2dSCWsJ8C +kx3v4t+VRiH+4ZcuX+UowOD1/XBIOhoZtNjUqipRYN0tn4Rbc1HoYtHkykJE +gXOdl+RpRH/RFxmrt3yIApv7WG7pauFop6XwZcvDFLDseFssPhGEbBWLhx9o +UCBcIWxC4qgvKhWRPSCqQwGlZo6vbZYzGp16Gh2kRwHbtvI2+yE9xHxt2vXO +gAIXs7RHVTNNsN+tYdEDJhTg1+l2Jl/i4PrUYKeMExT4vOLTH7XBMLzksq7m +twUFDE9/sCpA8Vj1aC6XvjWBr8H0ypi7qThBinrsph0FanM/pW+qOYPbVzzM +4XOiQIqjK+b4JGCB/459d3WlwMavlQUzhZHYsOET+5kHBeJvvHfSzffF2Tle +kXu9KfCpy1ywsN4G9wdwPY/3o4D1xUUbjztSSMIofevXQArsXfVtxY6XNsie +JemgGkoB1SCPtwffeqHrAnduF0RQoOF49l+XSn809lNtaSmawCszc188MwSx +n3VrWcYT9alUSVrnF44CShyyHiRRoO9susGmoEh0P3bmy7ZUCrgkWnEsdkah +ZetEZtBZ4rzk6QrhJ5FIHW0Nf3eeAufTwAB4I1DS9hvP9l+kgIPR4VTjDaHo ++ZzClowcCtAO7pXz7AlAgu/abX9fpsABqSN616y9kdEd81t6BRTgkjswuNvE +AeWcG/1beZUC+Qt9rcm1h9Enj3ANvlIKsGI2+fH9OoEltQUuuJZRoGzq2LT+ +GAc77ssfaKukQGjar8zFy2G4jJtJ33ubAkydcYnAljg8Pvg4JL6GAmvUwjbG +fUjBMo+Pt365R4Gt0d6rw/lTcFDe4CbVBxS4q+Ke0XcsDjeE+FoXYAqEZCf1 +J2iGYa1Mw5HmRgqcPnfQfkOfN+6plPH70UyBhyl1klsHrLF966Yl/jYKfOFU +0K92/3g4+flPIruDAp03nIWL1CxR5MKbjaZdRPzHXzgvHXdDfMI1uaGvKPC6 +Ou6C+18fdImWKV3QTeh5iSdHTSMQ7T3qd6u5h+DfsbYjWWdDUI21kcKPPgpE +cZ4/DHkVhlRD9jfxf6LA3LLw/hUCEehFhvAx9gCRj0P6jMrhCGRROfXO5CsF +KmdmndUDw9HI027r0CEKcP8t4d53LRQFfq4ZyR+hwJ+weMt/HUFo9UKmX/MY +Beq2/xB5O+6Hzm/yXxr+RQH3Cf/JFj4OkqAZJ/FPUWCL4kx0i7Y9qjxyQIg9 +SwHy1EvXv680kaL15ssmCxToEbCQhF4D3BY8LR26SAERLpstE8Zu2Djj7a18 +LiqcNdkyYXstEA9W3FVoXkWFx/6l8zuPR2PO0wtNwzxUeL/mroSiAfH//s// +GP86Klw/1FUb9PYMTp437mHxU8FxRvjx/tMJeOsmWRsTQSpwl7NOVb2JwsXU +LT9DNlEhNWN3VB87ELOPzPjlb6FC+Ylja1Nc3PDjU++WmrZRof+66NtDNUb4 +WHBt0vAOKlxKSH9TJamG+s5fFOKXoMIeO9aJ5SUb5FwRcJm1mwqVPndu/9Xw +QDMtJntM9lDhaayBjq2hL4r9T7YqhESFn7G+zxBfIBKc36KYT6XCTe6hvdIv +gtEVodmmJgYVmC0BRnsvhyIKtefYMJsK5h9H9E19w1Dd4Xs9fLJUEN8/LdNq +FIaOnMqyYSlQAVp5SKchFL0JCvxprEyFnF9HObdkg5H1eVP/kINUaDHxsNKR +C0Dj5XLLV1SpcMWqwMJH1QeFtoicbjpMhV1qXS+dqlwR73+zQsMaVOB0COum +DVqii3M9l/l0qNCOf4RGhUih3UJ1e1h6VBhJ4LALsi1wFSW7ytiACjH2uwtC +270wOhykGGJMhbYH3fYnc4Lxcyuz5itmVJDhbXI9sCsGnwiS120yp0IFJYOP +/isRf0/f2jtkRYWHGmuGfq45jf3K52z4bKlwYypaeot5LF7R0vuT6UAFQ821 +eRfVw3Dapzp/Y2cqcK1ZVczzwAfvmMteDnajAvtG6Kletj2+sTH49BVPKhxc +T6q6t6iKZSknNjV5UyEo4mNqcdtx1KyukDfkR4XwzooLyXX26LjVtr18QVTY +KtmRcPKhJ/oUOF/FDKUC+cHqL97Bvsg9/b2icQTBr4fH31ytCEDzZfXNwdFU +mIvReWU4F4QSmnN0r8RR4cK0SuV5ixAk/Cm490kiFdYXXtLyfh+CmKt+rKSk +EOfJp7fHmYegY/vMaBlpVJh5O+/wvjMIuR5rNf2bToWFWNPROGYASvCRjbG7 +QIXXNtuO5sX6oKKs4oqObCqsvftjkpPmhnCDcI/MZSrM5whFV4+dQn0DsSsu +51PheHy+2PJqNprl+UNZfZUKi6muvGL7zLEw1dbEvYQKS2dCpLkTvTDz+Kuo +7htUmN4vHrH+eTDWCYBy5UoquBTcq2nxjsHOubfeXquiAuNJ/MvpuCQc93gn +F38NFc4/dOppUYrHhd/OkP3vUUHQi1u7Ry8S43WLRh/vU6HIKHkHD8kf9zHc +Iw9jKghsXn9tLY8znjH6cKOykeCXmQ4P17guFgrR6t7cQgWpwqWeT7JaiJ5f +vxTeRgUPn7iG5re2SLt5H+l7BxUS46+Ed+3wQM4/sgx1X1Bh9AvSjrjtg+IE +1kTUvibmG9pdlbr9UYFMwPWd76jg904mr3omEDWYfXud8J4KWavTF2a3BqPe +cKPF8X4qmP6WvyOuFIymi5r2mn4m+Hg3bwOyDEJCbWyDR1+oICQmyXGKDED0 +scKwvUNUOGy74lhVoS/SEtpYenaE0NNeI/eTSV7IUS7q1ewYFbr0KCXfOh1Q +jMXE31O/qfDocmuy6T4jlB9ttadtigrbL5zW0ZFWwQ0lnfrMOYKvS2NuHAs7 +3NuhHJr9l8Djqod75GkfPPWrvJhrmbjv6BudzfZhWHDL9pfOK2mgMJRgMHkl +FlOVkhdectNA63RUx9dXZ7Gm9byUwloaFNVUU5kmp7FjvLNeIR8NEtetjtxo +GItjynqC1wrSAMnl1y2fC8VXXhy55r2JBq/do4u/unvj+1N3u95voUHK/eCM +SF9r/G6b9PwhURrY7/th937FgMoflLm7TIwGPz7G5GInSyRov0pXaBcNQsI4 +mir+boh62icoRIoGii7flQvIvkjj5kDR4F4acK7hfp6yQGT/Rr9Ti0KDbfs2 +8H6TD0VRc49mq+k0GH+6/sSxnnCUJ8aQ3M6mQb8UNcognvgfqF7RiT1AA8nm +1UWxu6LQOyf+wJ/yNNj1Ph8O8kahydSwQkNlGhizjckdYxFIoPpnx4ODNKDX +nz/K9SEMkXtOzuxWo4F26c8ZZm8wOvrvmUTqERrUn+xz43zzR/a7FLSnNGmw +MKs28WqlN4o6ct3f4hgNxC/V4VfWjuiym0hBsz4NGvX+PZSsP47qziW0U42I +fB7xP+rdroW7705PZZrSwKX1WXXeMyf8u89efPEkDWSt+wav+PtjAa5uTQcr +GogomXr0TEdisrSaX6cNDdYfvalbXR2PzyWs6P9rTwNGNyXttH8Knh56pEZ2 +psHlaVr5xXup+KRmRLmZGw1uvn98XFosET8uU96U6EmDo8Ie6hNfo7E039+Q +u940CCibSvkgFoKTPeoHv/jR4IaQhuR+WW/8qytQSyiIBt1CV23vSttiY6Zs +NYTSgMtx9MdWZSV8P31qm1cEDc6rGXJlXjZEEn+qo/OiacD9Jet0Z6gDijfy +/tERR5xfGMTeXeiFRu4yji8k0uBqQrWjjLgf0hcZr9uXQoNVfxak+24EortB +FRKmaUT8sub/ZXBCkGifa1J8Og1WuniXeRLvU5QS6dedTBrcEpW8GVQdjr5d +HjIdzKLBOtVkice0CKS1VPxIMJcGPo9+HDH8Fo6qTtnvPXiFBvuFT/vD+zC0 +uVHyrEchDfy+V224uDYUhUgOzOReo0GnUkqibUAQ+hybb9VeSoO1wZutasT9 +0eFvlk/nygh+/ti4+xK3Nyo7soO+9yYNplxe/1DXd0aC1/suGN+mQZkcZyVH +7CTyX5uzGFtDg+YtUf2Py1agPldTh+p7NMh7u2U2aYMFhuebOz/fJ9Z78XUE +9XvgYlr3/g2YBquXBwTKcgPxurPnL6s00mBpPFhSICEKc37pr3ZvpsFbe/OV +T/Lj8dvjG9wvtdKAInp65w/RFKx4p/NNWzsNTFHM4ELAaVwgnKo020ng337l +lvrxOMwdoHVV+hUNsKbmyGuBSOzaw7veqJsGgivje1rYAfilfKtPTA+hB9lL +m8p3uOMDl+L7qvpooH/+n/Hb+JP40l811f8+0mDjEymPyKE/KlyWK8v4B2gg +PKgwLXvUDDngxxuVv9JgpDLcP7PKEbWLRwa7DtGAf/eG+jddXogZrTKQPUKD +e6PnLig88kUXBv9qtI4R/I9pd3z6XwBaULtfNf2LBm7pu06JaRL/ieKgrVJT +NEiqtcvV/huCWnjkogxmifoNKByxmglFZOfpoagFGuiy+LNtFcPQuWd39G4t +Ev6DF985tIaiabLPvY9cdDDe1mzinxeCTqYyxflW0yGp+mbQlYYg9HhsPEFx +DZ3QX0z5uFQAktarHHdeR4eYkGA333c+KLnKzSSLnw4v9BXi/Io80K+NZNwi +SIeTwxmphWR7ZOw7LD21iQ78DnSOUIoBut9dckZShNjv41jb5iCPJWQdpvVF +6bA3JObL2ufWOD5rt2WkGB2Ou7hmHZvzwiNzA82VEnS4/WoJajSCsP7JAmr/ +bjpsparUviiOwncfWGWu20sHh9WidI+YeCwqJvZPnkyHuc66JMr9ZBwV8cHO +iUaHcwNT0tppCfjX+hvd8Uw6bOgeerJ2JBrb5AQcviZDh2OnL9d2M0Px6z3q +tU9k6WChGvCui+2LVWs27h1QoMOj3yVFY3eccPWh/7KWlemgv1V7B0+OEZZ8 +UcG7E+gwFDZ7NmE9DRF/jmBlNTrQ25Uda4+eQKtGjo6cPEIHM0ju/Ut1RH6B +m82DNekQ8E9+nunuib6u/tKRpUMHNbJbSVuVDzI6X6Vcq0eH9IO6r3IS/FGz +eERltwEdxHLSOVn3AtH+Su2df4zpsNuQvKpTLRgVK247u/EEHXq4SjcdoYSg +LW3flxkWdJAr3SUv4BmCEoxrOLqnCDw2MoRYfCFoZjB6wN2WDm9YL3Tvcwcj +R46eQYoDsb7EruTuyUD0bnFH0w1nOpRM5vfT1/ujoykjMm1udHC38H/MEvFB +dVvrrn33pMO0lYRZ5qI72lcSv5nbhw5dmZFreePsUbaMYcJufzpc7rn+syLW +GPE2SsweCqLDLQfnJVHFlThId9zJOpQOVrtEdirIn8A/PjzojYggzs+rfFkp +54pPupzWzIumQxuJ9q/xjB9unzG5/yCODqu+L5o3XQ3DinFSlL5EOtgsz7oO +3YzBZRsnc+eS6bAEDVtGLROxaP4jPpE0Ojz3TAWFxwk4hXom/EA6HTqmDLj9 +tGPwv/qT44aZdBB/sSdWRiMMux/dd8oni9j/+HOJVqYf7u+efnHuEh2UrTfq +HplxxTq2TXArjw6W/LKl7ZPmuGHi3O3OAjosmqiVjKaxMC3cSnL0Kh3K61Ny +Ox7royvrqBnrSungpSr7LPihDRLInl9FKqNDqAM4+35zQRHSrX5HK+kgSr74 +Tcadg8arM785VNEh8Xf3JlltX2QFtiZxd+iQbXnia/tZf/Sik9FaVEuHXRMq +axYVAhGYL8o11tNBL5ws16MZhKqG26//10CHNTnaCvaPgpBEQPa2pUd0UMxR ++njzUhA6t8oxeUcTHVLbuRYbPwQirnSZv4pP6bD6wVzY9ZgA5L1zhfuJZ3Tw +pLzW9jjrhwbLu/oDn9NBVS3QdvtKH2SgcPnYxRd0sL2wPSn0rgd68tQF17wm +9Pbu1l/MdkRsIznGm7d0UOJauEyfO4mKBlYX/O6lQ0PlP9F3qcpok9drQcF+ +Qt/nhZSi2bo47l9+NP0/OlDTdobHfrLDU6c9JnUGCb2dSJT6d5uD7UWU7Ny+ +0WGkWEzQTyAId1/j7T49TIfzx2kieiujsDr7nfr1n3SQ2ADpclpx+O6jq3ef +jtNB8OqG078GE/CeY957vv2mw8Cn9w2BuTH4Yh/KWjVNh/wtWndpCuH4gm/u +dYc5Ouw3YPCosv1xJt9cfetfOlSZ9kxIVrjhzGKjDtIyHWRSJyYIMeMMdLs/ +ZSUDTn8ytF7zgYXP9/CPj3EzYCBaX9BuQR+d57gu661lwPGrkt1Vn21Q+tpW +wWo+BvzJvrNSdsIFnSvaLSksyIAgke4dHkYcdE4pSiZgEwPKVw9ZfODxRWe7 ++9V7tzDAQczSa1LAH6V5KJgoihLnDxpueOQegNJ4LjpdFmOApQKNW1ciEJ3J +nwxakmBAuk7EngpSIEqV10u2lmIA79MF4+9JASj1VXnuk70MCGDZxq5F/ijF +lbdSisKA3JKgcklNX5S8ygEn0BkQXjHUg8o4KPly44thFgNUt3igd09c0ekD +Owe0DjDg9z9HTZePtiipK2SyQp4BZ6HEpkjDECU59azaoMyAA6VOKpPrxHAi +1/7N3gcZIDt0pXf03AmckHNuzxtVBoTo3K3+9dcFJ7DH5A4cYUBz/vGXxof8 +cHyHpmaWJgP4WE7UI/QwHGdfcnJehwEWffrzlrYxOG5xpbu5PgNMyL/GNZvi +cezFU+EPDRkgbn6druIYjWMYDWnipkT8uxShojoEx7RtLYg+Sez/WC25U8EX +R9v43/5iyQDN7TL7Tj9yxlELr54ctmGACH+9hf4lMxyZQe8utWdAY6armlTV +LhxBTfm21pkBasFj8cuVx1FEy9CMmxsDrPKbqdNJNijcSp23y5MBmTfPmU4v +OKOw2YJtTB8G7CKdui9C80Jh5xbJ5/0ZoLzRdrJ+A9G/k04qTwUx4CPF8JHg +D18U8qT2mEkYA6ZMJaUuS/qjEPNNp+oiGbDnwzKfc4M/Cp7y4ojGMmCj4k6f +qFp/FHTmeXRYAgO+KV81/S1IjPeQMj6dZgBrRU7n0w5fFPgo/hqcYcAmwcEJ +viFvFGA2eLfoHANWqaHn+S2eKOA3al2dyYAbOSatchHOyD85t9cxiwFYZ63e +wqw18ts996PtEgOkHNf9XnbQR34NRn/JVxgQW/BjeXgtDfsa3+Y7U8iAO3+q +BdKlT2Kfcf6dE9cYwPMjfZNDhgv2SXRlHL9OjAcXC2k3fLG3RCvcKWeAs14Z +77O9oZhTv9tg8y0G7J4MEWkoisYcgyi7wGoGhEbptrxbH4e9fvb7vb/LALfF +jTPOfyKxZ5xCglI9A+y89rRXOARhT7GLWXkNxHijqK2npzf2qJ28vvyIqNdq ++vYj2x2xu57efZsmBhjKrVLj4jfG7sPlHU1PGbDa+dA5Df/xh27RvB+l2xkg +t0qW/FnBALmKOowndjIgsTb3TgvFBlVPCKpUvWSATZByxu9CJ/S3uSGl9w0D +kn07g3yFPJD6Jec+rh4GwFOHopuYg1K9hEmkPmJ+/JCftbcP6lZ/HHj8IwNG +ufllzIh+dIeo+9Pgzwy4tkl++IquH7KfENlc9IXAryuqWCXYD1U2N9m1fyf4 +4jITp7LLD83keFVP/mDAIftP10uP+CLktX3F9jFCz8L3leJ/eKME9VY9tV8M +8Btmcv5by0Fd23yvuP1hgOQ1sZWRem5oy8TOsYwZBpA+2dtaJjigU83tSg3z +DGBWyNPfcyzR9ZyA5K//GLA96sLWxYvaKEgu3Z2Hiwkqyg/Lwrcx8A7JoYxL +K5jQ16i6ni/XFD/mU3lAX8UEqtIBh7lKR2w/e37wyWomFG3dts5T0xvzDg6v +NeVhwk/TDwIbcCCueI5YP9cw4d6dcvy2JgLr38s0i1xL7D/SerR/SyyeKhyJ +3LSeCXEFd7MPlUfhnFQoLeVjwv3nT1bHBIZgFHixS0mACdecV8fXb/LDgzaj +0y82MGHlGUOGmok7TtBRFbPfyAR1S7v99qE2mCyXrT4nxAT5cO6NIua6uGvX +uFuqMBN4Q/otk0KkkQ+feobEFiasddmlMp5vgLbM5tyvEWGCjsnuZFkDa3R/ +YGJAYxsTSkkxFoFWjsjq+eG1H0WZcKpjl0K7nxtaeS+X6b2DCT3Oy68PXvBC +JYW/Tbl3MiH/EARMnfJGWqlHI3PEmSBJKqe4hfig8YC8EtouJnS4Hg7hE/VF +523+dDZKMmHaa0/fZ+SLZHU0p42lmGDcMNv+a9gHfZDN3zEizQTp/tE36lt9 +UNSuabWIvUxw+Fsb++05B0nxabsJkZjAkzv7uZbfE7XNFJwvITPhsnOOl1Wq +C3IfmKlXpDIh9rLq4uvN9kjwuc5AF40Je3bvbtE2Mkc1tUW8dgyivldhe5G0 +JjIrnGPMMpnwX//5FXm2TPwvRdc0hc2EreUHdixUmuCCgGsR4vuZkGNEYsZc +dMDqNgvFdw4QeMjnVjs7cPCwtn7nUTkmZJqMRYwGB+AzsiVTH+SZsO2AwpUm +3nDM3vVvO0eRCVE7tC9M8sbgd+sN1FYrMyHtQeYAixaJQ2ZKXbNVmMAKEHrW +UB+Edw4splMPMkGQ51E37b4PftJhWP8YmCBWt/jfgoUrdqy98dlIlQljmh8W +j9Ks8brC5TU/1JjwJXh5sitTG99MMWaEHybitfkes+nuXmQQUG6y8SgT/lKO +J1UMH0cz1isiijWYsKiYcfvt+lPokrZpsYIWEwSu//HfyXRAB2Urn3dqM0HZ +vfEG1x8XVFai1Rx7jAkxp702tG7xRFtEhh8o6BHxhyoFJl7goJjE+DsT+kw4 ++u6A9EyWNxqflSwvNmBCyw/BvHohH3TS+XGRuRETIrob/3zg9kEtvZaXNpow +ocC586iTtzdiav5NbzVlAuetdKODMQddrs8+HX6C0BvNWbLJzgPxkmWjZcyZ +cFMx+tszfhfkd+lN0A8LJuwbazOcum6HPq/z5uRbEXxbu0bwputJpB0q4Gxs +zQT2z6mHos+PoNqf5afW2zLBdCrq9sEJWSxpoWnaaEfocQWZ/njBDKc9/64b +6MCEr45CL3QoTnhBOe4IzYkJwufnM577emPHyl3oizORX9Qjvq3vA/ErsUcH +clyZ8Mn/qXpESwRWTrOg6bkz4XZnw0+HZ5H4+tK8FLcnE557TYxY8gVjYa+s +HQ+8mPDmO6+Y/wsfHPXffmFvbyb8GYqbV5d2xaN6r9fv9SX4bO0y7mt6Cps+ +9lr10Y8JnkL/BPrbNPATJv/f8wGE3pXUhW8rshG9sGxSI4ioD8/0leVoQ3Rp +o8bIUjATAsvWuPQqWiOemG8DNaFMeGBOdZqscUA+kzHvXcOZ0Bb+xNCa4Yo+ +2kq8kohkQl5IVPv+Mg+k8eZh27soJlz67aXcKMRBNWrmj1NjCD5YLAvcfMlB +EjVz91TjCD1Fqh4eEfBGKVIXb83FM8FQRl8/spODZjJlSm8mEnzr/HUjgI+D +bLlfXbE/zQT7il037mR5oC5/z4uiKUxI3hxRay/iihS/r097mUroW2rf1U3Z +DqjE5EZ8QhqhJ0u30jfbrNHG1iPhyueYoPli3TaOgiEKk/vqN5nOBGwVbF/I +w0LDpdHu1zOYQNl+QFbISRMbbRW3t7rAhIup5jqLxafw46QGc+EsQk/bt6U/ +1XLF1PkThu3ZRPyNjWZxn31wlsusVtQlJjhniVT2igbjlX2ZqrKXCT0tP3I0 +6SbeVy224mgeEwaulPmUK4bivvsvWEX5THii4m8iKeyPD1M8SGaFTNg192Up ++bknrspdt0vgKhMevVIc32prj3fwXd/afI1YH7Rl4f4rY5wUdlgwpIQJdt5b +vinzyOCp0cE1zOuE//1O1RzqVUfWllHL324woXfPdi5OnSnq6BSbzS1nQrDo +MFU93QbJogfjxyuZYCu2dMPL2BEV3TT7vuYWE+YGa3o79rkiAfGZjw+rmFBu +0Ux2Xe+BQs5mvPWtJvTDtVPSYtETfV9mdpJqiPxHXuvfWfJCxzldzf/dZcLv +1fEVj9dwUMNnt4YL95jQwPd5tIfhhfYdX1ujXc+EdVftu9pOeaAcU3rV/H0m +NCd8r7S96YrWWRlWlDYQfLKs63Ta7IRC7YOuG2MmNHrt3fcj0xaNuuZdW/WY +CSEpX1MmTpxElt5PCm43MkHW4sD8+QBt1BU4dPlUExMgpE+v+iAPhgi+HP4W +JngFPFZoGtPHt+NYFx48ZYJlU0bIJPGeSaaYpLu0MSHIiCok4Uz0G+mhZ0Ta +mfDL/35MhZgv5s4uON3SwYQZ981TLQtBOOBKS7xvJxMqE4UKDLUj8dC1kehd +Lwi/qgg0z9kfh83KN0S8eMkEozS3jL4rUfjZ7f0h4a+ZcKfkhI10ZAhWrDsR +QOlmgjZpr0AYzQ+X4wif928JvUTa5dqlu+MdLVc9E3uYoOoQ7hNRaIPPdLS5 +HnjPhA2liiJDVF289GrM8UsfE+ZrLbUviFCQV6+QXXo/oecLcWWGJCP0+ZPc +qYOfCD87xXrieMUGGXyzMB/7jwncGiOMR7rOqOlntGnuABNuWTfBE2lPtH+y +xFDzCxM69yeef5TujUrmOvRmvxL6SPY/s/KaLxJZ/qVd/J0Jx3btvndb0x8l +cW/RMBxmwpn9dg3dRL86v15JfcUIE/jk+vR99QKRq5A13PpJ+K3MP/qFW4Ho +w9Z4ZcsxJiiG/BVRvRqIdMTL5NdPEPwubX8TTQ5ED6Vf7K//xYTczDUsi8MB +iE6dYjpNMuFs7Uru93/8UD57G23zFOE3o6UULllfJKiASE3TTKh5EZ34fr03 +ij5oJ+09S9Sv3mhV34g7mjyctEt8ngkfApM3xX9zRPY6lWKdC0S9j0xTmtdY +o7cGr7eF/mOC1I28FN2r+ujIidnNpCXCn5L7bJ5bLz2sO7VDqGeZ+M9sv1L/ +/IghJjkeEohfwYJp3pzvsoN2+JK74zqZVSzg7atbu3veE6/3TeEZWM2Cpdq0 +I/x+/jgsuGrlWR4WFISdv5DQE4rHIt8uKfOy4N1rt2shhtHYKmFhYWQtC7oq +ErP3/Y7DL1LFZ7PXsyD1v48l5j1xGDLU/xzhZ4GJeOgXB/tofDvHZWJKgAXU +lnOFkhphWLIg7WeRIAscqp5tu0sNwBkld4b0hViQyD7hEBbAwasre78sbSLG +57icvmg54oA7i/9VbGbBLmPlGvnvZnioXrL/pAgL/rETjtyiKmGzx0d7ebex +oKLk7JuZADXU/tS9u1aUBTa3nUp7K82QUmf6S/sdLGi7MNe9iscOVbypfS60 +k8hvvHSP0E9nJNb3oe2xOAtIjYpq0jyeKO0zV4vnLhYIdXRnF1O80fJ36cYd +u1mwwbJspeaED+KMaT1sl2JBjtjS+Crif85zXqTXfA+B50tDQ6Toj3Jlv06O +7mXBwWF7fLfLHzE/VPFHkFhg/XTngtf6APQ0MnzfBgoL8tir3/r88kcWUlpq +BVQWNGjRJZvD/dFk2xYrFp0FkTlQ73LHDyV5fAl6wmDBBQuXAJd0XyQmVJVh +yGLB1eiTis9EfFB1bdjNr2wWtLocHUk7wkEa5prP/PezQJFV/l+Ukjv6tLz5 +K48sC27oa/u0Kjohv2uDS1lyLLC7l+y9mGyD1mne2kZSYEFVaMVFSzMTlD8W +uv++Igucw2+/zwsGtP+8hp62MrFfoNfDflIZt8tudu1XYcHYui/eTzaZYesP +A3EeBwm8bc1DtKQc8HTkzfwlYMGgrJ982JgnTpYKvX9WlQXxbpn77lb7YYln +R99KqLPggfhPndVHQnCth/Cv24dZsKnp9T2DrVFYR2hgndpRot7VIQqaCrF4 +sLZSuluDBV8f+mWTe2JxoHkIOGixIGpRzdDoVRTm4zpqPqPNgp8BHdvnh0Nx +0bVNAYnHWDD+fSTiUHQAltf8fG6rHgt+WVbUh7l5466xivIb+iwIqeux1dZz +wfbng58qGrCgWgSlebpZ43nZIwMdhsR5kc6Wt030cdoHoX8WxiwImN5zcfy/ +jVgq6r8t4yYs2LaS/TmvRBPdl6pgRZqx4Jb6s1864SeQ3rMgHcGTLNCZfze9 +hmOLvnocdio0Z4F/oo/tu3AnFCIkFMO2JM47+Fp+x7AbErz36XKTFaGPOIF/ +X24S/YJ5+T0jaxY0ferfvsPFGylzBb3+ZsOCwumvjzbe8EGvrqmPBdgReH86 +Lm+W5YscNTfy8jqw4FBlRM+UjB/6N/ZRMseRBejenz+jEX7o/PkyFbIzC2qc +jIYPB/mhfXKBZg9cWCAS7bmJW8IP4Q9qvjpuLOgt2NXLCPBFhlGCaR/dWTDM +45TXQfQnw1Ifr3t6EvUS1er6SPNGEc9uNC17Efndw3d6dnohYc+AT+e8WRB7 ++LzjDHJDN4TU5nf5siAlQPeqZIMjQvc2CN/xYwFFWdna6aIN6jbvp6sHEPzt +pMrl55oiV64bmm8DWaC+sOyRc/ow4ir2t3cMZsFv0UrxCw1kTBkXuJQUxoLg +r/cv6FXZ4MfnP9Rsi2ABNu0cPlviik3krr8oi2TB/qv+G++K++DRD34jStGE +vxieTXRRCcQxUYe4O2NYkJtjV3eqIgxvlRaQsIoj8LX9zqUpG40rn/UpTsSz +wN79p9UiisOqnqXGUYkskBDKvDypEYV7hfw4G0+z4ONM+2gQJRQfUEkyb05m +QeaKuty2En983unykcBU4v5NghNvQzl4Ir2KRU5jwRnbly0HjJ2wTkPzjo9n +ifoxQu8dfm6Bb3zvXXMunQX0xQneyzc0MM/GsUnVDBbsvL3w58pnaWSvtOLT +dCYLtlzZZBbkqI8aHTY/u36RBbOpnl8DyyzQznOkGvNson61Ocmbm+1Q2H2V +fIFLLMiauKLxNtIZvf96PLkxl9DbI+PkxCR3JLvB0d8vj/B/VYs6+U9eKEMh +xHpvPgskFX8WhYA3+mWXpt1XwIJ7zym99vI+6FhakeyZIhYY+o8eHHjng8rq +anfBNRasjj+1e2a7L1rzpZ3vTzELlOJ7Xt5Y44vs+f+bLS4l/IvyInflJR/U +KPdn0OwGsX6kt5/njTfaabuma305C4Y8C343VHNQaOr2elzBgm/xj4NNfDxR +by3jmvdNFuyNr9Kpeu6KZAfUzkpVsaBj6tqBTD9HlLHeLKTnNgsWq6S3bnC1 +Qb8OuDsk32FBmrJpk/lJU6RrHaWvcpcFTA2DPTOz6qg8OVPpVy0LXvjunNCV +o2Peu9f3XK1jwTrhl/PynobY4b+GjSb3Cf+yTl8/qmyLn6x99Y+3gQXuDuFh +7/zccJjV/GvPRywoL0mvtFsMxO+T+PGuRsK/N01VnrgWjmXv7LrR/YR4n2qO +nNj1OhpnfDyQmdjMguQBc1vh55H41xqtSMWnxPgzyS1GPQQfY1u5jrWyQLyZ +Mloo6I/LLHyMC56x4Olc2wkPJgc73L5E4elkwfUnT7uellviJx9ubqnvYsGf +zqyov1QdLMHTtML9JQveDpz0O6M4rBLO7Bnd+ZoF7Ez5Un0DLdR38mfPqzcs +GLnDl1b9xgzJxS8/iXtL5KM0CJuzbVDmrU035XqI90+mJcxQ3BH9fr83Z6SX +qA/PLZf8ZReku1o5Lq+PBZ8kJKNWK3igcrq+l34/obd74qppHV6I94T9yVWf +WLC9P03s2gcOcogNOlz7HwvM1i4t74zwRk8qU5kuAyzgSwjIUun0RuK9Bdt3 +fGFBdmnjPe5n3ihs5V2eF18JPcsdUQgn+tk+6rPf0d9ZsJXKP3/jKQfJmX7s +3z9M+Fmh0+3d6V4oM/p369APFjju+xTmP078h8q571z6ScTHmSMZF7sgvXfb +rhwbI/h9UjOr664DquCin+aaYIFspmPFmLgNWktR9bvzi9D73Ud3wlpNkaOx +ySnHSRb8SHptz+bWQE2Rrlrbpljg0//c0eenIJYoizjwfJrwZ+7QqLpeXVzk +o3jQdpYFXl7CURUrrPBupRmNuTkWPDzNFYf6HfG1VdUGaQssUJW1X2ep4YX3 +PPewkPpHvDfvIqczJP3w9UyS4/1FFrwciMzV+hGEyZbfvPSXWeDxOSns2Fw4 +rpAuDP7OxYZ8ObesjvQoTBu3iA1byQb1lBNn1+0Kwzdrt54RWs2GwTW76zNt +AzEzsvvidW42CKinRLGGfXD10XMFaA0bjj//5V5v54H3C+qUdfOyYeH2F32p +SAdc27umxnUdG8SWD8bIHrbAcoVND7n42MAsvEo1lT+G61wiWy/yE/Ol9ub3 +tkpgRbbSK+oGNiyHl/xj8qmhhoWZvieCbFg7RanxXTZEKk3VX82E2PBotvzl +ehdLhFM8x8c3seEdpWsxaMAWgRF5Lm4zG5Kyf9fkJjiiJzu+r9guwoZ1fa9v +zlx1QerfCtff3soG+pV/588ruKOnlZabj4qyQdkxYUPQUU90NGCb+MftbPAZ +nu291emF2tDbfb5ibDjiSDPe5chBWmvS2WvF2fB1fXLR5UIOev5CRzlfgg3X +1kfI6+ZwkG4275EDkmwIdZWIUDzGQS+tm/U6drOhdrvLg44Qop8jRRGNCxuW +4nVP33jjgV7/VrKb3cOGg+tEjooUuyGj+7PuZ/axQQFL9YtNOKN3MXcCdpPZ +oCe8TfbpbQdkqu0VVU9hQ0Ngq8a2MRvUu4mSrEdjA/mU8w5QNUcn+79nfKOz +4cOXrfytucdR/7WivFAmG0rNhh475CohKw+r0o1sNvB2NMb3ectgm6W391UO +EHie04qdPnMKDz5Nb34jy4YNFbcml1WcsP3ZY10u8mzwb+f/tVHZC383Xdu7 +rMCGEuGC1ozPvthZomXgghIbqkNGXuQ6BuGR4aifFBU2HFKo9d/BDMdut5Wn +GxGBT8zlB46N4Xg0eG7JFNgQVSwvqro7GHuq1vCOH2LDydxtH2qb/fCvdRyh +ODUi/5VM8cZiDvZ+Q9khepgNDlHVvPdTXfBk7pB01RE2LKrUavEfs8V+9lcZ +RzSI+G/fdRreaopnqKcU+jXZEKLRdjeXchgHTYuq+WizIdlQ0SBnmB8tPHyn +w3uMDaPcBZfx6BEUmnDe5IouG+bE18ekLxuhf7q61vv12SD4MEztZ7IlihBZ +59p+nA0X9+5BKNUWcX1u8bU2ZIOKp2A6udsBxVyPDp8xIuKdpeWq5jmj1d4q +iakmbMA+JLu0IVcUrzB/TtKMDdJeMdOb77gjnpV3L9WdYIPciXz7gWUPlNTO +uaZrzobLD261zXV6og2kmup+Cza0qEr84xPzQhcTZx+7WrGhd/WYg9ukJxL7 +rvhi7hQb1KpLarfreqJr6hEfE2zYoHWbdk2a6YEoVxt/CtuxgdV0/ce5bDdU +vYJ7ocieDVeORh51SHRBitYavCxHNuwd14st++eIGnHKlkdObFg58tfJec4O +aYi9kDrmQui3M7GlJMQavQwVkvngyobTtYaDfTwnkGmf8SEXdwJvpm9ykrQ+ ++iSfozfrwYY7K8vW5hxWQA5Z/ZbxXmzo0Aip/vWWhUenxd03eRPzHw0mBBj6 +eKG6JInhx4bcobnZlSoOOHrjyMWH/kQ+e6zIxfHumJdDK9YOJOrxu+3do90+ ++GwX5877IDaYpjoePHwoAG+h1TQ6hbDh7B16h1VuCM5LmX0xHUr4x4FDfXOn +w7DUiOKn2HA2mGsevWChHoQrNCJGN0ayQSZ6y+J3OT8sU9q4kB/FBokbdrcy +7Tn4Pjf3WnoMG54FnE9rznTBqvYaIg2xbIjpyb2f/doWP3uSIq0Vz4YhuXwx +xH0C6+96IdObwAZf3dFW1Qwt3BMppOqYRPA7ScTS/fxubPXJWH/qNBt4tuu2 +UVch9E05xyomhQ3Z2utLas/qI/fcfnfBM2zgf0Ivj7lvhv7Mi4deSSP4HyaX +cYXLGoWY2Z2mnmPDvxDLVQssO7TiXknW/XQ2tLPCik7+dkBJm0eKNTLYkDc0 +7d2KnNEGP1rNu0w2HJiUCjoq6oouvuY8sb/IBhNN1ccDsW5oJ6vm5WQW4R9J +fifzQt1R8dnZT1E5bDAYe2QevcIDUccVxwRy2TCQtfQxc7MHqtGJ+Hv5MoF3 +xdDyp3vuSKm8cS3lCoG37d+vjkR/8GQt99b6fDaYfTh7V6bUFWk6a+w5WsgG +Ydu7V3SmnNHLpyn73xax4dSk2uu6F47IVPqFqt01wi8s3yREKtijT7FCx38X +s2Fy/sZsKcsGOQwan4osJfC4dv6ZD8ccjUKOB/8NNpSfeiAdcMkQ+eb3h+aW +saG/5jP11ZPDaGFRPJlUQfjBeENIirEwirawy75XSfCr/XORsa8q5n1QUnL4 +Fht6KqJMMnKN8JYgWpNNNRv2xZ+XHV3lhPPecV5N3GHD38Q999ev9cRSB2r+ +C7/LhqPcZVsfP/LB5RmzY+vvsWGcslmk8E4AZk8q/supI/iqvkdc+nMIrteP +WLfvPhtufmccqWgLwnCrcWvtAwKfzS93pw364TZ+7r3qDwl9WJSLjLC8sZ67 +xoHXmNAT+M8Ge7jhK/pvNsU8ZkOk78jRQjN7PLrfapL1hNA33ekQPdYcK237 +8XKgidCjx730Y4W6OHnR91Z6CxsuFK8J8XJk4t6BpTOHWtmQ+J+MxvokebT3 +6Wn3321s8JhbbZTSrIsCyoS1C9vZ4H1in4hKqSlqTssnHX/OhoTm6Yz5X1ZI +yJfMu6KL4GvLrTct+bbIxvTu96oXbOC85UxGazqgKiVosX7FBtURpYB6fye0 +JN5xVfAN4WdD++/6SbkgndUmMY+7iferonZ9g7Eryh3+bM15R9RnSb4/a60b +GnnudlCilw3RMaZnBcENyd+eEXv5ng3u8o8z6POuKOFC9L/ID2z4bci2Wtjv +it4G831gfGTDauzvEvbHGUlZZdX/94kNmn0msg/3OyEfVcnss5/Z8ND3snbL +nD1q3FMZcHCQDVuo3LJ5B22R4Hp544kvhJ/5+QjmClkhq4knMvnf2HD3ybm7 +D8tNUOWbY0J6Q2wQmaxkOl3QQf/u9f5aGibmReW45bEM0rps9+LmCBt+9I+O +Jlw8gHOixiutRgm8r3qrtNfo42H74FSBcTYEkb5t61u0wLKaq93wBJv47/WP +npJwwPG0s5qev4l6i2ou1iB33L1RdN/OP8T7alz+4PeoN5acucbTNUXg+Uzl +6O85f8zpY3wLnyH4M6RWZ6QWgh/h+020OTZU5AUMXPzojwWuHi76OE/gq1uY +jRa9sUXiy6gzfwn8otZdq7nljsvdzE+pLBL6WU+98rzPAS/ofVcZWyLwS9BQ +CJ21wllb/y3orJSBbhmzaVYY4O//Et7/WyUDibe1/LK7t6P9AxvrKrhl4NKp +WFGPS4dRbMvlixZrZEBztbfpw98G6PWNvf58a2VgNNKZNUY+iSTSqg0b1smA +/Nsd9a7K1sjLR4XtzicDq8L34CdjtgibtAnuEJCBBL57VgkkB8SnZDjRsUEG +Ch/pmz6ccEQnxT91hm6UAdGyba5e4IxurHKpoGySgfefuqyubXdBc0N/kj8I +y8Dfqocr7aNd0JHnES4pW2RgWOjJvlpvF5RZtVZDaasMCNTI3ygadUZfMjP3 +/NwmA5v5uW1Zk06IHSzOnbuduF8oUtY1xhFFWZZ90RKTgexw7w3Gefao69CB +Jws7ZUCjf/OHeVVbJLbncUGZhAwM1m4VbfxuhdzXaUeelJSB37/KlSUtzdD9 +8beW66RkYNuZQtG9P/TR2jfWyvelZcBIrCLg0eZDyOzeT1HXvTKgFRP3Lbhm +DS7JDZjfRpKBjXblL0s+H8bTkSt6n5FloO0334+d/CbYeeX+txZUIn6jqXTb +fGvcH+f4eoImA/qzaizhK45Yb03OixgGUZ/3OrV5Kz3wk9MdzzezZEDcMwjC +vnvjA3xLz66zZeBcYc5MWoQ/vp7GbFXaLwMxvWOLBrcC8faNds1dB2RgUvqC +YvpOP5yWcaHRRk4Gbr22GPv1kINXbGnDU/IyENe/OvGTqBv2y154kKgoA0J1 +bi+FRB3wkCitXlRZBvZFRQlNTlrhk3mnaitVZGBrSdbyFh8j3Cl+/g4clIGD +tRrzG+0OYyhqrnoDRH1mRG2ebdqO70jNVjqqysDNM2HYUUkR7Skllc+rycD9 +3e9uJYvpoBySxfXUwzKgfVp1PL3LCPFVpBWLH5WB4pg5bu2ukyiS3lhUrSED +S0niYks81miy6k/+YS0ZKG0Syuo9YoscZPbk9WrLgKD6waf399ij3rtml9yO +ycAft/nYshIHpCOfkrWkKwO8MR6VlU8d0aP7DzPT9WVghnR9d3sCwQ+VX+lS +BjLgUnOmg3vICZU8kjx7z1AG3BJ7zjgS422qxqlaxjKgPrLWdDLRCaU2J/7f +ULm4Q4FGcXgpTxtRpMd0IeJZG7U7fF3k8jmLGYx5aCZhiBoMEUXuiVYma3In +UiqxzKItUpR2fcR2kVgqQlEJRa7Zdt1iv7/gPOc9v997JL1ONN914Wrlj33w +EvteQpALgrlg88bCUhE+3jQav8wVwZtvzPnP9bzxoN3muBw3ymdgXT2b64ld +WnmxW90p72jtVcuUDuHmveLoPz0QoCczxze9dcX4eXWkwyEEUW0tl18POOKb ++4fD+oUINPvT3YoduVina2NImBeC9rTGBb0GY3ze1T7oWxHNj7lN8WQCg8j3 +/hyY54MgoKpkhboMi0y9G/S974fAuaO9WvGGB/H2ZogcjyDgValHl015k64h +jueHAARFFo8jH3/yJ3Z+MQdPHEVQuxjhdL0wiJBP5QcUgyjPXlb49qUQYnC0 +X3A1GMGqsTixMCmCFE2qOqMQmv9U8aYG2RCiFmLt+DAUgdvI5BqTa8fI2S9R +PEE4Ap3cJ0Om1/zI14jf7UcjEJyUywwVy3mToLk+u1NRCG6uYLxjhLqT9yeV +bVWiaV+6ftuQn7GPOC1ZsotPImCXuXzQemRFmuLCLY1iEbznL9c3vaJBTJeX +QvMpBC4qqOhp4G5ckfDKzCOO9t1GZfXXLlusvVLJZOo09dOcDMPWdh/OSQIj +sRhB2q+DV3unXLC8UshOtQTqi8T2CfaQO45JLzYs+wXBkEPDqPVaIZ5U6frR +TEL5M8cvCbs9sVe2/Pa2swgevBmYDWN54041Mz2vZAQR1mWRZ51F2PbiMd1/ +U+j8rsaMotU++M9NhTqSNATjh3bebwr0weuZ/yxxMhCcO6uaJw3wweGW7Fer +shCMrGQqRs2L8HOn3OrWcwjMJBOPbDaIMNN/JCM9B0HfG7U49SYvnBJjGsjP +pTwZNdOLKzzxSHqqjepFBFx+WP3w9YPYuuitdmcezRc3nqEU4IqL7hgunb+M +wFUQfuYExxHLNIt7BPkI7t9e7xCTycEefZ1VGwsQeNqoSEsKduI/pr7P6C1E +sOVy9sKFOj3CkIsOyC9CoG9TWpI1YUvCGC3WQindV0GjeWWEM3mmv1lbuwRB +dKdMSbu/kPxgHrw4UIogUxpl0SjxJUn8xm7pNeo75d56HuMo+ShaV3X4OgKT +M7LZxknHiVWUb7peOf0nKdVMjrwnKUiuOTJageB2jKn0wmdXspivYH2jkvqq +bVvMQDGfuN1y3xJ0m+bPj1vRcoBN7j4s/2pQjYDPPXWCwzQk63pkuqfvIAgz +wzoiFVV8fGzf7aoayiur4YrNoBH++xtpWsQf1I8tJoaLd63wNtUZ/z211A96 +x9rC99thiS6HPU9o/yI7Dq3T2YuHjC9p1dYj+FA24ZL3mIct7ccXYhvof6go +qHDL5eOrQuiCv6i/xmSfeWfx8dfQzFuyD6lvk3cYPKjhYdfEgdS/HiEwjuBw +kxT24jt5u/wTmhB4BMY7JSnbYdXyRJZNM72/0VidnJcVDm7o0ZRvQfCy6SCD +rWaEWzu2LTS3IngnyzJcfmAN1h+OfZnShmDX0S9DicaIJC60VTo8oz4QbjmW +Os4mg6u1U5VfIFAw6Zje/A+fWGiH+T3vQBAr2l+oznIj+bseWWW/pPflaj8t +8BWSBdv1ms7dCHzTPbUUV7gSgfuRecYr6gfJudozCnxSHVTb2fOa+s/NVBZq +WGSteHXlpT56T93h7j3DBiTovDDF4y3t544H6x/eUcZPy24d1uyn/XXMBKOs +3XgrkbPqf0/7lC1xONxoiRPanTcXDVL+ORclkToc3D9QOif6gODEvP6Gj6P2 +2HxmvkN3GIGqrBLTT4mHLynY3xweQVCIpT5be3h4VuNq8rVRyodnGNLQzcNO +hp99A8cRTMZnaFko8vAtlpXlj5M0T/7tKQHD9niNIEdjagrBdW5KvECTgwMD +Ps5WTiPQmBib9qmzxE9OGXeEfqH/fw//tDBlN9bNSq7Y9R8CreADizmVylgs +7UuamaG+UvyJv/29AXlXw/S9N4cgfGtY/UQFi+CW0xYnFxAIZt3VW5fxSd7b +F+p4ke6vwxyrmxOQmenvZpeWEExMzGTlewjJ/6VSemc= + "]]}, + Annotation[#, "Charting`Private`Tag$218652#2"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageMargins->{{12.9765625, 84.24609375}, {7.16015625, 7.859375}}, + ImagePadding->All, + ImageSize->{568.3359375, Automatic}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 20}, {-0.006684851651759792, + 0.047897778695155144`}}, {{0.00001, 20}, {-0.006684851651759792, + 0.047897778695155144`}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.7523223171108093`*^9, 3.752322365805702*^9}, { + 3.752322414014778*^9, 3.75232261736474*^9}, {3.7523227317442303`*^9, + 3.752322743514076*^9}, {3.752322869801609*^9, 3.7523229034049788`*^9}, + 3.752323059240152*^9}, + CellLabel-> + "Out[1150]=",ExpressionUUID->"63b43f83-41b7-4d21-af4b-35fedc0d998c"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"ricgr", "=", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"riccisc", "/.", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "->", + RowBox[{ + RowBox[{"test2", "[", + RowBox[{"[", "2", "]"}], "]"}], "@", "r"}]}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"\[Lambda]", "'"}], "[", "r", "]"}], "->", "d\[Lambda]"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"w", "'"}], "[", "r", "]"}], "->", "dw"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"w", "''"}], "[", "r", "]"}], "\[Rule]", "d2w"}]}]}], + ";"}]], "Input", + CellChangeTimes->{{3.752322944890094*^9, 3.752323054143197*^9}}, + CellLabel-> + "In[1147]:=",ExpressionUUID->"541e5107-8241-471a-9f89-4eb564eaff4a"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"d\[Lambda]", "=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + RowBox[{"test2", "[", + RowBox[{"[", "2", "]"}], "]"}], "@", "r"}], ",", "r"}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"dw", "=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + RowBox[{"test2", "[", + RowBox[{"[", "3", "]"}], "]"}], "@", "r"}], ",", "r"}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"d2w", "=", + RowBox[{"D", "[", + RowBox[{ + RowBox[{ + RowBox[{"test2", "[", + RowBox[{"[", "3", "]"}], "]"}], "@", "r"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "2"}], "}"}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.752322974623735*^9, 3.7523230273676157`*^9}}, + CellLabel-> + "In[1143]:=",ExpressionUUID->"0b48f4e6-e8b7-4716-9f0d-fe2408d5a1e6"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"test2", "[", + RowBox[{"[", "3", "]"}], "]"}], "@", "r"}], "}"}], ",", + RowBox[{"{", + RowBox[{"r", ",", "rin", ",", "rfin"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.752322931281782*^9, 3.752322936925918*^9}}, + CellLabel-> + "In[1137]:=",ExpressionUUID->"4afd721c-38f3-4e1f-9207-56bbace608ff"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV0mk4VmsXwHHN6HSOIyJkThkStqEk6xYeROkQpWQqlBxKGRpJyVAklVkh +hHjM2XiefSNUknnMcGQoUSJDpnj3+2Fd6/p9W9f/WhIO7maOqzk4OBLo+f/O +Mxzh6mgZ1i4SCRj7h6TwiQHR1ma5K9BnqiN8hLbhWeu+U9uDwfJedPZB2vk5 +R2UzPkZAFPNesg5tkL92+rlkDDjbCS+o0q5LS0pIcHkGAiGGhdK0d/09NGbc +lQz1x/iaeGhPH/7FafQ7Fdbv8TsyX0zh0vvcMgyJDJjrDlXpo+1Xu01XVz8L +vDTAG9M24FS2Q+dyYPRmpGgC7Q1SydRTRh7wqkTu9KY9WiF/KKEzHwzX6jw5 +RLverqg7zqUQZhZjzojTzlvRdoldKoK15imRP15R2Ge/WWCUeAmI+HZL3qZt +3dPNH5lfCr8keW4Y0IZrjimP9Vjg82adJift9SU+FQ/PYhi/x+i5WUTfL79q +p+GNclB9HlehSttpUd/dgFEBJderub4UUvhgbMNv/c5K0DNgViLarHN8+vpJ +r4G58woxUkD32Gt1X8+lCiQblDbcp83TOSCku1QNuxi3Ot7mU7iDf1YDib+D +I5IXRQTy6P7Dmr7w9R3Mv3dJTcqlexX61mjn10L9k9CHO2k/Neey2K9XB17K +Ho/kcyh85qGIh+bZBrgVVaa9PpvC53Nze+IFG8Hvz9UDl7IoLC1o7idyoxGe +r8EjvS8pHPkl6o0wown2h70Rf5FJ4St3JSyFOpuh2NZc6890CquMv56P0WqB +xm8hSzYv6N4WTglbk1rgW3GkeFYa3W/7yyFBl1bADraP96VSGFWpXhJYaoPx +RkWF3cl0v9WG4XziXbBD1kf2XBx9b/d7fc7QLji69ZGLayyF1YtMFxfnu0Ah +McbtfAzd8+wxp8GWjxC6rRxbR1G4pt5JKz+wBzYGTgT98YjCAXEBI6Y//gNP +jon3icEUDitd2yCh2A8bUAPDLoj+3xc1GXFn+iEsU+qucCCFf/odtH3Q1A+H +G+PNAu5QWFLVrNbr5Sewrx3bLuNLYf9Y+0R920HoF2A0xl+i8OFAqWv4ySBk +ph9OFPSgsNDlYYu9dYMQ312kHn6B/v9D5zbu2jsERg3SxR7/UniA46IX3+Zh +cEw35F7nTGEdZz+TwZrPMFiqvtXWisIcqs/m/BRHwSl5ZuSrJt1r+Gi6jf0o +/LV9KXrVXgqTkdzHtR6PQuU6g6f8GhS+MO9Z/Gt+FKr26GSoEBTup0y83KrH +wDFurgrJU7jcaGHqpPV3oG7eUMsWop2T6S2sPwFFo0nCb2fZ2C0owDTEZgKm +06HSZZqNReztdsx7T4B996nXXD/Z2Id3S0d75gS0/mpv0/rOxkqet9QjeCaB +y+Mb8h5k40TN4zOcPZPw8InCif0NbOxbve7SrMcUmKcY//4rhY3vLFs9Gr43 +BWPNpwNMktg4RINZ0JoyBWcy3CMCnrJxZIbldH77FHgc2qP1PZqNmaEvPN01 +p0Gx27s1IpSN+yyMfEZWzYD1mTkDDS821vp8/8bH8Fm4NhJU91mPjQ+IfUp4 +lzELf/ow7Ap12NjwuBpFVs5CyFs1v5vabHy0tnc5cnoWzpmkO3LuYWNXpqKf ++fFfIKsx+OGnHBvHeTX614nNQfsMMpHkYeOF9XxBFHMeTicltX/vYGGf+P6s +2nfzcMBmT/RyCwvPKmc3tQ/NQ8OJDvONjSw8ac0Q/iG0AItTyaWCb1l4JN+H +KRa4AOZb8ZE1JAu32/S2+tkugoTn7E+BKBbOe5UmocvzG0Issmp0zFhYtSC+ +d3APB0oJiR9nssqwwA8Y9tfnQOYCwS/5yTK8IDf4TcKMA5kOty/7FJTh8mTZ +JdvzHEjIScZFLbMMG0e8EupJ4EB3VEttAqLKsMPFxmOtq1chl4nUrf4Xy3D4 +7rXNVXWrEPcBubJJyTI89vJ8TardGtRnqb6j8lopjiMY2px161FTkvBXhyES +G9WYVF/awY1k7Z5u6RQqxnNJD+JEjDahkw7px59AETZd785BHONBai5yTOuN +BVjSrvDE7Le/kQ6v5vL+llx8GT/Qoq5uRt0yXD93c2Vj3c8TjpZy/EhPzT+4 +690LHKE8ob6JvQW5J6iVWZUm41N6nqaPLwoisVMeTQvGsfiFdfgPMVEhRLgu +qwiUhWGPGCON2mxhxMyeTEcVnrgkIahGz3Yb4p/2dis19gC/GsffvVOiSKT0 +lthzKhgcTg6xpSzE0VK74/RC62PQa+8vP6EggaKPvuFrro4Dp9NZAhIzEsh2 +LEr9zPtEYLRqRjTUS6KztzYzFVKeg9OxaLtNsVKo4myIv/ymNGD0lnscspdG +oiVHw13V02GIkZXuuXc7+rg2XVfAOhMqK51Udq2RQcn346aPEFlgIzn0X12v +DNIWXKMzx8WE0jsKTW6FO5Bt4vGebYU5YDmvuyXx+k4U82FfR0BELuT+I+pb +YiGLRpr3lT83yYODrDf7HMTlUI+eonP8eB6kyGppbfoih/JiR3LcbucD6+ol +u0RKHjWXa8vXCxUAX9+VzspABTSntZrp/KwA5LbrXv5gvwu1eb8Ri5QpBL+b +3aeddymi3V4rjV4JhRD5UTtqzYwiignDwvkbi8BFyHE88MNuZOn7ClVdLwJQ +z677YKyEePsGDLP7i2DnP1yFxiVKiDF1cOKQwSu48P0gu1ZaGbnamHvXpr2C +Tt7LF/4OVkZ//CvI7b/4CsQzb6rVzSgjbC7KOWtWDEG1F1IOn1RBTXd2rqpM +LAZTV0O1ZkoFKVRIx2R8LYYZ31Wd7+QINMk/4KutRgJLJFk6+AGB3MgerRwf +ErYqTa8cfEggE9kvn9uukOCly+j+4xGBWmYdrJaukqDkMvowPJJAHU+/Rxne +ICGlWGUlKoFAoYMbbvTdIuGe2euutJcECmNsmVkJIeFE0FBY1RsCCbVs5hJK +IKE4Tt3l7jsCPV50/2/vUxL4coL0Dd8T6OesrJ/VMxLq2xSW3tcTqIY1JR6d +RMIBKc9zLW0Eqvp05xNvGgmy1Dq9gUECveUsOL/MJOFu0zGxlGECOShPjAvl +kjAwlLHg+IVAsf4++zXySIjfeDjv6yiBaudStNwLSOCxihSdnCTQiYx11T3F +JPzrOjKfP0Ug0fuqKb9IEmp9NdsuzxCIYSxlyltKwp20vntzcwRKJa9yGrBI ++FSi5Fy6QKCGRxwC9mwStD/4H7i+RCBI9Zu8SpEQ19+6TXuZQBduc0U/xiTM +TcnMr6wQqKsqg5tZTsL/ACS6AxI= + "]]}, + Annotation[#, "Charting`Private`Tag$217740#1"]& ]}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->NCache[{ + Rational[1, 100000], 0}, {0.00001, 0}], + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->NCache[{{ + Rational[1, 100000], 20}, {-0.11999999999999285`, + 0.0966900611909013}}, {{0.00001, 20}, {-0.11999999999999285`, + 0.0966900611909013}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.752322933818047*^9, 3.7523229371652813`*^9}}, + CellLabel-> + "Out[1137]=",ExpressionUUID->"98012434-2e9b-4959-abfa-5b18bb5d06f9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Alpha]val", "=", "0"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"myeqs\[Alpha]1", "=", + RowBox[{"Flatten", "[", + RowBox[{ + RowBox[{"myfR\[Alpha]", "/.", + RowBox[{"\[Alpha]", "\[Rule]", "\[Alpha]val"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "]"}]}], ";"}]}], "Input", + CellChangeTimes->{{3.7184374008169537`*^9, 3.718437414236784*^9}, { + 3.718437494185628*^9, 3.718437593617321*^9}, {3.718437636009316*^9, + 3.71843766429198*^9}, {3.718437931714583*^9, 3.71843793617094*^9}, { + 3.718438765549902*^9, 3.7184387725963507`*^9}, {3.7184434391910257`*^9, + 3.718443441853094*^9}, {3.718443484193285*^9, 3.718443506284607*^9}, { + 3.718559464128769*^9, 3.718559467943961*^9}, {3.719061439821855*^9, + 3.719061444562524*^9}, {3.71906354255866*^9, 3.719063542733931*^9}, { + 3.7192407305489407`*^9, 3.719240773756016*^9}, {3.719240893282688*^9, + 3.7192408934660263`*^9}, {3.71924140797748*^9, 3.719241430663768*^9}, { + 3.719242019927012*^9, 3.719242027238345*^9}, {3.719244451874546*^9, + 3.719244513800668*^9}, 3.719244669295821*^9, 3.719245036201807*^9, { + 3.7192450899673243`*^9, 3.71924509067815*^9}, {3.7192451611104803`*^9, + 3.719245179742125*^9}, {3.719245220701231*^9, 3.7192452397742863`*^9}, { + 3.719245285155002*^9, 3.719245315139111*^9}, {3.719245351619425*^9, + 3.7192454071684732`*^9}, 3.719245884210607*^9, {3.719246470222393*^9, + 3.71924649000541*^9}, 3.7196470136825733`*^9, {3.719654651525614*^9, + 3.7196547367570744`*^9}, {3.719654909446266*^9, 3.719654923283415*^9}, { + 3.719655105454989*^9, 3.7196551440097113`*^9}, {3.719655197652171*^9, + 3.719655238214574*^9}, 3.719655279095626*^9, {3.7196570759512253`*^9, + 3.719657118589653*^9}, {3.719657159149605*^9, 3.719657186400576*^9}, { + 3.719657284361618*^9, 3.719657284495661*^9}, 3.719661833262862*^9, + 3.719661889542369*^9, {3.719677158726555*^9, 3.7196771593815804`*^9}, { + 3.7201508160700693`*^9, 3.720150854549415*^9}, {3.720150953337185*^9, + 3.720150988843315*^9}, {3.7201510947662373`*^9, 3.720151096513274*^9}, { + 3.720180194853396*^9, 3.7201801961733723`*^9}, {3.7204477444491367`*^9, + 3.720447752717889*^9}, {3.720447830398622*^9, 3.7204478306706963`*^9}, { + 3.720448947777711*^9, 3.720448948424841*^9}, {3.72092511238037*^9, + 3.72092516120851*^9}, 3.7209252708800373`*^9, {3.721030284430574*^9, + 3.7210303345388803`*^9}, {3.721039254318759*^9, 3.721039279957816*^9}, + 3.721385814374618*^9, {3.721389955180369*^9, 3.7213899557479877`*^9}, { + 3.721430198730941*^9, 3.7214301994314737`*^9}, {3.721430482730871*^9, + 3.721430503273196*^9}, 3.721430556674695*^9, {3.721434631643511*^9, + 3.721434635098914*^9}, {3.7214352358085003`*^9, 3.721435269276092*^9}, { + 3.721810132521253*^9, 3.72181013302395*^9}, {3.7219916821571827`*^9, + 3.721991682266123*^9}, {3.722034810936336*^9, 3.7220348123103523`*^9}, { + 3.722035439644766*^9, 3.722035439955229*^9}, {3.722035597216983*^9, + 3.722035598085511*^9}, {3.722132706385194*^9, 3.722132707495133*^9}, { + 3.728878929181488*^9, 3.728878939412635*^9}, {3.728879026878384*^9, + 3.728879028405472*^9}, {3.728879589344974*^9, 3.7288795954695683`*^9}, { + 3.728879817167754*^9, 3.728879828861765*^9}, 3.728885944506542*^9, { + 3.728885992099325*^9, 3.728886004403038*^9}, {3.728886152535172*^9, + 3.728886152852853*^9}, {3.728886196734907*^9, 3.728886206004057*^9}, + 3.7288865223207483`*^9, {3.728887683896122*^9, 3.728887684110838*^9}, { + 3.728888632342266*^9, 3.728888632533518*^9}, {3.7288887518958406`*^9, + 3.728888752084675*^9}, {3.73114457304851*^9, 3.731144599330369*^9}, + 3.731145262602448*^9, {3.731145569164222*^9, 3.731145611783329*^9}, { + 3.7311456744847717`*^9, 3.7311456766132383`*^9}, {3.731145723447528*^9, + 3.7311457685493107`*^9}, {3.731145808786429*^9, 3.73114581084544*^9}, { + 3.7311461504422483`*^9, 3.7311461568691177`*^9}, 3.7311470371680403`*^9, + 3.731147219222896*^9, 3.731150477499794*^9, {3.734343509286057*^9, + 3.734343514619609*^9}, 3.734344832001861*^9, 3.734344932168583*^9, { + 3.734347198308228*^9, 3.7343472281746902`*^9}, {3.734347369628532*^9, + 3.734347385569559*^9}, {3.7382217512744827`*^9, 3.738221753034275*^9}, { + 3.738227265618156*^9, 3.7382272830812607`*^9}, {3.7382283776489487`*^9, + 3.738228384563052*^9}, {3.7382285318009872`*^9, 3.738228531960734*^9}, + 3.7382438818428497`*^9, {3.738422550408177*^9, 3.7384225505752487`*^9}, { + 3.738423434397541*^9, 3.7384234344990788`*^9}, 3.738442332473753*^9, + 3.746352332399502*^9, 3.752316055027153*^9, 3.7523165847842703`*^9, + 3.752322801786593*^9}, + CellLabel-> + "In[1071]:=",ExpressionUUID->"000845c3-5a37-4681-ab5c-0f2f68bc5fc9"], + +Cell[BoxData[ + TemplateBox[{ + "Power","infy", + "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \\\"0\\\"]\\) \ +encountered.\"",2,1072,118,29958289580788358471,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{3.75232281151616*^9}, + CellLabel-> + "During evaluation of \ +In[1071]:=",ExpressionUUID->"c4c1933a-3527-4ac3-a9f6-c0ff71208c37"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "0.5"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", + RowBox[{"Rationalize", "[", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pc", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "16"}], ")"}]}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rfin", "=", "20"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"RicGR", "=", + RowBox[{"-", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"8", "\[Pi]", + RowBox[{"(", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}], ")"}]}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ")"}]}], + ",", + RowBox[{"10", "^", + RowBox[{"-", "15"}]}]}], "]"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{ + RowBox[{"myeqs\[Alpha]1", "[", + RowBox[{"[", + RowBox[{"1", ";;", "3"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}]}]}], "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "15"}], ")"}]}]}], "]"}]}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", + RowBox[{"Rationalize", "[", + RowBox[{"-", "0.12"}], "]"}]}]}], "}"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"eqsfin", "=", + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"test2", "=", + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "R"}], "}"}], ",", "4", + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"11", "/", "10"}], "RicGR"}], "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "False"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "True"}]}], "]"}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.752316417676708*^9, 3.752316426521112*^9}, { + 3.752316471868669*^9, 3.752316539977414*^9}, {3.752316623768167*^9, + 3.752316623893949*^9}, 3.752316688281028*^9, {3.752316828486504*^9, + 3.752316914306848*^9}, {3.7523220572176113`*^9, 3.752322150343884*^9}, { + 3.752322200594215*^9, 3.752322376396759*^9}, {3.752322410901619*^9, + 3.7523226147538967`*^9}, {3.752322729440486*^9, 3.752322741026124*^9}, { + 3.752322837934659*^9, 3.75232285918787*^9}}, + CellLabel-> + "In[1100]:=",ExpressionUUID->"7a4c75b1-a500-48f7-8f9d-7677486e97e9"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Obtain fR-TOV from code", "Subsection", + CellChangeTimes->{{3.7682850519224443`*^9, 3.768285057860832*^9}, + 3.768299231043499*^9},ExpressionUUID->"6f910e98-8e5a-4cff-8531-\ +0cd338303264"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}], "]"}]}], ",", "0", ",", "0", ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}], ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]}]}], "Input", + CellChangeTimes->{{3.768285088019587*^9, 3.76828514139717*^9}}, + CellLabel->"In[6]:=",ExpressionUUID->"39a1305b-9c3c-4003-b891-e37ffbd9237d"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, 3.768299003225932*^9}, + CellLabel->"Out[7]=",ExpressionUUID->"200f362b-1e3f-4c1e-bd3e-9914201e86f2"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, 3.768299003243552*^9}, + CellLabel->"Out[8]=",ExpressionUUID->"2e7c807e-fc17-44b6-a68b-f31cae91db24"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FRTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "w", ",", "\[Lambda]", ",", "R"}], "}"}]}], + "]"}]], "Input", + CellChangeTimes->{{3.768295541811054*^9, 3.768295557043367*^9}, { + 3.768295690634953*^9, 3.768295692311075*^9}, 3.768295867172076*^9, { + 3.768298091622168*^9, 3.768298092737364*^9}, {3.768298135401189*^9, + 3.768298239087604*^9}}, + CellLabel->"In[9]:=",ExpressionUUID->"6f75d8ab-6d6d-4563-931c-f37a952ae3dd"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,R}\"\>"], \ +"Print", + CellChangeTimes->{{3.768295857251902*^9, 3.768295876160945*^9}, + 3.768297664634157*^9, 3.768297944815351*^9, {3.768298083402684*^9, + 3.7682980929588213`*^9}, {3.768298140324999*^9, 3.768298239445652*^9}, + 3.7682990040210543`*^9}, + CellLabel-> + "During evaluation of \ +In[9]:=",ExpressionUUID->"ec4ad459-1506-44fd-9726-ae8c6220d5c4"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{"2", "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "-", + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", "\[Alpha]", + " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], "/", + RowBox[{"(", + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], ")"}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", "\[Alpha]", + " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "-", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]], + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.768295558994957*^9, 3.768295694265603*^9, {3.768295858686186*^9, + 3.7682958775692463`*^9}, 3.7682976697382603`*^9, 3.7682979464073257`*^9, { + 3.768298084893654*^9, 3.768298094439645*^9}, {3.76829814182952*^9, + 3.7682982409852867`*^9}, 3.768299005434057*^9}, + CellLabel->"Out[9]=",ExpressionUUID->"cdc22c97-9681-4515-8468-79dc56a1f51c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"A", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"B", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"A", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"B", "[", "r", "]"}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]}]}], "Input", + CellChangeTimes->{{3.768285088019587*^9, 3.76828514139717*^9}, { + 3.768299019655505*^9, 3.768299024441648*^9}, {3.768299151874316*^9, + 3.768299154058935*^9}}, + CellLabel->"In[28]:=",ExpressionUUID->"3220344c-386b-45c8-8eeb-6cae7918c981"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"A", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"B", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, {3.768299003225932*^9, 3.768299024849921*^9}, + 3.768299092265901*^9, 3.768299154447371*^9, 3.768299216554188*^9}, + CellLabel->"Out[29]=",ExpressionUUID->"72c45421-b0e4-42ba-94b6-01a408623347"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"A", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"B", "[", "r", "]"}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, {3.768299003225932*^9, 3.768299024849921*^9}, + 3.768299092265901*^9, 3.768299154447371*^9, 3.768299216567442*^9}, + CellLabel->"Out[30]=",ExpressionUUID->"7d06453a-23ad-4c2c-b520-cac994274924"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FRTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "A", ",", "B", ",", "R"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.768295541811054*^9, 3.768295557043367*^9}, { + 3.768295690634953*^9, 3.768295692311075*^9}, 3.768295867172076*^9, { + 3.768298091622168*^9, 3.768298092737364*^9}, {3.768298135401189*^9, + 3.768298239087604*^9}, {3.76829921776165*^9, 3.7682992194208384`*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"7c59a559-6f9e-4f45-97d2-97ab9d920764"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,R}\"\>"], \ +"Print", + CellChangeTimes->{3.768299028540134*^9, 3.768299093745099*^9, + 3.768299155725893*^9, 3.768299219802853*^9}, + CellLabel-> + "During evaluation of \ +In[31]:=",ExpressionUUID->"01baac31-0ab1-47b1-b04d-503655c8d4c9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["A", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"2", " ", + RowBox[{"A", "[", "r", "]"}]}]]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["B", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["A", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{"B", "[", "r", "]"}]}]], + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", "r", " ", + RowBox[{"A", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"B", "[", "r", "]"}], "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{"A", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"B", "[", "r", "]"}], "2"], " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", "r", " ", + RowBox[{"A", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"B", "[", "r", "]"}], "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["A", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["B", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]}], + "}"}]], "Output", + CellChangeTimes->{3.768299029811517*^9, 3.768299094588909*^9, + 3.7682991568102427`*^9, 3.768299220917178*^9}, + CellLabel->"Out[31]=",ExpressionUUID->"09758b57-bf44-4bd4-8caa-e5d2569206bf"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Obtain ST-TOV from code", "Subsection", + CellChangeTimes->{{3.7682850519224443`*^9, 3.768285057860832*^9}, { + 3.768299231043499*^9, + 3.768299239700047*^9}},ExpressionUUID->"acb36565-8a4d-45f1-8e3a-\ +868962edbb71"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}], "]"}]}], ",", "0", ",", "0", ",", + "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}], ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]}]}], "Input", + CellChangeTimes->{{3.768285088019587*^9, 3.76828514139717*^9}}, + CellLabel->"In[2]:=",ExpressionUUID->"ed250cc0-b85e-439f-9d2f-cb595bed4e72"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"w", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, 3.768299003225932*^9, 3.7707845507048817`*^9, { + 3.7707856636408157`*^9, 3.770785683753909*^9}, 3.770785716766613*^9, + 3.770787584741604*^9}, + CellLabel->"Out[3]=",ExpressionUUID->"3f269e24-078a-4041-845f-7d6259a932cc"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, 3.768299003225932*^9, 3.7707845507048817`*^9, { + 3.7707856636408157`*^9, 3.770785683753909*^9}, 3.770785716766613*^9, + 3.7707875847526617`*^9}, + CellLabel->"Out[4]=",ExpressionUUID->"3f488d16-913d-411c-a59c-525bd7d5cf66"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"freqs", "=", + RowBox[{"FRTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "w", ",", "\[Lambda]", ",", "R"}], "}"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.768295541811054*^9, 3.768295557043367*^9}, { + 3.768295690634953*^9, 3.768295692311075*^9}, 3.768295867172076*^9, { + 3.768298091622168*^9, 3.768298092737364*^9}, {3.768298135401189*^9, + 3.768298239087604*^9}, {3.770784558053154*^9, 3.77078459639233*^9}}, + CellLabel->"In[5]:=",ExpressionUUID->"f82b9185-8d63-4912-bf33-9363108d9b7d"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,R}\"\>"], \ +"Print", + CellChangeTimes->{{3.768295857251902*^9, 3.768295876160945*^9}, + 3.768297664634157*^9, 3.768297944815351*^9, {3.768298083402684*^9, + 3.7682980929588213`*^9}, {3.768298140324999*^9, 3.768298239445652*^9}, + 3.7682990040210543`*^9, {3.770784552484449*^9, 3.770784596936514*^9}, + 3.77078568511793*^9, 3.770785719451124*^9, 3.770787584999815*^9}, + CellLabel-> + "During evaluation of \ +In[5]:=",ExpressionUUID->"ed650e5b-f34f-45fa-b428-ca4f4923aba0"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"2", "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], "-", + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", "\[Alpha]", + " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", "\[Alpha]", + " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "-", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"24", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]]}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.768295558994957*^9, 3.768295694265603*^9, {3.768295858686186*^9, + 3.7682958775692463`*^9}, 3.7682976697382603`*^9, 3.7682979464073257`*^9, { + 3.768298084893654*^9, 3.768298094439645*^9}, {3.76829814182952*^9, + 3.7682982409852867`*^9}, 3.768299005434057*^9, {3.770784554198699*^9, + 3.770784598449939*^9}, 3.7707856854557447`*^9, 3.7707857210993233`*^9, + 3.77078758857267*^9}, + CellLabel->"Out[5]=",ExpressionUUID->"1ae61d2f-2290-411c-83a5-e40cc8ad49e4"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "2", "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "\[Rule]", "\[Infinity]"}]}], "]"}], "&"}], "/@", + "freqs"}]], "Input", + CellChangeTimes->{{3.7707845998847227`*^9, 3.770784622195218*^9}}, + CellLabel->"In[6]:=",ExpressionUUID->"14328f2e-de99-480e-b189-d8c5578df382"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ",", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]], ",", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "4"}], " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "-", + RowBox[{"8", " ", "r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"8", " ", "r", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]], ",", + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], "r"]}], + "}"}]], "Output", + CellChangeTimes->{{3.770784615186405*^9, 3.77078462265432*^9}, + 3.7707857250197563`*^9, 3.770787592423575*^9}, + CellLabel->"Out[6]=",ExpressionUUID->"89a336e8-a84d-4aa4-961d-983f4eeb3584"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"V\[Phi]", "=", + RowBox[{"fR2Pot", "[", + RowBox[{ + RowBox[{"R", " ", "+", " ", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], ",", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"2", "/", + RowBox[{"Sqrt", "[", "3", "]"}]}], "\[CurlyPhi]"}], "]"}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.770785568852067*^9, 3.770785626583042*^9}, { + 3.7707867819521923`*^9, 3.770786789809836*^9}}, + CellLabel-> + "In[118]:=",ExpressionUUID->"9f14f43a-d2a4-4bab-96f5-021eec6ecc82"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CurlyPhi]"}], + SqrtBox["3"]]}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"2", " ", "\[CurlyPhi]"}], + SqrtBox["3"]]]}], ")"}], "2"]}], + RowBox[{"4", " ", "\[Alpha]"}]]], "Output", + CellChangeTimes->{3.770785591569665*^9, 3.770785627073238*^9, + 3.7707857262727957`*^9, 3.7707867904542923`*^9, 3.770787593292492*^9, + 3.770788968779126*^9}, + CellLabel-> + "Out[118]=",ExpressionUUID->"e7a2517c-53fe-46d9-8be9-ee4055cf08a3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"stefeqs", "=", + RowBox[{"STTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"{", + RowBox[{"V\[Phi]", ",", "\[CurlyPhi]"}], "}"}], ",", + RowBox[{"{", + RowBox[{"p", ",", "w", ",", "\[Lambda]", ",", "\[CurlyPhi]"}], "}"}], + ",", "0", ",", + RowBox[{"\"\<Frame\>\"", "\[Rule]", "\"\<Einstein\>\""}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.770786730865313*^9, 3.770786759950601*^9}, { + 3.770786794198295*^9, 3.770786800372036*^9}, {3.770787111659828*^9, + 3.77078711503932*^9}, {3.770787604411398*^9, 3.770787604671402*^9}, { + 3.770788662072957*^9, 3.7707886622454367`*^9}, {3.770788795185629*^9, + 3.77078879656433*^9}}, + CellLabel-> + "In[119]:=",ExpressionUUID->"60e5da00-ce01-4000-8baa-4832f19d9a2a"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,\[CurlyPhi]}\ +\"\>"], "Print", + CellChangeTimes->{ + 3.770787165570162*^9, 3.7707871976530943`*^9, {3.770787242478128*^9, + 3.770787273337467*^9}, {3.7707874041727858`*^9, 3.7707874094256353`*^9}, { + 3.7707875952290287`*^9, 3.770787605265813*^9}, {3.7707876488084517`*^9, + 3.770787653608203*^9}, 3.770788797222282*^9, 3.770788916502063*^9, + 3.770788969566856*^9}, + CellLabel-> + "During evaluation of \ +In[119]:=",ExpressionUUID->"09a1cb61-3bda-425c-8656-c2842de490ed"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", "3"]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"16", " ", "r", " ", "\[Alpha]"}]], + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", + SuperscriptBox["r", "2"]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"8", " ", "\[Alpha]"}], "-", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Alpha]"}], "+", + RowBox[{"64", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", "2"], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["1", + SuperscriptBox["r", "2"]]}], "+", + FractionBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], + SuperscriptBox["r", "2"]], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]]}], ")"}], "2"], "-", + RowBox[{"64", " ", "\[Pi]", " ", "\[Alpha]", " ", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"8", " ", "\[Alpha]"}]], "+", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}], ")"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + RowBox[{ + FractionBox["1", + RowBox[{"12", " ", "r", " ", "\[Alpha]"}]], + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SqrtBox["3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r"}], "-", + RowBox[{ + SqrtBox["3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "+", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "r"}], "-", + RowBox[{"48", " ", + SqrtBox["3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", "\[Alpha]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"16", " ", + SqrtBox["3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", "\[Alpha]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"24", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"12", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]], " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"12", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]], " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]}]}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.770787205090067*^9, {3.770787242652273*^9, 3.7707872754639177`*^9}, { + 3.770787405882839*^9, 3.770787410190587*^9}, {3.770787595364719*^9, + 3.770787605391136*^9}, {3.7707876489053307`*^9, 3.770787656648938*^9}, + 3.770788798764511*^9, 3.7707889179515553`*^9, 3.770788972693262*^9}, + CellLabel-> + "Out[119]=",ExpressionUUID->"9bbdc768-540b-4e27-bd3a-ad5051494c82"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"stefeqsinf", "=", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "2", "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "\[Rule]", "\[Infinity]"}]}], "]"}], "&"}], "/@", + "stefeqs"}], "]"}]}]], "Input", + CellChangeTimes->{ + 3.770788597132884*^9, {3.770789042818416*^9, 3.7707890566871433`*^9}, + 3.770800861095138*^9, {3.7708012664982986`*^9, 3.77080126842803*^9}}, + CellLabel-> + "In[140]:=",ExpressionUUID->"9407896f-3d5d-46d8-9e27-1a0066ec67ce"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", "3"]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], ",", + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], + RowBox[{"2", " ", "r"}]], ",", + FractionBox[ + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], + RowBox[{"2", " ", "r"}]], ",", + RowBox[{ + RowBox[{"4", " ", + SqrtBox["3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], + SqrtBox["3"]], "+", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"]}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.7707885978274*^9, 3.770788803320601*^9, 3.7707889939507923`*^9, { + 3.7707890435564404`*^9, 3.77078905731339*^9}, 3.770800862034033*^9, + 3.770801269042932*^9}, + CellLabel-> + "Out[140]=",ExpressionUUID->"ee5a9300-9978-4333-992e-0785a744d3a5"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"stefeqsinf", "[", + RowBox[{"[", "2", "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Lambda]", "[", "r", "]"}], "\[Rule]", "0"}]}], "/.", + RowBox[{ + RowBox[{ + RowBox[{"\[CurlyPhi]", "'"}], "[", "r", "]"}], "\[Rule]", + "0"}]}]], "Input", + CellChangeTimes->{{3.770801249721676*^9, 3.770801289559101*^9}}, + CellLabel-> + "In[143]:=",ExpressionUUID->"8daa37b5-8585-4039-96f4-18e81fd9c9b2"], + +Cell[BoxData[ + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", "r", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]], "Output", + CellChangeTimes->{{3.770801253036275*^9, 3.770801290008567*^9}}, + CellLabel-> + "Out[143]=",ExpressionUUID->"cf0ba0e7-9870-4dd4-bbde-771ded2c2dd1"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"V\[Phi]", "=", + RowBox[{"fR2Pot", "[", + RowBox[{"R", " ", "+", " ", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.770785568852067*^9, 3.770785626583042*^9}, { + 3.7707867819521923`*^9, 3.770786789809836*^9}, {3.770787779701495*^9, + 3.770787779935049*^9}}, + CellLabel-> + "In[144]:=",ExpressionUUID->"2d835e2a-ec41-4731-a860-6044b4c073db"], + +Cell[BoxData[ + FractionBox[ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "\[Phi]"}], ")"}], "2"], + RowBox[{"4", " ", "\[Alpha]"}]]], "Output", + CellChangeTimes->{3.770785591569665*^9, 3.770785627073238*^9, + 3.7707857262727957`*^9, 3.7707867904542923`*^9, 3.770787593292492*^9, + 3.770787780289359*^9, 3.770788804399002*^9, 3.770788996021659*^9, + 3.7708013211562843`*^9}, + CellLabel-> + "Out[144]=",ExpressionUUID->"a4d9145a-518d-459e-974c-dbaf18d54a2d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{"1", "+", "x"}], "]"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.7708016070399523`*^9, 3.7708016206621437`*^9}}, + CellLabel-> + "In[146]:=",ExpressionUUID->"460e4006-5bf2-42c6-8a98-379ad925d916"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\[ExponentialE]", "+", + RowBox[{"\[ExponentialE]", " ", "x"}], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", "x", "]"}], "2"], + SeriesData[$CellContext`x, 0, {}, 0, 2, 1], + Editable->False]}], + SeriesData[$CellContext`x, 0, {E, E}, 0, 2, 1], + Editable->False]], "Output", + CellChangeTimes->{3.770801621082106*^9}, + CellLabel-> + "Out[146]=",ExpressionUUID->"bcdf6864-e93b-4248-9374-5bf44ac79672"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"stjfeqs", "=", + RowBox[{"STTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"{", + RowBox[{"V\[Phi]", ",", "\[Phi]"}], "}"}], ",", + RowBox[{"{", + RowBox[{"p", ",", "w", ",", "\[Lambda]", ",", "\[Phi]"}], "}"}], ",", + "0", ",", + RowBox[{"\"\<Frame\>\"", "\[Rule]", "\"\<Jordan\>\""}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.770786730865313*^9, 3.770786759950601*^9}, { + 3.770786794198295*^9, 3.770786800372036*^9}, {3.770787111659828*^9, + 3.77078711503932*^9}, {3.770787604411398*^9, 3.770787604671402*^9}, { + 3.7707877682917547`*^9, 3.770787798297249*^9}, {3.77078865940014*^9, + 3.7707886595905123`*^9}, {3.770788808791518*^9, 3.770788809882248*^9}}, + CellLabel-> + "In[145]:=",ExpressionUUID->"d21b1b91-3e2b-4f3e-a94f-ef0d7770d768"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,\[CurlyPhi]}\ +\"\>"], "Print", + CellChangeTimes->{3.770788810282905*^9, 3.770788997219784*^9, + 3.770801321969537*^9}, + CellLabel-> + "During evaluation of \ +In[145]:=",ExpressionUUID->"6bd38537-d7fc-4627-a511-6bc9408b2746"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"64", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "\[Alpha]", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{"4", " ", "\[Alpha]"}]}], ")"}], " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"\[Phi]", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], "+", + RowBox[{"8", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "64"}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "\[Alpha]", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{"4", " ", "\[Alpha]"}]}], ")"}], " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"\[Phi]", "[", "r", "]"}], "2"]}], "+", + RowBox[{"r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r"}], "+", + RowBox[{"16", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], ",", + + RowBox[{ + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], " ", "r"}], "+", + RowBox[{"48", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + "\[Alpha]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", " ", + "\[Alpha]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]]}]}], "}"}]], "Output", + CellChangeTimes->{{3.770787772156838*^9, 3.770787800540003*^9}, + 3.77078786215344*^9, 3.7707879904234457`*^9, 3.770788138351273*^9, + 3.770788383925104*^9, 3.770788540703245*^9, {3.770788805213984*^9, + 3.770788812402109*^9}, 3.770788999191641*^9, 3.7708013238675613`*^9}, + CellLabel-> + "Out[145]=",ExpressionUUID->"d9f975d3-3e67-4cac-b9bf-c21cc6f49d4d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "2", "]"}], "]"}], ",", + RowBox[{"\[Alpha]", "\[Rule]", "\[Infinity]"}]}], "]"}], "&"}], "/@", + "stjfeqs"}], "]"}]], "Input", + CellChangeTimes->{ + 3.770788597132884*^9, 3.770788627687707*^9, {3.770789019752859*^9, + 3.770789032066495*^9}, {3.770789065449037*^9, 3.770789072800193*^9}, + 3.770800779563178*^9}, + CellLabel-> + "In[136]:=",ExpressionUUID->"79fc9ff6-f6c7-4aa7-bedd-7a75618d2fc4"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ",", + FractionBox[ + RowBox[{ + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"\[Phi]", "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"2", " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{ + RowBox[{"2", " ", "r", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]], ",", + FractionBox[ + RowBox[{ + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], ")"}], " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], ",", + RowBox[{ + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{ + FractionBox["8", "3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "r"]}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.770788628251233*^9, 3.770788825060697*^9, {3.770788999393794*^9, + 3.770789032550929*^9}, {3.7707890660733643`*^9, 3.770789073211926*^9}, + 3.770800780077487*^9}, + CellLabel-> + "Out[136]=",ExpressionUUID->"242bade0-156f-45fe-9e70-320e2b7b8885"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"$Assumptions", "=", + RowBox[{ + RowBox[{ + RowBox[{"A", "[", "r", "]"}], "\[Element]", "Reals"}], " ", "&&", " ", + RowBox[{ + RowBox[{"B", "[", "r", "]"}], "\[Element]", + "Reals"}]}]}], "\[IndentingNewLine]", + RowBox[{"g", "=", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"A", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"B", "[", "r", "]"}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]}]}], "Input", + CellChangeTimes->{{3.768285088019587*^9, 3.76828514139717*^9}, { + 3.768299019655505*^9, 3.768299024441648*^9}, {3.768299151874316*^9, + 3.768299154058935*^9}}, + CellLabel->"In[28]:=",ExpressionUUID->"d6c9a8cc-dfba-4381-8ee0-3c6ff1a3dd38"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"A", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}], "&&", + RowBox[{ + RowBox[{"B", "[", "r", "]"}], "\[Element]", + TemplateBox[{}, + "Reals"]}]}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, {3.768299003225932*^9, 3.768299024849921*^9}, + 3.768299092265901*^9, 3.768299154447371*^9, 3.768299216554188*^9}, + CellLabel->"Out[29]=",ExpressionUUID->"f55ea615-53c1-4b4c-b5eb-479fc0450859"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"A", "[", "r", "]"}]}], ",", "0", ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", + RowBox[{"B", "[", "r", "]"}], ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.768285121957183*^9, 3.768285142338256*^9}, + 3.768292190009091*^9, {3.768299003225932*^9, 3.768299024849921*^9}, + 3.768299092265901*^9, 3.768299154447371*^9, 3.768299216567442*^9}, + CellLabel->"Out[30]=",ExpressionUUID->"68de234c-429f-418c-aea9-75db7b49b75f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"FRTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], ",", + RowBox[{"{", + RowBox[{"p", ",", "A", ",", "B", ",", "R"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.768295541811054*^9, 3.768295557043367*^9}, { + 3.768295690634953*^9, 3.768295692311075*^9}, 3.768295867172076*^9, { + 3.768298091622168*^9, 3.768298092737364*^9}, {3.768298135401189*^9, + 3.768298239087604*^9}, {3.76829921776165*^9, 3.7682992194208384`*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"810873ee-3118-4cf9-990e-71c758f19903"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,R}\"\>"], \ +"Print", + CellChangeTimes->{3.768299028540134*^9, 3.768299093745099*^9, + 3.768299155725893*^9, 3.768299219802853*^9}, + CellLabel-> + "During evaluation of \ +In[31]:=",ExpressionUUID->"6a9843f4-36f7-475a-8c54-1b44b1a024f9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{"-", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["A", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"2", " ", + RowBox[{"A", "[", "r", "]"}]}]]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["B", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["A", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + ")"}]}], + RowBox[{"2", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{"B", "[", "r", "]"}]}]], + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", "r", " ", + RowBox[{"A", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"B", "[", "r", "]"}], "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{"A", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"B", "[", "r", "]"}], "2"], " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Pi]", " ", "r", " ", + RowBox[{"A", "[", "r", "]"}], " ", + SuperscriptBox[ + RowBox[{"B", "[", "r", "]"}], "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "\[Alpha]", " ", + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"B", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["A", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"A", "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["B", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]}], + "}"}]], "Output", + CellChangeTimes->{3.768299029811517*^9, 3.768299094588909*^9, + 3.7682991568102427`*^9, 3.768299220917178*^9}, + CellLabel->"Out[31]=",ExpressionUUID->"e535d70b-e452-48a5-9a55-5f44e3f4180f"] +}, Open ]] +}, Closed]] +}, Open ]] +}, Open ]] +}, Open ]] +}, +AutoGeneratedPackage->Automatic, +WindowSize->{Full, Full}, +WindowMargins->{{Automatic, 411}, {-29, Automatic}}, +FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{ + "Info583768292796-1566858"->{ + Cell[978319, 24348, 344, 6, 69, "Print",ExpressionUUID->"1e8981a4-b242-4305-a785-013e3ec45a07", + CellTags->"Info583768292796-1566858"]} + } +*) +(*CellTagsIndex +CellTagsIndex->{ + {"Info583768292796-1566858", 1719171, 40564} + } +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[580, 22, 178, 3, 98, "Title",ExpressionUUID->"412e446d-949d-4a39-ab8f-2e74aab963be"], +Cell[761, 27, 214, 3, 45, "Subtitle",ExpressionUUID->"03c7a68d-9296-477d-858e-f28f41a96ef7"], +Cell[978, 32, 325, 6, 31, "Subsubtitle",ExpressionUUID->"1dd49449-a8ac-466f-9155-195dee63ff9f"], +Cell[CellGroupData[{ +Cell[1328, 42, 339, 5, 32, "Item",ExpressionUUID->"5790c103-deb7-4616-bb6c-3201fb52dcfe"], +Cell[1670, 49, 304, 5, 32, "Item",ExpressionUUID->"44de3030-71f6-405b-999e-75aa76f5f611"], +Cell[1977, 56, 231, 4, 32, "Item",ExpressionUUID->"f9419d5d-d441-4601-b5f7-a8f1d5919af9"] +}, Open ]], +Cell[2223, 63, 178, 2, 35, "Text",ExpressionUUID->"9611da95-c63f-4174-ad5e-d05a8caf1d44"], +Cell[2404, 67, 217, 4, 35, "Text",ExpressionUUID->"d61a9f74-a8b4-4661-9a96-0aec3ba57e56"], +Cell[CellGroupData[{ +Cell[2646, 75, 308, 5, 31, "Subsubtitle",ExpressionUUID->"7485f0c1-9446-4d71-bc0d-dc62c290ca04"], +Cell[CellGroupData[{ +Cell[2979, 84, 417, 8, 32, "Item",ExpressionUUID->"f364ad21-6a79-461f-82fd-266664ee0eaf"], +Cell[3399, 94, 446, 9, 32, "Item",ExpressionUUID->"f7c3d670-7f49-4cad-8b0c-e1d6554e2404"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[3894, 109, 380, 6, 31, "Subsubtitle",ExpressionUUID->"d6086976-b2f7-4c24-9bad-2785b986bc0f"], +Cell[4277, 117, 564, 10, 32, "Item",ExpressionUUID->"923f22e3-6a74-48ed-910c-a2cf0077f928"], +Cell[4844, 129, 196, 3, 30, "Input",ExpressionUUID->"556b9938-0d87-43c7-9c74-092950e517a4"], +Cell[CellGroupData[{ +Cell[5065, 136, 158, 3, 67, "Section",ExpressionUUID->"d1f4fc7b-0fc3-4dfa-87e1-5cab3334f1ef"], +Cell[5226, 141, 697, 13, 91, "Code",ExpressionUUID->"73646baf-e1d8-48be-b891-b1d31c1d0092"] +}, Open ]], +Cell[CellGroupData[{ +Cell[5960, 159, 156, 3, 67, "Section",ExpressionUUID->"62bc7e4c-e5f8-44b8-8aaf-b650c91c7ebe"], +Cell[6119, 164, 571, 14, 72, "Code",ExpressionUUID->"9454ca91-4990-42d1-a52b-e9f7ea7c4763"], +Cell[6693, 180, 2593, 58, 205, "Code",ExpressionUUID->"7d90f080-84f2-4094-b473-738b2b7cd239"], +Cell[9289, 240, 1912, 44, 167, "Code",ExpressionUUID->"82584a06-f2ae-482e-8ccd-35105c0ab1d3"], +Cell[11204, 286, 3285, 73, 243, "Code",ExpressionUUID->"1315b459-a688-49d3-a2a3-f7299b9bb0d8"], +Cell[14492, 361, 2640, 69, 300, "Code",ExpressionUUID->"520e0231-cf67-4615-b6d3-aa9e39113b53"], +Cell[17135, 432, 844, 17, 72, "Code",ExpressionUUID->"d972da8c-a6b7-43c1-84fb-64ef450f9578"], +Cell[17982, 451, 503, 13, 72, "Code",ExpressionUUID->"6ddfba02-94cc-4966-9292-4bbe0118b6b0"], +Cell[18488, 466, 777, 19, 91, "Code",ExpressionUUID->"4bab27d3-7c5c-459f-a370-3f3c92b37de2"], +Cell[19268, 487, 1226, 25, 110, "Code",ExpressionUUID->"d9d11a3a-5579-4cf1-92f4-5b6dcdb004da"], +Cell[20497, 514, 174, 4, 52, "Code",ExpressionUUID->"ee552dc2-de40-46d1-94d7-658affe7b6fa"] +}, Open ]], +Cell[CellGroupData[{ +Cell[20708, 523, 239, 4, 67, "Section",ExpressionUUID->"05ea9761-368f-4d05-b1d3-336913441ec9"], +Cell[20950, 529, 617, 14, 30, "Input",ExpressionUUID->"2071ebcb-965b-4656-95d6-762b9c1b4191"], +Cell[21570, 545, 1762, 50, 129, "Code",ExpressionUUID->"5f09e08c-85d0-4db4-af75-8f85ac788de8"], +Cell[23335, 597, 40362, 983, 2067, "Code",ExpressionUUID->"d02d65d5-6fda-4d39-872e-5145e565b67b"], +Cell[63700, 1582, 2553, 55, 205, "Code",ExpressionUUID->"73a83525-2b6f-4121-ad3f-acd5ae34221f"], +Cell[66256, 1639, 7846, 207, 509, "Code",ExpressionUUID->"2f5465f0-0bc1-464c-8946-61bf0688605c"], +Cell[74105, 1848, 6070, 134, 386, "Code",ExpressionUUID->"c688a0ee-0df1-44b0-9257-c8f4045fc5c7"], +Cell[80178, 1984, 4336, 100, 395, "Code",ExpressionUUID->"119a8d40-ec9b-4beb-bbe6-56f668b9d13f"], +Cell[84517, 2086, 15502, 319, 737, "Code",ExpressionUUID->"42d7e549-8322-428c-b63b-bf6095197569"], +Cell[100022, 2407, 761, 19, 110, "Code",ExpressionUUID->"df2e70b3-e89e-4c7e-9199-272b7a4be691"], +Cell[100786, 2428, 3665, 101, 224, "Code",ExpressionUUID->"85a87c7b-5448-48cf-b7ff-42ea3bc6b701"], +Cell[104454, 2531, 3390, 78, 395, "Code",ExpressionUUID->"efc86dd5-ff62-4d68-8ccd-ec0fdaa23a1d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[107881, 2614, 298, 4, 67, "Section",ExpressionUUID->"4a954fa8-5e65-4aa0-9dfb-a2c2621cf75e"], +Cell[108182, 2620, 974, 23, 73, "Input",ExpressionUUID->"a0b580d6-2659-4ec5-a8c3-c296a9e08932"], +Cell[109159, 2645, 11632, 265, 471, "Code",ExpressionUUID->"bdffc080-9d05-49d3-8851-81b168c7f40f"], +Cell[120794, 2912, 21690, 492, 642, "Code",ExpressionUUID->"44cea7c1-7692-4677-87f1-7b447cd20893"], +Cell[142487, 3406, 5597, 150, 376, "Code",ExpressionUUID->"dba59494-d6bd-455c-9583-739496b4e8fb"], +Cell[148087, 3558, 8130, 204, 433, "Code",ExpressionUUID->"fa764fc9-41f0-4909-a706-d2e927a6951e"], +Cell[156220, 3764, 9994, 250, 509, "Code",ExpressionUUID->"98ad7356-c122-4b87-ae57-e23ba604a55b"], +Cell[166217, 4016, 3307, 86, 243, "Code",ExpressionUUID->"24d9f81a-3685-47b8-a92f-d7ecdcf3bf79"], +Cell[169527, 4104, 8689, 216, 376, "Code",ExpressionUUID->"0aef8794-2831-4e8f-b5be-e7e9ca87ecbc"] +}, Closed]], +Cell[CellGroupData[{ +Cell[178253, 4325, 173, 3, 53, "Section",ExpressionUUID->"bd470b28-5f15-4c9c-a58c-810cdfefdac1"], +Cell[178429, 4330, 7402, 151, 509, "Code",ExpressionUUID->"6d54e73d-1c50-4cc0-aad4-ff74dd80442b"], +Cell[185834, 4483, 2970, 75, 205, "Code",ExpressionUUID->"f79c22c1-362f-458d-82a2-1f3465aadc06"], +Cell[188807, 4560, 6720, 158, 490, "Code",ExpressionUUID->"6b04f6d5-af97-4d0d-b866-5998965061d8"], +Cell[195530, 4720, 8452, 206, 593, "Code",ExpressionUUID->"252d8729-785d-4dee-9670-5d76098a3c72"], +Cell[203985, 4928, 6832, 132, 429, "Code",ExpressionUUID->"81ea0ed3-7099-4461-b9dc-daf90d06d550"], +Cell[210820, 5062, 24959, 553, 1383, "Code",ExpressionUUID->"305f1da2-b619-471c-b193-83c797e21b52"], +Cell[235782, 5617, 10284, 241, 794, "Code",ExpressionUUID->"bd6a6fb4-49a6-4c2b-90a7-61e4c321ab53"], +Cell[246069, 5860, 3156, 70, 300, "Code",ExpressionUUID->"277e5d59-180f-4ff2-9d11-83708193aa16"], +Cell[249228, 5932, 3585, 80, 395, "Code",ExpressionUUID->"273d8dfe-f22d-4001-a888-645b21900533"] +}, Open ]], +Cell[CellGroupData[{ +Cell[252850, 6017, 150, 3, 67, "Section",ExpressionUUID->"037c7342-04ce-4060-832e-9a862d770c59"], +Cell[253003, 6022, 4508, 113, 167, "Code",ExpressionUUID->"dd47b130-3e35-4d07-b77e-3ca9d835e052"], +Cell[257514, 6137, 3182, 78, 319, "Code",ExpressionUUID->"b17e086c-ab31-48d0-8d5b-b0b3abee85e8"], +Cell[260699, 6217, 3499, 100, 258, "Code",ExpressionUUID->"d5e13794-b213-405d-a895-be3f3cdac4ca"], +Cell[264201, 6319, 2993, 77, 295, "Code",ExpressionUUID->"8d0dd1e2-e736-49c5-83c5-315e177e4d78"], +Cell[267197, 6398, 4955, 111, 52, "Code",ExpressionUUID->"1542b99a-38a7-4efc-a7dd-67f37e0b738f"], +Cell[272155, 6511, 4257, 102, 52, "Code",ExpressionUUID->"3bdf7311-6a93-42b9-806f-fc1fb7d2dbc8"], +Cell[276415, 6615, 902, 26, 52, "Code",ExpressionUUID->"c79d9e93-4c26-45bb-93fc-bae5d0655d34"], +Cell[277320, 6643, 907, 26, 52, "Code",ExpressionUUID->"6ec71da7-0574-492c-a70f-a8c94c288a31"], +Cell[278230, 6671, 16402, 346, 110, "Code",ExpressionUUID->"94aaf09f-e66c-408a-9c44-b910ab5d14a5"], +Cell[294635, 7019, 5184, 122, 509, "Code",ExpressionUUID->"3f1e4a76-6936-4740-8096-cea6b4942aee"], +Cell[299822, 7143, 5627, 120, 262, "Code",ExpressionUUID->"8dd4f842-5fdd-4a04-82ab-4547468b75ba"], +Cell[305452, 7265, 5287, 111, 243, "Code",ExpressionUUID->"774c58d4-e7e8-4b84-bdca-45613152c035"], +Cell[310742, 7378, 16581, 398, 984, "Code",ExpressionUUID->"fdd59681-5dbb-43cc-bf20-61b9df02c596"], +Cell[327326, 7778, 9417, 213, 376, "Code",ExpressionUUID->"7eccf728-6635-4259-85d7-e352f2b5bf87"] +}, Closed]], +Cell[CellGroupData[{ +Cell[336780, 7996, 297, 4, 53, "Section",ExpressionUUID->"3be93c08-4ba9-4bf3-b94b-30eff061949f"], +Cell[337080, 8002, 4250, 111, 262, "Code",ExpressionUUID->"4ab9691d-8b97-4823-b93d-ea823bb2cac2"], +Cell[341333, 8115, 2893, 63, 205, "Code",ExpressionUUID->"9aaa7a15-f5b4-48ca-92df-2cd798ba0032"], +Cell[344229, 8180, 14656, 325, 1193, "Code",ExpressionUUID->"7d87c83d-5730-4f9c-8f51-a1ed9ed56df2"], +Cell[358888, 8507, 32251, 771, 2171, "Code",ExpressionUUID->"e1458f8c-3b97-46d7-89b5-d99de78240e7"], +Cell[391142, 9280, 5027, 123, 395, "Code",ExpressionUUID->"e6aac64f-ed9a-4985-a3a8-ab479f3330ca"], +Cell[396172, 9405, 2367, 61, 224, "Code",ExpressionUUID->"7be546aa-ffdd-4c64-bb5a-8e664f9d3df8"], +Cell[398542, 9468, 12806, 336, 803, "Code",ExpressionUUID->"d6deea87-8b23-4703-b744-10e2878359aa"], +Cell[411351, 9806, 1734, 58, 72, "Code",ExpressionUUID->"bacae793-9bc9-412c-98f5-04742466300a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[413122, 9869, 160, 3, 53, "Section",ExpressionUUID->"2607a84f-8136-4555-8578-9ef48f892b15"], +Cell[413285, 9874, 1556, 48, 110, "Code",ExpressionUUID->"cf257478-3ef8-4582-84aa-71e3bc5840dc", + InitializationCell->True] +}, Open ]], +Cell[CellGroupData[{ +Cell[414878, 9927, 85, 0, 67, "Section",ExpressionUUID->"f1741b14-531a-4442-958b-fde3bfdb7b10"], +Cell[414966, 9929, 257, 7, 72, "Code",ExpressionUUID->"c8870d35-e01d-4f7c-b081-273dc39f3a98", + InitializationCell->True] +}, Open ]], +Cell[CellGroupData[{ +Cell[415260, 9941, 155, 3, 67, "Section",ExpressionUUID->"26d18d13-bbbe-4282-b00d-49ab3fbd32ba"], +Cell[415418, 9946, 207, 4, 30, "Input",ExpressionUUID->"d5935d89-e8a4-4fa5-91c6-63cfd7830a66"], +Cell[CellGroupData[{ +Cell[415650, 9954, 508, 10, 54, "Subsection",ExpressionUUID->"d77b7e0a-37fe-4fae-b4c7-ab23d397621e"], +Cell[CellGroupData[{ +Cell[416183, 9968, 292, 7, 30, "Input",ExpressionUUID->"01df2675-7543-4eaf-a777-bb3b592ad5c9"], +Cell[416478, 9977, 450, 8, 34, "Output",ExpressionUUID->"665df167-82dd-4563-a05c-cbda3f786184"] +}, Open ]], +Cell[CellGroupData[{ +Cell[416965, 9990, 567, 17, 30, "Input",ExpressionUUID->"04275776-8f18-4f37-bbf5-d693d7dc0cfb"], +Cell[417535, 10009, 694, 18, 37, "Output",ExpressionUUID->"be84d4f9-3975-4a44-827a-750c4eef7c2d"] +}, Open ]], +Cell[418244, 10030, 331, 8, 30, "Input",ExpressionUUID->"114c3b30-9e5e-445d-a4ed-def79fbfbecf"], +Cell[CellGroupData[{ +Cell[418600, 10042, 329, 7, 30, "Input",ExpressionUUID->"6ec9aa31-8715-40a8-8de4-fe5553c192dc"], +Cell[418932, 10051, 423, 8, 34, "Output",ExpressionUUID->"0f6440f7-89cc-47fe-9c83-462905f72eb0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[419392, 10064, 318, 7, 30, "Input",ExpressionUUID->"da6bb885-c11e-4af0-ba12-5a61ada9cb60"], +Cell[419713, 10073, 564, 15, 37, "Output",ExpressionUUID->"d2c5a32b-740e-4ba4-8c59-9da001eebe84"] +}, Open ]], +Cell[CellGroupData[{ +Cell[420314, 10093, 320, 7, 30, "Input",ExpressionUUID->"5aa484fc-0cd2-4926-b47a-29f14f4d2f17"], +Cell[420637, 10102, 393, 8, 51, "Output",ExpressionUUID->"6010ec2c-e7a3-47f0-b22d-9c5bd00f2385"] +}, Open ]], +Cell[CellGroupData[{ +Cell[421067, 10115, 992, 17, 52, "Input",ExpressionUUID->"ed5781e4-22a4-4ae7-a266-bbbc22d0f39a"], +Cell[422062, 10134, 2446, 47, 34, "Output",ExpressionUUID->"baac7dd9-3722-43d2-8c34-922c3cf5f6f3"], +Cell[424511, 10183, 2446, 47, 34, "Output",ExpressionUUID->"3a141bce-5fbc-4c50-92c7-8379c58297ca"] +}, Open ]], +Cell[CellGroupData[{ +Cell[426994, 10235, 517, 10, 52, "Input",ExpressionUUID->"e70c66e4-4e26-43dd-8013-82022d2d95c7"], +Cell[427514, 10247, 1899, 56, 37, "Output",ExpressionUUID->"b0b4dea8-47e3-447d-8f2b-96d2d27080ba"], +Cell[429416, 10305, 1899, 56, 37, "Output",ExpressionUUID->"3cbcbad1-a20a-4490-b84f-aa78f9e300d8"] +}, Open ]], +Cell[431330, 10364, 226, 4, 30, "Input",ExpressionUUID->"4736ce0c-fd95-488b-9cad-da3d82cd0647"], +Cell[CellGroupData[{ +Cell[431581, 10372, 591, 12, 52, "Input",ExpressionUUID->"090305e6-e53f-4de4-8760-85909e86ff8f"], +Cell[432175, 10386, 2188, 67, 37, "Output",ExpressionUUID->"1802f678-c827-451a-8772-3c7e96881a2f"], +Cell[434366, 10455, 1678, 53, 37, "Output",ExpressionUUID->"d6508d3e-502d-4994-befc-441a401f61b4"] +}, Open ]], +Cell[CellGroupData[{ +Cell[436081, 10513, 2197, 67, 33, "Input",ExpressionUUID->"a7c4d7c1-41c1-4f28-a00a-21a6c5370173"], +Cell[438281, 10582, 1592, 53, 37, "Output",ExpressionUUID->"127fe166-63e3-40e8-85f8-1cc2c599fb65"] +}, Open ]], +Cell[CellGroupData[{ +Cell[439910, 10640, 825, 18, 52, "Input",ExpressionUUID->"fe89dc2a-c9ac-4fe2-b899-ef0c3d47b93e"], +Cell[440738, 10660, 1491, 40, 34, "Output",ExpressionUUID->"510d0189-5306-488d-9d98-d72b472703f0"], +Cell[442232, 10702, 2121, 60, 37, "Output",ExpressionUUID->"004e0069-9eea-4160-b167-ebe64adc2af6"] +}, Open ]], +Cell[444368, 10765, 661, 18, 30, "Input",ExpressionUUID->"43a39a62-5608-44fe-8443-e69dce1fa939"], +Cell[CellGroupData[{ +Cell[445054, 10787, 154, 3, 30, "Input",ExpressionUUID->"46b07b7d-76b2-43d1-886e-1f734e343bd7"], +Cell[445211, 10792, 176, 3, 34, "Output",ExpressionUUID->"69e76015-b545-4a29-a5c6-a95e25aa360f"] +}, Open ]], +Cell[445402, 10798, 639, 19, 30, "Input",ExpressionUUID->"6ce44593-fdc2-41aa-ad1e-1cc49d9461ff"], +Cell[CellGroupData[{ +Cell[446066, 10821, 152, 3, 30, "Input",ExpressionUUID->"19a4e782-47a0-4a4c-9ac1-4dc16a3ec4cf"], +Cell[446221, 10826, 157, 3, 34, "Output",ExpressionUUID->"ebf88fb7-3a7c-413d-b0e4-b3a9c9a26971"] +}, Open ]], +Cell[446393, 10832, 504, 16, 30, "Input",ExpressionUUID->"f275f059-a571-42ab-8070-687490a278a1"], +Cell[446900, 10850, 504, 16, 30, "Input",ExpressionUUID->"e027fdb6-eff3-4bd9-a9aa-87088edb34cf"], +Cell[CellGroupData[{ +Cell[447429, 10870, 178, 3, 30, "Input",ExpressionUUID->"1792ddf6-d45d-44c1-a4b5-330f4aeff6a2"], +Cell[447610, 10875, 181, 3, 34, "Output",ExpressionUUID->"81dcb636-9dcd-4984-bd8f-c7783e2bc53c"] +}, Open ]], +Cell[447806, 10881, 447, 13, 30, "Input",ExpressionUUID->"5fbbd0b9-08ce-4eb7-a923-377942f201b6"], +Cell[CellGroupData[{ +Cell[448278, 10898, 152, 3, 30, "Input",ExpressionUUID->"096588e5-38a4-4025-922c-9e4d81ed7424"], +Cell[448433, 10903, 156, 3, 34, "Output",ExpressionUUID->"c580f8da-aeb5-4cf0-81c9-251fba296602"] +}, Open ]], +Cell[448604, 10909, 412, 12, 30, "Input",ExpressionUUID->"157be32d-15d6-4149-bfb6-8e0087bcf0c9"], +Cell[CellGroupData[{ +Cell[449041, 10925, 152, 3, 30, "Input",ExpressionUUID->"8e07c9e3-1125-4429-b862-bb3eed90c896"], +Cell[449196, 10930, 154, 3, 34, "Output",ExpressionUUID->"4c5cea56-2557-494f-b20b-8e21d5dee9a3"] +}, Open ]], +Cell[449365, 10936, 17812, 403, 566, "Code",ExpressionUUID->"b07eb285-b84f-41d1-8ec4-d701def84f96"], +Cell[467180, 11341, 5841, 153, 376, "Code",ExpressionUUID->"6e8c9979-e983-4f48-b1b8-beb2ba431594"], +Cell[CellGroupData[{ +Cell[473046, 11498, 359, 7, 52, "Input",ExpressionUUID->"1f823ee3-17cf-4b4d-b7a5-4f64e10f47a0"], +Cell[473408, 11507, 586, 19, 37, "Output",ExpressionUUID->"592cfd98-0fb4-4f54-b8e7-ec512703bdd8"], +Cell[473997, 11528, 588, 19, 37, "Output",ExpressionUUID->"1b8a6207-1e39-41fa-93d1-20524893fe91"] +}, Open ]], +Cell[CellGroupData[{ +Cell[474622, 11552, 329, 7, 30, "Input",ExpressionUUID->"66e4ef84-d010-4316-8e2f-1775594db8e0"], +Cell[474954, 11561, 1683, 53, 37, "Output",ExpressionUUID->"55a09e0a-ec0e-4179-bfbb-07a3faea7061"] +}, Open ]], +Cell[CellGroupData[{ +Cell[476674, 11619, 470, 12, 52, "Input",ExpressionUUID->"1ae15dfb-770e-45bc-a13c-25a8223d9a18"], +Cell[477147, 11633, 232, 5, 34, "Output",ExpressionUUID->"676ec1f6-7593-4c7c-8697-d1d103ea5798"], +Cell[477382, 11640, 235, 5, 34, "Output",ExpressionUUID->"4268ad27-15a0-42a0-ad8a-c2ba8bf2830a"] +}, Open ]], +Cell[477632, 11648, 306, 7, 30, "Input",ExpressionUUID->"c1ab6d48-4f6d-474c-b146-3609ab6ac4a3"], +Cell[477941, 11657, 1631, 49, 30, "Input",ExpressionUUID->"849f5cd1-bb08-4f35-8c7a-080ee5bb35cb"], +Cell[CellGroupData[{ +Cell[479597, 11710, 339, 8, 30, "Input",ExpressionUUID->"8576f70e-b712-483e-b81f-7ba8b7817457"], +Cell[479939, 11720, 963, 33, 34, "Output",ExpressionUUID->"baf9673c-f43e-4a0a-b63d-becfd5ee2224"] +}, Open ]], +Cell[480917, 11756, 2793, 70, 115, "Input",ExpressionUUID->"d463090a-fedf-44da-bad8-9ec47f801d42"], +Cell[CellGroupData[{ +Cell[483735, 11830, 200, 4, 30, "Input",ExpressionUUID->"b04a902c-ddab-47ff-ae41-40ee8053148f"], +Cell[483938, 11836, 153, 3, 34, "Output",ExpressionUUID->"fe779acd-5a84-4f6d-b813-eaf8a86f8060"] +}, Open ]], +Cell[484106, 11842, 685, 20, 30, "Input",ExpressionUUID->"8fc0dd53-4891-4630-ba15-6aff16aeccb3"], +Cell[CellGroupData[{ +Cell[484816, 11866, 200, 4, 30, "Input",ExpressionUUID->"be3433cc-df75-47d0-bab6-8f94e852e5ac"], +Cell[485019, 11872, 179, 3, 34, "Output",ExpressionUUID->"b218650d-f272-412c-89e6-68470be9a64b"] +}, Open ]], +Cell[485213, 11878, 713, 23, 30, "Input",ExpressionUUID->"d082c7b5-5e49-4e11-b39e-3e470b191fb7"], +Cell[CellGroupData[{ +Cell[485951, 11905, 214, 4, 30, "Input",ExpressionUUID->"6d20c31b-5aee-407c-affa-f6dd4607be9b"], +Cell[486168, 11911, 1158, 38, 37, "Output",ExpressionUUID->"874305eb-d15f-4754-b4bb-a41b2d24e075"] +}, Open ]], +Cell[CellGroupData[{ +Cell[487363, 11954, 217, 4, 30, "Input",ExpressionUUID->"6c27ba34-6cef-4d38-bc0f-9c85eccddb76"], +Cell[487583, 11960, 1616, 53, 37, "Output",ExpressionUUID->"dd2d6302-3afa-4227-8973-afbced035839"] +}, Open ]], +Cell[489214, 12016, 420, 12, 30, "Input",ExpressionUUID->"ce84ec16-b710-4bea-8dfe-dd1b1b1ce42a"], +Cell[489637, 12030, 779, 24, 30, "Input",ExpressionUUID->"159eb7a6-4eec-49e0-84c9-ef2405685d24"], +Cell[CellGroupData[{ +Cell[490441, 12058, 116, 2, 30, "Input",ExpressionUUID->"474f40fc-0808-476f-a97c-012d1df8d21e"], +Cell[490560, 12062, 1556, 51, 37, "Output",ExpressionUUID->"7c479871-c9bf-4bbe-b128-ae4c2b2bd58b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[492153, 12118, 190, 4, 30, "Input",ExpressionUUID->"4a489840-1543-4d33-9049-364d146ec26a"], +Cell[492346, 12124, 1899, 59, 37, "Output",ExpressionUUID->"f81641df-e959-499e-87d8-462650723adb"] +}, Open ]], +Cell[CellGroupData[{ +Cell[494282, 12188, 2172, 61, 73, "Input",ExpressionUUID->"0f467eec-a7ba-463d-a027-3b5602c48647"], +Cell[496457, 12251, 1583, 51, 37, "Output",ExpressionUUID->"860921e1-b1a9-4915-b2d1-e4b5882653a4"] +}, Open ]], +Cell[498055, 12305, 2086, 62, 52, "Input",ExpressionUUID->"6ed5f051-7411-46b0-9fb3-f6775be5748f"], +Cell[500144, 12369, 1851, 54, 30, "Input",ExpressionUUID->"3c8e42ae-51fb-405c-a049-35cff0a054ea"], +Cell[501998, 12425, 1515, 44, 52, "Input",ExpressionUUID->"08010e25-a9cb-4239-aae2-a8b5bff5840e"], +Cell[503516, 12471, 1747, 52, 52, "Input",ExpressionUUID->"694e3683-9945-499b-bb16-cf59112f3cc3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[505300, 12528, 323, 5, 54, "Subsection",ExpressionUUID->"71c6953a-658a-45b8-8bc4-5b582d6e7a41"], +Cell[CellGroupData[{ +Cell[505648, 12537, 168, 3, 45, "Subsubsection",ExpressionUUID->"097d7736-64f4-43ed-8752-ace7248abe11"], +Cell[CellGroupData[{ +Cell[505841, 12544, 5463, 125, 201, "Input",ExpressionUUID->"bc52bc22-aa28-46c1-bec0-7bb151040250"], +Cell[511307, 12671, 2048, 36, 34, "Output",ExpressionUUID->"af354c88-a964-4897-956b-c382f322a790"], +Cell[513358, 12709, 2013, 33, 24, "Print",ExpressionUUID->"982f80a5-5816-4dbb-9383-da90f0a95ea2"], +Cell[515374, 12744, 1835, 27, 34, "Output",ExpressionUUID->"78edf1f1-3c90-49de-87e7-26a4e8cb1e0b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[517246, 12776, 390, 9, 30, "Input",ExpressionUUID->"19e35762-c809-4558-94ef-46c9f005c26d"], +Cell[517639, 12787, 179, 3, 34, "Output",ExpressionUUID->"22dea635-5fb2-40d1-81d9-e40378d9fee8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[517855, 12795, 464, 12, 52, "Input",ExpressionUUID->"d82f7aa2-a215-4330-959b-c50192e0809b"], +Cell[518322, 12809, 233, 5, 34, "Output",ExpressionUUID->"c8360ad2-5eba-476b-adc4-2dbec1c433fb"], +Cell[518558, 12816, 233, 5, 34, "Output",ExpressionUUID->"d196b586-d192-47c5-ba89-d4b22d565927"] +}, Open ]], +Cell[CellGroupData[{ +Cell[518828, 12826, 789, 16, 52, "Input",ExpressionUUID->"0247e2b9-bc3c-4c3f-bb00-8acd165592e5"], +Cell[519620, 12844, 1857, 49, 56, "Output",ExpressionUUID->"0fdba44a-65cd-45b1-ba22-f41cc3770772"] +}, Open ]], +Cell[CellGroupData[{ +Cell[521514, 12898, 468, 10, 30, "Input",ExpressionUUID->"7424ddb4-26b8-48d6-9abb-98d2bc885989"], +Cell[521985, 12910, 6780, 180, 140, "Output",ExpressionUUID->"de552109-5584-41ed-b9bf-a763376239e4"] +}, Open ]], +Cell[CellGroupData[{ +Cell[528802, 13095, 466, 12, 52, "Input",ExpressionUUID->"dfefc84c-dd88-4a77-bff2-e060f6469dd9"], +Cell[529271, 13109, 233, 5, 34, "Output",ExpressionUUID->"0f7f8d4a-fd24-4a77-a498-873ec5943458"], +Cell[529507, 13116, 233, 5, 34, "Output",ExpressionUUID->"0f3aa6e9-6148-45e8-9769-ef3e29f81d80"] +}, Open ]], +Cell[CellGroupData[{ +Cell[529777, 13126, 441, 10, 30, "Input",ExpressionUUID->"a45c7fd6-bc95-4cd2-a939-0f8b9ceee313"], +Cell[530221, 13138, 568, 14, 34, "Output",ExpressionUUID->"9df9d3c6-5328-4733-92da-a417154d24c6"] +}, Open ]], +Cell[530804, 13155, 1197, 29, 94, "Input",ExpressionUUID->"6c0757c1-66e8-4635-a6a5-ec9565cf9a09"], +Cell[CellGroupData[{ +Cell[532026, 13188, 615, 15, 52, "Input",ExpressionUUID->"e481ab34-a861-4cbf-bb67-9d5ec109ebcb"], +Cell[532644, 13205, 259, 6, 34, "Output",ExpressionUUID->"57104fae-7004-49db-9520-650de57167f0"], +Cell[532906, 13213, 258, 6, 34, "Output",ExpressionUUID->"16cdaf05-618c-4d4c-9e5e-f68281f53b92"] +}, Open ]], +Cell[CellGroupData[{ +Cell[533201, 13224, 254, 5, 30, "Input",ExpressionUUID->"395e2117-5a18-4852-9ffe-0e5905492742"], +Cell[533458, 13231, 6631, 177, 140, "Output",ExpressionUUID->"9ee3c406-b481-4f27-ada6-9b57b5e8621b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[540126, 13413, 248, 5, 30, "Input",ExpressionUUID->"d0571893-4b91-45a5-8b07-ab8ad5b83c2e"], +Cell[540377, 13420, 6607, 177, 140, "Output",ExpressionUUID->"7513720c-eab0-4f3f-bdcf-8da67b8f20f7"] +}, Open ]], +Cell[CellGroupData[{ +Cell[547021, 13602, 492, 10, 30, "Input",ExpressionUUID->"bd54c951-997e-4b8b-a899-a562208bb2a6"], +Cell[547516, 13614, 1139, 19, 54, "Output",ExpressionUUID->"05d56857-72b0-4a1b-bf65-dd62002228bc"] +}, Open ]], +Cell[CellGroupData[{ +Cell[548692, 13638, 370, 8, 30, "Input",ExpressionUUID->"ce2d7b28-ce7f-4e91-b79a-4c68043edacf"], +Cell[549065, 13648, 564, 12, 54, "Output",ExpressionUUID->"458cab5e-3d63-405a-be46-afcf502f7e2d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[549666, 13665, 300, 7, 30, "Input",ExpressionUUID->"fe94d06a-6caf-4b89-8901-b282db79c747"], +Cell[549969, 13674, 492, 12, 51, "Output",ExpressionUUID->"46e93b8f-d250-48df-993b-4df86997f306"] +}, Open ]], +Cell[CellGroupData[{ +Cell[550498, 13691, 734, 22, 30, "Input",ExpressionUUID->"7e2a08eb-a661-4dcf-a34a-bf362707e182"], +Cell[551235, 13715, 564, 14, 34, "Output",ExpressionUUID->"21b05cfc-e373-4ec3-8e53-509d03e916b2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[551836, 13734, 668, 21, 30, "Input",ExpressionUUID->"1a24ba00-5ef8-4c8a-869e-50a6b344cb96"], +Cell[552507, 13757, 565, 14, 34, "Output",ExpressionUUID->"900bf33b-c142-487e-b8b5-186cb3cac659"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[553121, 13777, 219, 4, 37, "Subsubsection",ExpressionUUID->"e43554bf-b26c-4e7d-84a9-a8c2f159e955"], +Cell[CellGroupData[{ +Cell[553365, 13785, 5676, 130, 201, "Input",ExpressionUUID->"05f31ab9-16b7-42ba-8606-57d7209b7e4b"], +Cell[559044, 13917, 2120, 37, 34, "Output",ExpressionUUID->"6bcdbbd6-205b-41a0-abb8-bfebcc453f6e"], +Cell[561167, 13956, 2085, 34, 24, "Print",ExpressionUUID->"fb201946-a8e9-427e-9482-44a7f5630cad"], +Cell[563255, 13992, 2402, 46, 62, "Output",ExpressionUUID->"1cb63972-9da5-467a-be1c-f293792f02b9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[565694, 14043, 207, 4, 30, "Input",ExpressionUUID->"60ca60ec-dc2b-48a3-822e-788e1a1bcdbf"], +Cell[565904, 14049, 1253, 42, 124, "Output",ExpressionUUID->"2a563e88-ab31-4cda-a4bb-a5667eef19c2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[567194, 14096, 390, 9, 30, "Input",ExpressionUUID->"d42c09f2-57c0-48c6-a89e-d2d7088b7ca2"], +Cell[567587, 14107, 227, 4, 34, "Output",ExpressionUUID->"62c89b2b-5cfe-4b79-a612-19aba2e14786"] +}, Open ]], +Cell[CellGroupData[{ +Cell[567851, 14116, 464, 12, 52, "Input",ExpressionUUID->"9d0b6749-f7cb-4712-97aa-9a7964afd790"], +Cell[568318, 14130, 259, 6, 34, "Output",ExpressionUUID->"bbbf5731-5bb2-472e-b683-1bd44dbe5a68"], +Cell[568580, 14138, 259, 6, 34, "Output",ExpressionUUID->"70123f00-074a-4a33-882a-e5225ed9630b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[568876, 14149, 789, 16, 52, "Input",ExpressionUUID->"b9948f6c-d174-4fcd-9cc2-27d140571218"], +Cell[569668, 14167, 1929, 50, 56, "Output",ExpressionUUID->"8fedad54-aa59-4b75-8fff-aba28ba3ad11"] +}, Open ]], +Cell[CellGroupData[{ +Cell[571634, 14222, 495, 11, 30, "Input",ExpressionUUID->"ce880f5c-5bc7-4de0-bc57-e55a681ed2b5"], +Cell[572132, 14235, 6852, 181, 140, "Output",ExpressionUUID->"3f1eab61-11b8-43a2-9901-09f55a9a3825"] +}, Open ]], +Cell[CellGroupData[{ +Cell[579021, 14421, 466, 12, 52, "Input",ExpressionUUID->"155c5e2a-4ee8-41a4-8c55-0c5b3dd543a2"], +Cell[579490, 14435, 283, 6, 34, "Output",ExpressionUUID->"906266aa-9963-4682-a137-95757886d7df"], +Cell[579776, 14443, 283, 6, 34, "Output",ExpressionUUID->"24357483-228c-4dcb-a267-fa3d41edd8b4"] +}, Open ]], +Cell[CellGroupData[{ +Cell[580096, 14454, 441, 10, 30, "Input",ExpressionUUID->"b6f96e58-3949-482e-84fd-1406f9da91b8"], +Cell[580540, 14466, 616, 15, 34, "Output",ExpressionUUID->"78d4a0b0-efd4-4070-9e13-296a508f708d"] +}, Open ]], +Cell[581171, 14484, 1197, 29, 94, "Input",ExpressionUUID->"acb00660-e03b-405c-bcc1-dc000f54f0d8"], +Cell[CellGroupData[{ +Cell[582393, 14517, 615, 15, 52, "Input",ExpressionUUID->"702c3ae5-2d9a-437d-a6d2-8bb23b963b34"], +Cell[583011, 14534, 259, 6, 34, "Output",ExpressionUUID->"d77a9816-083c-4751-82d2-aacbd1332800"], +Cell[583273, 14542, 258, 6, 34, "Output",ExpressionUUID->"d4e2054a-93fa-4197-be67-6436756cc179"] +}, Open ]], +Cell[CellGroupData[{ +Cell[583568, 14553, 254, 5, 30, "Input",ExpressionUUID->"7bfc886e-2ded-48d0-9cf1-1960fe714b53"], +Cell[583825, 14560, 6631, 177, 140, "Output",ExpressionUUID->"7245960e-40c8-4dfe-b52d-8cfc5149a6f5"] +}, Open ]], +Cell[CellGroupData[{ +Cell[590493, 14742, 248, 5, 30, "Input",ExpressionUUID->"4d22f561-5068-4098-9b65-ab6a871e80c7"], +Cell[590744, 14749, 6607, 177, 140, "Output",ExpressionUUID->"748d820a-cc37-4410-9235-7476da197f5c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[597388, 14931, 492, 10, 30, "Input",ExpressionUUID->"76354c0f-e9fd-4d62-b862-7c3015f4ea76"], +Cell[597883, 14943, 1139, 19, 54, "Output",ExpressionUUID->"72af99db-9d7f-4c7e-9223-640402a66ad3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[599059, 14967, 370, 8, 30, "Input",ExpressionUUID->"c6cb8015-adfa-4648-b1fb-3af96ad9bfc4"], +Cell[599432, 14977, 564, 12, 54, "Output",ExpressionUUID->"2ed220c1-5a7c-4ecc-b217-dcdf9fc6e227"] +}, Open ]], +Cell[CellGroupData[{ +Cell[600033, 14994, 300, 7, 30, "Input",ExpressionUUID->"8e109ca0-d330-4c1b-8d1b-26b236673b3d"], +Cell[600336, 15003, 492, 12, 51, "Output",ExpressionUUID->"18b7b647-8cb8-4583-8a0f-05b8da674072"] +}, Open ]], +Cell[CellGroupData[{ +Cell[600865, 15020, 734, 22, 30, "Input",ExpressionUUID->"e21cf04c-f8ba-4443-8a5c-3f154e6eea0c"], +Cell[601602, 15044, 564, 14, 34, "Output",ExpressionUUID->"06a9eb3c-e44b-4ce9-90d3-5e08bea49b82"] +}, Open ]], +Cell[CellGroupData[{ +Cell[602203, 15063, 668, 21, 30, "Input",ExpressionUUID->"441b528d-5cee-4b6f-9d76-444744e866e9"], +Cell[602874, 15086, 565, 14, 34, "Output",ExpressionUUID->"039bfaa9-ca81-4a36-8988-33e37b3cd0ae"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[603488, 15106, 253, 4, 37, "Subsubsection",ExpressionUUID->"ba23e976-fa7b-4a9a-8934-647fa435594b"], +Cell[CellGroupData[{ +Cell[603766, 15114, 6604, 150, 224, "Input",ExpressionUUID->"4fd67d43-ee38-4901-9a4a-d89956cf95eb"], +Cell[610373, 15266, 1801, 31, 34, "Output",ExpressionUUID->"06b60870-7a8e-4da4-91bd-b8d925454c51"], +Cell[612177, 15299, 1767, 29, 24, "Print",ExpressionUUID->"ddace223-cda9-404e-87bd-78a292e5f7c6"], +Cell[613947, 15330, 2302, 46, 75, "Output",ExpressionUUID->"4aaf02bd-af65-4afe-8482-f92a29749b06"] +}, Open ]], +Cell[616264, 15379, 644, 16, 52, "Input",ExpressionUUID->"b22c3b79-fdca-424f-b1a2-f13bdd670dba"], +Cell[CellGroupData[{ +Cell[616933, 15399, 566, 11, 30, "Input",ExpressionUUID->"48448da8-b735-429f-bbf9-a9e6c33bd84b"], +Cell[617502, 15412, 30477, 789, 725, "Output",ExpressionUUID->"25056618-0553-4369-a989-9da1e9ea57a7"] +}, Closed]], +Cell[CellGroupData[{ +Cell[648016, 16206, 329, 7, 26, "Input",ExpressionUUID->"58eeb28d-a0f3-4b57-885e-098ab3e4faa1"], +Cell[648348, 16215, 372, 10, 57, "Output",ExpressionUUID->"ae9944c0-3f20-4f92-926d-30a583cf8c6b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[648757, 16230, 366, 7, 30, "Input",ExpressionUUID->"7daeea03-a07b-45c9-9062-b3e37fae4891"], +Cell[649126, 16239, 512, 10, 54, "Output",ExpressionUUID->"e2db03df-5f12-47b8-96a1-904adb17c403"] +}, Open ]], +Cell[CellGroupData[{ +Cell[649675, 16254, 296, 6, 30, "Input",ExpressionUUID->"afb7792d-d623-4673-b2dd-c45d5fa70422"], +Cell[649974, 16262, 444, 11, 51, "Output",ExpressionUUID->"330b5f86-6e71-47cf-b7c3-9cf31ea6e42a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[650455, 16278, 730, 21, 30, "Input",ExpressionUUID->"6441def8-220d-43ea-9c40-e63413506748"], +Cell[651188, 16301, 539, 13, 34, "Output",ExpressionUUID->"449cd564-b1d3-4e12-a661-fcf7df5397e0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[651764, 16319, 664, 20, 30, "Input",ExpressionUUID->"2833197a-c0cb-48dd-849e-eeb44afc0931"], +Cell[652431, 16341, 537, 13, 34, "Output",ExpressionUUID->"88c98d26-2d4e-464f-96ef-c782868f3050"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[653017, 16360, 234, 4, 37, "Subsubsection",ExpressionUUID->"03f50970-3fdc-4e1d-8009-e192edb7e192"], +Cell[CellGroupData[{ +Cell[653276, 16368, 6146, 139, 201, "Input",ExpressionUUID->"d11b3047-6f7e-4abc-a919-968f38d3f32a"], +Cell[659425, 16509, 1831, 33, 34, "Output",ExpressionUUID->"5384b931-7bdb-4128-9307-5dade5d5452b"], +Cell[661259, 16544, 1792, 30, 24, "Print",ExpressionUUID->"293cc5c7-2855-4953-b62d-d5b5549b6c77"], +Cell[663054, 16576, 2419, 49, 62, "Output",ExpressionUUID->"db3d01d8-9a29-4fc3-9b13-ed4fc58ec1e4"] +}, Open ]], +Cell[665488, 16628, 644, 16, 52, "Input",ExpressionUUID->"e6d8f1b9-633d-4725-96c7-7f6b00e17104"], +Cell[CellGroupData[{ +Cell[666157, 16648, 566, 11, 30, "Input",ExpressionUUID->"2cc06b90-b0c8-40f6-971e-060563b26645"], +Cell[666726, 16661, 2239, 51, 63, "Output",ExpressionUUID->"a041fc60-67d4-47f5-9ac7-6f1c4d2c2eeb"] +}, Open ]], +Cell[CellGroupData[{ +Cell[669002, 16717, 503, 12, 30, "Input",ExpressionUUID->"76ed1715-da47-4c79-b5fb-3f9700c84fd3"], +Cell[669508, 16731, 2592, 78, 57, "Output",ExpressionUUID->"53b1f956-56b9-4346-80fa-c8b426515863"] +}, Open ]], +Cell[CellGroupData[{ +Cell[672137, 16814, 366, 7, 30, "Input",ExpressionUUID->"226fd772-cc38-4fb3-9167-e835546f18b7"], +Cell[672506, 16823, 512, 10, 54, "Output",ExpressionUUID->"17abe11d-e21d-4685-b4b8-d912eff82eff"] +}, Open ]], +Cell[CellGroupData[{ +Cell[673055, 16838, 296, 6, 30, "Input",ExpressionUUID->"b98129e6-803c-4951-9a34-7f14dd9f5dd2"], +Cell[673354, 16846, 444, 11, 51, "Output",ExpressionUUID->"d5801126-a3ac-40b7-b07e-7cd16b98f233"] +}, Open ]], +Cell[CellGroupData[{ +Cell[673835, 16862, 730, 21, 30, "Input",ExpressionUUID->"b7acc017-0cdc-402f-bee7-cd9056bce9df"], +Cell[674568, 16885, 539, 13, 34, "Output",ExpressionUUID->"ae79aff6-809d-45f9-b998-254115d39c48"] +}, Open ]], +Cell[CellGroupData[{ +Cell[675144, 16903, 664, 20, 30, "Input",ExpressionUUID->"2007b6b3-a1ab-4f00-a7ff-30433be708ea"], +Cell[675811, 16925, 537, 13, 34, "Output",ExpressionUUID->"32669049-5f44-4c4f-a698-e1f2009716a6"] +}, Open ]] +}, Closed]] +}, Open ]], +Cell[CellGroupData[{ +Cell[676409, 16945, 382, 6, 54, "Subsection",ExpressionUUID->"23d96f1e-2347-48e0-ac75-17359a135bfb"], +Cell[CellGroupData[{ +Cell[676816, 16955, 5912, 135, 201, "Input",ExpressionUUID->"d2cef66a-d619-4c5d-afe3-b60c65ba9c77"], +Cell[682731, 17092, 1694, 31, 34, "Output",ExpressionUUID->"31b0d5eb-afa5-4752-9d08-34165787a314"], +Cell[684428, 17125, 370, 9, 24, "Print",ExpressionUUID->"c3c48d41-56fc-4ba9-8dbd-a8d83ef1ff13"] +}, Open ]], +Cell[CellGroupData[{ +Cell[684835, 17139, 789, 16, 52, "Input",ExpressionUUID->"8731592f-b5b6-44d9-bfe3-fed3eab238bc"], +Cell[685627, 17157, 1665, 46, 56, "Output",ExpressionUUID->"f137ad53-add1-4a67-97d5-498ae2c0972b"] +}, Open ]], +Cell[687307, 17206, 477, 12, 52, "Input",ExpressionUUID->"ec9f40c8-c6cc-4367-bd37-3c6a19fe8a01"], +Cell[CellGroupData[{ +Cell[687809, 17222, 300, 7, 30, "Input",ExpressionUUID->"33b7c433-9fd2-4efd-855d-75a56448e4c8"], +Cell[688112, 17231, 446, 13, 57, "Output",ExpressionUUID->"f136e73c-92b0-44be-b4dc-ebfa5a37a5d3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[688595, 17249, 332, 7, 30, "Input",ExpressionUUID->"3e4927ab-ec94-4d10-bc92-ba926930e2e3"], +Cell[688930, 17258, 444, 10, 54, "Output",ExpressionUUID->"ae021c1b-256c-4638-b76b-945563bee8c4"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[689423, 17274, 253, 4, 54, "Subsection",ExpressionUUID->"9860c941-3dd8-458e-8cd5-866698d2b422"], +Cell[689679, 17280, 1671, 51, 52, "Input",ExpressionUUID->"d69d8708-895a-463b-a52e-ab1008cb4d55"], +Cell[CellGroupData[{ +Cell[691375, 17335, 322, 8, 30, "Input",ExpressionUUID->"a51b6570-caec-4c7e-9875-fd7276af2b2c"], +Cell[691700, 17345, 2916, 88, 55, "Output",ExpressionUUID->"6912a6f5-90db-4a13-b550-13e668a27885"] +}, Open ]], +Cell[CellGroupData[{ +Cell[694653, 17438, 4956, 135, 105, "Input",ExpressionUUID->"5aab6c9f-8c4b-44ce-b705-7c0c78e08037"], +Cell[699612, 17575, 4527, 131, 152, "Output",ExpressionUUID->"a5709ecc-77b5-4bf2-ad7f-a1afe814f0fe"] +}, Open ]], +Cell[704154, 17709, 235, 7, 30, "Input",ExpressionUUID->"4fd267d1-5cbf-4aee-b206-af288e917bfe"], +Cell[CellGroupData[{ +Cell[704414, 17720, 474, 12, 52, "Input",ExpressionUUID->"6a5cc6fd-f069-4911-88a2-66b9af0b0afb"], +Cell[704891, 17734, 235, 5, 34, "Output",ExpressionUUID->"cff29f79-f15c-45d3-aec8-0f8bbd95d147"], +Cell[705129, 17741, 235, 5, 34, "Output",ExpressionUUID->"ae24194c-ad93-424d-b0fe-65580e988f72"] +}, Open ]], +Cell[CellGroupData[{ +Cell[705401, 17751, 789, 16, 52, "Input",ExpressionUUID->"243dfb6f-6e59-4855-bb6d-375157d4152d"], +Cell[706193, 17769, 1688, 46, 56, "Output",ExpressionUUID->"dc14c283-12a1-4b2b-a3dc-649052c42761"] +}, Open ]], +Cell[CellGroupData[{ +Cell[707918, 17820, 717, 17, 52, "Input",ExpressionUUID->"fbaa16fd-4a60-4777-a3ab-f84eb76293c2"], +Cell[708638, 17839, 159, 3, 34, "Output",ExpressionUUID->"3e97689d-8f31-4cce-a68b-a29dcdb030fb"], +Cell[708800, 17844, 160, 3, 34, "Output",ExpressionUUID->"931999ab-6f6e-445f-a968-f98014029ece"] +}, Open ]], +Cell[CellGroupData[{ +Cell[708997, 17852, 248, 5, 30, "Input",ExpressionUUID->"26da8fab-e2c3-4890-91d7-9c9f57dc0390"], +Cell[709248, 17859, 247, 3, 34, "Output",ExpressionUUID->"615edd47-5ceb-474d-b69a-2e70d0441052"] +}, Open ]], +Cell[CellGroupData[{ +Cell[709532, 17867, 589, 10, 30, "Input",ExpressionUUID->"35d0828d-4b9e-4a1e-8d71-fa7dff788056"], +Cell[CellGroupData[{ +Cell[710146, 17881, 239, 4, 24, "Print",ExpressionUUID->"d8f54305-3662-4247-be38-c8719ddd7c56"], +Cell[710388, 17887, 257, 5, 24, "Print",ExpressionUUID->"965964d7-426f-48ba-92d7-111e1a0d07b2"], +Cell[710648, 17894, 224, 4, 24, "Print",ExpressionUUID->"28867a86-29aa-4065-9511-a0af4b2d2660"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[710921, 17904, 619, 11, 30, "Input",ExpressionUUID->"f9fe2db0-bdc3-4aba-8a4c-f37e087a9292"], +Cell[711543, 17917, 881, 12, 34, "Output",ExpressionUUID->"e8a0293d-8c2a-459a-9e25-ffd166fce5dc"] +}, Open ]], +Cell[CellGroupData[{ +Cell[712461, 17934, 234, 4, 30, "Input",ExpressionUUID->"1e850c86-38bd-43b2-838f-f3374bbb6fa4"], +Cell[712698, 17940, 436, 9, 54, "Output",ExpressionUUID->"63c78ea1-7757-43e2-975b-47e81cb59d9d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[713171, 17954, 296, 6, 30, "Input",ExpressionUUID->"432a9f98-c627-430d-8370-d4a6875a63d3"], +Cell[713470, 17962, 392, 10, 51, "Output",ExpressionUUID->"ef87f464-4747-4ab7-92ce-bbb5b5a2a10e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[713899, 17977, 730, 21, 30, "Input",ExpressionUUID->"1996a515-cc6d-4b72-9e33-0d9b031834b5"], +Cell[714632, 18000, 490, 12, 34, "Output",ExpressionUUID->"01bfe3c6-17c2-4891-9953-95ad2e6c8d81"] +}, Open ]], +Cell[CellGroupData[{ +Cell[715159, 18017, 664, 20, 30, "Input",ExpressionUUID->"049075b7-2afd-46f7-a37c-c62a0a31b7ba"], +Cell[715826, 18039, 490, 12, 34, "Output",ExpressionUUID->"da553f4d-254f-42a1-8ad7-15a73bef7508"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[716365, 18057, 285, 5, 38, "Subsection",ExpressionUUID->"e38b947a-e4be-4219-a8c6-1c279e3e9c47"], +Cell[716653, 18064, 1667, 50, 52, "Input",ExpressionUUID->"fb0e3c60-3e70-40a5-acf4-a0e851ce43fd"], +Cell[CellGroupData[{ +Cell[718345, 18118, 318, 7, 30, "Input",ExpressionUUID->"575a6066-901a-4866-9b00-4fa5473ebba6"], +Cell[718666, 18127, 2890, 87, 55, "Output",ExpressionUUID->"5f983282-c8ea-457b-bc60-d740b4988cbd"] +}, Open ]], +Cell[CellGroupData[{ +Cell[721593, 18219, 4951, 134, 105, "Input",ExpressionUUID->"4c33ffd5-f6b0-4497-b400-c8e5e1b62739"], +Cell[726547, 18355, 4501, 130, 152, "Output",ExpressionUUID->"7ea62d4d-0fc2-4d10-a336-7ff7b4a4b9f0"] +}, Open ]], +Cell[731063, 18488, 230, 6, 30, "Input",ExpressionUUID->"e6028eaf-23d1-41b8-abdd-1abc254fc143"], +Cell[731296, 18496, 713, 16, 52, "Input",ExpressionUUID->"23a26c80-bfbf-4089-9d4d-33140fe48106"], +Cell[CellGroupData[{ +Cell[732034, 18516, 248, 5, 30, "Input",ExpressionUUID->"4dceb517-6bce-40ff-aa26-4e3426c8da01"], +Cell[732285, 18523, 247, 3, 34, "Output",ExpressionUUID->"1f7cd247-6a62-458d-a57d-9e8570b68cfc"] +}, Open ]], +Cell[CellGroupData[{ +Cell[732569, 18531, 589, 10, 30, "Input",ExpressionUUID->"5a887488-5839-40a1-a8e1-7230d76b79a9"], +Cell[CellGroupData[{ +Cell[733183, 18545, 239, 4, 24, "Print",ExpressionUUID->"a28b2dba-a370-405c-946d-e2bb55b8f1ce"], +Cell[733425, 18551, 257, 5, 24, "Print",ExpressionUUID->"f603151b-9290-4a65-b77f-6b26affa6fb6"], +Cell[733685, 18558, 224, 4, 24, "Print",ExpressionUUID->"57ce7877-e5a3-4942-b0dd-60d1740451a9"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[733958, 18568, 619, 11, 30, "Input",ExpressionUUID->"41243e4b-ac71-4795-aff8-c357a7b55494"], +Cell[734580, 18581, 881, 12, 34, "Output",ExpressionUUID->"5836a063-8c6a-4bba-8c14-cfd203be6028"] +}, Open ]], +Cell[CellGroupData[{ +Cell[735498, 18598, 234, 4, 30, "Input",ExpressionUUID->"4fbdefa8-3e4c-4818-947e-14fb109719c0"], +Cell[735735, 18604, 436, 9, 54, "Output",ExpressionUUID->"5cf9db23-b743-42de-9154-39e38ae559de"] +}, Open ]], +Cell[CellGroupData[{ +Cell[736208, 18618, 296, 6, 30, "Input",ExpressionUUID->"7ea7d09e-9d74-4dfa-b2fd-202e95075acb"], +Cell[736507, 18626, 392, 10, 51, "Output",ExpressionUUID->"98a41eb2-8f9b-4ea3-b902-d8f8769c47b5"] +}, Open ]], +Cell[CellGroupData[{ +Cell[736936, 18641, 730, 21, 30, "Input",ExpressionUUID->"fd9cd8c2-6fc2-4f6a-aa89-3c53a4ec383d"], +Cell[737669, 18664, 490, 12, 34, "Output",ExpressionUUID->"8f500451-34f6-4665-9b1a-7f1a5c613492"] +}, Open ]], +Cell[CellGroupData[{ +Cell[738196, 18681, 664, 20, 30, "Input",ExpressionUUID->"fa78bb4f-d19c-40e4-a6da-4b1d35332d22"], +Cell[738863, 18703, 490, 12, 34, "Output",ExpressionUUID->"6df9b3ba-f86a-480f-9733-f128accb9c94"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[739402, 18721, 556, 11, 38, "Subsection",ExpressionUUID->"69a1a86d-9563-4e01-8399-43141a852dfd"], +Cell[CellGroupData[{ +Cell[739983, 18736, 5482, 119, 266, "Input",ExpressionUUID->"7bb4e17f-7da1-45e5-a65e-43cb6c470b11"], +Cell[745468, 18857, 486, 13, 34, "Output",ExpressionUUID->"60d93ef9-2e9b-41c1-8b02-65313e50d459"], +Cell[745957, 18872, 1104, 33, 102, "Output",ExpressionUUID->"35054b6b-1a38-4bfa-ae99-b1360f1ee8ea"], +Cell[747064, 18907, 462, 11, 24, "Print",ExpressionUUID->"2dd9ae60-0ee1-4891-9af6-b446a14ca7b9"], +Cell[747529, 18920, 1596, 47, 56, "Output",ExpressionUUID->"bb6fe149-65c8-476f-a45f-e92af75a1233"], +Cell[749128, 18969, 8251, 252, 268, "Output",ExpressionUUID->"67f9afd3-d862-4562-842b-8d69e47292b5"] +}, Open ]], +Cell[CellGroupData[{ +Cell[757416, 19226, 337, 7, 30, "Input",ExpressionUUID->"716d0ea0-f1fe-4dd3-b873-39b7a17ae99d"], +Cell[CellGroupData[{ +Cell[757778, 19237, 1026, 15, 25, "Print",ExpressionUUID->"355734d5-2d5c-4e52-bbff-bfba2968b26f"], +Cell[758807, 19254, 846, 13, 25, "Print",ExpressionUUID->"f0e1a213-7a74-49c0-a58e-90ac592024fd"], +Cell[759656, 19269, 949, 14, 25, "Print",ExpressionUUID->"23d585fe-e7f4-4838-8294-f9f23a3d6d75"], +Cell[760608, 19285, 1024, 15, 25, "Print",ExpressionUUID->"00d29387-35f9-4260-8d01-e3683f9b18d5"], +Cell[761635, 19302, 1549, 23, 40, "Print",ExpressionUUID->"65a7ab39-172a-47cf-adf3-7220d0897879"], +Cell[763187, 19327, 680, 11, 40, "Print",ExpressionUUID->"cf954f3f-0745-4742-b078-a8793cc011a7"], +Cell[763870, 19340, 680, 11, 40, "Print",ExpressionUUID->"2969f55c-68c2-4523-8163-4fa0316767af"], +Cell[764553, 19353, 817, 13, 24, "Print",ExpressionUUID->"543875d6-51c6-41c7-a886-d0bfe7b3b116"], +Cell[765373, 19368, 680, 11, 40, "Print",ExpressionUUID->"0b41c2e8-b0df-434a-879b-e5048d543f6c"], +Cell[766056, 19381, 707, 11, 24, "Print",ExpressionUUID->"509fe20b-139e-4f6e-95ed-60da15667abe"], +Cell[766766, 19394, 679, 11, 40, "Print",ExpressionUUID->"33d567db-5afe-4f4d-810a-265f9b4ff5f3"], +Cell[767448, 19407, 710, 11, 24, "Print",ExpressionUUID->"7e6bc82f-0b56-4038-876c-23d8d6f7d2df"], +Cell[768161, 19420, 664, 10, 24, "Print",ExpressionUUID->"9bc93af2-aa80-4dd4-a877-8832fd2ca8c8"], +Cell[768828, 19432, 769, 12, 25, "Print",ExpressionUUID->"691d10f8-4600-42a8-9628-b014e418628d"], +Cell[769600, 19446, 1047, 15, 25, "Print",ExpressionUUID->"15c2b1d6-e5ba-434c-965a-d00c5174fc3f"] +}, Open ]], +Cell[770662, 19464, 1637, 41, 56, "Output",ExpressionUUID->"e3566e6c-5a8d-4e41-8ccb-3ee534771c77"] +}, Open ]], +Cell[772314, 19508, 1218, 34, 73, "Input",ExpressionUUID->"eb87366f-6836-4da7-8c10-b55d8efd9e07"], +Cell[CellGroupData[{ +Cell[773557, 19546, 352, 7, 30, "Input",ExpressionUUID->"8c390a46-a63e-4954-8bfa-b571b071177a"], +Cell[773912, 19555, 636, 17, 34, "Output",ExpressionUUID->"9bfe28d3-d4b3-4ddb-8111-d16873d005c5"] +}, Open ]], +Cell[CellGroupData[{ +Cell[774585, 19577, 280, 6, 30, "Input",ExpressionUUID->"8d44daae-0a87-4036-9e7c-412e754ec5d7"], +Cell[774868, 19585, 449, 14, 34, "Output",ExpressionUUID->"bbf552db-c687-401f-8da3-813d35f4f71a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[775354, 19604, 280, 6, 30, "Input",ExpressionUUID->"f1c0e670-cc12-4109-9a8e-5149a13ebb9c"], +Cell[775637, 19612, 492, 15, 34, "Output",ExpressionUUID->"ccd9763e-2fe4-4dde-835f-384dd7a14cb2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[776166, 19632, 496, 10, 30, "Input",ExpressionUUID->"21d973d3-44d6-4ffc-9451-5c149c8d53b7"], +Cell[CellGroupData[{ +Cell[776687, 19646, 828, 13, 25, "Print",ExpressionUUID->"fc396e04-ee82-4a2a-9da7-6f2b7e13107c"], +Cell[777518, 19661, 805, 12, 25, "Print",ExpressionUUID->"d24f1371-edbe-4637-92fd-79d797f21469"], +Cell[778326, 19675, 931, 14, 25, "Print",ExpressionUUID->"3d8c7230-9ce3-4491-b36e-1eba32e67223"], +Cell[779260, 19691, 910, 14, 25, "Print",ExpressionUUID->"d3c5de00-c3be-4887-b179-0bc5b56f0625"], +Cell[780173, 19707, 1108, 17, 25, "Print",ExpressionUUID->"b7758648-3268-441b-9b5e-4d914e0e9345"], +Cell[781284, 19726, 1131, 18, 25, "Print",ExpressionUUID->"507faacd-8c9b-4a56-9add-a1360ca311bb"], +Cell[782418, 19746, 805, 12, 25, "Print",ExpressionUUID->"ad063293-4dac-4b04-a7d8-e7582a886de8"], +Cell[783226, 19760, 828, 13, 25, "Print",ExpressionUUID->"f9498f55-f72e-4410-a3bc-fb448691e61b"], +Cell[784057, 19775, 871, 14, 27, "Print",ExpressionUUID->"648adab7-0358-40fd-b77c-e9a445de2f79"], +Cell[784931, 19791, 892, 14, 27, "Print",ExpressionUUID->"aa12dd40-395d-4c3a-b305-f1f7cebd785e"], +Cell[785826, 19807, 830, 13, 25, "Print",ExpressionUUID->"b2bdd99a-9524-44d1-9098-8dd5a1c57662"], +Cell[786659, 19822, 805, 12, 25, "Print",ExpressionUUID->"67f15249-7b40-45fa-b579-46500d033ce0"], +Cell[787467, 19836, 1326, 20, 40, "Print",ExpressionUUID->"e52d9096-ac8b-4619-a941-e4a0c40068a5"], +Cell[788796, 19858, 1351, 20, 40, "Print",ExpressionUUID->"6be145f6-9449-4690-ab38-5cc38da2e3c1"], +Cell[790150, 19880, 910, 14, 25, "Print",ExpressionUUID->"5d56e729-e6b0-4faa-86a7-986b3a2a65e3"], +Cell[791063, 19896, 931, 14, 25, "Print",ExpressionUUID->"d9509c79-1516-49f7-9fd6-9fb59bbedc0d"], +Cell[791997, 19912, 976, 15, 27, "Print",ExpressionUUID->"1dfa5664-2ad4-4e7c-9bde-14851f85ec07"], +Cell[792976, 19929, 996, 16, 27, "Print",ExpressionUUID->"787c08f3-9db0-4470-abe3-447dadca2081"], +Cell[793975, 19947, 933, 14, 25, "Print",ExpressionUUID->"383bb048-db94-49a4-8055-3dcaef0b51bb"], +Cell[794911, 19963, 910, 14, 25, "Print",ExpressionUUID->"02947826-837d-4c1d-b005-b41b6aefdf81"], +Cell[795824, 19979, 1431, 21, 40, "Print",ExpressionUUID->"55e0756e-8403-4fe3-adfc-7a4af4585552"], +Cell[797258, 20002, 1456, 22, 40, "Print",ExpressionUUID->"eb60c6a2-82ec-42d0-b332-6a170aab0eec"], +Cell[798717, 20026, 1133, 18, 25, "Print",ExpressionUUID->"ff2f94db-4b72-46a4-afe5-981ef027e1bf"], +Cell[799853, 20046, 1108, 17, 25, "Print",ExpressionUUID->"cdcde152-6b6c-4b91-acbe-b5d2d4099614"], +Cell[800964, 20065, 805, 12, 25, "Print",ExpressionUUID->"0958d403-6658-455b-bb2b-ab9f15dc0254"], +Cell[801772, 20079, 828, 13, 25, "Print",ExpressionUUID->"8e17d985-1dfe-4085-ba1b-2ec4cbcccef4"], +Cell[802603, 20094, 2218, 32, 59, "Print",ExpressionUUID->"50efadd7-0d6e-4936-8789-b387a059078f"], +Cell[804824, 20128, 2197, 31, 59, "Print",ExpressionUUID->"825a0ddb-fa69-443c-b0ca-16c961331a07"], +Cell[807024, 20161, 910, 14, 25, "Print",ExpressionUUID->"f3d9ba45-64e7-473c-82ce-51c40d0422d9"], +Cell[807937, 20177, 931, 14, 25, "Print",ExpressionUUID->"5dbe509b-baec-40c2-a9df-816ae3cdf713"], +Cell[808871, 20193, 2531, 37, 83, "Print",ExpressionUUID->"b400a75d-eed1-4877-939a-0b9d2c72876d"], +Cell[811405, 20232, 2508, 36, 83, "Print",ExpressionUUID->"f54b4c2e-8ffa-42f7-bd97-72c906a39ae5"], +Cell[813916, 20270, 4647, 67, 105, "Print",ExpressionUUID->"53e2d912-725e-4e11-bab9-f65c10c743c1"], +Cell[818566, 20339, 4626, 67, 105, "Print",ExpressionUUID->"7a55c919-4a92-4379-bd5b-4df13487ec33"], +Cell[823195, 20408, 4232, 62, 119, "Print",ExpressionUUID->"c1cc086f-364b-42cf-9598-332bcb718246"] +}, Open ]], +Cell[827442, 20473, 3071, 77, 140, "Output",ExpressionUUID->"323cfdeb-cdf7-492d-99a4-6b43b7f97b9d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[830550, 20555, 280, 6, 30, "Input",ExpressionUUID->"2ea6af3c-3620-4faa-8a92-b5fe607cd5c2"], +Cell[830833, 20563, 733, 25, 34, "Output",ExpressionUUID->"f7521aeb-7da2-4091-a451-48e59446336d"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[831615, 20594, 365, 6, 38, "Subsection",ExpressionUUID->"d009f1f3-e0f6-4ea9-a195-0763b8bc42ba"], +Cell[831983, 20602, 3285, 100, 50, "Input",ExpressionUUID->"0f6aa630-4d48-4b3c-8921-94be2420c27e"], +Cell[CellGroupData[{ +Cell[835293, 20706, 209, 4, 30, "Input",ExpressionUUID->"0d4d3d7e-d17d-42f3-9e3b-4adf73923439"], +Cell[835505, 20712, 2910, 86, 144, "Output",ExpressionUUID->"1b016fcd-b09d-4672-a24b-9a80643b712c"] +}, Open ]], +Cell[838430, 20801, 352, 8, 30, "Input",ExpressionUUID->"058381d3-f6a7-4cc9-8bb3-a65c6b30b2c9"], +Cell[CellGroupData[{ +Cell[838807, 20813, 336, 8, 30, "Input",ExpressionUUID->"440ced52-f137-4584-8d5f-fd34c8cc50de"], +Cell[839146, 20823, 1784, 48, 56, "Output",ExpressionUUID->"4e996734-9e06-495f-9a59-0acf7953b305"] +}, Open ]], +Cell[CellGroupData[{ +Cell[840967, 20876, 684, 17, 52, "Input",ExpressionUUID->"866a0f19-f95e-4fc0-ac2e-fe2565e4f8a8"], +Cell[841654, 20895, 449, 8, 34, "Output",ExpressionUUID->"a33e91d8-28d5-4ce2-b33a-b69afe19e8c2"], +Cell[842106, 20905, 450, 8, 34, "Output",ExpressionUUID->"8f333b1f-352f-4e51-ab85-358929ff84c9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[842593, 20918, 219, 4, 30, "Input",ExpressionUUID->"43f92161-42c6-411b-9fc8-0f7b16742d8e"], +Cell[842815, 20924, 753, 16, 34, "Output",ExpressionUUID->"18935c58-2005-4eba-a257-c8468d2d200b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[843605, 20945, 1651, 43, 73, "Input",ExpressionUUID->"86cd3787-f42d-4a3d-bea8-11f0c0a514fd"], +Cell[845259, 20990, 6800, 180, 140, "Output",ExpressionUUID->"2a21cc18-b849-4e3f-8490-adb1ec5ed4a7"] +}, Open ]], +Cell[CellGroupData[{ +Cell[852096, 21175, 254, 5, 30, "Input",ExpressionUUID->"384fae2e-1e8a-4f05-862b-743770fb9f61"], +Cell[852353, 21182, 6798, 180, 140, "Output",ExpressionUUID->"119aa2a6-3adf-4824-ad6f-8f65f27414af"] +}, Open ]], +Cell[CellGroupData[{ +Cell[859188, 21367, 731, 18, 52, "Input",ExpressionUUID->"8f5618a8-8837-4497-b015-946ac19d7712"], +Cell[859922, 21387, 357, 7, 34, "Output",ExpressionUUID->"98853bb7-9f64-42b8-98aa-77d9470516f8"], +Cell[860282, 21396, 357, 7, 34, "Output",ExpressionUUID->"7c994407-948f-4b88-ab0c-cff6a385d6a2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[860676, 21408, 380, 8, 30, "Input",ExpressionUUID->"ce724af1-72cc-4960-991c-ea9dd6cc2a5b"], +Cell[861059, 21418, 516, 13, 34, "Output",ExpressionUUID->"0f86ee43-7920-4b75-acd2-6d596a21697a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[861612, 21436, 779, 19, 52, "Input",ExpressionUUID->"310dd24f-8805-46a2-9cf7-e81fa33a2131"], +Cell[862394, 21457, 354, 7, 34, "Output",ExpressionUUID->"cd6e1b76-a951-4ad3-a32a-d37f418392e5"], +Cell[862751, 21466, 355, 7, 34, "Output",ExpressionUUID->"b4ca9e80-a14d-4280-86ea-b8bda7f1be53"] +}, Open ]], +Cell[CellGroupData[{ +Cell[863143, 21478, 402, 8, 30, "Input",ExpressionUUID->"0320bf66-74eb-444f-a16a-57e38d7c7861"], +Cell[863548, 21488, 400, 7, 34, "Output",ExpressionUUID->"bf6f5d6a-e61c-41f0-945d-36875055fc2a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[863985, 21500, 214, 4, 30, "Input",ExpressionUUID->"587b302a-a244-495f-a90d-e618527f431f"], +Cell[864202, 21506, 5423, 140, 61, "Output",ExpressionUUID->"3cc2eaee-cc1b-448b-8750-819d727fdcd5"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[869674, 21652, 268, 4, 54, "Subsection",ExpressionUUID->"b00818ba-6c8f-40ea-a44e-068ff9461ac1"], +Cell[CellGroupData[{ +Cell[869967, 21660, 5563, 131, 201, "Input",ExpressionUUID->"334e0c5c-d5b8-4498-a6c2-c1226e3681ca"], +Cell[875533, 21793, 1394, 27, 34, "Output",ExpressionUUID->"98ceb010-eee8-430a-9b93-35fc3bd3164b"], +Cell[876930, 21822, 1360, 24, 24, "Print",ExpressionUUID->"c3c37e5f-ee11-4b5e-8086-76fb241de61b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[878327, 21851, 1471, 40, 73, "Input",ExpressionUUID->"b4a97553-7b8c-4b79-8686-150ea30a3335"], +Cell[879801, 21893, 1237, 23, 24, "Print",ExpressionUUID->"2d2b862d-cf68-4113-8e2a-98c5463c8130"], +Cell[881041, 21918, 963, 14, 34, "Output",ExpressionUUID->"86594c3c-0fc8-4918-8ca3-a2da281bb632"] +}, Open ]], +Cell[CellGroupData[{ +Cell[882041, 21937, 594, 17, 30, "Input",ExpressionUUID->"cd208626-5e3d-4207-a7de-66c63b88255f"], +Cell[882638, 21956, 1169, 21, 46, "Output",ExpressionUUID->"91eca7c9-73fd-4472-92d7-a79a244bba5c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[883844, 21982, 2347, 59, 30, "Input",ExpressionUUID->"407d0ac1-1dc2-4088-a59f-3865a5879a10"], +Cell[886194, 22043, 1994, 46, 54, "Output",ExpressionUUID->"e5f5c524-4c06-4454-bde2-0cc1edf982e1"] +}, Open ]], +Cell[CellGroupData[{ +Cell[888225, 22094, 1181, 29, 30, "Input",ExpressionUUID->"31c38d14-b264-4ee3-a4ee-f32919091b05"], +Cell[889409, 22125, 1807, 43, 37, "Output",ExpressionUUID->"7b2711ec-e763-491a-a451-07a0aa1e0c40"] +}, Open ]], +Cell[CellGroupData[{ +Cell[891253, 22173, 2122, 50, 52, "Input",ExpressionUUID->"e37f6004-ac20-4940-99fe-c1119c385340"], +Cell[893378, 22225, 1533, 30, 34, "Output",ExpressionUUID->"55923611-c4f3-4ef1-a4a7-a84704ac6edf"] +}, Open ]], +Cell[CellGroupData[{ +Cell[894948, 22260, 627, 15, 30, "Input",ExpressionUUID->"c1f545f6-dc9a-4d75-b3d2-612eb819b905"], +Cell[895578, 22277, 1001, 18, 34, "Output",ExpressionUUID->"c7bcd78e-891d-429a-aef4-de5b3d9b183d"] +}, Open ]], +Cell[896594, 22298, 877, 21, 73, "Input",ExpressionUUID->"1cafd883-7da7-4823-a6a9-5123a8159c14"], +Cell[CellGroupData[{ +Cell[897496, 22323, 1204, 32, 33, "Input",ExpressionUUID->"9aba9333-17e7-4381-9168-1d6071ba951b"], +Cell[898703, 22357, 1094, 27, 55, "Output",ExpressionUUID->"ff51abc0-e70f-4c06-85d1-b9b62ff29c5b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[899834, 22389, 1595, 38, 33, "Input",ExpressionUUID->"1d768848-b3e5-4b5c-b907-aa6c6db9e3a7"], +Cell[901432, 22429, 942, 25, 55, "Output",ExpressionUUID->"bd624d91-6864-42d8-81b1-36ed894481a8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[902411, 22459, 1187, 25, 52, "Input",ExpressionUUID->"6da4dccc-52c1-4bcf-b508-a649e7b2ebcd"], +Cell[903601, 22486, 3119, 83, 112, "Output",ExpressionUUID->"47ac9b27-5843-4e1f-a4d1-8aea6fd563e0"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[906769, 22575, 336, 5, 38, "Subsection",ExpressionUUID->"06f86be9-7053-4f53-a3c9-1038d3ae12e8"], +Cell[CellGroupData[{ +Cell[907130, 22584, 208, 4, 30, "Input",ExpressionUUID->"af2d4ead-32f6-44b4-9c23-e29c45d89556"], +Cell[907341, 22590, 1095, 32, 110, "Output",ExpressionUUID->"5d04cfdc-4d84-48b7-a97d-95ea169f5248"] +}, Open ]], +Cell[CellGroupData[{ +Cell[908473, 22627, 5700, 133, 222, "Input",ExpressionUUID->"4c800565-cf82-45a7-b06d-bca9237b5db0"], +Cell[914176, 22762, 1458, 28, 34, "Output",ExpressionUUID->"e124c890-233c-4c64-9845-07a965e651f5"], +Cell[915637, 22792, 1420, 26, 34, "Output",ExpressionUUID->"d20902b0-57a1-4f80-85ff-8a02479854e2"], +Cell[917060, 22820, 1413, 24, 24, "Print",ExpressionUUID->"85de8086-c7f7-4fb0-ae8e-b8a75633a540"] +}, Open ]], +Cell[CellGroupData[{ +Cell[918510, 22849, 1475, 41, 73, "Input",ExpressionUUID->"4d74e151-d388-4591-8827-c11578074dd0"], +Cell[919988, 22892, 1260, 23, 24, "Print",ExpressionUUID->"22eddef9-84e1-4b5f-bdfd-c83809fadbeb"], +Cell[921251, 22917, 1005, 16, 34, "Output",ExpressionUUID->"27ae41e0-5bbc-4eea-b456-9eacf6e10b2b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[922293, 22938, 598, 18, 30, "Input",ExpressionUUID->"82221953-57d5-4897-8857-a4ea2de86434"], +Cell[922894, 22958, 1152, 22, 45, "Output",ExpressionUUID->"908532ff-1eea-48ef-b0f7-b6bd80bab3a7"] +}, Open ]], +Cell[CellGroupData[{ +Cell[924083, 22985, 2351, 60, 73, "Input",ExpressionUUID->"68a86325-7d4e-489a-8554-11545358bb9a"], +Cell[926437, 23047, 1823, 42, 55, "Output",ExpressionUUID->"ce094d0b-901b-4924-b99b-d67127abb61f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[928297, 23094, 1185, 30, 30, "Input",ExpressionUUID->"81448baf-b8f8-400b-bd9d-f40a53525971"], +Cell[929485, 23126, 1701, 40, 51, "Output",ExpressionUUID->"abf6abcf-02ca-4509-9253-e0b623a936b7"] +}, Open ]], +Cell[CellGroupData[{ +Cell[931223, 23171, 2126, 51, 157, "Input",ExpressionUUID->"37efe627-009f-4a3c-b16f-69f84cf1d96a"], +Cell[933352, 23224, 1681, 35, 53, "Output",ExpressionUUID->"174c416f-5ccc-4d73-9b5e-d04758d39a3b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[935070, 23264, 631, 16, 30, "Input",ExpressionUUID->"0dee3fbc-cae5-4e91-a556-b0a93f9b7f9e"], +Cell[935704, 23282, 1030, 18, 34, "Output",ExpressionUUID->"b2a499a1-5f75-4ac2-a3de-091164953a92"] +}, Open ]], +Cell[936749, 23303, 881, 22, 73, "Input",ExpressionUUID->"971e90cc-d509-4ecd-baa9-dddff00fb886"], +Cell[CellGroupData[{ +Cell[937655, 23329, 1252, 34, 77, "Input",ExpressionUUID->"3dd417d0-b511-416e-adcd-4dc96e264d35"], +Cell[938910, 23365, 901, 20, 53, "Output",ExpressionUUID->"bf8f0eb7-c5f9-4512-b5cd-0cb898aa03e9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[939848, 23390, 1647, 39, 77, "Input",ExpressionUUID->"207ae9c7-0ad4-440e-8db2-ba18bcd1851a"], +Cell[941498, 23431, 936, 24, 56, "Output",ExpressionUUID->"91971350-99b1-4d5e-be9f-7f578a545979"] +}, Open ]], +Cell[CellGroupData[{ +Cell[942471, 23460, 1213, 26, 52, "Input",ExpressionUUID->"9028f88b-cf85-4f46-9f7d-f0adc334a391"], +Cell[943687, 23488, 2908, 75, 122, "Output",ExpressionUUID->"4408dd50-1d33-4954-8691-97270d703c93"] +}, Open ]], +Cell[CellGroupData[{ +Cell[946632, 23568, 116, 2, 30, "Input",ExpressionUUID->"6defb715-d8cc-45fa-b88a-98d788b86211"], +Cell[946751, 23572, 1689, 51, 99, "Output",ExpressionUUID->"9643d1ef-c288-4ceb-8616-a4981806b9ac"] +}, Open ]], +Cell[948455, 23626, 242, 6, 30, "Input",ExpressionUUID->"4a3372b9-d5e6-4dff-8d6c-d0f118d346bc"], +Cell[948700, 23634, 600, 15, 52, "Input",ExpressionUUID->"21ca1c66-9eb8-4cb7-8ecb-a623582904c9"] +}, Closed]], +Cell[CellGroupData[{ +Cell[949337, 23654, 347, 5, 38, "Subsection",ExpressionUUID->"f3438ed9-ec6e-4e68-93c2-a3ccadacc1a2"], +Cell[CellGroupData[{ +Cell[949709, 23663, 5655, 130, 266, "Input",ExpressionUUID->"a94fab01-b5d6-44d8-8812-bcc2b5b9d6ed"], +Cell[955367, 23795, 1580, 28, 34, "Output",ExpressionUUID->"5aadbc6c-681b-4420-9211-c6ba309e1efc"], +Cell[956950, 23825, 1529, 25, 24, "Print",ExpressionUUID->"bb2f9a4f-69f7-4b37-b253-3afb51460f58"] +}, Open ]], +Cell[CellGroupData[{ +Cell[958516, 23855, 739, 15, 52, "Input",ExpressionUUID->"ece3f124-cf57-4dce-91f6-4c6c98d14f2b"], +Cell[959258, 23872, 626, 16, 34, "Output",ExpressionUUID->"242a05ca-d47e-491a-bfc0-2a384284b79f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[959921, 23893, 1471, 40, 73, "Input",ExpressionUUID->"51002296-3dd1-4358-9017-e0dae2d7edda"], +Cell[961395, 23935, 1333, 24, 24, "Print",ExpressionUUID->"f17f84bb-be84-4b7a-b7fb-e81b3bcd0834"], +Cell[962731, 23961, 1078, 16, 34, "Output",ExpressionUUID->"ffdb5b6d-4d52-4813-abc2-4c39f24b9d3e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[963846, 23982, 594, 17, 30, "Input",ExpressionUUID->"c767434e-a002-41e4-a07a-53d7579ef615"], +Cell[964443, 24001, 1292, 24, 46, "Output",ExpressionUUID->"5fd67647-4ece-4989-a61b-ef7f5d324b61"] +}, Open ]], +Cell[CellGroupData[{ +Cell[965772, 24030, 2347, 59, 73, "Input",ExpressionUUID->"78c65863-bce5-44ef-b63e-ad0a5a39db3b"], +Cell[968122, 24091, 2090, 48, 54, "Output",ExpressionUUID->"8d020d58-ab4a-47fe-a423-2e7603758a3c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[970249, 24144, 1181, 29, 30, "Input",ExpressionUUID->"e16dadd3-7746-4b37-8e25-4b10b5c0b4d6"], +Cell[971433, 24175, 1900, 44, 60, "Output",ExpressionUUID->"fe7dba21-6a7a-4147-a692-b358649a1ec8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[973370, 24224, 2126, 51, 157, "Input",ExpressionUUID->"59cf8a24-2695-4a39-9191-46ad7472da44"], +Cell[975499, 24277, 1613, 32, 34, "Output",ExpressionUUID->"7c464cf5-ea69-4311-95ce-e926bca92081"] +}, Open ]], +Cell[CellGroupData[{ +Cell[977149, 24314, 627, 15, 30, "Input",ExpressionUUID->"efa8bd04-c098-4a23-bc2c-e2c1c133ac2a"], +Cell[977779, 24331, 307, 7, 34, "Output",ExpressionUUID->"3c636017-9e85-4a88-9f61-6693910d6448"] +}, Open ]], +Cell[CellGroupData[{ +Cell[978123, 24343, 193, 3, 30, "Input",ExpressionUUID->"7a38fc7a-000d-43b9-a533-ca65e4c760cc"], +Cell[978319, 24348, 344, 6, 69, "Print",ExpressionUUID->"1e8981a4-b242-4305-a785-013e3ec45a07", + CellTags->"Info583768292796-1566858"] +}, Open ]], +Cell[978678, 24357, 935, 24, 73, "Input",ExpressionUUID->"678dc65e-7432-42e1-b49f-3ffc4a25dec4"], +Cell[CellGroupData[{ +Cell[979638, 24385, 1204, 32, 77, "Input",ExpressionUUID->"7f228384-675c-4e5e-b2ee-06a8d8e5a664"], +Cell[980845, 24419, 4120, 112, 101, "Output",ExpressionUUID->"3aa6847a-364a-458d-84fe-06c13e3fdfdf"] +}, Open ]], +Cell[CellGroupData[{ +Cell[985002, 24536, 1599, 39, 77, "Input",ExpressionUUID->"41b5f867-a890-46cb-8b17-79cf5636cb0a"], +Cell[986604, 24577, 3035, 86, 98, "Output",ExpressionUUID->"595cac98-5612-44af-b15e-23687bf4cda1"] +}, Open ]], +Cell[CellGroupData[{ +Cell[989676, 24668, 993, 27, 30, "Input",ExpressionUUID->"74bbe6fe-31ac-4288-8d60-2e468ca364be"], +Cell[990672, 24697, 2702, 70, 77, "Output",ExpressionUUID->"75b2dc7e-6ac6-4cbf-b8b4-4e148faaacdd"] +}, Open ]], +Cell[CellGroupData[{ +Cell[993411, 24772, 1127, 28, 30, "Input",ExpressionUUID->"8422b3d8-1439-4f40-842f-7f52520f99f2"], +Cell[994541, 24802, 3136, 78, 80, "Output",ExpressionUUID->"7dd01aa6-855d-48ee-a776-9c12ff58e35f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[997714, 24885, 1152, 25, 52, "Input",ExpressionUUID->"a4927c75-976d-4b85-9a41-8b24dbdd666a"], +Cell[998869, 24912, 10972, 287, 154, "Output",ExpressionUUID->"76bc9c0b-e65f-47ba-b36d-107ec42511a0"] +}, Open ]], +Cell[1009856, 25202, 2195, 62, 101, "Input",ExpressionUUID->"2dfa80a1-c83a-43de-9f92-83db1043d753"], +Cell[CellGroupData[{ +Cell[1012076, 25268, 2208, 63, 101, "Input",ExpressionUUID->"a7153694-09c4-49a6-a2f7-a8a30e9ae39d"], +Cell[1014287, 25333, 2724, 79, 99, "Output",ExpressionUUID->"ff5aca70-ec30-4202-bb7a-9cd5045e4644"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1017048, 25417, 1089, 29, 52, "Input",ExpressionUUID->"67371f87-21ae-4653-9325-cbc7844c6b42"], +Cell[1018140, 25448, 957, 28, 55, "Output",ExpressionUUID->"d5bf89fb-c33a-48ef-b00a-7c11d6c82499"] +}, Open ]], +Cell[1019112, 25479, 1883, 54, 81, "Input",ExpressionUUID->"857bb5b1-8f66-41bc-aa02-f798a39dd39a"], +Cell[CellGroupData[{ +Cell[1021020, 25537, 2041, 60, 99, "Input",ExpressionUUID->"3a6521e2-4fb8-4d34-8cdc-49c89bc63bc0"], +Cell[1023064, 25599, 1935, 59, 102, "Output",ExpressionUUID->"afddedb7-f690-45a9-a8f2-4bb485c52222"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1025036, 25663, 313, 6, 30, "Input",ExpressionUUID->"d2b66353-4375-474b-aff1-53d72c1a8ecc"], +Cell[1025352, 25671, 446, 10, 63, "Output",ExpressionUUID->"6a8a7b90-b93a-40a9-8f9d-49c252dd5e38"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1025835, 25686, 2665, 71, 156, "Input",ExpressionUUID->"b3fcda93-bcea-42b5-b931-8de4d25ac3d3"], +Cell[1028503, 25759, 451, 10, 63, "Output",ExpressionUUID->"6886a7c9-e43e-4c9f-bf4a-7f45b58fe243"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1028991, 25774, 729, 20, 54, "Input",ExpressionUUID->"318b432d-14e0-4360-868d-6fad30d49c00"], +Cell[1029723, 25796, 6325, 169, 150, "Output",ExpressionUUID->"21ed61f1-fe32-4c7f-8180-7145e3384ea8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1036085, 25970, 1394, 39, 51, "Input",ExpressionUUID->"ee33dd72-7455-48eb-bed4-725018cdd264"], +Cell[1037482, 26011, 1803, 45, 79, "Output",ExpressionUUID->"7309ecc5-a075-4357-8f2b-58c72a13094e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1039322, 26061, 1302, 37, 51, "Input",ExpressionUUID->"9b287d67-75de-431c-ba3f-c2cc92da7ef8"], +Cell[1040627, 26100, 303, 7, 45, "Output",ExpressionUUID->"10883ce6-26bb-4797-a12e-07d7155d5059"] +}, Open ]], +Cell[1040945, 26110, 1848, 47, 121, "Input",ExpressionUUID->"4f81de4e-b876-4766-a637-717e516fe892"], +Cell[CellGroupData[{ +Cell[1042818, 26161, 1650, 45, 80, "Input",ExpressionUUID->"e88e8deb-4a5c-4a02-bc36-51abff25c10d"], +Cell[1044471, 26208, 326, 8, 45, "Output",ExpressionUUID->"d4970ed4-e197-4203-bb11-c49634308a3f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1044834, 26221, 5648, 151, 222, "Input",ExpressionUUID->"2c391c23-8166-427e-8366-fc78b0849f9f"], +Cell[1050485, 26374, 5446, 151, 176, "Output",ExpressionUUID->"944ee480-3956-4df4-aab4-185dd656db9e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1055968, 26530, 2086, 55, 84, "Input",ExpressionUUID->"044eeb49-6c2a-4711-a32f-0a2901946c64"], +Cell[1058057, 26587, 1208, 36, 56, "Output",ExpressionUUID->"bc362edc-1070-4c5d-a542-6873fc2c4bdf"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1059302, 26628, 1853, 50, 84, "Input",ExpressionUUID->"90f23d99-6743-4ad0-9d94-a95d6754768f"], +Cell[1061158, 26680, 1080, 32, 56, "Output",ExpressionUUID->"f770ee52-5b0f-4836-9aed-1074bcf26cd8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1062275, 26717, 2372, 68, 102, "Input",ExpressionUUID->"ecdf0e46-6abe-462e-87f7-a2fe6e2430b9"], +Cell[1064650, 26787, 1355, 42, 56, "Output",ExpressionUUID->"6db9dfca-1fc9-40df-b34e-38bc539d45f6"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1066042, 26834, 627, 19, 30, "Input",ExpressionUUID->"35411675-f19d-48ab-b07b-bef06d9f593e"], +Cell[1066672, 26855, 691, 20, 50, "Output",ExpressionUUID->"1b94e7a2-a6f2-468e-a56e-6792e22b7271"] +}, Open ]], +Cell[1067378, 26878, 139, 3, 30, "Input",ExpressionUUID->"ca41ef3d-71fc-4a30-ad04-b7aa5b871fc4"], +Cell[CellGroupData[{ +Cell[1067542, 26885, 3585, 96, 188, "Input",ExpressionUUID->"e005e862-9715-4191-8a06-144207384582"], +Cell[1071130, 26983, 1460, 42, 56, "Output",ExpressionUUID->"3a185a88-157b-49c8-9755-c758188b11c3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1072627, 27030, 319, 8, 30, "Input",ExpressionUUID->"8d7bbb02-a9e8-4f7e-a906-9c171458db1e"], +Cell[1072949, 27040, 1153, 34, 55, "Output",ExpressionUUID->"1fe9b3a5-9739-40ca-a9dc-80be2329a600"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1074139, 27079, 698, 21, 30, "Input",ExpressionUUID->"14480d61-8085-4fee-8303-e23038dfcb77"], +Cell[1074840, 27102, 355, 9, 24, "Message",ExpressionUUID->"ac5ebabb-6b33-4ba2-86d1-d024834d6f14"], +Cell[1075198, 27113, 1857, 53, 85, "Output",ExpressionUUID->"6a7276be-0c26-4fc4-a22a-f2169f5bd2c2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1077092, 27171, 1436, 40, 74, "Input",ExpressionUUID->"c94e8fd7-1775-41d9-9b8f-7c45e3243150"], +Cell[1078531, 27213, 1399, 38, 54, "Output",ExpressionUUID->"e2da7e68-52d7-417f-ae56-8932b5775993"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1079967, 27256, 252, 5, 30, "Input",ExpressionUUID->"b88ceea7-a2db-4672-8d20-3687f418ad2a"], +Cell[1080222, 27263, 204, 4, 34, "Output",ExpressionUUID->"0db795e1-f601-4cb6-bd7e-af03e2a8cc23"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1080463, 27272, 923, 21, 30, "Input",ExpressionUUID->"69de18a0-dadd-4129-81fa-6b80753036ef"], +Cell[1081389, 27295, 1484, 39, 53, "Output",ExpressionUUID->"fff9ed75-9a5f-4e22-a5d6-9b7dff2a9433"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1082910, 27339, 1226, 34, 47, "Input",ExpressionUUID->"9a57cbe5-8f3c-4ea0-ac80-307529e87fdd"], +Cell[1084139, 27375, 996, 30, 50, "Output",ExpressionUUID->"fcdf84f3-0f92-4698-bedb-f0c9e814a68e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1085172, 27410, 615, 16, 30, "Input",ExpressionUUID->"558c9857-9cff-4fce-a8e1-8bde3d380918"], +Cell[1085790, 27428, 1178, 34, 53, "Output",ExpressionUUID->"bbe83a6b-7a53-4a6d-a62a-6cfb258f3d3a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1087005, 27467, 713, 21, 52, "Input",ExpressionUUID->"8620aa3d-1136-489a-88f3-684b15ad253a"], +Cell[1087721, 27490, 3233, 87, 126, "Output",ExpressionUUID->"a2067eea-0f86-4b59-ae84-a69a354b96fa"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1090991, 27582, 1069, 31, 47, "Input",ExpressionUUID->"8284887b-e9da-46ac-9d62-8165463007b3"], +Cell[1092063, 27615, 791, 24, 50, "Output",ExpressionUUID->"de47c1bd-ff6d-4a9d-856c-7ddc7d536f6c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1092891, 27644, 1448, 39, 52, "Input",ExpressionUUID->"0eacae42-d976-433d-9eac-d57907030215"], +Cell[1094342, 27685, 1160, 33, 53, "Output",ExpressionUUID->"93abd06a-dd84-4d46-a180-22a3281a848e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1095539, 27723, 783, 18, 30, "Input",ExpressionUUID->"e9d084ae-3c28-4910-b681-fe6624d6a002"], +Cell[1096325, 27743, 2721, 70, 59, "Output",ExpressionUUID->"51468aa5-b1de-45dc-af84-7ae011494d0c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1099083, 27818, 1195, 33, 52, "Input",ExpressionUUID->"b143b96a-c8ef-434b-89a7-db654f98426f"], +Cell[1100281, 27853, 741, 22, 53, "Output",ExpressionUUID->"ccafea8b-6689-4e91-aa9a-74b935d3499a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1101059, 27880, 646, 18, 30, "Input",ExpressionUUID->"85a3dba1-16ba-45b2-a989-ce2ffc799389"], +Cell[1101708, 27900, 16255, 322, 231, "Output",ExpressionUUID->"35ba82c3-c4f2-4f1e-a701-4da86d126e5f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1118000, 28227, 215, 4, 30, "Input",ExpressionUUID->"29c6782f-8d78-454a-95f7-b565b0e40ae2"], +Cell[1118218, 28233, 1373, 40, 56, "Output",ExpressionUUID->"f2907e60-450d-4066-8e00-a93733d65c49"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1119628, 28278, 245, 5, 30, "Input",ExpressionUUID->"90d1cf29-675b-479b-8b5a-93807f6f3cda"], +Cell[1119876, 28285, 1065, 30, 55, "Output",ExpressionUUID->"c2049564-a8ef-4387-b693-7ba48794e85f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1120978, 28320, 862, 24, 52, "Input",ExpressionUUID->"c0240fab-1fa6-4cb7-86dd-0816d9ed5333"], +Cell[1121843, 28346, 844, 25, 55, "Output",ExpressionUUID->"7a497dba-d949-4cd3-9263-d4b34edec7a3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1122724, 28376, 515, 15, 30, "Input",ExpressionUUID->"bbe2b716-ce47-42de-bcd4-ca4de3023890"], +Cell[1123242, 28393, 2078, 57, 56, "Output",ExpressionUUID->"f5a9c401-44ce-4bcf-a804-ac99bfb4e8ae"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1125357, 28455, 433, 12, 30, "Input",ExpressionUUID->"40c74a4f-78b1-4f96-a508-37a5b2cd467d"], +Cell[1125793, 28469, 507, 14, 44, "Output",ExpressionUUID->"4901e7bd-e16b-401a-a053-77df6a80ca50"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1126337, 28488, 317, 8, 40, "Input",ExpressionUUID->"298558c8-d7bf-425c-8a30-7e85ec22ac33"], +Cell[1126657, 28498, 274, 7, 38, "Output",ExpressionUUID->"5b4ad2a1-fe3e-4864-8001-f8f1f6e886fb"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1126968, 28510, 610, 18, 50, "Input",ExpressionUUID->"6e56a157-709b-4b41-8e00-1e9d603bba11"], +Cell[1127581, 28530, 497, 12, 42, "Message",ExpressionUUID->"c2605ad7-f225-4773-b397-44ecb96d5b70"], +Cell[1128081, 28544, 1155, 36, 71, "Output",ExpressionUUID->"21ed1d84-9cc8-4502-a50c-1c70f0a0c18f"] +}, Open ]], +Cell[1129251, 28583, 1341, 39, 157, "Input",ExpressionUUID->"7c759e54-dbbf-4602-9fe8-b629e3455f38"], +Cell[CellGroupData[{ +Cell[1130617, 28626, 4725, 125, 220, "Input",ExpressionUUID->"f93c8ad0-a546-48e9-ba7d-99e67d03341e"], +Cell[1135345, 28753, 557, 12, 24, "Print",ExpressionUUID->"10db2de8-6788-4d44-8a9b-d05ada99ceae"] +}, Open ]], +Cell[1135917, 28768, 4949, 74, 52, "Input",ExpressionUUID->"10803daa-9f1a-471c-aa65-34ff913d6e48"], +Cell[CellGroupData[{ +Cell[1140891, 28846, 362, 9, 30, "Input",ExpressionUUID->"53b43d2a-ed2a-428e-943e-7f7d9c19bc99"], +Cell[1141256, 28857, 1233, 36, 56, "Output",ExpressionUUID->"3a36e02a-c368-4fc2-bbed-6ed18f084a54"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1142526, 28898, 241, 5, 30, "Input",ExpressionUUID->"dabee613-ede7-4bdd-8cef-6f4ea9b16fb4"], +Cell[1142770, 28905, 1173, 34, 54, "Output",ExpressionUUID->"03295674-c070-4fb6-a734-2d5149963355"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1143980, 28944, 363, 9, 30, "Input",ExpressionUUID->"398342f8-0562-42e8-a102-b66cdb9cf285"], +Cell[1144346, 28955, 177, 3, 34, "Output",ExpressionUUID->"7a47517a-080f-4dd2-8b67-42e39506d5a9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1144560, 28963, 271, 6, 30, "Input",ExpressionUUID->"5fc1d1bb-76dd-4da2-8e84-059dc75e67f1"], +Cell[1144834, 28971, 1688, 48, 56, "Output",ExpressionUUID->"8a96d162-096c-4b91-9811-2ae502f23d52"] +}, Open ]], +Cell[1146537, 29022, 1350, 36, 52, "Input",ExpressionUUID->"588f20c1-c3ae-4b02-bc1e-99e9e1c62fd0"], +Cell[CellGroupData[{ +Cell[1147912, 29062, 4246, 121, 302, "Input",ExpressionUUID->"deb4f4a6-7de0-41ed-8f31-0ce2cff821e0"], +Cell[1152161, 29185, 537, 10, 34, "Output",ExpressionUUID->"78c3d983-f185-4760-b6db-de6ce6b016a0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1152735, 29200, 317, 8, 30, "Input",ExpressionUUID->"49d16914-7589-487d-95da-10642445b704"], +Cell[1153055, 29210, 2338, 57, 229, "Output",ExpressionUUID->"2505ebaf-6b4f-4c90-9ce0-e64c0d39e1d2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1155430, 29272, 116, 2, 30, "Input",ExpressionUUID->"3fe1304c-9b89-4b7a-b9ab-b09b8d69a3b9"], +Cell[1155549, 29276, 3634, 107, 173, "Output",ExpressionUUID->"a792cc4a-a25b-4fb6-96b1-e4acc29fb63a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1159220, 29388, 374, 10, 30, "Input",ExpressionUUID->"03268e9c-ee27-4b43-9ab2-a4d7842b6d48"], +Cell[1159597, 29400, 2314, 57, 229, "Output",ExpressionUUID->"34efc7d2-34bf-431b-acdd-11fe71b5d879"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1161948, 29462, 308, 7, 48, "Input",ExpressionUUID->"abc693b0-13f8-4ac8-883d-866e0f34ba80"], +Cell[1162259, 29471, 250, 4, 34, "Output",ExpressionUUID->"e54c99c9-6ba9-4903-8cf4-ed64f41b193b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1162546, 29480, 679, 16, 76, "Input",ExpressionUUID->"54bd19ea-cc1a-4f68-9787-9eab338ae319"], +Cell[1163228, 29498, 528, 12, 40, "Print",ExpressionUUID->"0d88b026-45c8-488f-9687-886988455cb8"], +Cell[1163759, 29512, 317, 7, 51, "Output",ExpressionUUID->"c0b0f92d-47ec-4d96-bd72-58854eb7c443"] +}, Open ]], +Cell[1164091, 29522, 1219, 34, 52, "Input",ExpressionUUID->"eb24cc85-33ff-4cde-97c1-2c4f28d24c4f"], +Cell[CellGroupData[{ +Cell[1165335, 29560, 5485, 117, 321, "Input",ExpressionUUID->"10b8fd9e-a7b1-4c53-a354-fd3124d392fa"], +Cell[1170823, 29679, 43599, 867, 480, "Output",ExpressionUUID->"8ab1fa9a-5564-4c62-b6d2-68b4ad665913"] +}, Open ]], +Cell[1214437, 30549, 354, 9, 30, "Input",ExpressionUUID->"900a3dfb-2766-4cfc-8555-8d1add90bc26"], +Cell[CellGroupData[{ +Cell[1214816, 30562, 802, 21, 52, "Input",ExpressionUUID->"7f308989-28a7-4778-a211-d16e67373d90"], +Cell[1215621, 30585, 2584, 61, 325, "Output",ExpressionUUID->"6eeaa502-af05-461b-9d2e-2a8040d1a9eb"], +Cell[1218208, 30648, 11303, 204, 338, "Output",ExpressionUUID->"b35ddae2-8dc6-4c81-8c47-e8468c987563"] +}, Open ]], +Cell[1229526, 30855, 129, 3, 30, "Input",ExpressionUUID->"b3561fee-e50d-4cea-b7c3-2b9273c48b5a"], +Cell[CellGroupData[{ +Cell[1229680, 30862, 5355, 117, 283, "Input",ExpressionUUID->"d835b2f7-56ca-442d-a804-9d4ffa3d7f00"], +Cell[1235038, 30981, 260, 6, 34, "Output",ExpressionUUID->"82d00e69-3dcd-4f0f-ba2b-542468eec624"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1235335, 30992, 407, 12, 30, "Input",ExpressionUUID->"a05add30-20b0-4875-b868-8b9a483ddad1"], +Cell[1235745, 31006, 150780, 2664, 360, "Output",ExpressionUUID->"b03d067d-eb76-4c36-b6b7-0b21a3b69f99"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1386562, 33675, 300, 9, 30, "Input",ExpressionUUID->"62a018c4-c00e-4c32-b77a-350d0699c27f"], +Cell[1386865, 33686, 151108, 2689, 608, "Output",ExpressionUUID->"d1fad22a-6e90-4de0-a758-e28a9b87e6e0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1538010, 36380, 908, 27, 52, "Input",ExpressionUUID->"d7bde1b9-aef9-431b-986b-f111fb067fb9"], +Cell[1538921, 36409, 3598, 107, 242, "Output",ExpressionUUID->"18b8edda-7607-4b37-989e-5a6258ce30af"] +}, Open ]], +Cell[1542534, 36519, 126, 2, 30, "Input",ExpressionUUID->"6571a7e0-b424-4948-9253-090d2a1e9a76"], +Cell[CellGroupData[{ +Cell[1542685, 36525, 802, 21, 52, "Input",ExpressionUUID->"74d06ffd-a5b1-401c-9bcb-37de47aeadda"], +Cell[1543490, 36548, 6808, 130, 321, "Output",ExpressionUUID->"8bb50e65-9c10-4b91-bd67-07c2d3473199"], +Cell[1550301, 36680, 7271, 138, 332, "Output",ExpressionUUID->"f636c3e9-3962-406a-8293-a9ad451f1629"] +}, Open ]], +Cell[1557587, 36821, 3674, 107, 220, "Input",ExpressionUUID->"565cb846-dc0c-47cd-8837-be0b9a63f814"], +Cell[CellGroupData[{ +Cell[1561286, 36932, 943, 27, 73, "Input",ExpressionUUID->"f5c10684-9ee2-4e6d-b4ea-10a8ee0924f6"], +Cell[1562232, 36961, 423, 8, 34, "Output",ExpressionUUID->"83911146-5a34-441d-bcff-813934dd376f"], +Cell[1562658, 36971, 420, 8, 34, "Output",ExpressionUUID->"3f440665-eddb-4969-b8d7-9d5d0cab60b3"], +Cell[1563081, 36981, 66307, 1109, 378, "Output",ExpressionUUID->"63b43f83-41b7-4d21-af4b-35fedc0d998c"] +}, Open ]], +Cell[1629403, 38093, 778, 24, 30, "Input",ExpressionUUID->"541e5107-8241-471a-9f89-4eb564eaff4a"], +Cell[1630184, 38119, 860, 28, 73, "Input",ExpressionUUID->"0b48f4e6-e8b7-4716-9f0d-fe2408d5a1e6"], +Cell[CellGroupData[{ +Cell[1631069, 38151, 405, 11, 30, "Input",ExpressionUUID->"4afd721c-38f3-4e1f-9207-56bbace608ff"], +Cell[1631477, 38164, 5038, 102, 227, "Output",ExpressionUUID->"98012434-2e9b-4959-abfa-5b18bb5d06f9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1636552, 38271, 4842, 73, 52, "Input",ExpressionUUID->"000845c3-5a37-4681-ab5c-0f2f68bc5fc9"], +Cell[1641397, 38346, 367, 9, 41, "Message",ExpressionUUID->"c4c1933a-3527-4ac3-a9f6-c0ff71208c37"] +}, Open ]], +Cell[1641779, 38358, 3708, 107, 220, "Input",ExpressionUUID->"7a4c75b1-a500-48f7-8f9d-7677486e97e9"] +}, Closed]], +Cell[CellGroupData[{ +Cell[1645524, 38470, 196, 3, 38, "Subsection",ExpressionUUID->"6f910e98-8e5a-4cff-8531-0cd338303264"], +Cell[CellGroupData[{ +Cell[1645745, 38477, 1333, 40, 75, "Input",ExpressionUUID->"39a1305b-9c3c-4003-b891-e37ffbd9237d"], +Cell[1647081, 38519, 431, 12, 34, "Output",ExpressionUUID->"200f362b-1e3f-4c1e-bd3e-9914201e86f2"], +Cell[1647515, 38533, 958, 28, 37, "Output",ExpressionUUID->"2e7c807e-fc17-44b6-a68b-f31cae91db24"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1648510, 38566, 580, 13, 30, "Input",ExpressionUUID->"6f75d8ab-6d6d-4563-931c-f37a952ae3dd"], +Cell[1649093, 38581, 429, 8, 24, "Print",ExpressionUUID->"ec4ad459-1506-44fd-9726-ae8c6220d5c4"], +Cell[1649525, 38591, 6251, 167, 201, "Output",ExpressionUUID->"cdc22c97-9681-4515-8468-79dc56a1f51c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1655813, 38763, 1278, 37, 75, "Input",ExpressionUUID->"3220344c-386b-45c8-8eeb-6cae7918c981"], +Cell[1657094, 38802, 518, 13, 34, "Output",ExpressionUUID->"72c45421-b0e4-42ba-94b6-01a408623347"], +Cell[1657615, 38817, 898, 24, 37, "Output",ExpressionUUID->"7d06453a-23ad-4c2c-b520-cac994274924"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1658550, 38846, 617, 12, 30, "Input",ExpressionUUID->"7c59a559-6f9e-4f45-97d2-97ab9d920764"], +Cell[1659170, 38860, 301, 6, 24, "Print",ExpressionUUID->"01baac31-0ab1-47b1-b04d-503655c8d4c9"], +Cell[1659474, 38868, 5787, 154, 215, "Output",ExpressionUUID->"09758b57-bf44-4bd4-8caa-e5d2569206bf"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[1665310, 39028, 222, 4, 38, "Subsection",ExpressionUUID->"acb36565-8a4d-45f1-8e3a-868962edbb71"], +Cell[CellGroupData[{ +Cell[1665557, 39036, 1333, 40, 75, "Input",ExpressionUUID->"ed250cc0-b85e-439f-9d2f-cb595bed4e72"], +Cell[1666893, 39078, 555, 14, 34, "Output",ExpressionUUID->"3f269e24-078a-4041-845f-7d6259a932cc"], +Cell[1667451, 39094, 1084, 30, 37, "Output",ExpressionUUID->"3f488d16-913d-411c-a59c-525bd7d5cf66"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1668572, 39129, 659, 14, 30, "Input",ExpressionUUID->"f82b9185-8d63-4912-bf33-9363108d9b7d"], +Cell[1669234, 39145, 544, 9, 24, "Print",ExpressionUUID->"ed650e5b-f34f-45fa-b428-ca4f4923aba0"], +Cell[1669781, 39156, 6168, 161, 201, "Output",ExpressionUUID->"1ae61d2f-2290-411c-83a5-e40cc8ad49e4"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1675986, 39322, 386, 10, 30, "Input",ExpressionUUID->"14328f2e-de99-480e-b189-d8c5578df382"], +Cell[1676375, 39334, 3236, 97, 105, "Output",ExpressionUUID->"89a336e8-a84d-4aa4-961d-983f4eeb3584"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1679648, 39436, 537, 15, 30, "Input",ExpressionUUID->"9f14f43a-d2a4-4bab-96f5-021eec6ecc82"], +Cell[1680188, 39453, 705, 21, 78, "Output",ExpressionUUID->"e7a2517c-53fe-46d9-8be9-ee4055cf08a3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1680930, 39479, 766, 17, 30, "Input",ExpressionUUID->"60e5da00-ce01-4000-8baa-4832f19d9a2a"], +Cell[1681699, 39498, 544, 10, 24, "Print",ExpressionUUID->"09a1cb61-3bda-425c-8656-c2842de490ed"], +Cell[1682246, 39510, 7810, 212, 358, "Output",ExpressionUUID->"9bbdc768-540b-4e27-bd3a-ad5051494c82"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1690093, 39727, 573, 15, 30, "Input",ExpressionUUID->"9407896f-3d5d-46d8-9e27-1a0066ec67ce"], +Cell[1690669, 39744, 3812, 114, 167, "Output",ExpressionUUID->"ee5a9300-9978-4333-992e-0785a744d3a5"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1694518, 39863, 446, 13, 30, "Input",ExpressionUUID->"8daa37b5-8585-4039-96f4-18e81fd9c9b2"], +Cell[1694967, 39878, 429, 11, 46, "Output",ExpressionUUID->"cf0ba0e7-9870-4dd4-bbde-771ded2c2dd1"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1695433, 39894, 429, 10, 30, "Input",ExpressionUUID->"2d835e2a-ec41-4731-a860-6044b4c073db"], +Cell[1695865, 39906, 493, 12, 54, "Output",ExpressionUUID->"a4d9145a-518d-459e-974c-dbaf18d54a2d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1696395, 39923, 350, 9, 30, "Input",ExpressionUUID->"460e4006-5bf2-42c6-8a98-379ad925d916"], +Cell[1696748, 39934, 477, 13, 34, "Output",ExpressionUUID->"bcdf6864-e93b-4248-9374-5bf44ac79672"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1697262, 39952, 802, 17, 30, "Input",ExpressionUUID->"d21b1b91-3e2b-4f3e-a94f-ef0d7770d768"], +Cell[1698067, 39971, 290, 6, 24, "Print",ExpressionUUID->"6bd38537-d7fc-4627-a511-6bc9408b2746"], +Cell[1698360, 39979, 6653, 175, 147, "Output",ExpressionUUID->"d9f975d3-3e67-4cac-b9bf-c21cc6f49d4d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1705050, 40159, 556, 15, 30, "Input",ExpressionUUID->"79fc9ff6-f6c7-4aa7-bedd-7a75618d2fc4"], +Cell[1705609, 40176, 3673, 106, 104, "Output",ExpressionUUID->"242bade0-156f-45fe-9e70-320e2b7b8885"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1709319, 40287, 1278, 37, 75, "Input",ExpressionUUID->"d6c9a8cc-dfba-4381-8ee0-3c6ff1a3dd38"], +Cell[1710600, 40326, 518, 13, 34, "Output",ExpressionUUID->"f55ea615-53c1-4b4c-b5eb-479fc0450859"], +Cell[1711121, 40341, 898, 24, 37, "Output",ExpressionUUID->"68de234c-429f-418c-aea9-75db7b49b75f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[1712056, 40370, 617, 12, 30, "Input",ExpressionUUID->"810873ee-3118-4cf9-990e-71c758f19903"], +Cell[1712676, 40384, 301, 6, 24, "Print",ExpressionUUID->"6a9843f4-36f7-475a-8c54-1b44b1a024f9"], +Cell[1712980, 40392, 5787, 154, 144, "Output",ExpressionUUID->"e535d70b-e452-48a5-9a55-5f44e3f4180f"] +}, Open ]] +}, Closed]] +}, Open ]] +}, Open ]] +}, Open ]] +} +] +*) + diff --git a/code/fRTOV.nb b/code/fRTOV.nb new file mode 100644 index 0000000000000000000000000000000000000000..ebf85b7cba3a5b8ebb9fb487ee086ff2a05d684c --- /dev/null +++ b/code/fRTOV.nb @@ -0,0 +1,6741 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 12.0' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 308190, 6733] +NotebookOptionsPosition[ 300966, 6609] +NotebookOutlinePosition[ 301305, 6624] +CellTagsIndexPosition[ 301262, 6621] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ +Cell["X. Jimenez 2018-2019", "Text", + CellChangeTimes->{{3.7609405674849777`*^9, + 3.7609405756938066`*^9}},ExpressionUUID->"607aa170-a31b-46bf-853d-\ +1323334df302"], + +Cell["\<\ +* This project aims to check the consistency between f(R) and ST tensor \ +theories of gravitation and resolve the discussions of Capozziello e Doneva \ +2014. I pay some special attention to: + (1) Equivalence between theories. + (2) Jordan-Frame vs Einstein-Frame equivalence. + (3) Quadratic potential or \[Alpha]R^2 model. \ +\>", "Text", + CellChangeTimes->{{3.758768871557208*^9, 3.758768999937339*^9}, { + 3.75876905025945*^9, 3.7587690974982243`*^9}, {3.758769143978691*^9, + 3.758769519940847*^9}, {3.760940602584754*^9, + 3.760940717894684*^9}},ExpressionUUID->"95f42b5d-055c-4dbf-84a0-\ +f12b50c01fc0"], + +Cell[BoxData[ + RowBox[{"Quit", "[", "]"}]], "Input", + CellChangeTimes->{{3.7663070407935143`*^9, 3.766307042502633*^9}}, + CellLabel-> + "In[122]:=",ExpressionUUID->"48ed9086-116a-42f0-a5b0-679401b983a5"], + +Cell[CellGroupData[{ + +Cell["Initial Setup", "Section", + CellChangeTimes->{{3.718528424190176*^9, 3.718528426701091*^9}, { + 3.7240711398211823`*^9, + 3.7240711666098757`*^9}},ExpressionUUID->"359dd1e5-ec51-45ba-a423-\ +1546b165ab5d"], + +Cell[CellGroupData[{ + +Cell["Setup", "Subsection", + CellChangeTimes->{{3.75221700962776*^9, + 3.752217010527308*^9}},ExpressionUUID->"362c3668-1de1-490e-a5cb-\ +8a4e0ce170c9"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"export", "=", "\"\</Users/xisco/Desktop/\>\""}], ";"}]], "Code", + CellChangeTimes->{{3.752217011840868*^9, 3.752217042166354*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"51ee50b1-943d-429a-8a98-22f1b5129b56"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Load Packages", "Subsection", + CellChangeTimes->{{3.718440602298374*^9, 3.718440612890011*^9}, { + 3.724070943686637*^9, 3.7240709467569942`*^9}, {3.724071158924836*^9, + 3.724071161955201*^9}},ExpressionUUID->"b4cafe99-5c10-49df-bec1-\ +70b77254830c"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"SetDirectory", "[", + RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ";"}], "\n", + RowBox[{"<<", "GRTensor.m"}], "\n", + RowBox[{"<<", "DataFits.m"}], "\[IndentingNewLine]", + RowBox[{"<<", "BBHReduce.m"}]}], "Code", + CellChangeTimes->{{3.717797732347674*^9, 3.717797736369295*^9}, { + 3.718438450500967*^9, 3.7184384580144033`*^9}, {3.732600523189742*^9, + 3.732600525554344*^9}, {3.7326005770224867`*^9, 3.7326005795135403`*^9}, { + 3.732600632606847*^9, 3.7326006346108913`*^9}, {3.732975019494709*^9, + 3.7329750214290047`*^9}, {3.751961842434617*^9, 3.751961845986887*^9}, { + 3.799749402058936*^9, + 3.7997494404407387`*^9}},ExpressionUUID->"28d9c623-2f35-4b48-afc0-\ +bf102c8402c2"], + +Cell[BoxData[ + TemplateBox[{ + "General","obspkg", + "\"\\!\\(\\*RowBox[{\\\"\\\\\\\"ErrorBarPlots`\\\\\\\"\\\"}]\\) is now \ +obsolete. The legacy version being loaded may conflict with current \ +functionality. See the Compatibility Guide for updating information.\"",2,2,1, + 19646905974076635359,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{ + 3.746871497164113*^9, 3.746944059800922*^9, 3.74712138071828*^9, + 3.747134186310419*^9, 3.7473688319422607`*^9, 3.747376183699349*^9, + 3.747473802944572*^9, 3.747474048972699*^9, 3.747546261856346*^9, + 3.747546394114792*^9, 3.7475593094546947`*^9, 3.747732527459448*^9, + 3.747892087224388*^9, 3.747910344260313*^9, 3.747911568379302*^9, + 3.747923713830304*^9, 3.747991189566991*^9, 3.7517843937639503`*^9, + 3.7518748583719482`*^9, 3.751886222597384*^9, 3.751956543545588*^9, + 3.751961852524171*^9, 3.751961942787665*^9, 3.751962209623268*^9, { + 3.75196237287875*^9, 3.751962402126321*^9}, 3.751962673678767*^9, + 3.751969313048992*^9, 3.7519697119842377`*^9, 3.751969757701708*^9, + 3.75197048844687*^9, 3.7519706129432373`*^9, 3.751971001409425*^9, + 3.7519730878234777`*^9, 3.751973146470367*^9, 3.751973913594076*^9, + 3.751974485494672*^9, 3.751978855310112*^9, 3.7519794634315042`*^9, + 3.75198166320862*^9, 3.752030867890514*^9, 3.75221698532723*^9, + 3.752376658401277*^9, 3.752506278026145*^9, 3.7529111718602743`*^9, + 3.752921764832097*^9, 3.753098536817984*^9, 3.753166904703668*^9, + 3.753426295460019*^9, 3.753572892814867*^9, 3.754116608553512*^9, + 3.754206559452672*^9, 3.756182731909524*^9, 3.756451314769829*^9, + 3.756626469711071*^9, 3.756959932365418*^9, 3.756960131972227*^9, { + 3.7569601767244883`*^9, 3.7569601939815073`*^9}, 3.7569610057191553`*^9, + 3.7569614536193666`*^9, 3.756962303073658*^9, 3.757043119731422*^9, + 3.757043188334258*^9, 3.757043248249723*^9, 3.757319611976071*^9, + 3.757461699151339*^9, 3.757660487828343*^9, 3.757679967535243*^9, + 3.75776605632617*^9, 3.757820060297592*^9, 3.75785149669128*^9, + 3.757853797380558*^9, 3.757908034017777*^9, 3.7579089005771503`*^9, + 3.757998159381197*^9, 3.7582663781974173`*^9, 3.758365537558854*^9, + 3.758366413917959*^9, 3.75837215665099*^9, 3.758431423248199*^9, + 3.758540986686861*^9, 3.758602040016787*^9, 3.758602095050407*^9, + 3.758651581996928*^9, 3.758666782398465*^9, 3.7586685252425747`*^9, + 3.758670202724865*^9, 3.758687890124547*^9, 3.758701194286756*^9, + 3.758710369847115*^9, 3.758713849544067*^9, 3.7587212716324883`*^9, + 3.7587751364344397`*^9, 3.758852130375214*^9, 3.758881493626958*^9, + 3.758959635240171*^9, 3.759034906043292*^9, 3.759120386498761*^9, + 3.759154249900867*^9, 3.759319506862368*^9, 3.759376098456099*^9, + 3.759469263137828*^9, 3.759535601220241*^9, 3.759540507232005*^9, + 3.759756860602212*^9, 3.759763393275269*^9, 3.759764020618627*^9, + 3.759815648290007*^9, 3.759905232729649*^9, 3.759981025070592*^9, + 3.760077720959243*^9, 3.760190967592877*^9, 3.7602392007338037`*^9, + 3.760335124545803*^9, 3.760425694176944*^9, 3.760880726954033*^9, + 3.760940990204431*^9, 3.760954293147449*^9, 3.761047287703438*^9, + 3.761054538702588*^9, 3.761058675535554*^9, 3.7611061027309113`*^9, + 3.761137593403412*^9, 3.7611917750059757`*^9, 3.761281490282139*^9, + 3.7613220057975388`*^9, 3.761323421051333*^9, 3.7613661074429607`*^9, + 3.7613764911778927`*^9, 3.7613769300914793`*^9, 3.7614535683893843`*^9, + 3.761473502084236*^9, 3.761489716693668*^9, 3.761534867939049*^9, + 3.761544246540146*^9, 3.76162760543044*^9, 3.761720344808772*^9, + 3.761892761425956*^9, 3.761893462486437*^9, 3.761946349390009*^9, + 3.763206644407735*^9, 3.7632117296387568`*^9, 3.763238000472332*^9, + 3.763446163685577*^9, 3.766307054494019*^9, 3.7997286540993147`*^9, + 3.79972939055659*^9, 3.79974113328829*^9, 3.799741450768428*^9, + 3.7997430721582537`*^9, 3.799743745274967*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"3a083d41-624c-433b-8f6c-7554d496da5d"], + +Cell[BoxData[ + TemplateBox[{ + "Get","noopen", + "\"Cannot open \ +\\!\\(\\*RowBox[{\\\"\\\\\\\"NinjaBase`\\\\\\\"\\\"}]\\).\"",2,3,2, + 19646905974076635359,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{ + 3.746871497164113*^9, 3.746944059800922*^9, 3.74712138071828*^9, + 3.747134186310419*^9, 3.7473688319422607`*^9, 3.747376183699349*^9, + 3.747473802944572*^9, 3.747474048972699*^9, 3.747546261856346*^9, + 3.747546394114792*^9, 3.7475593094546947`*^9, 3.747732527459448*^9, + 3.747892087224388*^9, 3.747910344260313*^9, 3.747911568379302*^9, + 3.747923713830304*^9, 3.747991189566991*^9, 3.7517843937639503`*^9, + 3.7518748583719482`*^9, 3.751886222597384*^9, 3.751956543545588*^9, + 3.751961852524171*^9, 3.751961942787665*^9, 3.751962209623268*^9, { + 3.75196237287875*^9, 3.751962402126321*^9}, 3.751962673678767*^9, + 3.751969313048992*^9, 3.7519697119842377`*^9, 3.751969757701708*^9, + 3.75197048844687*^9, 3.7519706129432373`*^9, 3.751971001409425*^9, + 3.7519730878234777`*^9, 3.751973146470367*^9, 3.751973913594076*^9, + 3.751974485494672*^9, 3.751978855310112*^9, 3.7519794634315042`*^9, + 3.75198166320862*^9, 3.752030867890514*^9, 3.75221698532723*^9, + 3.752376658401277*^9, 3.752506278026145*^9, 3.7529111718602743`*^9, + 3.752921764832097*^9, 3.753098536817984*^9, 3.753166904703668*^9, + 3.753426295460019*^9, 3.753572892814867*^9, 3.754116608553512*^9, + 3.754206559452672*^9, 3.756182731909524*^9, 3.756451314769829*^9, + 3.756626469711071*^9, 3.756959932365418*^9, 3.756960131972227*^9, { + 3.7569601767244883`*^9, 3.7569601939815073`*^9}, 3.7569610057191553`*^9, + 3.7569614536193666`*^9, 3.756962303073658*^9, 3.757043119731422*^9, + 3.757043188334258*^9, 3.757043248249723*^9, 3.757319611976071*^9, + 3.757461699151339*^9, 3.757660487828343*^9, 3.757679967535243*^9, + 3.75776605632617*^9, 3.757820060297592*^9, 3.75785149669128*^9, + 3.757853797380558*^9, 3.757908034017777*^9, 3.7579089005771503`*^9, + 3.757998159381197*^9, 3.7582663781974173`*^9, 3.758365537558854*^9, + 3.758366413917959*^9, 3.75837215665099*^9, 3.758431423248199*^9, + 3.758540986686861*^9, 3.758602040016787*^9, 3.758602095050407*^9, + 3.758651581996928*^9, 3.758666782398465*^9, 3.7586685252425747`*^9, + 3.758670202724865*^9, 3.758687890124547*^9, 3.758701194286756*^9, + 3.758710369847115*^9, 3.758713849544067*^9, 3.7587212716324883`*^9, + 3.7587751364344397`*^9, 3.758852130375214*^9, 3.758881493626958*^9, + 3.758959635240171*^9, 3.759034906043292*^9, 3.759120386498761*^9, + 3.759154249900867*^9, 3.759319506862368*^9, 3.759376098456099*^9, + 3.759469263137828*^9, 3.759535601220241*^9, 3.759540507232005*^9, + 3.759756860602212*^9, 3.759763393275269*^9, 3.759764020618627*^9, + 3.759815648290007*^9, 3.759905232729649*^9, 3.759981025070592*^9, + 3.760077720959243*^9, 3.760190967592877*^9, 3.7602392007338037`*^9, + 3.760335124545803*^9, 3.760425694176944*^9, 3.760880726954033*^9, + 3.760940990204431*^9, 3.760954293147449*^9, 3.761047287703438*^9, + 3.761054538702588*^9, 3.761058675535554*^9, 3.7611061027309113`*^9, + 3.761137593403412*^9, 3.7611917750059757`*^9, 3.761281490282139*^9, + 3.7613220057975388`*^9, 3.761323421051333*^9, 3.7613661074429607`*^9, + 3.7613764911778927`*^9, 3.7613769300914793`*^9, 3.7614535683893843`*^9, + 3.761473502084236*^9, 3.761489716693668*^9, 3.761534867939049*^9, + 3.761544246540146*^9, 3.76162760543044*^9, 3.761720344808772*^9, + 3.761892761425956*^9, 3.761893462486437*^9, 3.761946349390009*^9, + 3.763206644407735*^9, 3.7632117296387568`*^9, 3.763238000472332*^9, + 3.763446163685577*^9, 3.766307054494019*^9, 3.7997286540993147`*^9, + 3.79972939055659*^9, 3.79974113328829*^9, 3.799741450768428*^9, + 3.7997430721582537`*^9, 3.799743746138856*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"53368634-5397-480e-86b4-81420dba9e61"], + +Cell[BoxData[ + TemplateBox[{ + "Needs","nocont", + "\"Context \\!\\(\\*RowBox[{\\\"\\\\\\\"NinjaBase`\\\\\\\"\\\"}]\\) was \ +not created when Needs was evaluated.\"",2,3,3,19646905974076635359,"Local"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{ + 3.746871497164113*^9, 3.746944059800922*^9, 3.74712138071828*^9, + 3.747134186310419*^9, 3.7473688319422607`*^9, 3.747376183699349*^9, + 3.747473802944572*^9, 3.747474048972699*^9, 3.747546261856346*^9, + 3.747546394114792*^9, 3.7475593094546947`*^9, 3.747732527459448*^9, + 3.747892087224388*^9, 3.747910344260313*^9, 3.747911568379302*^9, + 3.747923713830304*^9, 3.747991189566991*^9, 3.7517843937639503`*^9, + 3.7518748583719482`*^9, 3.751886222597384*^9, 3.751956543545588*^9, + 3.751961852524171*^9, 3.751961942787665*^9, 3.751962209623268*^9, { + 3.75196237287875*^9, 3.751962402126321*^9}, 3.751962673678767*^9, + 3.751969313048992*^9, 3.7519697119842377`*^9, 3.751969757701708*^9, + 3.75197048844687*^9, 3.7519706129432373`*^9, 3.751971001409425*^9, + 3.7519730878234777`*^9, 3.751973146470367*^9, 3.751973913594076*^9, + 3.751974485494672*^9, 3.751978855310112*^9, 3.7519794634315042`*^9, + 3.75198166320862*^9, 3.752030867890514*^9, 3.75221698532723*^9, + 3.752376658401277*^9, 3.752506278026145*^9, 3.7529111718602743`*^9, + 3.752921764832097*^9, 3.753098536817984*^9, 3.753166904703668*^9, + 3.753426295460019*^9, 3.753572892814867*^9, 3.754116608553512*^9, + 3.754206559452672*^9, 3.756182731909524*^9, 3.756451314769829*^9, + 3.756626469711071*^9, 3.756959932365418*^9, 3.756960131972227*^9, { + 3.7569601767244883`*^9, 3.7569601939815073`*^9}, 3.7569610057191553`*^9, + 3.7569614536193666`*^9, 3.756962303073658*^9, 3.757043119731422*^9, + 3.757043188334258*^9, 3.757043248249723*^9, 3.757319611976071*^9, + 3.757461699151339*^9, 3.757660487828343*^9, 3.757679967535243*^9, + 3.75776605632617*^9, 3.757820060297592*^9, 3.75785149669128*^9, + 3.757853797380558*^9, 3.757908034017777*^9, 3.7579089005771503`*^9, + 3.757998159381197*^9, 3.7582663781974173`*^9, 3.758365537558854*^9, + 3.758366413917959*^9, 3.75837215665099*^9, 3.758431423248199*^9, + 3.758540986686861*^9, 3.758602040016787*^9, 3.758602095050407*^9, + 3.758651581996928*^9, 3.758666782398465*^9, 3.7586685252425747`*^9, + 3.758670202724865*^9, 3.758687890124547*^9, 3.758701194286756*^9, + 3.758710369847115*^9, 3.758713849544067*^9, 3.7587212716324883`*^9, + 3.7587751364344397`*^9, 3.758852130375214*^9, 3.758881493626958*^9, + 3.758959635240171*^9, 3.759034906043292*^9, 3.759120386498761*^9, + 3.759154249900867*^9, 3.759319506862368*^9, 3.759376098456099*^9, + 3.759469263137828*^9, 3.759535601220241*^9, 3.759540507232005*^9, + 3.759756860602212*^9, 3.759763393275269*^9, 3.759764020618627*^9, + 3.759815648290007*^9, 3.759905232729649*^9, 3.759981025070592*^9, + 3.760077720959243*^9, 3.760190967592877*^9, 3.7602392007338037`*^9, + 3.760335124545803*^9, 3.760425694176944*^9, 3.760880726954033*^9, + 3.760940990204431*^9, 3.760954293147449*^9, 3.761047287703438*^9, + 3.761054538702588*^9, 3.761058675535554*^9, 3.7611061027309113`*^9, + 3.761137593403412*^9, 3.7611917750059757`*^9, 3.761281490282139*^9, + 3.7613220057975388`*^9, 3.761323421051333*^9, 3.7613661074429607`*^9, + 3.7613764911778927`*^9, 3.7613769300914793`*^9, 3.7614535683893843`*^9, + 3.761473502084236*^9, 3.761489716693668*^9, 3.761534867939049*^9, + 3.761544246540146*^9, 3.76162760543044*^9, 3.761720344808772*^9, + 3.761892761425956*^9, 3.761893462486437*^9, 3.761946349390009*^9, + 3.763206644407735*^9, 3.7632117296387568`*^9, 3.763238000472332*^9, + 3.763446163685577*^9, 3.766307054494019*^9, 3.7997286540993147`*^9, + 3.79972939055659*^9, 3.79974113328829*^9, 3.799741450768428*^9, + 3.7997430721582537`*^9, 3.7997437461631403`*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"d23e9f49-eabe-49e7-81c0-b72f5919b75a"], + +Cell[BoxData[ + TemplateBox[{ + "AtomsList","shdw", + "\"Symbol \\!\\(\\*RowBox[{\\\"\\\\\\\"AtomsList\\\\\\\"\\\"}]\\) appears \ +in multiple contexts \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"\\\\\\\"GRTensor`\\\\\\\"\\\", \\\",\\\", \\\"\\\\\\\"DataFits`\\\ +\\\\\"\\\"}], \\\"}\\\"}]\\); definitions in context \ +\\!\\(\\*RowBox[{\\\"\\\\\\\"GRTensor`\\\\\\\"\\\"}]\\) may shadow or be \ +shadowed by other definitions.\"",2,4,4,19646905974076635359,"Local", + "GRTensor`AtomsList"}, + "MessageTemplate2"]], "Message", "MSG", + CellChangeTimes->{ + 3.746871497164113*^9, 3.746944059800922*^9, 3.74712138071828*^9, + 3.747134186310419*^9, 3.7473688319422607`*^9, 3.747376183699349*^9, + 3.747473802944572*^9, 3.747474048972699*^9, 3.747546261856346*^9, + 3.747546394114792*^9, 3.7475593094546947`*^9, 3.747732527459448*^9, + 3.747892087224388*^9, 3.747910344260313*^9, 3.747911568379302*^9, + 3.747923713830304*^9, 3.747991189566991*^9, 3.7517843937639503`*^9, + 3.7518748583719482`*^9, 3.751886222597384*^9, 3.751956543545588*^9, + 3.751961852524171*^9, 3.751961942787665*^9, 3.751962209623268*^9, { + 3.75196237287875*^9, 3.751962402126321*^9}, 3.751962673678767*^9, + 3.751969313048992*^9, 3.7519697119842377`*^9, 3.751969757701708*^9, + 3.75197048844687*^9, 3.7519706129432373`*^9, 3.751971001409425*^9, + 3.7519730878234777`*^9, 3.751973146470367*^9, 3.751973913594076*^9, + 3.751974485494672*^9, 3.751978855310112*^9, 3.7519794634315042`*^9, + 3.75198166320862*^9, 3.752030867890514*^9, 3.75221698532723*^9, + 3.752376658401277*^9, 3.752506278026145*^9, 3.7529111718602743`*^9, + 3.752921764832097*^9, 3.753098536817984*^9, 3.753166904703668*^9, + 3.753426295460019*^9, 3.753572892814867*^9, 3.754116608553512*^9, + 3.754206559452672*^9, 3.756182731909524*^9, 3.756451314769829*^9, + 3.756626469711071*^9, 3.756959932365418*^9, 3.756960131972227*^9, { + 3.7569601767244883`*^9, 3.7569601939815073`*^9}, 3.7569610057191553`*^9, + 3.7569614536193666`*^9, 3.756962303073658*^9, 3.757043119731422*^9, + 3.757043188334258*^9, 3.757043248249723*^9, 3.757319611976071*^9, + 3.757461699151339*^9, 3.757660487828343*^9, 3.757679967535243*^9, + 3.75776605632617*^9, 3.757820060297592*^9, 3.75785149669128*^9, + 3.757853797380558*^9, 3.757908034017777*^9, 3.7579089005771503`*^9, + 3.757998159381197*^9, 3.7582663781974173`*^9, 3.758365537558854*^9, + 3.758366413917959*^9, 3.75837215665099*^9, 3.758431423248199*^9, + 3.758540986686861*^9, 3.758602040016787*^9, 3.758602095050407*^9, + 3.758651581996928*^9, 3.758666782398465*^9, 3.7586685252425747`*^9, + 3.758670202724865*^9, 3.758687890124547*^9, 3.758701194286756*^9, + 3.758710369847115*^9, 3.758713849544067*^9, 3.7587212716324883`*^9, + 3.7587751364344397`*^9, 3.758852130375214*^9, 3.758881493626958*^9, + 3.758959635240171*^9, 3.759034906043292*^9, 3.759120386498761*^9, + 3.759154249900867*^9, 3.759319506862368*^9, 3.759376098456099*^9, + 3.759469263137828*^9, 3.759535601220241*^9, 3.759540507232005*^9, + 3.759756860602212*^9, 3.759763393275269*^9, 3.759764020618627*^9, + 3.759815648290007*^9, 3.759905232729649*^9, 3.759981025070592*^9, + 3.760077720959243*^9, 3.760190967592877*^9, 3.7602392007338037`*^9, + 3.760335124545803*^9, 3.760425694176944*^9, 3.760880726954033*^9, + 3.760940990204431*^9, 3.760954293147449*^9, 3.761047287703438*^9, + 3.761054538702588*^9, 3.761058675535554*^9, 3.7611061027309113`*^9, + 3.761137593403412*^9, 3.7611917750059757`*^9, 3.761281490282139*^9, + 3.7613220057975388`*^9, 3.761323421051333*^9, 3.7613661074429607`*^9, + 3.7613764911778927`*^9, 3.7613769300914793`*^9, 3.7614535683893843`*^9, + 3.761473502084236*^9, 3.761489716693668*^9, 3.761534867939049*^9, + 3.761544246540146*^9, 3.76162760543044*^9, 3.761720344808772*^9, + 3.761892761425956*^9, 3.761893462486437*^9, 3.761946349390009*^9, + 3.763206644407735*^9, 3.7632117296387568`*^9, 3.763238000472332*^9, + 3.763446163685577*^9, 3.766307054494019*^9, 3.7997286540993147`*^9, + 3.79972939055659*^9, 3.79974113328829*^9, 3.799741450768428*^9, + 3.7997430721582537`*^9, 3.799743746212335*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"eef537de-e7c0-4112-ab75-d5eb954989ae"], + +Cell[BoxData[ + TemplateBox[{ + "InterpolationDomain","shdw", + "\"Symbol \ +\\!\\(\\*RowBox[{\\\"\\\\\\\"InterpolationDomain\\\\\\\"\\\"}]\\) appears in \ +multiple contexts \\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"\\\\\\\"GRTensor`\\\ +\\\\\"\\\", \\\",\\\", \\\"\\\\\\\"NRTimeSeries`\\\\\\\"\\\"}], \ +\\\"}\\\"}]\\); definitions in context \\!\\(\\*RowBox[{\\\"\\\\\\\"GRTensor`\ +\\\\\\\"\\\"}]\\) may shadow or be shadowed by other definitions.\"",2,4,5, + 19646905974076635359,"Local","GRTensor`InterpolationDomain"}, + "MessageTemplate2"]], "Message", "MSG", + CellChangeTimes->{ + 3.746871497164113*^9, 3.746944059800922*^9, 3.74712138071828*^9, + 3.747134186310419*^9, 3.7473688319422607`*^9, 3.747376183699349*^9, + 3.747473802944572*^9, 3.747474048972699*^9, 3.747546261856346*^9, + 3.747546394114792*^9, 3.7475593094546947`*^9, 3.747732527459448*^9, + 3.747892087224388*^9, 3.747910344260313*^9, 3.747911568379302*^9, + 3.747923713830304*^9, 3.747991189566991*^9, 3.7517843937639503`*^9, + 3.7518748583719482`*^9, 3.751886222597384*^9, 3.751956543545588*^9, + 3.751961852524171*^9, 3.751961942787665*^9, 3.751962209623268*^9, { + 3.75196237287875*^9, 3.751962402126321*^9}, 3.751962673678767*^9, + 3.751969313048992*^9, 3.7519697119842377`*^9, 3.751969757701708*^9, + 3.75197048844687*^9, 3.7519706129432373`*^9, 3.751971001409425*^9, + 3.7519730878234777`*^9, 3.751973146470367*^9, 3.751973913594076*^9, + 3.751974485494672*^9, 3.751978855310112*^9, 3.7519794634315042`*^9, + 3.75198166320862*^9, 3.752030867890514*^9, 3.75221698532723*^9, + 3.752376658401277*^9, 3.752506278026145*^9, 3.7529111718602743`*^9, + 3.752921764832097*^9, 3.753098536817984*^9, 3.753166904703668*^9, + 3.753426295460019*^9, 3.753572892814867*^9, 3.754116608553512*^9, + 3.754206559452672*^9, 3.756182731909524*^9, 3.756451314769829*^9, + 3.756626469711071*^9, 3.756959932365418*^9, 3.756960131972227*^9, { + 3.7569601767244883`*^9, 3.7569601939815073`*^9}, 3.7569610057191553`*^9, + 3.7569614536193666`*^9, 3.756962303073658*^9, 3.757043119731422*^9, + 3.757043188334258*^9, 3.757043248249723*^9, 3.757319611976071*^9, + 3.757461699151339*^9, 3.757660487828343*^9, 3.757679967535243*^9, + 3.75776605632617*^9, 3.757820060297592*^9, 3.75785149669128*^9, + 3.757853797380558*^9, 3.757908034017777*^9, 3.7579089005771503`*^9, + 3.757998159381197*^9, 3.7582663781974173`*^9, 3.758365537558854*^9, + 3.758366413917959*^9, 3.75837215665099*^9, 3.758431423248199*^9, + 3.758540986686861*^9, 3.758602040016787*^9, 3.758602095050407*^9, + 3.758651581996928*^9, 3.758666782398465*^9, 3.7586685252425747`*^9, + 3.758670202724865*^9, 3.758687890124547*^9, 3.758701194286756*^9, + 3.758710369847115*^9, 3.758713849544067*^9, 3.7587212716324883`*^9, + 3.7587751364344397`*^9, 3.758852130375214*^9, 3.758881493626958*^9, + 3.758959635240171*^9, 3.759034906043292*^9, 3.759120386498761*^9, + 3.759154249900867*^9, 3.759319506862368*^9, 3.759376098456099*^9, + 3.759469263137828*^9, 3.759535601220241*^9, 3.759540507232005*^9, + 3.759756860602212*^9, 3.759763393275269*^9, 3.759764020618627*^9, + 3.759815648290007*^9, 3.759905232729649*^9, 3.759981025070592*^9, + 3.760077720959243*^9, 3.760190967592877*^9, 3.7602392007338037`*^9, + 3.760335124545803*^9, 3.760425694176944*^9, 3.760880726954033*^9, + 3.760940990204431*^9, 3.760954293147449*^9, 3.761047287703438*^9, + 3.761054538702588*^9, 3.761058675535554*^9, 3.7611061027309113`*^9, + 3.761137593403412*^9, 3.7611917750059757`*^9, 3.761281490282139*^9, + 3.7613220057975388`*^9, 3.761323421051333*^9, 3.7613661074429607`*^9, + 3.7613764911778927`*^9, 3.7613769300914793`*^9, 3.7614535683893843`*^9, + 3.761473502084236*^9, 3.761489716693668*^9, 3.761534867939049*^9, + 3.761544246540146*^9, 3.76162760543044*^9, 3.761720344808772*^9, + 3.761892761425956*^9, 3.761893462486437*^9, 3.761946349390009*^9, + 3.763206644407735*^9, 3.7632117296387568`*^9, 3.763238000472332*^9, + 3.763446163685577*^9, 3.766307054494019*^9, 3.7997286540993147`*^9, + 3.79972939055659*^9, 3.79974113328829*^9, 3.799741450768428*^9, + 3.7997430721582537`*^9, 3.799743746219078*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"b5bdc1f5-72c3-480e-bccd-59fb8caa8275"], + +Cell[BoxData[ + TemplateBox[{ + "TakeColumn","shdw", + "\"Symbol \\!\\(\\*RowBox[{\\\"\\\\\\\"TakeColumn\\\\\\\"\\\"}]\\) appears \ +in multiple contexts \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"\\\\\\\"GRTensor`\\\\\\\"\\\", \\\",\\\", \ +\\\"\\\\\\\"NRLists`\\\\\\\"\\\"}], \\\"}\\\"}]\\); definitions in context \ +\\!\\(\\*RowBox[{\\\"\\\\\\\"GRTensor`\\\\\\\"\\\"}]\\) may shadow or be \ +shadowed by other definitions.\"",2,4,6,19646905974076635359,"Local", + "GRTensor`TakeColumn"}, + "MessageTemplate2"]], "Message", "MSG", + CellChangeTimes->{ + 3.746871497164113*^9, 3.746944059800922*^9, 3.74712138071828*^9, + 3.747134186310419*^9, 3.7473688319422607`*^9, 3.747376183699349*^9, + 3.747473802944572*^9, 3.747474048972699*^9, 3.747546261856346*^9, + 3.747546394114792*^9, 3.7475593094546947`*^9, 3.747732527459448*^9, + 3.747892087224388*^9, 3.747910344260313*^9, 3.747911568379302*^9, + 3.747923713830304*^9, 3.747991189566991*^9, 3.7517843937639503`*^9, + 3.7518748583719482`*^9, 3.751886222597384*^9, 3.751956543545588*^9, + 3.751961852524171*^9, 3.751961942787665*^9, 3.751962209623268*^9, { + 3.75196237287875*^9, 3.751962402126321*^9}, 3.751962673678767*^9, + 3.751969313048992*^9, 3.7519697119842377`*^9, 3.751969757701708*^9, + 3.75197048844687*^9, 3.7519706129432373`*^9, 3.751971001409425*^9, + 3.7519730878234777`*^9, 3.751973146470367*^9, 3.751973913594076*^9, + 3.751974485494672*^9, 3.751978855310112*^9, 3.7519794634315042`*^9, + 3.75198166320862*^9, 3.752030867890514*^9, 3.75221698532723*^9, + 3.752376658401277*^9, 3.752506278026145*^9, 3.7529111718602743`*^9, + 3.752921764832097*^9, 3.753098536817984*^9, 3.753166904703668*^9, + 3.753426295460019*^9, 3.753572892814867*^9, 3.754116608553512*^9, + 3.754206559452672*^9, 3.756182731909524*^9, 3.756451314769829*^9, + 3.756626469711071*^9, 3.756959932365418*^9, 3.756960131972227*^9, { + 3.7569601767244883`*^9, 3.7569601939815073`*^9}, 3.7569610057191553`*^9, + 3.7569614536193666`*^9, 3.756962303073658*^9, 3.757043119731422*^9, + 3.757043188334258*^9, 3.757043248249723*^9, 3.757319611976071*^9, + 3.757461699151339*^9, 3.757660487828343*^9, 3.757679967535243*^9, + 3.75776605632617*^9, 3.757820060297592*^9, 3.75785149669128*^9, + 3.757853797380558*^9, 3.757908034017777*^9, 3.7579089005771503`*^9, + 3.757998159381197*^9, 3.7582663781974173`*^9, 3.758365537558854*^9, + 3.758366413917959*^9, 3.75837215665099*^9, 3.758431423248199*^9, + 3.758540986686861*^9, 3.758602040016787*^9, 3.758602095050407*^9, + 3.758651581996928*^9, 3.758666782398465*^9, 3.7586685252425747`*^9, + 3.758670202724865*^9, 3.758687890124547*^9, 3.758701194286756*^9, + 3.758710369847115*^9, 3.758713849544067*^9, 3.7587212716324883`*^9, + 3.7587751364344397`*^9, 3.758852130375214*^9, 3.758881493626958*^9, + 3.758959635240171*^9, 3.759034906043292*^9, 3.759120386498761*^9, + 3.759154249900867*^9, 3.759319506862368*^9, 3.759376098456099*^9, + 3.759469263137828*^9, 3.759535601220241*^9, 3.759540507232005*^9, + 3.759756860602212*^9, 3.759763393275269*^9, 3.759764020618627*^9, + 3.759815648290007*^9, 3.759905232729649*^9, 3.759981025070592*^9, + 3.760077720959243*^9, 3.760190967592877*^9, 3.7602392007338037`*^9, + 3.760335124545803*^9, 3.760425694176944*^9, 3.760880726954033*^9, + 3.760940990204431*^9, 3.760954293147449*^9, 3.761047287703438*^9, + 3.761054538702588*^9, 3.761058675535554*^9, 3.7611061027309113`*^9, + 3.761137593403412*^9, 3.7611917750059757`*^9, 3.761281490282139*^9, + 3.7613220057975388`*^9, 3.761323421051333*^9, 3.7613661074429607`*^9, + 3.7613764911778927`*^9, 3.7613769300914793`*^9, 3.7614535683893843`*^9, + 3.761473502084236*^9, 3.761489716693668*^9, 3.761534867939049*^9, + 3.761544246540146*^9, 3.76162760543044*^9, 3.761720344808772*^9, + 3.761892761425956*^9, 3.761893462486437*^9, 3.761946349390009*^9, + 3.763206644407735*^9, 3.7632117296387568`*^9, 3.763238000472332*^9, + 3.763446163685577*^9, 3.766307054494019*^9, 3.7997286540993147`*^9, + 3.79972939055659*^9, 3.79974113328829*^9, 3.799741450768428*^9, + 3.7997430721582537`*^9, 3.7997437462293253`*^9}, + CellLabel-> + "During evaluation of \ +In[2]:=",ExpressionUUID->"a7f5fd78-4a9d-4d3e-ba04-3b2dc7fa838e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"plotColors", "=", + RowBox[{"ColorData", "[", + RowBox[{"97", ",", "\"\<ColorList\>\""}], "]"}]}]], "Code", + CellChangeTimes->{{3.680081117951901*^9, 3.680081142740662*^9}, { + 3.682340182633325*^9, 3.6823401863136787`*^9}, {3.754026009116239*^9, + 3.754026010028365*^9}, {3.754135003572989*^9, 3.754135004024921*^9}}, + CellLabel->"In[5]:=",ExpressionUUID->"2038f51c-ef1d-478a-a6d8-12f5b4a73949"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.368417, 0.506779, 0.709798], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.24561133333333335`, 0.3378526666666667, 0.4731986666666667], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.368417, 0.506779, 0.709798]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.368417, 0.506779, 0.709798], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.880722, 0.611041, 0.142051], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.587148, 0.40736066666666665`, 0.09470066666666668], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.880722, 0.611041, 0.142051]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.880722, 0.611041, 0.142051], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.560181, 0.691569, 0.194885], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.37345400000000006`, 0.461046, 0.12992333333333334`], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.560181, 0.691569, 0.194885]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.560181, 0.691569, 0.194885], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.922526, 0.385626, 0.209179], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.6150173333333333, 0.25708400000000003`, 0.13945266666666667`], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.922526`", ",", "0.385626`", ",", "0.209179`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.922526, 0.385626, 0.209179]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.922526, 0.385626, 0.209179], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.528488, 0.470624, 0.701351], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.3523253333333333, 0.3137493333333333, 0.46756733333333333`], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.528488`", ",", "0.470624`", ",", "0.701351`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.528488, 0.470624, 0.701351]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.528488, 0.470624, 0.701351], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.772079, 0.431554, 0.102387], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.5147193333333333, 0.28770266666666666`, 0.06825800000000001], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.772079`", ",", "0.431554`", ",", "0.102387`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.772079, 0.431554, 0.102387]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.772079, 0.431554, 0.102387], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.363898, 0.618501, 0.782349], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[0.24259866666666668`, 0.412334, 0.521566], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.363898`", ",", "0.618501`", ",", "0.782349`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.363898, 0.618501, 0.782349]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.363898, 0.618501, 0.782349], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[1, 0.75, 0], RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[0.6666666666666666, 0.5, 0.], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"1", ",", "0.75`", ",", "0"}], "]"}], NumberMarks -> False]], + + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = RGBColor[1, 0.75, 0]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[1, 0.75, 0], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.647624, 0.37816, 0.614037], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.4317493333333333, 0.2521066666666667, 0.40935800000000006`], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.647624`", ",", "0.37816`", ",", "0.614037`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.647624, 0.37816, 0.614037]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.647624, 0.37816, 0.614037], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.571589, 0.586483, 0.], RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[0.38105933333333336`, 0.39098866666666665`, 0.], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.571589`", ",", "0.586483`", ",", "0.`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.571589, 0.586483, 0.]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.571589, 0.586483, 0.], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.915, 0.3325, 0.2125], RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.6100000000000001, 0.22166666666666668`, 0.14166666666666666`], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.915`", ",", "0.3325`", ",", "0.2125`"}], "]"}], + NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.915, 0.3325, 0.2125]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.915, 0.3325, 0.2125], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.2672148173956843, 0.34800444289592275`, 0.5666666666666667], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{ + "0.40082222609352647`", ",", "0.5220066643438841`", ",", "0.85`"}], + "]"}], NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.6485525936249404, 0.4144296347913687, 0.048907997212660946`], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{ + "0.9728288904374106`", ",", "0.621644452187053`", ",", + "0.07336199581899142`"}], "]"}], NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.4911884484706007, 0.23866666666666667`, 0.3353511049170246], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{ + "0.736782672705901`", ",", "0.358`", ",", "0.5030266573755369`"}], + "]"}], NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.736782672705901, 0.358, 0.5030266573755369]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.736782672705901, 0.358, 0.5030266573755369], + Editable->False, + Selectable->False], ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{ + {GrayLevel[0], RectangleBox[{0, 0}]}, + {GrayLevel[0], RectangleBox[{1, -1}]}, + {RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + RectangleBox[{0, -1}, {2, 1}]}}, + AspectRatio->1, + DefaultBaseStyle->"ColorSwatchGraphics", + Frame->True, + FrameStyle->RGBColor[ + 0.18684294025131137`, 0.4766666666666667, 0.2861392881649977], + FrameTicks->None, + ImageSize-> + Dynamic[{ + Automatic, + 1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}], + PlotRangePadding->None], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{ + "0.28026441037696703`", ",", "0.715`", ",", "0.4292089322474965`"}], + "]"}], NumberMarks -> False]], + Appearance->None, + BaseStyle->{}, + BaselinePosition->Baseline, + ButtonFunction:>With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], {0, {Left, Bottom}}, { + Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", "EvaluatorQuit"}]]]], + DefaultBaseStyle->{}, + Evaluator->Automatic, + Method->"Preemptive"], + RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], + Editable->False, + Selectable->False]}], "}"}]], "Output", + CellChangeTimes->{ + 3.727097220180834*^9, 3.727165406136064*^9, 3.727170455355414*^9, + 3.7271709245388727`*^9, 3.727172590213936*^9, 3.727592630152465*^9, + 3.727693498242694*^9, 3.727695338550645*^9, 3.727696635001389*^9, + 3.727759913641571*^9, 3.7277670751783524`*^9, 3.728108200234325*^9, + 3.728112400617313*^9, 3.728124110929863*^9, 3.72819316903913*^9, + 3.728198361180987*^9, 3.728199642915316*^9, 3.728211581045885*^9, + 3.72827749616315*^9, 3.728279646670288*^9, 3.731059008985858*^9, + 3.731110508308196*^9, 3.731132606569961*^9, 3.731135031686151*^9, + 3.731230895697863*^9, 3.7312368766308737`*^9, 3.7312998577657843`*^9, + 3.731734682961844*^9, 3.7326005162997627`*^9, 3.732975013246257*^9, + 3.7336534793504744`*^9, 3.733653907051045*^9, 3.7339715513192873`*^9, + 3.7340029414350357`*^9, 3.734142315765932*^9, 3.734147280721676*^9, + 3.734167933268949*^9, 3.734235604837109*^9, 3.734340068838314*^9, + 3.738213519491385*^9, 3.7382247959403353`*^9, 3.738227055529058*^9, + 3.7382302895522614`*^9, 3.7382337670476418`*^9, 3.73823540430514*^9, + 3.738237332866536*^9, 3.738243505384811*^9, 3.7382462878461857`*^9, + 3.738253071864264*^9, 3.7383647676435623`*^9, 3.7384184479988327`*^9, + 3.738428922378249*^9, 3.738440902115275*^9, 3.738442293762258*^9, + 3.738443357600539*^9, 3.738472753327837*^9, 3.739177876767317*^9, + 3.740268460713871*^9, 3.7409759732126913`*^9, 3.7468714915972567`*^9, + 3.746944054464114*^9, 3.747121378584075*^9, 3.747134182677744*^9, + 3.747368828067268*^9, 3.747376183576166*^9, 3.747473798524432*^9, + 3.7474740428603983`*^9, 3.7475462572238903`*^9, 3.747732522051242*^9, + 3.7479103397077913`*^9, 3.747911564241764*^9, 3.747923705804139*^9, + 3.747965057406329*^9, 3.7536761966110687`*^9, 3.753684429157813*^9, + 3.7537493350866423`*^9, 3.7537660944295197`*^9, 3.753772999489149*^9, + 3.7537868189688807`*^9, {3.754026012927826*^9, 3.754026022100127*^9}, + 3.754087830862124*^9, 3.754135006620284*^9, {3.75413623467811*^9, + 3.754136243645525*^9}, 3.757064251682585*^9, 3.7573196121504927`*^9, + 3.757461699357132*^9, 3.757660488083744*^9, 3.7576799677161427`*^9, + 3.757766056453404*^9, 3.757820060535585*^9, 3.7578514969598303`*^9, + 3.757853798125185*^9, 3.757908035205718*^9, 3.757908900724086*^9, + 3.7579981606040287`*^9, 3.758266378311586*^9, 3.7583655377612257`*^9, + 3.758366414058498*^9, 3.7583721570800667`*^9, 3.758431423479966*^9, + 3.7585409869727793`*^9, 3.75860204069872*^9, 3.758602095130332*^9, + 3.7586515822162457`*^9, 3.758666782563807*^9, 3.758668525363852*^9, + 3.758670202840665*^9, 3.758687890261368*^9, 3.7587011948075027`*^9, + 3.7587103704893208`*^9, 3.758713849884137*^9, 3.758721271775881*^9, + 3.758775136574479*^9, 3.758852130732922*^9, 3.7588814939153748`*^9, + 3.758959635589719*^9, 3.759034907038447*^9, 3.759120386749116*^9, + 3.759154250029001*^9, 3.759319507430985*^9, 3.759376098547329*^9, + 3.75946926341365*^9, 3.759535602179268*^9, 3.759540507441888*^9, + 3.7597568607380037`*^9, 3.759763393390538*^9, 3.759764020783905*^9, + 3.759815648420227*^9, 3.75990523297467*^9, 3.7599810255148163`*^9, + 3.760077721105369*^9, 3.760190967803336*^9, 3.7602392010651083`*^9, + 3.760335124935238*^9, 3.760425694376917*^9, 3.760880727072178*^9, + 3.760940990306239*^9, 3.760954295744516*^9, 3.7610472879670897`*^9, + 3.76105453876014*^9, 3.761058675761942*^9, 3.7611061029438133`*^9, + 3.761137593520192*^9, 3.7611917752924557`*^9, 3.7612814904942417`*^9, + 3.761322006119563*^9, 3.7613234212011423`*^9, 3.761366107658869*^9, { + 3.761376491490403*^9, 3.761376517448001*^9}, 3.7613769302027693`*^9, + 3.761453568579221*^9, 3.761473502182425*^9, 3.7614897168229733`*^9, + 3.7615348680697803`*^9, 3.7615442468980207`*^9, 3.7616276057955933`*^9, + 3.761720345028635*^9, 3.761892762022152*^9, 3.761893462757347*^9, + 3.761946349808724*^9, 3.763206647126134*^9, 3.76321172976406*^9, + 3.763238000582753*^9, 3.7634461637743883`*^9, 3.766307054673841*^9, + 3.799728659345296*^9, 3.799729391800663*^9, 3.7997411347610283`*^9, + 3.799741452062593*^9, 3.799743073419889*^9, 3.799743746456357*^9}, + CellLabel->"Out[5]=",ExpressionUUID->"f92f6d8d-3a3f-4fd9-8774-4ee9966c211a"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Dimensionless magnitudes", "Subsection", + CellChangeTimes->{{3.724071006662292*^9, + 3.724071035171988*^9}},ExpressionUUID->"35de4bd5-32a5-45fa-b33c-\ +c1c4fc79cc04"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"G", "=", + RowBox[{"6.67428", " ", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"c", "=", + RowBox[{"2.99792458", " ", + RowBox[{"10", "^", "10"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"m0", "=", + RowBox[{"1.989", " ", + RowBox[{"10", "^", "33"}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rg", "=", " ", + RowBox[{"G", " ", + RowBox[{"m0", "/", + RowBox[{"c", "^", "2"}]}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"P0", "=", + RowBox[{"m0", " ", + RowBox[{ + RowBox[{"c", "^", "2"}], "/", + RowBox[{"rg", "^", "3"}]}]}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]0", "=", + RowBox[{"m0", "/", + RowBox[{"rg", "^", "3"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"R0", "=", + RowBox[{"1", "/", + RowBox[{"rg", "^", "2"}]}]}], ";"}]}], "Code", + CellChangeTimes->{{3.7185222808128757`*^9, 3.718522283741341*^9}, + 3.718524118360667*^9, 3.719126253632967*^9, {3.719126395963193*^9, + 3.71912639669911*^9}, {3.724072460832786*^9, 3.724072467201078*^9}, { + 3.725084601527223*^9, 3.725084625197569*^9}, {3.7337367520460243`*^9, + 3.73373675229137*^9}, {3.7337368914027243`*^9, 3.7337369134723597`*^9}}, + CellLabel->"In[6]:=",ExpressionUUID->"a948f404-6fd9-4fe5-a838-380ebe7da944"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Load EoS (preconfig. SLy + Polytropic)", "Subsection", + CellChangeTimes->{{3.7576605212601843`*^9, + 3.7576605614797297`*^9}},ExpressionUUID->"50fb9a2d-d04b-4421-9e43-\ +ccbb4c1c0bd3"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"T", "=", + RowBox[{ + RowBox[{"3", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"plotleg", "=", "\"\<SLy\>\""}], ";"}], "\n", + RowBox[{ + RowBox[{"eqEoS", "=", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSFits", "[", "plotleg", "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]max", "=", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "->", + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], ",", "1"}], "}"}]}], "]"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pmax", "=", + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]max"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\<{pmax, \[Rho]max} = \>\"", " ", ",", + RowBox[{"{", + RowBox[{"pmax", ",", "\[Rho]max"}], "}"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", "0.00001"}], ";"}], "\n", + RowBox[{ + RowBox[{"listeos", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSFits", "[", "plotleg", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{"From\[Rho]To\[Epsilon]Fits", "[", "plotleg", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]int", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeos", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", "\[Rho]0", ")"}]}]}], "}"}]}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pint", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeos", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + ")"}]}]}], ";"}]}], "Code", + CellChangeTimes->{{3.727008422010909*^9, 3.7270086007439337`*^9}, { + 3.7270086877463408`*^9, 3.727008703493436*^9}, {3.731302268620392*^9, + 3.7313022792599497`*^9}, {3.7313027521692657`*^9, + 3.7313027544392147`*^9}, {3.731304314472582*^9, 3.731304441192816*^9}, { + 3.731735345613079*^9, 3.731735345742222*^9}, {3.734068252319124*^9, + 3.734068306806117*^9}, 3.734068678404808*^9, {3.73406871889307*^9, + 3.734068723770665*^9}, {3.734069036301003*^9, 3.734069045529524*^9}, { + 3.7340691459084682`*^9, 3.734069202515676*^9}, {3.73406935734336*^9, + 3.734069357759692*^9}, {3.734069857128277*^9, 3.73406988203631*^9}, { + 3.734074910315278*^9, 3.7340749234258127`*^9}, {3.7340939710774937`*^9, + 3.734093975122863*^9}, {3.734147256953299*^9, 3.734147273684791*^9}, { + 3.7341684959476833`*^9, 3.734168517218947*^9}, 3.734177263730288*^9, + 3.734180727893869*^9, {3.7343432062647667`*^9, 3.7343433144394197`*^9}, { + 3.7343434520066442`*^9, 3.734343457260149*^9}, {3.738227138499681*^9, + 3.7382271419792624`*^9}, {3.7383672260418673`*^9, 3.738367226166401*^9}, { + 3.738367511724197*^9, 3.738367511777093*^9}, 3.738422055821927*^9, + 3.750991396075021*^9, {3.751607932618657*^9, 3.751607933958827*^9}, { + 3.751608033132338*^9, 3.751608042127693*^9}, {3.751970651517004*^9, + 3.751970687962496*^9}, {3.751971012291362*^9, 3.7519710290350523`*^9}, { + 3.751971151475252*^9, 3.7519711521238823`*^9}, 3.7519713071402197`*^9, { + 3.751973792060257*^9, 3.751973797895812*^9}, {3.751973947316868*^9, + 3.751973948893642*^9}, {3.751978520888773*^9, 3.751978522452734*^9}, { + 3.752911182797737*^9, 3.7529111834029713`*^9}, {3.756792269346093*^9, + 3.756792281031231*^9}, 3.757660566742996*^9, {3.760426018088688*^9, + 3.760426018299608*^9}}, + CellLabel->"In[13]:=",ExpressionUUID->"1ad43db6-9498-4d09-bd75-e999ffd7c57c"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"{pmax, \[Rho]max} = \"\>", "\[InvisibleSpace]", + RowBox[{"{", + RowBox[{"0.0006892725464943219`", ",", "0.0020678176394827515`"}], "}"}]}], + SequenceForm[ + "{pmax, \[Rho]max} = ", {0.0006892725464943219, 0.0020678176394827515`}], + Editable->False]], "Print", + CellChangeTimes->{ + 3.757660529234078*^9, 3.757679967888996*^9, 3.757766056773499*^9, + 3.7578200607519283`*^9, 3.757851497093688*^9, 3.7578537984667997`*^9, + 3.7579080353323936`*^9, 3.757908900988624*^9, 3.757998160802103*^9, + 3.758266378492299*^9, 3.758365540420885*^9, 3.7583664150113792`*^9, + 3.7583721596772118`*^9, 3.758431423712782*^9, 3.758540987149208*^9, + 3.75860204085555*^9, 3.75860209522989*^9, 3.758651582391406*^9, + 3.758666782845837*^9, 3.758668525610322*^9, 3.758670203003289*^9, + 3.7586878905646353`*^9, 3.758701195151792*^9, 3.7587103709199142`*^9, + 3.7587212720755672`*^9, 3.758775136800386*^9, 3.758881494143491*^9, + 3.7589596359003153`*^9, 3.759034908591649*^9, 3.759120387006995*^9, + 3.759319507917431*^9, 3.759376099014728*^9, 3.7594692636487503`*^9, + 3.759535602400783*^9, 3.759563262847967*^9, 3.759756860963026*^9, + 3.7597633935174093`*^9, {3.759764000164843*^9, 3.759764021089529*^9}, + 3.7598156485663033`*^9, 3.759905233253778*^9, 3.759981025731043*^9, + 3.7600777214056168`*^9, 3.760190968039214*^9, 3.760239201350065*^9, + 3.7603351251555347`*^9, 3.760425695440864*^9, 3.760426018906541*^9, + 3.7608807272358923`*^9, 3.76094099055516*^9, 3.760954295849353*^9, + 3.761047288189683*^9, 3.761054538858423*^9, 3.7610586758957233`*^9, + 3.761106103197339*^9, 3.761137593632071*^9, 3.7611917756405907`*^9, + 3.761281490791047*^9, 3.76136610787678*^9, 3.761376491652439*^9, + 3.761376930310665*^9, 3.761453568786981*^9, 3.761473502334062*^9, + 3.7614897172019453`*^9, 3.7615348682629642`*^9, 3.761544247152569*^9, + 3.7616276060981293`*^9, 3.7616278372711887`*^9, 3.7617203452987213`*^9, + 3.761892762437152*^9, 3.7619463503552113`*^9, 3.763206647326153*^9, + 3.7632117300732117`*^9, 3.76323800074466*^9, 3.763446163942415*^9, + 3.766307054848144*^9, 3.799728659429925*^9, 3.7997293918865213`*^9, + 3.799741134870844*^9, 3.799741452166616*^9, 3.7997430735106688`*^9, + 3.799743746532728*^9}, + CellLabel-> + "During evaluation of \ +In[13]:=",ExpressionUUID->"f9a60beb-52dc-48b6-99fd-766e2c1a49a3"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"T", "=", + RowBox[{ + RowBox[{"3", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"eqEoSp", "=", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSPol", "[", "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]maxp", "=", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "->", + RowBox[{"eqEoSp", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], ",", "1"}], "}"}]}], "]"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pmaxp", "=", + RowBox[{ + RowBox[{"eqEoSp", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]maxp"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\<{pmax, \[Rho]max} = \>\"", " ", ",", + RowBox[{"{", + RowBox[{"pmaxp", ",", "\[Rho]maxp"}], "}"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", "0.00001"}], ";"}], "\n", + RowBox[{ + RowBox[{"listeosp", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol", "[", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol\[Epsilon]", "[", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]intp", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosp", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", "\[Rho]0", ")"}]}]}], "}"}]}]}], ")"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pintp", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosp", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + ")"}]}]}], ";"}]}], "Code", + CellChangeTimes->{{3.727008422010909*^9, 3.7270086007439337`*^9}, { + 3.7270086877463408`*^9, 3.727008703493436*^9}, {3.731302268620392*^9, + 3.7313022792599497`*^9}, {3.7313027521692657`*^9, + 3.7313027544392147`*^9}, {3.731304314472582*^9, 3.731304441192816*^9}, { + 3.731735345613079*^9, 3.731735345742222*^9}, {3.734068252319124*^9, + 3.734068306806117*^9}, 3.734068678404808*^9, {3.73406871889307*^9, + 3.734068723770665*^9}, {3.734069036301003*^9, 3.734069045529524*^9}, { + 3.7340691459084682`*^9, 3.734069202515676*^9}, {3.73406935734336*^9, + 3.734069357759692*^9}, {3.734069857128277*^9, 3.73406988203631*^9}, { + 3.734074910315278*^9, 3.7340749234258127`*^9}, {3.7340939710774937`*^9, + 3.734093975122863*^9}, {3.734147256953299*^9, 3.734147273684791*^9}, { + 3.7341684959476833`*^9, 3.734168517218947*^9}, 3.734177263730288*^9, + 3.734180727893869*^9, {3.7343432062647667`*^9, 3.7343433144394197`*^9}, { + 3.7343434520066442`*^9, 3.734343457260149*^9}, {3.738227138499681*^9, + 3.7382271419792624`*^9}, {3.7383672260418673`*^9, 3.738367226166401*^9}, { + 3.738367511724197*^9, 3.738367511777093*^9}, 3.738422055821927*^9, + 3.750991396075021*^9, {3.751607932618657*^9, 3.751607933958827*^9}, { + 3.751608033132338*^9, 3.751608042127693*^9}, {3.751970651517004*^9, + 3.751970687962496*^9}, {3.751971012291362*^9, 3.7519710290350523`*^9}, { + 3.751971151475252*^9, 3.7519711521238823`*^9}, 3.7519713071402197`*^9, { + 3.751973792060257*^9, 3.751973797895812*^9}, {3.751973947316868*^9, + 3.751973948893642*^9}, {3.751978520888773*^9, 3.751978522452734*^9}, { + 3.752911182797737*^9, 3.7529111834029713`*^9}, {3.756792269346093*^9, + 3.756792281031231*^9}, {3.757660763658102*^9, 3.7576608573176537`*^9}, { + 3.760426025013876*^9, 3.760426025166932*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"0fd01fca-9e4d-45c8-aa33-cd917ee1a17c"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"{pmax, \[Rho]max} = \"\>", "\[InvisibleSpace]", + RowBox[{"{", + RowBox[{"0.0004921814252195873`", ",", "0.001476544275656867`"}], "}"}]}], + + SequenceForm[ + "{pmax, \[Rho]max} = ", {0.0004921814252195873, 0.001476544275656867}], + Editable->False]], "Print", + CellChangeTimes->CompressedData[" +1:eJwVz11IU2EAxvGplbPEUQ0b1USFMXA1zdRltMmZzGSulootygZpaYS0ycRa +NQf5UVs2spGttFhzGlo5ShQxP1AqmZ1E7CIFKz0Fpb1F0JoX6uo5Fw+/q//F +k1BiKDgTxuFwCrAmi1gq+feDiotW6Fhzxf7nafBUVO1LPRyMl243Q5cmpuo6 +nD/W5bRBta1zsxeqBlIvsxb6TmyZgl81a5GFHEI1ejaZamHdW2ae1TrS0t0A +ba/oB23wdnOScBZOZs79DELXnC3Aym8WxvHCCGUuf2OLhRcedZRug+p+X7oA +5nKTZ+LhXevsUTF0mdemJFD07kriHqggPYY8mBrjOWmFVUxPfTuUWe7kTMCy +4LOIAMyx9cqLwgl171brZyPc1btY/BA6LedGh2Go76OShtHemYmkCEIVu+tX +d8Pmer1aCv0DSzUHYc5hgdwEn5bRWS5YlJhZPQ7/8LhjITj2S6SNXYd+Z69I +BZemP+krIU1M11jTxTqHdj2hNDv2rlTArvcpl0xQarxR4YVLh8YrO2BWP/f+ +ELTzqRUaEr/S8A0GJWb51g2ECt/X7TgAvws8bgpO5z/5wGp8bcguh9WyhZAR +SvnBxYvwZs3KXwdk8o7YnZA7sywfhIRmjrPaZa6GRXg1ubFPHkmoVaE+WgHb +h0sWdHAyW6YciUIf+D00CluXFU2TsHoqIiNtI6EyrYKETh7+e/NVZ7WEajnN +uFlTvpDi8/Cx70Ud68D+Uq0BDjEZbaz/Ael5PMc= + "], + CellLabel-> + "During evaluation of \ +In[23]:=",ExpressionUUID->"387174a0-e39d-4e4a-9f9e-81ac4cefcb4e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"T", "=", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"eqEoSpS", "=", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSPol", "[", "\"\<PolMS\>\"", "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]maxps", "=", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "->", + RowBox[{"eqEoSpS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], ",", "1"}], "}"}]}], "]"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pmaxps", "=", + RowBox[{ + RowBox[{"eqEoSpS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]maxps"}]}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\<{pmax, \[Rho]max} = \>\"", " ", ",", + RowBox[{"{", + RowBox[{"pmaxps", ",", "\[Rho]maxps"}], "}"}]}], "]"}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"rin", "=", "0.00001"}], ";"}], "\n", + RowBox[{"(*", " ", + RowBox[{"Fully", " ", "radiative", " ", "Sun"}], " ", "*)"}]}], "\n", + RowBox[{ + RowBox[{"(*", + RowBox[{ + RowBox[{"listeosps", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol", "[", "\"\<PolMSMix\>\"", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol\[Epsilon]", "[", "\"\<PolMSMix\>\"", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";", "\[IndentingNewLine]", + RowBox[{"\[Rho]intps", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosps", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", "\[Rho]0", ")"}]}]}], "}"}]}]}], ")"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"pintps", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosps", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + ")"}]}]}], ";"}], "*)"}]}]}], "Code", + CellChangeTimes->{{3.727008422010909*^9, 3.7270086007439337`*^9}, { + 3.7270086877463408`*^9, 3.727008703493436*^9}, {3.731302268620392*^9, + 3.7313022792599497`*^9}, {3.7313027521692657`*^9, + 3.7313027544392147`*^9}, {3.731304314472582*^9, 3.731304441192816*^9}, { + 3.731735345613079*^9, 3.731735345742222*^9}, {3.734068252319124*^9, + 3.734068306806117*^9}, 3.734068678404808*^9, {3.73406871889307*^9, + 3.734068723770665*^9}, {3.734069036301003*^9, 3.734069045529524*^9}, { + 3.7340691459084682`*^9, 3.734069202515676*^9}, {3.73406935734336*^9, + 3.734069357759692*^9}, {3.734069857128277*^9, 3.73406988203631*^9}, { + 3.734074910315278*^9, 3.7340749234258127`*^9}, {3.7340939710774937`*^9, + 3.734093975122863*^9}, {3.734147256953299*^9, 3.734147273684791*^9}, { + 3.7341684959476833`*^9, 3.734168517218947*^9}, 3.734177263730288*^9, + 3.734180727893869*^9, {3.7343432062647667`*^9, 3.7343433144394197`*^9}, { + 3.7343434520066442`*^9, 3.734343457260149*^9}, {3.738227138499681*^9, + 3.7382271419792624`*^9}, {3.7383672260418673`*^9, 3.738367226166401*^9}, { + 3.738367511724197*^9, 3.738367511777093*^9}, 3.738422055821927*^9, + 3.750991396075021*^9, {3.751607932618657*^9, 3.751607933958827*^9}, { + 3.751608033132338*^9, 3.751608042127693*^9}, {3.751970651517004*^9, + 3.751970687962496*^9}, {3.751971012291362*^9, 3.7519710290350523`*^9}, { + 3.751971151475252*^9, 3.7519711521238823`*^9}, 3.7519713071402197`*^9, { + 3.751973792060257*^9, 3.751973797895812*^9}, {3.751973947316868*^9, + 3.751973948893642*^9}, {3.751978520888773*^9, 3.751978522452734*^9}, { + 3.752911182797737*^9, 3.7529111834029713`*^9}, {3.756792269346093*^9, + 3.756792281031231*^9}, {3.757660763658102*^9, 3.7576608573176537`*^9}, { + 3.760426025013876*^9, 3.760426025166932*^9}, {3.761321632136896*^9, + 3.7613216910344973`*^9}, 3.761321845101985*^9, 3.761323688676916*^9, { + 3.761324055552878*^9, 3.7613240563847303`*^9}, {3.761324240554076*^9, + 3.761324243139904*^9}, {3.761386741843794*^9, 3.761386742723947*^9}, { + 3.761388861085012*^9, 3.76138886493277*^9}, {3.761389249527339*^9, + 3.761389265400592*^9}}, + CellLabel->"In[32]:=",ExpressionUUID->"77ab1cfc-93f2-4366-a35a-f2f21c62690e"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"{pmax, \[Rho]max} = \"\>", "\[InvisibleSpace]", + RowBox[{"{", + RowBox[{"0.`", ",", "0.`"}], "}"}]}], + SequenceForm["{pmax, \[Rho]max} = ", {0., 0.}], + Editable->False]], "Print", + CellChangeTimes->{3.761389635816077*^9, 3.7614535955765123`*^9, + 3.7614735271005*^9, 3.761489743752913*^9, 3.761534895976481*^9, + 3.761544274629265*^9, 3.761627632015806*^9, 3.761627863152739*^9, + 3.761720372867238*^9, 3.761892788809321*^9, 3.761946379204713*^9, + 3.7632066738279543`*^9, 3.763211759698391*^9, 3.7632380260353727`*^9, + 3.763446192211947*^9, 3.7663070808354673`*^9, 3.799728682562434*^9, + 3.799729415084195*^9, 3.799741159411627*^9, 3.799741477599988*^9, + 3.799743099110464*^9, 3.799743769768092*^9}, + CellLabel-> + "During evaluation of \ +In[32]:=",ExpressionUUID->"a84cd5ca-f2d0-4f50-b4b2-33f2d4e43472"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"Mixed", " ", "model", " ", "for", " ", "the", " ", "Sun"}], " ", + "*)"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"T", "=", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ";"}], "\n", + RowBox[{ + RowBox[{"eqEoSpS", "=", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSPol", "[", "\"\<PolMS\>\"", "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]maxps", "=", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "->", + RowBox[{"eqEoSpS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], ",", "1"}], "}"}]}], "]"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pmaxps", "=", + RowBox[{ + RowBox[{"eqEoSpS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]maxps"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\<{pmax, \[Rho]max} = \>\"", " ", ",", + RowBox[{"{", + RowBox[{"pmaxps", ",", "\[Rho]maxps"}], "}"}]}], "]"}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", "0.00001"}], ";"}], "\n", + RowBox[{ + RowBox[{"listeosps", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol", "[", "\"\<PolMSMix\>\"", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{ + "From\[Rho]To\[Epsilon]Fits", "[", "\"\<PolMSMix\>\"", "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]intps", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosps", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", "\[Rho]0", ")"}]}]}], "}"}]}]}], ")"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pintps", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosps", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + ")"}]}]}], ";"}]}]}]], "Code", + CellChangeTimes->{{3.727008422010909*^9, 3.7270086007439337`*^9}, { + 3.7270086877463408`*^9, 3.727008703493436*^9}, {3.731302268620392*^9, + 3.7313022792599497`*^9}, {3.7313027521692657`*^9, + 3.7313027544392147`*^9}, {3.731304314472582*^9, 3.731304441192816*^9}, { + 3.731735345613079*^9, 3.731735345742222*^9}, {3.734068252319124*^9, + 3.734068306806117*^9}, 3.734068678404808*^9, {3.73406871889307*^9, + 3.734068723770665*^9}, {3.734069036301003*^9, 3.734069045529524*^9}, { + 3.7340691459084682`*^9, 3.734069202515676*^9}, {3.73406935734336*^9, + 3.734069357759692*^9}, {3.734069857128277*^9, 3.73406988203631*^9}, { + 3.734074910315278*^9, 3.7340749234258127`*^9}, {3.7340939710774937`*^9, + 3.734093975122863*^9}, {3.734147256953299*^9, 3.734147273684791*^9}, { + 3.7341684959476833`*^9, 3.734168517218947*^9}, 3.734177263730288*^9, + 3.734180727893869*^9, {3.7343432062647667`*^9, 3.7343433144394197`*^9}, { + 3.7343434520066442`*^9, 3.734343457260149*^9}, {3.738227138499681*^9, + 3.7382271419792624`*^9}, {3.7383672260418673`*^9, 3.738367226166401*^9}, { + 3.738367511724197*^9, 3.738367511777093*^9}, 3.738422055821927*^9, + 3.750991396075021*^9, {3.751607932618657*^9, 3.751607933958827*^9}, { + 3.751608033132338*^9, 3.751608042127693*^9}, {3.751970651517004*^9, + 3.751970687962496*^9}, {3.751971012291362*^9, 3.7519710290350523`*^9}, { + 3.751971151475252*^9, 3.7519711521238823`*^9}, 3.7519713071402197`*^9, { + 3.751973792060257*^9, 3.751973797895812*^9}, {3.751973947316868*^9, + 3.751973948893642*^9}, {3.751978520888773*^9, 3.751978522452734*^9}, { + 3.752911182797737*^9, 3.7529111834029713`*^9}, {3.756792269346093*^9, + 3.756792281031231*^9}, {3.757660763658102*^9, 3.7576608573176537`*^9}, { + 3.760426025013876*^9, 3.760426025166932*^9}, {3.761321632136896*^9, + 3.7613216910344973`*^9}, 3.761321845101985*^9, 3.761323688676916*^9, { + 3.761324055552878*^9, 3.7613240563847303`*^9}, {3.761324240554076*^9, + 3.761324243139904*^9}, {3.761386741843794*^9, 3.761386742723947*^9}, { + 3.761388861085012*^9, 3.76138886493277*^9}, {3.761389199904294*^9, + 3.761389275570942*^9}, {3.761389381141817*^9, 3.761389390693115*^9}}, + CellLabel->"In[38]:=",ExpressionUUID->"f7117468-dbb9-4616-a069-36663920d67a"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"{pmax, \[Rho]max} = \"\>", "\[InvisibleSpace]", + RowBox[{"{", + RowBox[{"0.`", ",", "0.`"}], "}"}]}], + SequenceForm["{pmax, \[Rho]max} = ", {0., 0.}], + Editable->False]], "Print", + CellChangeTimes->{{3.761389216177413*^9, 3.761389240065682*^9}, + 3.761389276121389*^9, 3.761389405414179*^9, 3.761389831250332*^9, + 3.761390600797998*^9, 3.7614535956424837`*^9, 3.761473527183509*^9, + 3.761489743805706*^9, 3.7615348960897512`*^9, 3.7615442747558203`*^9, + 3.761627632124674*^9, 3.761627863301745*^9, 3.7617203729793377`*^9, + 3.761892789001552*^9, 3.7618934952161303`*^9, 3.761946379352502*^9, + 3.763206673926786*^9, 3.7632117598455353`*^9, 3.763238026117269*^9, + 3.763446192294529*^9, 3.766307080900033*^9, 3.79972868262257*^9, + 3.799729415136396*^9, 3.799741159501554*^9, 3.799741477675737*^9, + 3.7997430992145433`*^9, 3.799743769818578*^9}, + CellLabel-> + "During evaluation of \ +In[38]:=",ExpressionUUID->"ca853243-7719-479d-9642-9bee5294e811"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"(*", " ", + RowBox[{"Model", " ", "from", " ", "Enrico"}], " ", "*)"}], "\n", + RowBox[{ + RowBox[{ + RowBox[{"T", "=", + RowBox[{ + RowBox[{"3", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ";"}], "\n", + RowBox[{ + RowBox[{"eqEoSpS", "=", " ", + RowBox[{"{", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "==", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"10", "^", + RowBox[{"EoSPol", "[", + RowBox[{"{", + RowBox[{"179103.", ",", "2"}], "}"}], "]"}]}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"Log", "[", + RowBox[{"10", ",", + RowBox[{"\[Rho]0", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], "]"}]}]}], ")"}], "/", + "P0"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Rho]maxps", "=", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{"T", "/.", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "->", + RowBox[{"eqEoSpS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}]}]}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], ",", "1"}], "}"}]}], "]"}]}], + "]"}]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pmaxps", "=", + RowBox[{ + RowBox[{"eqEoSpS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]maxps"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\<{pmax, \[Rho]max} = \>\"", " ", ",", + RowBox[{"{", + RowBox[{"pmaxps", ",", "\[Rho]maxps"}], "}"}]}], "]"}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"rin", "=", "0.00001"}], ";"}], "\n", + RowBox[{ + RowBox[{"listeosps", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol", "[", + RowBox[{"{", + RowBox[{"179103.", ",", "2"}], "}"}], "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", "x"}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + RowBox[{"EoSPol\[Epsilon]", "[", + RowBox[{"{", + RowBox[{"179103.", ",", "2"}], "}"}], "]"}], "/.", + RowBox[{"\[Rho]", "\[Rule]", + RowBox[{"10", "^", "x"}]}]}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "16", ",", "0.01"}], "}"}]}], "]"}]}], + ";"}], "\n", + RowBox[{ + RowBox[{"\[Rho]intps", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosps", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}], ",", + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", "\[Rho]0", ")"}]}]}], "}"}]}]}], ")"}]}]}], ";"}], + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"pintps", "=", + RowBox[{"Interpolation", "@", + RowBox[{"(", + RowBox[{"listeosps", "/.", + RowBox[{ + RowBox[{"{", + RowBox[{"yy_", ",", "zz_"}], "}"}], "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"(", "zz", ")"}], "/", + RowBox[{"(", " ", "\[Rho]0", ")"}]}], ",", + RowBox[{ + RowBox[{"(", + RowBox[{"10", "^", "yy"}], ")"}], "/", "P0"}]}], "}"}]}]}], + ")"}]}]}], ";"}]}]}]], "Code", + CellChangeTimes->{{3.727008422010909*^9, 3.7270086007439337`*^9}, { + 3.7270086877463408`*^9, 3.727008703493436*^9}, {3.731302268620392*^9, + 3.7313022792599497`*^9}, {3.7313027521692657`*^9, + 3.7313027544392147`*^9}, {3.731304314472582*^9, 3.731304441192816*^9}, { + 3.731735345613079*^9, 3.731735345742222*^9}, {3.734068252319124*^9, + 3.734068306806117*^9}, 3.734068678404808*^9, {3.73406871889307*^9, + 3.734068723770665*^9}, {3.734069036301003*^9, 3.734069045529524*^9}, { + 3.7340691459084682`*^9, 3.734069202515676*^9}, {3.73406935734336*^9, + 3.734069357759692*^9}, {3.734069857128277*^9, 3.73406988203631*^9}, { + 3.734074910315278*^9, 3.7340749234258127`*^9}, {3.7340939710774937`*^9, + 3.734093975122863*^9}, {3.734147256953299*^9, 3.734147273684791*^9}, { + 3.7341684959476833`*^9, 3.734168517218947*^9}, 3.734177263730288*^9, + 3.734180727893869*^9, {3.7343432062647667`*^9, 3.7343433144394197`*^9}, { + 3.7343434520066442`*^9, 3.734343457260149*^9}, {3.738227138499681*^9, + 3.7382271419792624`*^9}, {3.7383672260418673`*^9, 3.738367226166401*^9}, { + 3.738367511724197*^9, 3.738367511777093*^9}, 3.738422055821927*^9, + 3.750991396075021*^9, {3.751607932618657*^9, 3.751607933958827*^9}, { + 3.751608033132338*^9, 3.751608042127693*^9}, {3.751970651517004*^9, + 3.751970687962496*^9}, {3.751971012291362*^9, 3.7519710290350523`*^9}, { + 3.751971151475252*^9, 3.7519711521238823`*^9}, 3.7519713071402197`*^9, { + 3.751973792060257*^9, 3.751973797895812*^9}, {3.751973947316868*^9, + 3.751973948893642*^9}, {3.751978520888773*^9, 3.751978522452734*^9}, { + 3.752911182797737*^9, 3.7529111834029713`*^9}, {3.756792269346093*^9, + 3.756792281031231*^9}, {3.757660763658102*^9, 3.7576608573176537`*^9}, { + 3.760426025013876*^9, 3.760426025166932*^9}, {3.761321632136896*^9, + 3.7613216910344973`*^9}, 3.761321845101985*^9, 3.761323688676916*^9, { + 3.761324055552878*^9, 3.7613240563847303`*^9}, {3.761324240554076*^9, + 3.761324243139904*^9}, {3.761386741843794*^9, 3.761386742723947*^9}, { + 3.761388861085012*^9, 3.76138886493277*^9}, {3.761389199904294*^9, + 3.761389275570942*^9}, {3.761389381141817*^9, 3.761389390693115*^9}, { + 3.7618953897201843`*^9, 3.761895445783152*^9}, {3.7618962408612337`*^9, + 3.761896262179117*^9}, {3.761896674085622*^9, 3.761896704875496*^9}, { + 3.761896750903027*^9, 3.761896751223851*^9}, {3.761909158931108*^9, + 3.761909164775187*^9}}, + CellLabel->"In[47]:=",ExpressionUUID->"dc83ef56-f120-4495-9245-8a021c3a3982"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{"\<\"{pmax, \[Rho]max} = \"\>", "\[InvisibleSpace]", + RowBox[{"{", + RowBox[{"0.0009033470933325754`", ",", "0.0027100412799977262`"}], "}"}]}], + SequenceForm[ + "{pmax, \[Rho]max} = ", {0.0009033470933325754, 0.0027100412799977262`}], + Editable->False]], "Print", + CellChangeTimes->{ + 3.761895526935074*^9, {3.76189624528238*^9, 3.761896272532007*^9}, { + 3.7618966746362553`*^9, 3.761896751697341*^9}, 3.761909165431896*^9, + 3.761946384291409*^9, 3.763206677974258*^9, 3.763211764413743*^9, + 3.763238030483203*^9, 3.763446197063313*^9, 3.7663070850012903`*^9, + 3.799728686510469*^9, 3.7997294194383993`*^9, 3.7997411634376593`*^9, + 3.799741481644096*^9, 3.799743103196538*^9, 3.7997437739658003`*^9}, + CellLabel-> + "During evaluation of \ +In[47]:=",ExpressionUUID->"a092876b-0262-4cc7-a80b-027026a449cb"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["TOV equations", "Subsection", + CellChangeTimes->{{3.757660613435644*^9, + 3.757660621783389*^9}},ExpressionUUID->"5d30e1c1-8625-4a00-be98-\ +1c819cd86f4c"], + +Cell[BoxData[ + RowBox[{"(*", " ", + RowBox[{ + RowBox[{"Doneva", " ", "eqs", " ", "tested", " ", "100", " ", + RowBox[{"times", ".", " ", "They"}], " ", "are", " ", + RowBox[{"correct", ".", " ", "fR"}], " ", "and", " ", "fR"}], "-", + RowBox[{"JF", " ", "exactly", " ", + RowBox[{"equal", ".", " ", "There"}], " ", "are", " ", "some", " ", + RowBox[{"diffs", ".", " ", "with"}], " ", "respecte", " ", "EF"}], "-", + RowBox[{ + RowBox[{"JF", ".", " ", "To"}], " ", + RowBox[{"check", "!"}]}]}], " ", "*)"}]], "Input", + CellChangeTimes->{{3.75904370256964*^9, 3.7590437670911713`*^9}}, + CellLabel->"In[56]:=",ExpressionUUID->"b5d331c0-4beb-4074-96a9-fbaf549e0231"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqs", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], + SqrtBox["3"]]}], ")"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", " ", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]]}], ")"}], "2"], + RowBox[{"8", " ", "a"}]], "-", + FractionBox["1", + SuperscriptBox["r", "2"]], "+", + FractionBox[ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], + SuperscriptBox["r", "2"]], "+", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", "2"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]]}], ")"}], "2"], + RowBox[{"8", " ", "a"}]]}], "+", + FractionBox[ + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]]}], + SuperscriptBox["r", "2"]], "+", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "2"}], " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"12", " ", "a", " ", "r"}]], + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", + SqrtBox["3"]}], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "r"}], "+", + RowBox[{ + SqrtBox["3"], " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "+", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]], " ", "r"}], "+", + RowBox[{"48", " ", + SqrtBox["3"], " ", "a", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"16", " ", + SqrtBox["3"], " ", "a", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"24", " ", "a", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"12", " ", "a", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]], " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"12", " ", "a", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]], " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]}], + "}"}]}], ";"}]], "Code", + CellChangeTimes->{ + 3.751979292207634*^9, {3.757690174530313*^9, 3.757690177932436*^9}, { + 3.757690209589861*^9, 3.757690314031863*^9}, {3.757696861324963*^9, + 3.7576968892999287`*^9}, {3.757697014385922*^9, 3.7576970147638474`*^9}, + 3.7576972963403177`*^9, 3.7579025845997257`*^9}, + CellLabel->"In[57]:=",ExpressionUUID->"cfc40657-89f8-4127-89c9-d0b86703f68c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqsfr", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}]}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", " ", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}], "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{"R", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"24", " ", "\[Pi]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"R", "[", "r", "]"}], "-", + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "\[Alpha]"}]], "-", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["2", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "-", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}]}]}]}], + "}"}]}], ";"}]], "Code", + CellChangeTimes->{{3.7531678252387247`*^9, 3.75316783938527*^9}, { + 3.753167877928731*^9, 3.75316788072552*^9}, {3.753168121674694*^9, + 3.753168140971047*^9}, {3.757463917913837*^9, 3.7574639189293222`*^9}, { + 3.757660958788515*^9, 3.75766097717794*^9}, {3.757674503378913*^9, + 3.757674504522341*^9}, {3.757674779274324*^9, 3.757674786943243*^9}, { + 3.757690448554556*^9, 3.757690454050997*^9}}, + CellLabel->"In[58]:=",ExpressionUUID->"2da6bdd4-9a3e-491c-8ac0-864bd1df73dc"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqsSTJF", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", " ", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["r", "2"], "+", + RowBox[{"64", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", "\[Alpha]", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"\[Phi]", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"8", " ", "\[Alpha]", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"16", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"8", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + SuperscriptBox["r", "2"]}], "+", + RowBox[{"64", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]", " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"8", " ", "\[Alpha]", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"\[Phi]", "[", "r", "]"}], "2"]}]}], ")"}]}], + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "8"}], " ", "\[Alpha]", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "-", + RowBox[{"16", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"8", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "r"}], "+", + RowBox[{"48", " ", "\[Pi]", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"16", " ", "\[Pi]", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", + RowBox[{"\[Phi]", "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]], "+", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"-", "12"}], " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[Phi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], + RowBox[{"6", " ", "r", " ", "\[Alpha]"}]]}]}]}], "}"}]}], + ";"}]], "Code", + CellChangeTimes->{{3.757148396960803*^9, 3.7571483991549397`*^9}, { + 3.757148534650909*^9, 3.75714855163094*^9}, {3.757148587615992*^9, + 3.757148589123782*^9}, {3.757148819728017*^9, 3.757148820088105*^9}, { + 3.757661029150894*^9, 3.757661060775219*^9}, 3.757674507986676*^9, + 3.7576754535421677`*^9, {3.757681086510957*^9, 3.757681088097351*^9}, { + 3.757681282484675*^9, 3.7576812834152603`*^9}, 3.757681341349505*^9, { + 3.757681422973255*^9, 3.757681424648437*^9}, 3.7576814967951612`*^9, { + 3.759034912595289*^9, 3.759034914951844*^9}}, + CellLabel->"In[59]:=",ExpressionUUID->"e677e2a6-f3af-4ae7-a350-40d556f009cb"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqs\[Beta]", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", "3"]}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "+", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{ + SqrtBox["3"], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"4", " ", "r"}]], + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "4"}], " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]]}], ")"}], "2"], " ", + SuperscriptBox["r", "2"]}], + RowBox[{"4", " ", "a"}]], "+", + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"4", " ", "r"}]]}], + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "4"}], " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]}]]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "+", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], + SqrtBox["3"]]}]]}], ")"}], "2"], " ", + SuperscriptBox["r", "2"]}], + RowBox[{"4", " ", "a"}]], "-", + RowBox[{"16", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"2", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"4", " ", "\[Beta]", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}]}], ")"}]}]}], + ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + FractionBox["1", + RowBox[{"4", " ", "r"}]], + SuperscriptBox["\[ExponentialE]", + RowBox[{ + RowBox[{"-", "8"}], " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"192", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", + RowBox[{"p", "[", "r", "]"}], " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], "-", + RowBox[{"64", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", "\[Pi]", " ", "r", + " ", + RowBox[{"\[Rho]", "[", "r", "]"}], " ", + RowBox[{"\[CurlyPhi]", "[", "r", "]"}]}], "-", + RowBox[{"8", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"8", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"8", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", "r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"4", " ", + SuperscriptBox["\[ExponentialE]", + RowBox[{"8", " ", + SuperscriptBox[ + RowBox[{"\[CurlyPhi]", "[", "r", "]"}], "2"]}]], " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{ + SuperscriptBox["\[CurlyPhi]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}]}], + "}"}]}], ";"}]], "Code", + CellChangeTimes->{{3.7599327430202103`*^9, 3.759932755522725*^9}, + 3.76147915291782*^9}, + CellLabel->"In[60]:=",ExpressionUUID->"cab98d8f-8fbd-48d0-b448-9471155c97cb"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqstor", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}], "-", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}], + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + FractionBox[ + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}]}], ")"}]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], + RowBox[{"4", " ", "r"}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"\[Alpha]", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], + RowBox[{"(", + RowBox[{ + FractionBox["3", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}]}], + ")"}]}], "+", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", "r"], "+", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "4"}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}], "-", + RowBox[{"6", " ", "r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"2", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]"}]]}]}]}], "}"}]}], + ";"}]], "Code", + CellChangeTimes->{{3.7585862869946136`*^9, 3.758586299856431*^9}, { + 3.758604413923877*^9, 3.758604426777791*^9}, {3.758604636333692*^9, + 3.758604641206093*^9}, {3.758721293058217*^9, 3.758721293168642*^9}, + 3.75872143737011*^9, {3.758721534992147*^9, 3.758721561200458*^9}, { + 3.7587246595182858`*^9, 3.758724660646017*^9}, {3.758725019416073*^9, + 3.7587250195285997`*^9}, {3.758725065665159*^9, 3.7587250695247183`*^9}, { + 3.7587251428373137`*^9, 3.758725164258843*^9}, {3.758725203220972*^9, + 3.758725203740741*^9}, {3.7587252464651623`*^9, 3.758725246652759*^9}, { + 3.75872648028788*^9, 3.75872648831807*^9}, {3.758726655076304*^9, + 3.758726660172117*^9}, {3.758726748862101*^9, 3.7587268107376966`*^9}, { + 3.758726873079336*^9, 3.758726874026079*^9}, {3.7587269874594183`*^9, + 3.758726990105516*^9}, {3.758727063934012*^9, 3.75872709089194*^9}, { + 3.75872787975467*^9, 3.758727885182138*^9}, 3.758728011204338*^9, + 3.758728083695305*^9, {3.758728271861187*^9, 3.758728272334424*^9}, + 3.758728339278962*^9, {3.759563236226492*^9, 3.7595632368024397`*^9}}, + CellLabel->"In[61]:=",ExpressionUUID->"0267a229-a6d0-4957-983c-48ec871caa20"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqstor4", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}], "-", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}], + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + FractionBox[ + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}]}], ")"}]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], + RowBox[{"4", " ", "r"}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", "3"}], + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"\[Alpha]", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], + RowBox[{"(", + RowBox[{ + FractionBox["3", "r"], "+", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}]}], + ")"}]}], "+", + RowBox[{ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", "r"], "+", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], ")"}]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "4"}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}], "-", + RowBox[{"6", " ", "r", " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "+", + RowBox[{"2", " ", "r", " ", + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}], + RowBox[{"4", " ", + SuperscriptBox["r", "2"], " ", "\[Alpha]"}]]}]}]}], "}"}]}], + ";"}]], "Code", + CellChangeTimes->{{3.7585862869946136`*^9, 3.758586299856431*^9}, { + 3.758604413923877*^9, 3.758604426777791*^9}, {3.758604636333692*^9, + 3.758604641206093*^9}, {3.758721293058217*^9, 3.758721293168642*^9}, + 3.75872143737011*^9, {3.758721534992147*^9, 3.758721561200458*^9}, { + 3.7587246595182858`*^9, 3.758724660646017*^9}, {3.758725019416073*^9, + 3.7587250195285997`*^9}, {3.758725065665159*^9, 3.7587250695247183`*^9}, { + 3.7587251428373137`*^9, 3.758725164258843*^9}, {3.758725203220972*^9, + 3.758725203740741*^9}, {3.7587252464651623`*^9, 3.758725246652759*^9}, { + 3.75872648028788*^9, 3.75872648831807*^9}, {3.758726655076304*^9, + 3.758726660172117*^9}, {3.758726748862101*^9, 3.7587268107376966`*^9}, { + 3.758726873079336*^9, 3.758726874026079*^9}, {3.7587269874594183`*^9, + 3.758726990105516*^9}, {3.758727063934012*^9, 3.75872709089194*^9}, { + 3.75872787975467*^9, 3.758727885182138*^9}, 3.758728011204338*^9, + 3.758728083695305*^9, {3.758728271861187*^9, 3.758728272334424*^9}, + 3.758728339278962*^9, {3.75889187850662*^9, 3.758891881990465*^9}}, + CellLabel->"In[62]:=",ExpressionUUID->"757b9d70-4a08-4bc0-a1be-a30efbfd8eb8"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"myeqstor2", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["p", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"p", "[", "r", "]"}]}], "-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], ")"}], " ", + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["\[Lambda]", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}], "-", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"\[Rho]", "[", "r", "]"}]}]}], ")"}]}], "+", + RowBox[{"4", " ", "r", " ", "\[Alpha]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], "-", + FractionBox[ + RowBox[{"3", " ", "r", " ", "\[Alpha]", " ", + SuperscriptBox[ + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "2"]}], + RowBox[{"2", "+", + RowBox[{"4", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + RowBox[{"r", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]}], + RowBox[{"4", " ", "r", " ", + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}], ")"}]}]]}], ",", + RowBox[{ + RowBox[{ + SuperscriptBox["w", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}], "\[Equal]", + FractionBox[ + RowBox[{ + RowBox[{"-", "2"}], "-", + FractionBox[ + RowBox[{"6", " ", "r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}]}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"16", " ", "\[Pi]", " ", + SuperscriptBox["r", "2"], " ", + RowBox[{"p", "[", "r", "]"}]}], "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}], " ", + RowBox[{"(", + RowBox[{"4", "+", + RowBox[{ + SuperscriptBox["r", "2"], " ", + RowBox[{"R", "[", "r", "]"}]}]}], ")"}]}]}], ")"}]}], + RowBox[{"1", "+", + RowBox[{"2", " ", "\[Alpha]", " ", + RowBox[{"R", "[", "r", "]"}]}], "+", + RowBox[{"r", " ", "\[Alpha]", " ", + RowBox[{ + SuperscriptBox["R", "\[Prime]", + MultilineFunction->None], "[", "r", "]"}]}]}]]}], + RowBox[{"4", " ", "r"}]]}], ",", + RowBox[{ + RowBox[{"R", "[", "r", "]"}], "\[Equal]", + RowBox[{"8", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"\[Rho]", "[", "r", "]"}]}], "+", + RowBox[{"3", + RowBox[{"p", "[", "r", "]"}]}]}], ")"}]}]}]}], "}"}]}], + ";"}]], "Code", + CellChangeTimes->{{3.758604561543811*^9, 3.758604578502437*^9}, + 3.7586046338768387`*^9, {3.758666809181267*^9, 3.758666852939644*^9}, { + 3.758669914290998*^9, 3.7586699159788847`*^9}, 3.758891337544981*^9, { + 3.759034918552967*^9, 3.7590349196873207`*^9}}, + CellLabel->"In[63]:=",ExpressionUUID->"970dfa80-5cdd-4f81-91fc-d1a3907c1372"] +}, Closed]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell["TOV + shooting solver", "Section", + CellChangeTimes->{{3.799749262172282*^9, + 3.799749290350068*^9}},ExpressionUUID->"f03bc825-1521-4851-a5f1-\ +6b1883555b64"], + +Cell[CellGroupData[{ + +Cell["\<\ +Comparison of all three eqs. for \[Alpha]=10000, \[Beta]=100 (I correct from \ +one frame to other \[Rho]=0.9) \ +\>", "Subsection", + CellChangeTimes->{{3.752234605281361*^9, 3.7522346079350986`*^9}, { + 3.753167070882065*^9, 3.753167090863799*^9}, {3.7531811429438963`*^9, + 3.753181146838257*^9}, {3.757147416187327*^9, 3.757147460550118*^9}, { + 3.757671911245981*^9, 3.757671926111849*^9}, {3.75767223402105*^9, + 3.7576722492781773`*^9}, {3.757674083638866*^9, 3.757674084172323*^9}, { + 3.757756672156261*^9, 3.757756672909164*^9}, {3.7584314309819603`*^9, + 3.758431460647915*^9}, {3.75854094907749*^9, 3.758540953951942*^9}, { + 3.758959848351142*^9, 3.7589598566628942`*^9}, {3.759216333017268*^9, + 3.759216334201138*^9}, {3.760348904765798*^9, 3.760348904992159*^9}, { + 3.7611938141816063`*^9, 3.761193814387906*^9}, {3.761196452310245*^9, + 3.761196452439826*^9}, {3.761196637770349*^9, 3.761196637943589*^9}, + 3.7611968117273283`*^9, {3.761197001776472*^9, 3.761197002831397*^9}, { + 3.799728628764008*^9, 3.799728640039735*^9}, {3.799744274066036*^9, + 3.7997442876410427`*^9}},ExpressionUUID->"72589bbd-52d7-448c-9e07-\ +de570aaa91a1"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Alpha]val", "=", "10000"}], ";", + RowBox[{"\[Beta]val", "=", "100"}], ";", + RowBox[{"\[Rho]0c", "=", "0.9"}], ";", + RowBox[{"rfin", "=", "1000"}], ";"}]], "Input", + CellChangeTimes->{{3.758960365001339*^9, 3.758960368896003*^9}, { + 3.759210811184042*^9, 3.7592108204741783`*^9}, {3.76034857506057*^9, + 3.760348575310082*^9}, {3.7603486130275373`*^9, 3.7603486132782927`*^9}, { + 3.760348908398329*^9, 3.760348908636458*^9}, {3.761191827154107*^9, + 3.761191827841091*^9}, {3.761191890895837*^9, 3.7611918911590977`*^9}, { + 3.761193818491131*^9, 3.761193818611755*^9}, {3.761193928601096*^9, + 3.7611939288123703`*^9}, {3.761196458733745*^9, 3.761196458839838*^9}, { + 3.761196652689629*^9, 3.761196652878489*^9}, 3.7611968315373373`*^9, { + 3.7611970148462563`*^9, 3.761197038302237*^9}, {3.799728661913889*^9, + 3.799728671794139*^9}, {3.799730879155096*^9, 3.799730880599743*^9}, { + 3.79974114556886*^9, 3.799741145739929*^9}, {3.7997414767027607`*^9, + 3.799741479179397*^9}, {3.799741516010109*^9, 3.7997415161976233`*^9}, { + 3.7997416056403637`*^9, 3.799741606072221*^9}}, + CellLabel->"In[64]:=",ExpressionUUID->"64505dfe-3bce-42a2-b055-674f282dde89"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"rfin", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{"r", "/.", + RowBox[{"FindRoot", "[", + RowBox[{ + RowBox[{ + RowBox[{"0.5", + RowBox[{ + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"-", "r"}], "/", + RowBox[{"Sqrt", "[", + RowBox[{"6", "\[Alpha]val"}], "]"}]}], "]"}], "/", "r"}]}], + "\[Equal]", + RowBox[{"10", "^", + RowBox[{"-", "8"}]}]}], ",", + RowBox[{"{", + RowBox[{"r", ",", + RowBox[{"Sqrt", "[", + RowBox[{"6", "\[Alpha]val"}], "]"}]}], "}"}]}], "]"}]}], ",", + RowBox[{"10", "^", + RowBox[{"-", "16"}]}]}], "]"}]}], "\[IndentingNewLine]", + RowBox[{"rfin", "*", "1."}]}], "Input", + CellChangeTimes->{{3.761195603094919*^9, 3.7611956904668093`*^9}, { + 3.761195795828185*^9, 3.761195796417717*^9}, {3.7611964633579073`*^9, + 3.7611964649155188`*^9}}, + CellLabel->"In[65]:=",ExpressionUUID->"719fbc17-d50a-4f25-ac5d-a6aef37f69ae"], + +Cell[BoxData[ + FractionBox["10329567735", "4246397"]], "Output", + CellChangeTimes->{{3.7611956168221617`*^9, 3.7611956906863327`*^9}, { + 3.761196460664765*^9, 3.761196465248084*^9}, 3.7611966538801613`*^9, + 3.76119683236248*^9, {3.761197017179509*^9, 3.7611970563792973`*^9}, + 3.799728693489087*^9, 3.799729419956626*^9, 3.799730889940345*^9, + 3.799735024614737*^9, 3.799740572454596*^9, {3.799741481910733*^9, + 3.799741498076989*^9}, 3.7997416073982077`*^9, 3.799743507419874*^9, + 3.799743786624095*^9}, + CellLabel->"Out[65]=",ExpressionUUID->"3847cf13-919c-4a6b-938a-398839373961"], + +Cell[BoxData["2432.548754862063`"], "Output", + CellChangeTimes->{{3.7611956168221617`*^9, 3.7611956906863327`*^9}, { + 3.761196460664765*^9, 3.761196465248084*^9}, 3.7611966538801613`*^9, + 3.76119683236248*^9, {3.761197017179509*^9, 3.7611970563792973`*^9}, + 3.799728693489087*^9, 3.799729419956626*^9, 3.799730889940345*^9, + 3.799735024614737*^9, 3.799740572454596*^9, {3.799741481910733*^9, + 3.799741498076989*^9}, 3.7997416073982077`*^9, 3.799743507419874*^9, + 3.799743786633514*^9}, + CellLabel->"Out[66]=",ExpressionUUID->"b3f85246-65e3-41d8-8483-b38b57662aca"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"fR2Pot", "[", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}], "+", + RowBox[{"\[Beta]", " ", + RowBox[{"R", "^", "3"}]}]}], "]"}], ",", + RowBox[{"\[Beta]", "\[Rule]", "0"}]}], "]"}]], "Input", + CellChangeTimes->{{3.79974187887288*^9, 3.799741890365131*^9}, { + 3.799742736948552*^9, 3.7997427408735332`*^9}, 3.7997428704774427`*^9}, + CellLabel->"In[74]:=",ExpressionUUID->"3985141c-be0d-4e4e-a042-57220e2c8e73"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "\[Infinity]"}], ",", + RowBox[{"ConditionalExpression", "[", + RowBox[{ + FractionBox[ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", "\[Phi]"}], ")"}], "2"], + RowBox[{"4", " ", "\[Alpha]"}]], ",", + RowBox[{"\[Alpha]", "\[GreaterEqual]", "0"}]}], "]"}]}], "}"}]], "Output",\ + + CellChangeTimes->{{3.799741879446569*^9, 3.79974189114353*^9}, + 3.799742744876916*^9, 3.799742871212757*^9, {3.799743475183888*^9, + 3.79974350929755*^9}, {3.7997437913193827`*^9, 3.799743828324107*^9}, + 3.799743868817437*^9}, + CellLabel->"Out[74]=",ExpressionUUID->"673921fa-9f44-4817-b066-54a2b4882ccb"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{"fR2Pot", "[", + RowBox[{ + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}], "+", + RowBox[{"\[Beta]", " ", + RowBox[{"R", "^", "3"}]}]}], ",", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"2", "/", + RowBox[{"Sqrt", "[", "3", "]"}]}], "\[CurlyPhi]"}], "]"}]}], "]"}], + "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]], "Input", + CellLabel->"",ExpressionUUID->"d14ed336-3d9c-4223-a7b0-60c6dacdcad0"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"V\[CurlyPhi]", "[", + RowBox[{"\[Alpha]_", ",", "\[Beta]_"}], "]"}], ":=", + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{"fR2Pot", "[", + RowBox[{ + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}], "+", + RowBox[{"\[Beta]", " ", + RowBox[{"R", "^", "3"}]}]}], ",", + RowBox[{"Exp", "[", + RowBox[{ + RowBox[{"2", "/", + RowBox[{"Sqrt", "[", "3", "]"}]}], "\[CurlyPhi]"}], "]"}]}], "]"}], + "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}]], "Input", + CellChangeTimes->{{3.799730870251994*^9, 3.799730895228208*^9}, { + 3.799732747894565*^9, 3.799732748072727*^9}, {3.799733596198909*^9, + 3.799733596378071*^9}, {3.79974056343463*^9, 3.799740566744836*^9}, { + 3.7997424139592133`*^9, 3.799742427434136*^9}, {3.799743280090276*^9, + 3.799743280264242*^9}, {3.799743568973083*^9, 3.7997435857595987`*^9}, { + 3.799743901444808*^9, 3.799743902574534*^9}}, + CellLabel->"In[75]:=",ExpressionUUID->"bb1e81bf-6f7b-4d93-a9ac-53d6fd8c1489"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"V\[CurlyPhi]2", "[", "\[Alpha]_", "]"}], ":=", + RowBox[{"Evaluate", "[", + RowBox[{"fR2Pot", "[", + RowBox[{"R", "+", + RowBox[{"\[Alpha]", " ", + RowBox[{"R", "^", "2"}]}]}], "]"}], "]"}]}]], "Input", + CellChangeTimes->{{3.7997425031634293`*^9, 3.799742513873288*^9}, { + 3.7997432952008142`*^9, 3.7997432956633463`*^9}, 3.799743337061818*^9}, + CellLabel->"In[76]:=",ExpressionUUID->"024bcf28-8095-42df-9004-51269bdbc461"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"V\[CurlyPhi]2", "=", + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{"V\[CurlyPhi]", "[", + RowBox[{"\[Alpha]val", ",", "\[Beta]"}], "]"}], ",", + RowBox[{"\[Beta]", "\[Rule]", "0"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.799743378040703*^9, 3.7997433895391693`*^9}, { + 3.7997435956997347`*^9, 3.799743596142418*^9}, {3.799743641480315*^9, + 3.799743642210538*^9}, {3.799744130965465*^9, 3.799744134155665*^9}}, + CellLabel-> + "In[145]:=",ExpressionUUID->"37047281-e390-4fa8-8ee7-c348b35cfac5"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox[ + RowBox[{"4", " ", "\[CurlyPhi]"}], + SqrtBox["3"]]}]], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[ExponentialE]", + FractionBox[ + RowBox[{"2", " ", "\[CurlyPhi]"}], + SqrtBox["3"]]]}], ")"}], "2"]}], "40000"]], "Output", + CellChangeTimes->{{3.799743375946844*^9, 3.799743390454073*^9}, + 3.799743597056731*^9, 3.7997436428651037`*^9, 3.799743907040793*^9, + 3.799744134816084*^9}, + CellLabel-> + "Out[145]=",ExpressionUUID->"70a0d93b-5686-4212-8bd8-09e2583efa57"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"V\[CurlyPhi]", "[", + RowBox[{"\[Alpha]val", ",", "\[Beta]val"}], "]"}], ",", + "V\[CurlyPhi]2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[CurlyPhi]", ",", "0.01", ",", "100"}], "}"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}], ",", + RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input", + CellChangeTimes->{{3.799742438066886*^9, 3.79974259450834*^9}, { + 3.799742636257197*^9, 3.799742720433209*^9}, {3.799742785133676*^9, + 3.799742886271351*^9}, 3.7997430156088943`*^9, {3.79974329952827*^9, + 3.799743372016027*^9}, {3.799743601800734*^9, 3.799743696787794*^9}, { + 3.799744137148329*^9, 3.7997441398878193`*^9}}, + CellLabel-> + "In[146]:=",ExpressionUUID->"cf9b9008-43f4-4e17-bf0d-421fed27767c"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwV13c81d8bAHBUqMjelE1G9rru59zH3kKSrMjoq+wiIQktm6TInhXZW1mJ +SknISiFlk829kt/9/XVf79f5vD7nfJ77nOc5R+Cit4UrFQUFBd0BCor//1or +PZJYD44kFJas/1w1k0KxuTlb9/ryCSdsRa+sIg/0c9c08bBWJcEw8sXLa6RI +dFPUROwzbyMhj1D/n2VtMop5VuBguNtKCBxwWrBdzEajr/NPSs92EN4MrFLn +v3uGxPrzNhi+viMwfHnluvSrHF2bzW1Za/tIsKTy07k1XYMm/5m9vXyul6DY +dHRs17oJ3X/QKzFm0kcIX9E0G05pRadYzRJMtAcIVL8PqjwqfoNCTp62lZUb +JtwOKM0Ww39AdC8Kd4IOTRCiE+9oBCsPIEdvt+IqiknCZhrr9wa6QVSlKOqw +uDtJYKH5sUExPYRsWgre2K9NEZJW7lUwp39DRQP5cTA+QxghLjerBE8izf1c +YeqGPwTR+bSxObtZZHix4soJmxXCr4eq/son59CGNtPbpqEVQqXv/c93V+eQ +/pEv1zf6VglJ1lKx8/4LaDnZ7Lvr+3VCVfYMV4HxMnpyvVyZSm+DMJPeSezb +XkaaNowJmR0bhO6HPF+/ZP5Bj070ag61bBJG5w9UnPJZQfgXp5/p124TznC7 +5zunrqLpmDLK3wo7BMMgxTMdP1ZRgjeD7e2KHQKPjuZ7dcE1NKX4mb6xhEj4 +73UUlpC3hmI4ZC5ZSZAI84PZiaGTa0iZFNe6VkQiKEspEQr51lFUi+lVybxd +gmTsrwedCetIMbf0Yxf/X8JE5/dfX7rW0ffIY6IumX8JI8IVB/B760jWsGc4 +PXWPkBk1WWDhvIGGBkzQsYR9QnjA4I2HfJuIji6hmo+OAjrucrZJG2+il9JE +A0UzCjgycPCoyo1NtOzTfc1pmAJa/CIfd/RsovgkxSOBvJTwdVL54oXtTSRb +nZEV50gJbvWP1VKObyHfbe8PTbOU8PH88hqV+xZi5hq50CdFBe9kmJtNYrZQ +JU5zc9aHChZkLF0dSrfQxk1WfnYiFUSvnMzbWd5CAQcb/H0OH4RTLQwuHM7b +iENU8Og9k4OgWjsin3pzG9XrRWdnJB6E05XOMScfbyNilH33B65DUJM1NPCo +axullXQ6TtofAjzXg1O3f2wjXI/M1nbOITBLOzKfurGNQpioBEQkqCGsJ3zD ++/gO4lW4UqvuRQ3Rt+TXcfI76LXlgJFFJTWwXhCpMdXZQf8eFwbcwtHAjaSD +Be7uO+j2caOPI4a0gD9+zZ75xQ4ShGqnlThaoNgNZvhQv4Panfi2qftpYZhN +d367cwcdLPgjoGh7GOQj6q+/n9xB+Z3WdYZZh6F2huZqwPIO0pltM3aaOgxb +5oUSJaQddFcy+XrclSOwldNZ285ERGIme3QFZUegIE00v5iXiN55ueU2rR8B +mkOVt6XFiOhwpeqn2eCjcPrcTMcRdSKKUf0uqBVDB94Hkm5HOxCRlI1u/fle +OnCQMttJdyOiT8FlJj6s9JC8NVLp5EVEx1puB2ak0wNlkAwN400iKpuYp6+e +oIf7TUGL/yKIyIzKMu+D8DF4nSFXWhxFRIk6oj3bJcfAdTjUTv8xEclfinc+ +tnoMElYMvuMziKjv/s6OsBIDKK86uOzkEhHrxw9CFq8Z4NMlpk8fXxKR0fM6 +/KAbIwg81Z/jbyOicjr13ay7jDCfIrqGe0t+3qe5wb2QEcrnnRhl3xPRmPJb +5b3fjACWKo/Ke4kI0vQ3Ow8xQe0vfxc0QEQFe91VCSJMcCuIiadkiIi8Ovpk +hV2ZIJhfJ1PyB3k9YlZ/liKZwC7rVThhkohUokde1uUzwa7faqjKLyKisJiQ +MPrFBO9S2aOH5ogoaXxJ2M+ZGXButk0r60S0pek7pR7BDH0XMDe0RUS2hRs5 +h/KYQY2DdT1gh4iEPXePp/5khhc00bHFf4nofm/o94tULPDy4v2dZ/+IaEmB +Kl1KkAUoPXIokilIqJZEy9XqxAKKQvGOSgdJiNshZujBbRaor70zvXiIhG61 +MaScyWGBBIRzS6YhIf377CwzEyxwc0fAv+YICY2yCdMfc2SF3DHHShNGEkI3 +irqHbrHCB5duuodMJJQ3JhGVk8UKvIZ3pT4yk5BHnhyN0jgraNx8Y8bDRkK9 +1DVv//1jBZdadXZ5dhJSuqwa+e44GzQmSAshDhL6J0ugtHNgA5Hpc14qXCR0 +Mbm9RSSUDc5MFZuLcJNQ17ZO6J8MNuB0/N15mIeEEpqNd8O/s4G//mBcHS8J +CRrbbD63Y4fjx/oPl54gobtl36uuhrBDF8GTxpqfhBaYnfywdHawv8KQSSK7 +euTSn95v7GArzeguIUhCnNjCy7RddujEb1DUk30z28vDhYcDqC8eJSIhEtK9 +5D+3bcMB6R4l9WrCJPTiw05RWxAHSDh49r0km+FUiFt0Ggcckptf4REhoWuJ ++8JnGzlAOldLNZLs4Y3wqeOjHKBqVvlhmmy8NXXuLJEDWiYT32mJklBO0wPH +Si5OcIi7YvaU7MvhCd91znOCraK5N06MhGbzX5G8AznBMKHgRxjZl7pmOdIe +c0KugK9fO9nTc6xKHbWcEB/kR9gn24VOw2L5KyfkZ81aq4iT0M9Tnt6cm5zw +n1hq72WyncxTYzRZueDzz6+1qWRPXH373EOBi1w/wrk7yHZIWe1MseCCcQLH +4Xmyx+r5frX6cgHf9edxR0+SkO03A8qFBC4oMlmoESd7dM//OFs5F4jZyN3X +INuaP1ed8JkLNA396a3IHtLssXZf5gKbx9bGbmRbuZL8H9Jzw6dWUUM/sgfu +iT58LcUNu7ihI0Fkn3lhUT5jxA35g8cSb5Ld9zH0E9MVbsCm+H+EkG3258W8 +ehQ3NAwwrF0n+zPTEI3bc26gS4jt9iLbVPGASMI7bogy373kRPZHKxnNxhlu +sJZ1f3OabKMbthd+UfNAD/7RsBrZH57eCzkmygPxhPnsE2TrN1elqurwgAx9 +KCsl2Z0T47UXXXigKoJB4gc5HjoH6AZiInhgkPPgUC3ZHSKqq7W5PLBB58oQ +TbamvsuxyTYeqFMce2tDduvlBMmjkzyw5Fq+IEI2IfaVvhIFL9wLbPNZJP9f ++D7WiAeIFxoZ/5pdIbtxA7Kr7Hmh+299pBDZahyer7+H8ILUj553g+T8ULZ7 +uy3XxAt/yroFT5FdHbrKajdKHp/FH+oj55dCDp/8XSIv3HpBn+hDtuy0v8eo +Ch+UxZ6XyiDnaylt7oOD5/hAjCZgV4JsacmewlMBfPDxktB6JTnfJXxEJ8Or ++SBJ7ca7cvJ+eJ5k8a+knw+E8zrOiZItXhPKM7TGB5zsfX6PBEhIhDR4VlLu +OMgT2tIukPdXPu+Bq2fNjgOWSDJoJO9HQYJMwi3v41DXEvOenmz+yHsf+l8e +B5OjRZcy+Ugos7BqZu/jcfi8Xs3xjbyf+d6PHxRfPA4rSkebGMjmPqZKCJE4 +AUsXgn9fINeDJ7IudoUGJ0As595CELlecJxJuNH73wk4wZjzM4aThFifzFYJ +F50AEX2Gu8nkekOTaJw8zcQP1NIjqhLk+mSzzPj6kyA/PHt6omiEXM9KjL7+ +rlbgh+uCsp7BDOT8onZQiTjLD8chkDuZjoRynQUdL7vxg2+pwoEjR0loo3X6 +vvl1fpDSCtP1OUxeT7D36IlUfjjAf7D4KDUJzQ8rHKB5wQ+NV18UEsj1Fq+8 +I7ncyA+Ud4MqnKhIaHIl7OarMX6oTnjt5Umu1xJuSfzn+QXgZ8CJrIRNIgp5 +Y2UAcgKQnX/WTJDcD3r4efzENAVgmA7zSF8hoqvf8t5sOgvAFYvhNN0FIupU +/W9x7JoAfIld3742S0ScKVJsHXcE4JW4juX930T0yqzGLalIACT2i8xtxsn9 +t/RG/I16AXj2cO4AxxgROR5F9Y7vBcA9/eZQ9TARHersPCyzIACfP5+piP9C +RKbqwyXdpwTBleI7dx65f2Y/Sf9aSRAEoeNMOwaviWht0/FfqpkgVPL0tb+r +J6LH5XOn//MTBLH6kDn9MiKapy8NPB0hCJ+djJL1XhAR/opfjnKyIFAJXvjA +WUBEEyK7awdrBSHjehyHdBq5v0e08Cx2CgLF3y5Vz2QiipyI0O4fEgQ2niTi +jTgiOvmULiWHKAhZBs6M67eJyI/xuBrChAB/vb5ViXze6PD86SRiKgQPneUM +XpLPI+zdhVF0F4Rgysjr6C8rImq6IzM2GiYE3Uk/iPd0yfGYWj/YnigE+q1l +V1cxcjygXvp5rhAUOSi+YVYiooO7cOt6hxC8PEmJ+QsSkZX1oWcOX4XA39P9 +XiUnET2red+rMy0EWyNvZrOOEZGJj4UgK60w6IYOHIgg7qCU385vy42E4d/T +iFT57h0kX8Igft1WGPxeX/qa0LKDevyaorArwvD3mU3u06odREPBYvYhShiE +QxX8ytN2UCB3++jUe2HgpzDmf+Gyg1gnPbEXI+TxthQ2sNpBFUVc2T5zwpAT +EEMVoLeD5hV9XfdoRaC50W6qSXwH2Z7mX2HXF4E3pr9T7k9vox22jxbfz4mA +vafX2tbANkoeu16Td0kEPqcduE9q30Yf3T8Hyd4TAS5Tt/lXGdsIRYYeMuwU +gQOsZY3MptuIv2GM+6a2KFiGHxi8kLqFXt26f1PLUhTq7mSdaQ3bQta6ihOH +XUTh/mGUVXJpCyX2RxekRIhC7EM/05OKW4hqGSdb3i4KBsvurq+7NtFvwVSd +KRCDkID5vp2RDRQ+p/3suZkY6LpPSjg2bqDj5StHfBzFYDba/K1T2gaywvR7 +/94SA5vtb4O48xvo3bltG/YWMWDWcqcM7ltHL2LO+hhg4hB+o65RsmYNnc+S +WXIyFYdbB0Qu8cauIdrKw5eDLoiDIvOLzjaXNXRp6LVz8W1xeLtbpabGsoaE +BUXP0XeKwzjJrFnLcxVl1m1hX0xPwlKombsw1wpK+vn46HlHCaB3OUjU/jqP +NDZ97/v6SkD+fFXIt7B5tEJjfCgqXAKyg0S42qXm0Wlpiv3GfAlIi4zdfHRn +DtEF/rfGOycBN6sKixfUZ9FderWRCV9JkJuMoHRs+Y2CVUcL/4uQAoFjSqN2 +apOo/gXtGblkKWjPfH9gaXsCbfCq7BPzpWDOOslXsm4CeVAmn4vulAIWtlt/ +alQmkMMHE9rSw9KQm3SN7kT4DwR2be7r8dLQNBHatTQ3ikJ6/rC9ypYGe/b6 +Re6bo6gejrdHVkhD0WbJnwKmUSQnEszN3i8Nzwm4yF40ggSXFbtV2U/BcrA3 +h+nzIXQw7JlUaPopkGmcTdd7PYBgbXBY9+Up+E8iZjjCdQCFuBy6w9B8CkKj +5x3+HRtAm/oXv2ePn4JD7xTf57n2o2km3rg3gjKgzOf1xVmgDwlGGuJiFGRg +RNLuvm7/F3RhK3DaUlsGovleOpjf/YKGR7+iaVcZcI9wKuz/04ve58X/oX0u +AwVjAhue2Z8RNXvz0y8NMiAsZx14jP0z0ry/qJf2QQYmGDN4Psf2oEYPg2zJ +RRlILiGIPIn4hAbTbosXccjCT6uoG+n3ulGXs/rIextZULHKbaBd7EJR5rof +My7KwrEfRV5/7nUhU4J5i+9lWTho6JJkI9KFBrgvFXAFycKpqtHWFy6daOJL +kq97qiyI7fe7lWx0oLyWDBcsRxbEdUQ4ZNM7kNvLZ+eYnstC+kAMP7NOB1q6 +34w11MvCrPT9zh9pbxD55n348LAshIzQUPBYtaPX0pt/x8Zl4UlI7wQTbTsK +46FYKZ+Rhb2oGyxaTW2IZptt0HpbFnxf/eHTEmlDrKUauc/Y5YAvsqlDk6YV +neJNxemflYNUwS+ylvtNaPVwvjSvvRxoCBFeFN1tQtXbpfwrLnLw9k5d5jJD +E1Lv76B+ck0OBGYfPFITb0T6USt9Mw/lwHkzq47kVY+OBu6+bXoqBzbNmt78 +h+pRjyt1Q3yeHNRsmB2mzKhDlhq8WSpVcuBa9UZ6+EstctrRu3KvTw5ehlr1 +iZ2uQcLTFg62o3LA5mqS67lWjWb77c1lfsoBmMrQqD+uRl5lV1WGVuWgwcDA +1/J3FQpyyzogxiQPU19Kz39PqkTJA1tPO0/LA3ewR67LqXLkOMuZrmUtD0aD +Gywcb8qQ9F9cequjPFixrb45JVWGOoVupTf6yoOg6UpsFHUpIvrRZJQ+lIeL +XKSBgtFi1Hn3ZIZkujwQw7+cWz9bjJLSjDKe5csDveKE8Mv+F0iqPT4jt0Ye +incTNXGDz5EDE2dmypA8DHB2VCRvFSFJEVwmy4Q8LJ5auMIXWYR2VO0yE2bl +gbR8TKiVpQglOmZnRhHlQcuxJFRarRB1lIlnhfIogHyDqlXh03x00lQt2+2C +ArjffhwcVpeDtpxss6cuKYDxp9QLERdzULv/zWxHHwUIzoqU4GLIQXYZbdk2 +txWATfT1tQmPbBS3aJBjmqcASV9LAhSuZSJbCo+c7mIFoG1oyfk+mYHEWeNy +9KsVICR4bZJgkYHa1PtyNN8qQFWlhjQJl442omxylWcUIMApd25FIg21Zobk +Vv1RgH6p8/yHXqai2MrMXNkdBYgqbTjmJ5eKREd/5kocVgSaGF8dCY0n6PzJ +K3nHJRVBfdxEdjEoBTV3BedTeyvCtbHrI8dOP0SyCYka6wGK0H3EkZJxJwnl +Whf9GA9VBMqIspyU3CR0Z66PsyFOEUJapCO4/iYi46MSsVdKFeGhMnMUtCag +5n6ChHWtIoQxDLnUXUtAMulnu7SbFSH5mMO/MIkExCx9m/J4jyJIsT3gmVeI +RyOmw/69S4rw2P/0SiRDLDLkWGZ+vakIfB58Q44xMejV+IHy53uKsIw5Njw4 +GoOyfWTmw+mVwPzjekkqYzRyS7rroCStBJ5R1smZig/QxldFvTQPJSCgRyA2 +dge5ZRr+untNCbKs6l2cb9xBw26Ot6+GKIFw+i9JO847qGk7usk4RgmqsJY6 +F9tIFM41JbNfrAQYbWsZxWY42pjc+bhQpQRS94zGT2eFI9cXxy4PNylBLkQq +ChiFI311XH5FtxL8TAn+T6boNmKwT+R0WVAC6gNMDNo+YShMpKjGbF0Jgsty +S5ZEwtDa0isLbFcJxuMYeT813EKDobMx7EeVIebosod9RihKzyZQvpdQBnti +58TG7RAk8WtpTvqyMngyF0Q31QWii2MvM9d8laFc61U5g2EgShvwPFN3QxnG +fxQHGPy4jo6+XXoFD5TBMjQ3yZjuOlosWIo/80wZSksMnpfd9EfCmS+1OcuV +4Ujs5mXT4/7ILsWTOFanDF+1/Zoftl5Dn+4uXXTrUoZZekPWzcPXUOmlJaUb +08qwGl4kZVrmh6YvvJzHlpVBbZ1Tz87ODx239syi2lKGUK/TNKNH/FC8/hJt +zCEV0H97Rv6ohy/yObn0LVNYBcLO+WumIh8kt7B4u+OiCogu8Sy/QR7o8lSJ +8oPLKoBjyURn266g3G8eCyZ+KqBnd3KNWfcKYv64aDl0WwU6TmoqLJ29jNZK +FsXms1VgT+UFI3fcf0iioGSs9JkK1Bqo444I/IcuZngkXi1XAbH0NtMfNZdQ +f+wi6W+LCly8ODrJ+NsNVXstfmIYV4HJo/QazdauaNGtJHxgWgVYdLj0F4gu +SPiCh0rqsgrYmvWdfJ3ugh6dXswW/KcCFL1jQfIzzihAdvGqEp8qTI01S2XF +XUSqawtctraqwPSk7nObgCMKYnzz7Z2zKnSPH+DifHYBvTqVlqHsoQqJsSfe +PmG4gAhX9AWYb6pC2sXYN6Iz9kj3V774+0xVyCu8pvK31hbdpwqZVy5SBb+m +ftx1OVv0nv9MSX6ZKgQ8URPwL7VBxvaUsmGtquA7tx/2vuw8OjNor6LyUxVu +FxY6J/ScQ8kbisT8eVV4fJCjcsz2HBpkpmtiXleFrCKZC+YLVsjmdCNaPqAG +M2kSt6MYrZDjO3bdAhE16F4ZMhS5aom8Gj9bsrirQdG5QefxBHNUPlzIfttX +DbrSPqfj8OZobevm8PINNWieyomTnjND/gpSdh+i1KD9jiXHKz0zFFJy3/l2 +iRocrujYt5U2Rc0fLoj8qVaDROY8r5WnJmh/VnnG7rUaCP0kumvQm6Bwkd+X +VXvUIEETkn5tG6EHmRp+f/6owarHTc6eBQP04RWnov2OGlw5uxw35WWA6L79 +2fxAgYONwOBhiw19lMCReaOQCQe/Rbz7maj1UUoCKcxeAQfSKZJZk1q6KD+8 +Kr47AAfb9Anuf05ooeizocvPQnGQNT/QPvFeE/mJG5jcvYuDS3Scumf9NRGh +58cRjRQcZPclVJf0aqBRriN3a2tw0Jk1Le7wBFDb4sCvh69xoHT4/mK5CaBn +LVlavm9xkDnkUnzmICB/VyVKqa84wN8uk5uaR4ixwjEkZwMH03x3KiY+4tF2 +hOS30L84MBdorNc1wqMfVltqdgfV4UWG+Ph6tzoq/hu9zc6qDtOrvK9I/Tik +q1/nF6OgDpIWH/YK91RRyDi9+3U/dWA4kqf1X5kScq4c7rIMUoe84Pn9LyZK +yPBOnqh8uDqkviQMry0pIg5JtV+Lieog+plDUF1BEVUGuFy4WKEOzRzbfuxf +5FGqgUwzoUEdTEsOev4XIo/CeEm8fG3qgBXu+KqclEcm7fGjQ73qUI2LXJW7 +J4dm6ZvOmqyog7LfRNKvM7Lo88SdaokddaBgnPrqfkQW1VaZsdBS4OGBhu+t +q5EyKOL8dG87Ax5Mkys7ta+cQscLmIxVZfBgbMnNvHlWCp3B/6cp5IWHudzg +764p4khbybD0eQAefCU1N6OOiyPFU1Lcsrfw0LjQo7XzTAyx8q+s4hPwkO2h +iG51iKKBA4E5VpV4qJgqtmZlE0Edf8/Tf2/Ew5XcCZPTpcKoelP9hvMbPHTZ +BSjeMhBGj2b2zXwG8FC0feTH4ztCyKr7HkXUFh4ElHUHS1gEkW6HuwfjPh5e +s1WrxjUJIOXXRsMpNBg83aYR4XMVQBxlDOV5nBgw8I/SCb3mR8NJjy+8xmFQ +a2odPrN/HNnYFDWvhGJgdKfDJzaZGxmeeSBx/R4GehNXW0nM3AhnfCVlLx6D +BZnQ0vGHXIgHyXgdycHAjD/ozkQ6JxoTqOMTfoPBQ3HdpOAP7Ogjd+qDF90Y +6FZWZzrZsqNXLMGbsgMY/HlLD67LbCjjEOET9hsDml2kmM7NhhzmOkPO0SAw +jjI6XR3Fgkx/Ppv9zoDAiZf2gK8kC0LfoixdOBHQRKVy/PvEjE58MpXyPYkg +89eqjBsnM5ooH/wWZYTg2UunrbA2RuQUOI1rjkfAWGJ+YaOJDnHm+DXzPkHQ +culQzWV5OtTz/p9GcDaC92mP7a4WH0V4Hg4D1QoEy9ap2UcKjiD2Zr1zlX0I +HjTEp1PX0KJP0/2jjN8QmFNGBLxBtCiSwdHBewqB0k1px9oPNGjVMdBVagPB +jUejBNY5avTxwPOrhWwEcNXY501Gh1CElNL2weME2Hvesjo1fBDhzrYFOYsS +oN3+3W1u/4OoqHDkNr8KAdK/RTzhqDqAwg2OJKRZE2Al1sDOXpsKqcZfKYl7 +SoAnsew31tz3sT912zJLeQQgNZxYS+7/hxVORFQZlRBAqUdalAb+YSzy6Y20 +rwkQMbQsKSKwhy0PfHwX/oMA+zZSQT+odrGCPWvjyWkCzHJ6djy8TcLsRH9/ +JvwhwO/ctIUqKhL2/vre4N99Agy/uNJCTUfELOgf+zUxAtgtF8+0qG1jpQL2 +1fOsABf5A9YeftjCDisLbXFxAfCKDx8Psd/CWh3KbgQKABQy9hOcHmxi0uVd +YUryAIe/cyRf3VnHaM/sxJWdAaBvM3mwIrmK1WqoZqWcA2h3cfHDj69gLrKB +ZTdtAV7VfCP9eLiCtdLvfDZyBnAIX+RmpFzBrr/bZpz1A1jSkLU+8HUJE65T +EfgcAOCGdjvbTi9hfQXX5WqDAIRXqf36Py5ipyK2zSPDAaZ36fm7Pi1g09h2 +En8SACGV2Wh4bg5LllLJo0kB+KHi2cQRMIdp8lyvWk4FGDFUUrU7OIdl7mz1 +v8oBaOblcu8VncXOVm2xnq8gP/9NqNcvfBrrEN9KSewFeGapPhQRO4X5cSgX +BQ4AvBgd/SSlPIXxUwfUXRgGqH94esZ24icWMrU5JD1Bvo6Ee7rJqf3EFDI3 +OT/8Adjwarem+juBTcQonaxYBzj3wsREuHwCiwv2V3uyDYArTxVJdZ3A5q03 +z7vtA5Skpsx1PRvHclk206gYNOBcLOXb17e/Y2ZUSsVzzBqwadHCtrI3hv1b +udbUy64BcucsRL1DxjCbno1vmcc1wGPPM0Mi7BvG9GCDV/2UBnBWLNuH54xg +Yf/WM6+aaADrn4sL6VqDmHxYi1KZuQa5v9ZM9Q99xX5TRn+cP6sB9JLBxaxe +XzHDQ4IkJwcNwPw8HWOyBzA2OrOzZt4aEEvllGvE24+9i+VZjL6qAVcXT/3r +bOnDghhmwruua4BSvxxQufZhE8yh5ShMA7qSnJpTqr9gL7hKjkonagDcD3O1 +vNSL2T29nvvfIw1wrkiInufoxRj4tNTyUzWgQ93EhCr5M3aNf9SNJ1cDFkbM +k0VcezCCGG374SoNIIxx+x4++REbUHQJnB7QgJG+tZ/zku+wu7UyDIIjGrCe +Wjf8u7YLU1PdLbD/rgE7pX0WHNpdWKZ6Uv/Abw042npFet2lE3PXbD31ZksD +tn4NMni3dGC8HdFv/5E0IKu4WmvPpgPr0Tlnh9vXgH2FiNe+O28wRYPlBxU0 +mnCbZWJ6VvUN9u807+8sTvJhYe6aDdfnNqz8y0zwN15NKH7V0DEZ2IY5n6li +5hDQhDvd+GQj4TbsnZUhxJ3UBKYR962pW63YQ/vApyE4TaB/eYH6WVIzJn5l +wPy8nSa88O74QY8aMekurjpjR034L1p5wbWrAZMXusALLppgcrv4xqBFA4b/ +Njct6qEJDea8jt+86zFzo/3gjWBNcMuacfRvq8WsirQnZ25pgl8F19lEm1rM +7kCU7rcITag/1x8eulmDuTWxMrVHa8KgxvSXYtkaLEhSojD+qSaI4Zck/Zuq +sFv3vI9GZGmCb3nPR/zFKixyqtonII88n5r50OMjVRi5dqnbF2tCbITW+4UL +lVje0bO9Ek2aMKpd5mnEW4F9XLhFejuqCfdCDyekl7zEvui9vdDwQxMonVol +fURfYoN5R96W/NSEE7LsV3NzS7AJ20fxD+c1gfDulfVOTjG22f1C2ImkCfEU +XsoGTc8xktjKA8t/mtC7On53Rfc5RhGp9EePSgtWWYgzBQPPsCP41oZTR7Sg +bangG9tWEXa85KvpXy4tWJehjmU0K8SEaHmq//BpQTJbpbL0QgEm7uLINSWg +BWMtdUeZ7xdgCrwLU+9PasHrE78FWLvyMf0YihuP1bTgzrkaNYHzeZivh2Se +/HktUD5fsUTTlY0F2f6NC7LXgvmVcMdf17KxSMNPQe1OWuBuUbVpIZyNPRH3 +trC4rAX8wo/64xmysNZflZR+wVrAY8l1605rOvahP2Kp4ZYWnDiRutmmkI4N +tFuOUEZqQUG+dVLZ86fYbPZWeWKMFqTy/tflnpGGMdjjHCsyyPNRONbu5D7B +OI2PGhNztGBaQVLAVuIJJqg+pqJRqAXtGrv0dNWPMWWuUIYvpVpwPmAjUKon +BXP42ta80qIFjCE9raq8j7CXJgZ8sj+1YIpydbaMPQmrxXMfDpzWgtsaFscE +mhOxVsmFjZZ5LUjitn6jdSkRGzgc+/H0uhaol3qMhjQnYH/f9gZ7H9Qm3++0 +upv34zDqmpxLdbTa4CI2w7p7KQ5jzPc7s0+nDZ+iFB2P98diwuGskvFs2rAz +vnV5siIGM0LWo6Wi2iAwcNJgLD4Ks5Q+2bkloQ1Zg/pZX+ijMAdeUgWS0Yb3 +Vg4ZWnEPMD/S0wc9KtpALDHl8ky5j6XVjqsu62uDdqNxUnz7XWzu1KXH0le0 +4SitCc/DsAhsUIk+3slbG8QS5Wy/CEZgHfiqu4+uagPbB3SurzMcyzTc998L +Jq/n1kwviSUcs3B7bPkpRhu8Gt1yqdrDMIInZkyZqA3x+Q7X/HzDMKlrU1pK +j8jvO/E92VUwDKMJl1HIyNAG20nKVF+mW9irjC4mz1JtOCil0p31MQR7nu95 +OKdSG8T/tpMkNUOwlGIWyq+12vBYlLnTvDEY82m4sIJv0QbnNT8P1cogTOTr +dg9drzZwzTLfFWwJxOLoxGNKVrWB91XF43wtfyyYpSdiYlMbJnBjZy9/v4b9 +x30tmJWkDYR7Wg94blzDNMVbL4dQ6UD4gnciT+1VbFvL2sCYRQcWSPo30nT8 +sF+G/yCMQwd67yauti/5Yn3m+arVPDrgJXKlNvGxL1ZyYUWMV1gHLmaLPqRa +8cEcg+9TLyrqwB+jjqgGN2/MJPzUvxNqOoAvy7j25rMXhnswsHkG04HfAyf4 +8tS9MNbH/L+bdHQgXzv10kseT+x9Zf2baCsdaJMpEgjbvYzJz8+GSQbqgKjl +o6EAmUuYXzetHkeIDixzfht273LDKkrE6Q+E6YBh3ZceGSc3TNb7v9TRezog +OyG3z5LmislszFQ8eKwDJavfhZz4XTCvrzSB/k91IKp22e9YpzNWWiuGnLJ0 +oK/LhMfc0xk7dePSB9UiHdhtuSQZ1HoRk/o3/XOmVgcIHgtH0wOdMI9x6uf9 +jTrAEnSXUlHCCStpFfVuadaBxJN9XyW/O2KSEW67KZ3k+KTUPxDUc8QkaKdZ +dAd1ICnzkhrdWQdMjPm3dv6mDsh9Xr6TbGmDua0fPJpA1AFbnKfN5R/nscIB +4S/Bezrw1q8myOLyeUz0sYv9mUO6UNq380TxvjUmzPvLn4pNF6a3z/DqfrPC +XPYO4Jc5deF6FrZaec0Ky/8hRDXKS7Y0gWeRwQoTynGOqxDWhSfVhkZ5Rmcx +QdGpQkdFXdCIT10yGjqDXaQ54GmsqgvXGDRVNELPYDmzggqqeF0w8rHk7hQ9 +g/EXX2xh0NYFPHGu82KIBXZC9udQ8xldqOERVpBUM8d4cZO0fFd1QTzWaXVm +2gRzLI05a39dF96fpje5c9YEKxBUzc0I1gW+V4L3f3caY6eOxqsfj9SFeOIF +iYYKI4wwhvc68UgXVoSSqHQKDbBIs9nGC6m6sHr4vHP8SQPsXcdDmuwMXZD2 +ecCrWqaPmb2cz+Yv1IXkuHctAW162MXQJ/0CdbogGlU9dZVCFytc0+K/2KQL +uiMB0UGPdLAFtz8euS26sH8r0uyBlA527bQutdA7XZitVBl/7KiN3eHfUBUe +IcerbZvdZ1wTe9Z+OlN0Vxc+mzvWWMkCtqi8O++2rwu9zdFWGm8ImFxxoUrR +AT1ID/hd1CdOwBof7vWK0enBOxrz9Kq/GNbtUnzgJJ8eTH6Z/TH7Vh1jHLEy +cxfQg7VT8ocnkDpmaUKV8VxEDyy97FsuNeKwMaXzyhKn9CDK20hyu14NW6am +cZck6IGxgtP9rj4VTD64suaKFnm+yy8n1hxUsOt/7KlK9PSgfo7FzXxJGaMY +rn4qZaYH6w2uzjcZlTHm5xd7pJ304Cc7G/h5K2JKRs0KshF6cOWRV7//PTns +Y+qUqfg9PWDLu7v0VUUOuzhLe5k/Wg/2bKvrsuZksYQ7Z7IZH+pBZ2PDJytz +WWyxZZZuNVcPpkhSr4ydTmERx46JzxXqQS/7GrXJkDTGba+gNflCDwzH2iRa +T0tj+qSbN75U6oENn0dln54Ulq/IMl3RTv5+mdn4m2ckMPUIVcoXnXog7aR6 +YPbbSazviz1v7gc9qCpbeO7rdhKj8H5mkdSnByXst2Re3RbHbJ9jLX4/9WDB +hntQolcUYz7+3xMFKn2o9KFuG+kQwqCpskfoiD7g2GJqhpmFMC/rvYOszPow +Ys50jfuSIPY+Kcl3Q0AfGr8pdd8VEMC2ZL4X/TqpD1Tf6e/o3uPHhD+J/RiQ +0wej9kiz6V8nsDCa14Y1GvrgMvFsI7ecDyvNp7ldYKAP1nnO3CYFvNiYhkXd +I3N9qL17xM0hjwdTDZkRCnDSh0N93i1ujVzYnxWmPeXb+lAULfrythE79us1 +tdH+fX2488g5JecuGzYctfukK0EfPKjlKGPesWKtwr8VrbP1YUntUWzfBRas +enUknP+ZPuSf6J98Vc2MPW/u6Z0t04crBbTEWAZmLMm63uNGiz7QsAW8Zxtk +xO6KvGzU6NIHr/1PGe4ajFjQWg7tkc/6UHf47JNXzgyYc0x0ftoPfdjbK9Ze +0qTHFFsdxpr29OE6xmya4XkY47PRDzSmNwCRvQ8rOtU0GPWGHOt3XgOYq+V6 +McpJjS3H8pR7ShmA3XSCoGXqQWxI7JDxP3UDsCYWqvYoHMBa25Zn4owMILXz +UcadaUrsme1wxAlbAwDis6dfyyiwoPjiJggygL8RtQF+FHv4AP83vkLRBsBO +KXaNOE7C+9p+E6NON4DLOzc0vWZ28B4a699nSwxAftVfa4plG/+f2NHk7tcG +UBtE35dzcRPvQi9kWNpjAIJuZjjRL+t4x3UcReK4Aazn0u3x2K/hz7Vc9rCi +NATND79l2x/8wVsUhAuqMRvCL6oDIsVqS3jT6LRhHiFDsHWRG99nXcAb+lbG +/VMwhPFpTD6Rcw6ve+6D9qS2Idg/mqu/ojGDx4RI5YVuhiC1aFJP2JnCK/45 +yedx3xCU/ykkL4lM4ltjxff+FBmCklCUk2/rd7yRlNj3q12GQNhpcpD7PIIf +/CDyenvaEK5+iI166TyIv+gunBFMbQQ2vx/pSXv045dohG7uixjBsr4un/lI +Lz6wUMA+QscIHqfanrir/glvGCQwctXACDy5Zh411H3E85gKnHUxMQKXviB9 +gvJHfPMmv4nOWSPwqRat5sB14w/q8GM0rkbww7DzyJTte3z81HG+6Ejy+4dY +igv33+LXzL7qfHtnBJb3xP8SJFrxls3RXpL0xsA5njX5qq0OLyHC4evDZAyO +uzfOvDKpw1PE5F6tYTOG8cA++bVvtfiX5xsCCceNgWI2VGXwXw2eenM6/IyM +Mej1Naba21fj6yQ1HwebGwOr2nrS7rUKPHfqTkv3I2PYvVHS3l30HD/Acb7n +b6oxvFc42fle6jk+NqVhTDrTGJqKy+PZqp/hKZKDiPGFxrDfOht0+X0Rfjru +r7xlnTFcv/sXN0lfiK+IpCgcGzaGwloO0wubuXh9H9qYJR4T8LzRLrZ2MB3v +r8dpzZBrAi42gUmjqXF436jSON10U+A0W/qD+3gVnxF38r+s4tNA8fJn3CuD +c/iah/Qr/pZm8GmO7kpUHYaPtHtemNFrBg8uUw0auQjh5+/UnbI6Zw6WXN/p +flLS4HOIFHdpv5pDtfxJr4b0JfWVT69KjewtgGX0m8O2xRf1+MWqwvtjFvDa +f+WD6V6N+mMaUy6982cgWd1zfTI6XV05wsY+ZeIMvPDXvkoYDlMXNcj1GXew +hJ9Gn9TfJ7iqv/S2O9swYwm+QyxdV7kM1DOSGqpZvc7Ct7e0EQ8mpNW/75tP +uS+chV3bykpTQxb1mk92U6evWsE4H8oTLNjC/fidWymzZgXKzDoPbg+O4bxJ +0X8TvM6BRysuuayrHffYe4YjYvMcyA9w74XjC3GMMqFU3letobVUv2YoPga3 +TTTXzfG3hiO/PPCuFDG4Hx0iUf3XrSFQ4ofCm6vRuBKbT0yqIdZQceSuXP3F +KJzeXV4ByjvWsHJnue+o431c6PdGwsMUa2ApX31g+ykStxi9HVLXYA3+Rmk5 +J0xCcf1W3a1zTdag/HHu80r1TVyjQNZB3mZrsPeUM20+cRN3v043JqzdGhzs +/aOZ/wXjhKYePTXotgbvnDrXY2M3cDY4xcZvY+TxPUfWF0wBOI1DtP/ox61B +6Wxuen+uP06895sGTFqD0KnOnpPK/rhN14j3+b+tIex8Yr2s8zVcQmLfsOey +NVDnHOOL/OqHu25XyJu9Yg2Ps75MLAb44RzEghz71sjri/SukeX2w0m9FphV +3rYGrn9GgcJuvjiW+5uS7kRrWB+XMm0/5osjWbz3frpLnq/CloqjwQc3wZdR +9WnPGuTsqne4XH1wXbM+2/v71jBVa9bazuyD+x9eEm2N + "]]}, + Annotation[#, "Charting`Private`Tag$34726#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJxF0Xk01VsUB3CEVDLP43UNlTlz0vntlJAMEZkfKRQZUi9FKDI/0xNPpsxN +osiQJCpkKBUhJDQQIdO99yd5P6+3bn+d9Vnnu8/eax+pI76Wx5gYGBg2MTIw +rJ22mlfk54MiMHkn34/fLRTRX/l5S1GvC7H6sz5/fkfeaHTZLHnDnnvY/Zz3 +D0/jEeiCnOmWl2IPMEHPAyGHqlJR/PUi5/3LjzF33R4mx6lr6F194Tal8aeY +6zEOtcLW62jLm4IFzp5WLHHVMubbx3J0ejy/Ya6xA1Oqbw8K/Xwfjfy0eHbi +cBemsdIk/8O2DkXHdMkPmr7GFkaqIvvSHiNlPosk073dWGVJf+iVW09Q8DZz +B9XtfZjVDyHhrXptiP1mMfU8ywfsEVWvOUirG7n4ut+qYBjBfG40nHvA/hZV +aMg5Ty2PYGzHGG4zfu5F9g1FT5zmxrBku9wi3qwBVNJdmADDX7DOKqsonaAR +pL+aL8NaO4NpthmkTDqOo/1H7npJ2s9ieffEDupsm0ALe7mf1fXOYjIcT99E +f59ARhtfnV14/R3LME4fnzoziaZTLYaOPZ/HVB3KsesHptE/Z8u1mAwXMOk4 +N9u3lGmkb8+VlPN0ARPAtHx7cmbQFcku/d6GRaz/W2m9qt8s0rtpft2oioJl +3uPSd8/4jj7HlzF+UqdiHK38wi3vv6MkX06Hi3epmOJ5zlpEnkNjGi83P7hN +w5YaAiP/LphD8YIqHjbyOFavM7bh0sgc0sITHs+V4NiBgerxG+LzKLbBLECh +YBm7RZvKbEuaRxr5dzpaSD+wNF8z5bct82gogkPuaM4PTMC6NhJW5pHq/hd9 +WRkrmMXSUv5htwXU222KOJJWsery+9EZ4ouInT2pUpydASKL4qU0DiyiUiWa +sYYFA+y64vV417lFNO3Xftq1jwH+8PRh7HixiBJTNDYGijHCZf9FBQ/KIlKt +zM5NcGGE3mEejxyJJeRP8W2rG2cEX0PVhU3HlxCPcP8frxWZwKK6TOVw/BK6 +p6u/OO7HBHh8t4nnnSW0cIGPJEBjgtHy2ovrZpbQn8y1Z/w2MMOgs4q/jBsF +CcqRN0WZMoOoU1d/8QUKqjGMu5adzAwOP8zfaKdTEC3Wqb1NmAWePV/1KWqh +oKu3m11GnFggy/VscPJ7CtJ9obJEyWOBv0rez91coKBgbiYpWXlWUFvMjLkk +QUVi6l5VO31Y4W7CbnszNSqqP9RtYnmPFcgtp5eOGFDRz/TiP0N11wPlJMP9 +0ONUdFHCpKN/Pxtk7D14QfEmFZGh0nU2gQ1aPI+afqqhoiZXcQrrGzborT53 +kK+FipiLZqQ0HDaA63VW6/ERKipstq3en7sBrH15c9KmqchgvPGA69gGCOqL +Le/EqShSIfVsgtdGyLJ5LPqFm4a2mK6wF5VtBMsa/4RXYjTU6uOeXze/ERpt +rjBYb6GhDfd0OseDNoFloHa25k4aitcZIu+JZ4cLPR+H651pSNF+X41dFzuw +TOp6vnKnoc6gMlM/vs2QGSBu/I8PDXE0XAzMztoMkt2lCiYXaKjsw9fNlR82 +AxPn3+f1ImjIgulQQZsMB2zg5380GUtDyQZyLyi3OeBWn9PDv9JpSM0j0Y3j +OwcYm9pvvpxNQ6+jqVQZTU4oC+0O21NAQ3wdbdKW9ZwgleIiKnGHhkxuVOu9 +deeCcQ8tqbBGGipn37mcG8kFqTv16rKfEXm/R7XHi7mAV3shLu05DQ1qPdNa ++cQFXDE33ku8oiG4arTYzMINbT8H2su7aahopb0iSZYbtmaPNpP7aMjn6WtV +mWPc4PAQN7n1nphni83MtwhuWI0bmX0yQkPacf2l1YXcIOE90f/4Iw0xWH6Q +N/nIDXskPU28vtJQyvA3mVNuPNBUaV2cuUBDS/r+YzvDeeDZj9iimSUacihe +yGMp4IGy/a8blWk0JHNyWSJjlAd26Ghq+q/QUHRXyNARJl6YOKE7fWaVhr6p +M2UpknkhYiQl2pMRR1U4m/BjV15If1I2JsyCIxHn+N6Yi7yQG9XT28+Ko9BG +zjSrPF7gzPHni2XDkVG0AO+XD7zQyPs5tX4Tjt7xy2zmcOGDoWPWkyHcOELn +Stp7Q/kgaVQ27CUPjgoG5WPzcvngkYbQHj4+HHkXbF+vOcwHfnH5lCABHHWx +3n/28ycfLMRg93IFcaR5QieiVYIfyH5GSrVCOPqpijE6OvND8zHs1QsRHB1J +bWqQDeGHn+2p19tFcdRCMQiZyeaH0ELH7AYxHCU9OrB8aYgfVk7+LZoggSPy +AfvFG44CUC3Fdr5TCkeRZUMVAcECYNUh5RpHxtEkj+upXVkCYBLHkqkvjaPK +fo+ZrgEBmFMTXMyWwZHQrsnSq8sCwOqxOUpfFkcXrvl4HxUVBEbucPMRwvs8 +zkxQ7AXBv17XkmMLjm62UUsazwuChZ3sTBZhTuVg97irgtCYzhAttxVHfQuX +xiTeCYJApYeLwjYcnbiUNGRgJwT1pGhdBgUcjRc+xH0DheCG4SwcJ+zRMi54 +NV0I2jvLSl4QPsq+23K6Rwg6/lrPn6iIo1Hlk75Ci0LQC5a2Xwm7HsyI1+cT +BhdD7zP6SjhyTvvenGYpDKa1JrcmCA/WiH987C8M7dfeUHWUceQwYMw4mSQM +o86PYy4TtiXl78ReCsNew6s9Aio4srppWf7FRATKa9ZFiani6HVHSCe3lwic +uJjhYUvYYubm152xIlDaI6adQthMY51sUqsIaHWaTq4S7rBR0X/wRQScFXPn +1LfjyOScwx8fWUXBOUBV2Z2w0aOKDB0DUWgLw8OeEW7+MFx15KgoVFFNq+YI +G6xj744PF4UyDZKjhBqO9I2Ocow0igJanVTxJ6z3mi88BomBTCa/E6s6jh4s +wLUKJzFoSX4fspXwDsGT9UPBYrCDizHAmLCW4zPK9joxiIzLXI4iXBnync/x +nRi8MuspKCKsnieuFkkTA9xlzqCJsOrnM97vtMWhtKwqk0r4Dlt+DPNhcbi7 +IcaFRwNHSgovipX/FIfAw1d3KxCW95MbuVQpDhpFxWftCcvib60VtkuA1uRc +SBnhQrF1AdYWEtBENp9vIkzGVJJCfSUgdLaqrocwKSKq7U0pYX91FxrhnOKK +LysdElAwHme4URNH4s+HmbdOScDipqAMEcIiHDpYsLwkvChJTt5B+B/Vo47F +xpLgPHlptxFhQaukc12ekrA7Os/XhjDfP+MVMiWS0PtU0daf8PrkA6mfuUlQ +6xf5Io+w/TRXfSeZBHdzxV+VEr5t0vOpUp0ETEerXWoJW7A6a4dbk2Bl+Yf2 +S8L5bmSXE+4kOJzRGtVPeOHx5+iDZ0lw4Wj/6bG1eYJ830lmkMCZy1tzifDX +PvV162+SgFz6hXOVsJ4WVWH6AQkyo3KurNfC0chs2IWHgySwmTItEyQs755C +siNJwXZudFKDcPATG2PYLgW8RxgXdAm/IIme2qIvBb6Bhnq7CQcMFDxZdJOC +saYcEVPCzTqeU4OnpcBhr8h9S8JCaYr8Ty9LwfG2aWFbwg8t7runlEgB5+m0 +/UcIc9w5l3iuRgpiuTREPAi7bEI1Ls+lYB97Y50XYZbm5g0qk1KQ2R8cdJqw +2c6+2+3KZJBn6xCOIHztn6yeexgZZK3Ki6IIzy26/MywIENobC5nHOH08glz +z1NkOClRcimZ8NfNdwLNw8kgUiubkEpYz+tUnlYqGYavBQenE/4guzzHXEWG +ocssrNmE1cIbRKeayWD8cV9BLuGID+F73/SSwVIgbEs+4W2Z7Gl5NDJQKxPH +iwmf4pLYgXZJg0mszrEywk9PjrrKmknDRtMky7uEBdqLY9n/kIZ7u04rVRCu +u6wy+C5MGsxbsu5Ure1jbJ65KVkacrep2NSs7QNqlG7kS8OD1olvtYSZlyH0 +7FNpkOlXnX1I2MaW5bpzjzTEDA84PCJ8/f7zLoPP0hBaPVXbQNjUz5LMxyYD +OYt7zJsIp31ye1ZuIgMDqe8nm9f+81Rd7C4vGeCxlexrJbyegdeiLVYGXFWS +89sIw18n+A/flIH3kZGmHYQDRZrejT2XgQjK1oFOwndLhK/5TcgAA3+w6cu1 +/Wr4H1thkwXJjS7FXYQdzEmzAkay0BNZw/OGcMfxl+dVo2Qh4XOLYg9hFBHC +sr9ZFsasAlffEi7LUUpyY5GDJtvdqX2ESbWDIhf2ykHaerv5fsJM07qq5U1y +cCxyVWGQ8CdyhsEYbAGPkfbeIcKthyn2Ag1bIOFynvAw4Zvx1n7Gu7ZCR2bD +pg+EU0bTN9m5yINwOs43SjhI512xZ7giTLc33l4zc9h1xZAsZfCyi+1bc4vb +zv7n9qowdib105qVxTJ0jay3g1O/5cSaU7uXMpvN1SA+KPrrmreZ7bjm/oc6 +vBqY/c+PWoIKWX01oCqcc3LNCz0ahle9NcFNXeg/y3/8NqF0QgtGKCL/efvk +1MWnR7RBt1f0P+vMTQo7OOgAA0nsP5/nejLQ6qYDFlK//FD5araWtw6kkH8Z +8zKS4rmgA4syv7zvY+HW5zk6oLvtl63eOmlrj+rAetVf9nnw8hDv8R3QqPPL +hZcqEtv/1AV++D+v56kv7aMHg/q/7Br4WfdRIgK5Pb/MZkVNKLMCUPzfYT/n +cwJMd9O91av7oJ2jPqj8b39vhQI1uz2g9L8nlD3Slbz20q32dTxMIdCAXi+m +O8ImHrAPlP+3pskjddVwQ3p+ZpZ7ReuiEd3nE2/VwXljujVmtol7R++n1yeO +SYjHRZjQLZJBbWi/coDe74yhkC1nvim93j/2TsK+LDO6sxO2eebeMqf7/t+b +Z88csqDXRzjeKM7usqDff71crWxz+CC9Xx6NIZKt5yB9H7OdD++YOFnS84lT +FcXRg7+dvt5M2NDOim6tcHuntA+/LWec7zfsfIj+fqmvo3Xtl9/OTqmt5POx +pueHVg+OHZ+0pve/3+k4Zh5gQ5///af8eypzNvS8Lx73I8nn8O95fL8Ihi/+ +NpdKCJNvgC2931QcJbi61pZ+3zLuR1ld/e1/Aaip6Mg= + "]]}, + Annotation[#, "Charting`Private`Tag$34726#2"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{Automatic, Automatic}, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->FrontEndValueCache[{{Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, + Charting`ScaledFrameTicks[{Identity, Identity}]}}, {{Automatic, {{0., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {5.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {0.00001, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {0.000015, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {0.00002, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {0.000025, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-5.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-4.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-3.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-2.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-1.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {1.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {2.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {3.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {4.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {6.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {7.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {8.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {9.*^-6, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000011, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000012, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000013, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000014, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000016, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000017, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000018, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000019, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000021, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000022, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000023, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000024, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000026, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000027, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000028, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.000029, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {0.00003, + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}}}, {Automatic, {{0., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {20., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {40., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {60., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {80., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {100., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { + AbsoluteThickness[0.1]}}, {-20., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-15., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-10., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {-5., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {5., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {10., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {15., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {25., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {30., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {35., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {45., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {50., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {55., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {65., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {70., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {75., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {85., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {90., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {95., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {105., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {110., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {115., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}, {120., + FormBox[ + TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { + AbsoluteThickness[0.1]}}}}}], + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{All, All}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.799728908318083*^9, 3.7997294206137867`*^9, 3.799730897741962*^9, + 3.799741113122218*^9, 3.799741206749118*^9, 3.799741270730091*^9, + 3.799741482814333*^9, {3.799742441161326*^9, 3.799742598280821*^9}, { + 3.799742637032835*^9, 3.7997427208564663`*^9}, {3.79974278249749*^9, + 3.7997428867291393`*^9}, 3.79974301613666*^9, {3.7997432903368797`*^9, + 3.7997433726417303`*^9}, {3.799743589921074*^9, 3.7997436977872047`*^9}, + 3.79974390846951*^9, 3.799744140535379*^9}, + CellLabel-> + "Out[146]=",ExpressionUUID->"7bada2d9-6367-4955-824d-e8ff7c661ccc"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"xx", "=", + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], + "}"}]}], "\[IndentingNewLine]", + RowBox[{"g", "=", + RowBox[{"DiagonalMatrix", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"-", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}], "]"}]}], ",", + RowBox[{"Exp", "[", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}], "]"}], ",", + RowBox[{"r", "^", "2"}], ",", + RowBox[{ + RowBox[{"r", "^", "2"}], " ", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "^", "2"}]}]}], "}"}], + "]"}]}]}], "Input", + CellChangeTimes->{{3.799743203500659*^9, 3.799743250871842*^9}}, + CellLabel-> + "In[147]:=",ExpressionUUID->"7a19f391-ea85-4ac1-9169-0e71076cc730"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"t", ",", "r", ",", "\[Theta]", ",", "\[Phi]"}], "}"}]], "Output", + CellChangeTimes->{ + 3.799743214073285*^9, {3.7997432468575363`*^9, 3.799743251334929*^9}, + 3.799743707666994*^9, 3.799743910706882*^9, 3.799744200465077*^9}, + CellLabel-> + "Out[147]=",ExpressionUUID->"087ecfed-9943-4551-b692-661afb206f5c"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"w", "[", "r", "]"}]}]]}], ",", "0", ",", "0", ",", "0"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", + SuperscriptBox["\[ExponentialE]", + RowBox[{"2", " ", + RowBox[{"\[Lambda]", "[", "r", "]"}]}]], ",", "0", ",", "0"}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", + SuperscriptBox["r", "2"], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0", ",", "0", ",", "0", ",", + RowBox[{ + SuperscriptBox["r", "2"], " ", + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], "2"]}]}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.799743214073285*^9, {3.7997432468575363`*^9, 3.799743251334929*^9}, + 3.799743707666994*^9, 3.799743910706882*^9, 3.7997442004766207`*^9}, + CellLabel-> + "Out[148]=",ExpressionUUID->"ea0c880a-df6d-442d-b50b-47145437344d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"eqsef", "=", + RowBox[{"STTOV", "[", + RowBox[{"xx", ",", "g", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"V\[CurlyPhi]", "[", + RowBox[{"\[Alpha]val", ",", "\[Beta]val"}], "]"}], ",", + "\[CurlyPhi]"}], "}"}], ",", + RowBox[{"{", + RowBox[{"p", ",", "w", ",", "\[Lambda]", ",", "\[CurlyPhi]"}], "}"}], + ",", "\[Epsilon]p", ",", + RowBox[{"\"\<Frame\>\"", "\[Rule]", "\"\<Einstein\>\""}], ",", + RowBox[{"\"\<PerturbationIndex\>\"", "\[Rule]", "0"}], ",", + RowBox[{"\"\<SimplifyFunction\>\"", "\[Rule]", "Simplify"}], ",", + RowBox[{"\"\<Frame\>\"", "\[Rule]", "\"\<Jordan\>\""}]}], "]"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.799728733247157*^9, 3.7997287364424067`*^9}, + 3.7997288832709417`*^9, {3.799728968175254*^9, 3.799728982672014*^9}, { + 3.799729023508072*^9, 3.799729023890072*^9}, {3.799729459292788*^9, + 3.7997294604522047`*^9}, {3.7997299495562067`*^9, 3.799729955516183*^9}, + 3.799740556231011*^9, {3.799743258037326*^9, 3.799743285155098*^9}, { + 3.799743715479664*^9, 3.799743723921689*^9}}, + CellLabel-> + "In[149]:=",ExpressionUUID->"1c093b45-c7e6-436b-b249-347e2408b6ea"], + +Cell[BoxData["\<\"Variables must be given as: {p,Var_gtt,Var_grr,\[CurlyPhi]}\ +\"\>"], "Print", + CellChangeTimes->{ + 3.799729462231133*^9, 3.7997295350110188`*^9, {3.7997295835423737`*^9, + 3.7997296701772346`*^9}, {3.799729712713916*^9, 3.79972973189968*^9}, { + 3.799729799952426*^9, 3.799729864164646*^9}, {3.799729906612266*^9, + 3.799729918098641*^9}, {3.7997299558888493`*^9, 3.799729971163601*^9}, { + 3.799730003301291*^9, 3.799730020127832*^9}, {3.799730077365672*^9, + 3.7997301137051973`*^9}, 3.799730152524106*^9, 3.799730197228074*^9, + 3.799730349353533*^9, 3.7997306365091143`*^9, 3.7997307330896997`*^9, + 3.799730784453965*^9, 3.799730831967885*^9, 3.7997309038076897`*^9, + 3.7997335997251673`*^9, 3.799740556724641*^9, 3.799740658881074*^9, + 3.799741115532481*^9, 3.799741207335517*^9, 3.799741271686201*^9, + 3.799741341234377*^9, 3.799741483022235*^9, 3.799741519813848*^9, + 3.799743269252585*^9, 3.799743724556808*^9, 3.79974391204735*^9, + 3.79974420112391*^9}, + CellLabel-> + "During evaluation of \ +In[149]:=",ExpressionUUID->"f2034283-f23d-4ae2-a46d-ca0292694df7"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"di", "=", + RowBox[{"1", "/", "100"}]}], ";"}], "\n", + RowBox[{"tab", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"myeqsa", "=", + RowBox[{"(", "eqsef", ")"}]}], ";", "\[IndentingNewLine]", + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "i"}]}], ";", "\[IndentingNewLine]", + RowBox[{"rin", "=", + RowBox[{"Rationalize", "[", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"pc", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "16"}], ")"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{"myeqsa", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}], ",", "0"}], "]"}]}]}], "/.", + + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"p", "[", "r", "]"}], ",", "0"}], "]"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", + RowBox[{"Rationalize", "[", "0", "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"\[CurlyPhi]", "'"}], "[", "rin", "]"}], "\[Equal]", + "0"}]}], "}"}]}], ";", "\n", + RowBox[{"eqsfin", "=", + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"testST", "=", + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "\[CurlyPhi]"}], "}"}], + ",", "4", ",", + RowBox[{"{", + RowBox[{"1508989", "/", "10000000"}], "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "True"}]}], "]"}]}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"{", "\[Rho]0c", "}"}]}], "}"}]}], + "]"}]}], "\[IndentingNewLine]"}], "Input", + CellChangeTimes->{{3.751811766206811*^9, 3.751811788078196*^9}, { + 3.751811911948484*^9, 3.751811928632483*^9}, {3.75184597343232*^9, + 3.751845976175544*^9}, {3.7518460087135067`*^9, 3.751846012500869*^9}, { + 3.751846190310767*^9, 3.7518461915528593`*^9}, {3.75184650815858*^9, + 3.751846513586975*^9}, {3.751979411570162*^9, 3.7519794439694443`*^9}, { + 3.7519794759265623`*^9, 3.751979477352743*^9}, {3.75197962132337*^9, + 3.751979631487918*^9}, {3.751979665655856*^9, 3.751979691880835*^9}, + 3.751979748783423*^9, 3.751979853346014*^9, 3.751979947397644*^9, { + 3.751980863276256*^9, 3.751980887163767*^9}, {3.751981674447106*^9, + 3.7519817248910418`*^9}, {3.751981805383251*^9, 3.751981808481189*^9}, { + 3.752226633279251*^9, 3.7522266567554502`*^9}, {3.752226715595039*^9, + 3.7522267287510138`*^9}, {3.752226821839292*^9, 3.752226841252283*^9}, { + 3.7522269087894497`*^9, 3.7522269113670807`*^9}, {3.752227006931594*^9, + 3.7522270736780376`*^9}, {3.752227118069972*^9, 3.752227138711067*^9}, { + 3.752227221901513*^9, 3.7522272579199038`*^9}, {3.752227313422024*^9, + 3.752227334406859*^9}, {3.752227438229046*^9, 3.752227443051566*^9}, { + 3.752227554273136*^9, 3.752227563342155*^9}, {3.752227670227501*^9, + 3.75222772869241*^9}, {3.752227858829393*^9, 3.752227876761191*^9}, { + 3.752228025046372*^9, 3.7522280274498053`*^9}, {3.752228161796549*^9, + 3.7522282030314083`*^9}, {3.752228440580614*^9, 3.7522284451987553`*^9}, { + 3.7522286049563637`*^9, 3.752228614626943*^9}, {3.752233670581884*^9, + 3.752233671080874*^9}, 3.7522338556718493`*^9, {3.75223466839053*^9, + 3.7522347065447407`*^9}, {3.752413203362537*^9, 3.752413224640437*^9}, { + 3.75241346650229*^9, 3.752413480171154*^9}, {3.7524135649458723`*^9, + 3.752413605740526*^9}, {3.752413759764978*^9, 3.7524137647649193`*^9}, { + 3.757147436108445*^9, 3.75714752868994*^9}, {3.7571476885249357`*^9, + 3.757147691120302*^9}, {3.757147727105349*^9, 3.757147777137907*^9}, { + 3.757147812585622*^9, 3.7571478308864813`*^9}, {3.757148186835968*^9, + 3.757148190842628*^9}, {3.757820714840118*^9, 3.757820731952281*^9}, { + 3.7578207671689463`*^9, 3.75782077362683*^9}, {3.7578208226123037`*^9, + 3.757820826477024*^9}, {3.757820950983934*^9, 3.757820983849414*^9}, { + 3.757821026048717*^9, 3.757821026703146*^9}, {3.7578210648635597`*^9, + 3.7578211626559772`*^9}, {3.757821584112419*^9, 3.75782173574968*^9}, { + 3.7578222849687567`*^9, 3.757822363483889*^9}, {3.757822984488474*^9, + 3.757822992479261*^9}, {3.757826798645417*^9, 3.757826963279611*^9}, { + 3.7578270552691307`*^9, 3.75782711873971*^9}, {3.7578284436770983`*^9, + 3.757828446187387*^9}, 3.757828482771422*^9, {3.758959874880513*^9, + 3.758959890557139*^9}, {3.758959926662064*^9, 3.7589599601648293`*^9}, { + 3.758959991096417*^9, 3.758959996979047*^9}, {3.758960339543404*^9, + 3.7589603426621513`*^9}, {3.7589833973519173`*^9, + 3.7589835475088873`*^9}, {3.7592110485665913`*^9, 3.759211053096925*^9}, + 3.759216321187221*^9, {3.7603485498428917`*^9, 3.760348573574058*^9}, { + 3.760348619593515*^9, 3.7603487709948683`*^9}, {3.7603488180472517`*^9, + 3.76034885507169*^9}, {3.760348945156185*^9, 3.760349415862315*^9}, { + 3.760350097219532*^9, 3.760350324766295*^9}, {3.761191804544631*^9, + 3.761191808295714*^9}, {3.761191931820159*^9, 3.761192345732918*^9}, { + 3.761193839376589*^9, 3.761193904597291*^9}, {3.761193949904818*^9, + 3.761194051544373*^9}, 3.761194535920648*^9, {3.761194569630628*^9, + 3.761194582613164*^9}, 3.761194664710396*^9, {3.761194946768532*^9, + 3.761195024868537*^9}, {3.761195108962014*^9, 3.761195138319393*^9}, { + 3.761195174742742*^9, 3.7611955234868393`*^9}, {3.761195701890441*^9, + 3.761195702341032*^9}, 3.761196485634391*^9, {3.761196658559492*^9, + 3.761196661141837*^9}, 3.7611968379516068`*^9, {3.761197023030426*^9, + 3.7611970255263033`*^9}, {3.761197076692329*^9, 3.761197118552474*^9}, { + 3.79973097002567*^9, 3.799730994204389*^9}, {3.799731024367084*^9, + 3.799731086926413*^9}, {3.7997311261169252`*^9, 3.799731132399192*^9}, { + 3.79973124118622*^9, 3.79973125969013*^9}, 3.799731972509701*^9, { + 3.799732195538846*^9, 3.79973219829803*^9}, 3.799732363970727*^9, { + 3.799732485907164*^9, 3.7997325170248833`*^9}, {3.799732562559083*^9, + 3.7997325773676977`*^9}, {3.7997327616671677`*^9, 3.799732776773637*^9}, { + 3.799732955832143*^9, 3.799733006749688*^9}, 3.7997330372231007`*^9, { + 3.799733079432432*^9, 3.799733115607945*^9}, {3.799733234074205*^9, + 3.79973325617085*^9}, {3.7997333899754953`*^9, 3.7997333988737698`*^9}, { + 3.799734578742381*^9, 3.7997346140397377`*^9}, {3.799734708096471*^9, + 3.799734735575932*^9}, {3.799734766768032*^9, 3.7997347742308903`*^9}, { + 3.799734897349547*^9, 3.7997349017321177`*^9}, {3.799735189295854*^9, + 3.799735195201284*^9}, {3.7997406126776133`*^9, 3.799740621944942*^9}, { + 3.799741298650671*^9, 3.799741300526568*^9}, 3.799742965642508*^9, { + 3.799743007167285*^9, 3.799743007454126*^9}, {3.7997430411218843`*^9, + 3.799743054564272*^9}, {3.799743733062394*^9, 3.799743734757841*^9}, { + 3.79974391645446*^9, 3.799744093989855*^9}}, + CellLabel-> + "In[150]:=",ExpressionUUID->"84f93c30-180e-48f1-b654-ba099d58a792"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2761264, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685495667531923544855311148715535768998172509303948580256, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685495667531923544855311148715535768998172509303948580256, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2742888, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685495667531923544855311148715535769016619253377658129952, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685495667531923544855311148715535769016619253377658129952, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 2741872, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685495667531923544855311148715535769035065997451367724688, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685495667531923544855311148715535769035065997451367724688, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 3470712, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685495667531923544855311148715535769053512741525077273184, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685495667531923544855311148715535769053512741525077273184, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", "0", ",", + FractionBox["1508989", "10000000"], ",", "0"}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.799743926333913*^9, 3.799744097322673*^9}, + 3.7997442097385473`*^9}, + CellLabel-> + "Out[151]=",ExpressionUUID->"10628954-c335-43d3-9aed-f444bca02ca8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"testST", "[", + RowBox[{"[", "4", "]"}], "]"}], "@", "2000"}]], "Input", + CellChangeTimes->{{3.799744099642733*^9, 3.7997441015893507`*^9}}, + CellLabel-> + "In[144]:=",ExpressionUUID->"1e1403dd-e8e6-4dfd-b8d9-a24853eb585c"], + +Cell[BoxData["0.0000111111266857419793606552169845108521345621309793045902`29.\ +034835405216388"], "Output", + CellChangeTimes->{3.7997441021239347`*^9}, + CellLabel-> + "Out[144]=",ExpressionUUID->"ed6e3bf3-c813-418f-b1ed-f8a3bd8ece2a"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"di", "=", + RowBox[{"1", "/", "100"}]}], ";"}], "\n", + RowBox[{"tab", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"myeqsa", "=", + RowBox[{"(", + RowBox[{ + RowBox[{"eqsef", "/.", + RowBox[{"\[Alpha]", "\[Rule]", "\[Alpha]val"}]}], "/.", + RowBox[{"\[Beta]", "\[Rule]", " ", + RowBox[{"(", "\[Beta]val", ")"}]}]}], ")"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]c", "=", + RowBox[{"\[Rho]max", " ", "*", "i"}]}], ";", "\[IndentingNewLine]", + RowBox[{"rin", "=", + RowBox[{"Rationalize", "[", + RowBox[{"10", "^", + RowBox[{"-", "5"}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"pc", "=", + RowBox[{"Rationalize", "[", + RowBox[{ + RowBox[{ + RowBox[{"eqEoS", "[", + RowBox[{"[", + RowBox[{"1", ",", "2"}], "]"}], "]"}], "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "->", "\[Rho]c"}]}], ",", + RowBox[{"10", "^", + RowBox[{"(", + RowBox[{"-", "16"}], ")"}]}]}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"myeqs\[Alpha]1eff", "=", + RowBox[{ + RowBox[{"myeqsa", "/.", + RowBox[{ + RowBox[{"\[Rho]", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"\[Rho]int", "[", + RowBox[{"p", "[", "r", "]"}], "]"}], ",", "0"}], "]"}]}]}], "/.", + + RowBox[{ + RowBox[{"p", "[", "r", "]"}], "\[Rule]", + RowBox[{"Max", "[", + RowBox[{ + RowBox[{"Chop", "[", + RowBox[{"p", "[", "r", "]"}], "]"}], ",", "0"}], "]"}]}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"eqsIC", "=", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"p", "[", "rin", "]"}], "==", "pc"}], ",", + RowBox[{ + RowBox[{"\[Lambda]", "[", "rin", "]"}], "\[Equal]", "0"}], ",", + RowBox[{ + RowBox[{"w", "[", "rin", "]"}], "\[Equal]", + RowBox[{"Rationalize", "[", "0", "]"}]}], ",", + RowBox[{ + RowBox[{ + RowBox[{"\[CurlyPhi]", "'"}], "[", "rin", "]"}], "\[Equal]", + "0"}]}], "}"}]}], ";", "\n", + RowBox[{"eqsfin", "=", + RowBox[{"Flatten", "@", + RowBox[{"Join", "[", + RowBox[{"myeqs\[Alpha]1eff", ",", + RowBox[{"Join", "[", "eqsIC", "]"}]}], "]"}]}]}], ";", + "\[IndentingNewLine]", + RowBox[{"testST", "=", + RowBox[{"ShootingNStars", "[", + RowBox[{"eqsfin", ",", + RowBox[{"{", + RowBox[{"rin", ",", "rfin"}], "}"}], ",", "r", ",", + RowBox[{"{", + RowBox[{"p", ",", "\[Lambda]", ",", "w", ",", "\[CurlyPhi]"}], "}"}], + ",", "4", ",", + RowBox[{"{", + RowBox[{"15092", "/", "100000"}], "}"}], ",", + RowBox[{"\"\<Verbose\>\"", "\[Rule]", "True"}], ",", + RowBox[{"\"\<Bracketing\>\"", "\[Rule]", "True"}]}], "]"}]}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"i", ",", + RowBox[{"{", "\[Rho]0c", "}"}]}], "}"}]}], + "]"}]}], "\[IndentingNewLine]"}], "Input", + CellChangeTimes->{{3.751811766206811*^9, 3.751811788078196*^9}, { + 3.751811911948484*^9, 3.751811928632483*^9}, {3.75184597343232*^9, + 3.751845976175544*^9}, {3.7518460087135067`*^9, 3.751846012500869*^9}, { + 3.751846190310767*^9, 3.7518461915528593`*^9}, {3.75184650815858*^9, + 3.751846513586975*^9}, {3.751979411570162*^9, 3.7519794439694443`*^9}, { + 3.7519794759265623`*^9, 3.751979477352743*^9}, {3.75197962132337*^9, + 3.751979631487918*^9}, {3.751979665655856*^9, 3.751979691880835*^9}, + 3.751979748783423*^9, 3.751979853346014*^9, 3.751979947397644*^9, { + 3.751980863276256*^9, 3.751980887163767*^9}, {3.751981674447106*^9, + 3.7519817248910418`*^9}, {3.751981805383251*^9, 3.751981808481189*^9}, { + 3.752226633279251*^9, 3.7522266567554502`*^9}, {3.752226715595039*^9, + 3.7522267287510138`*^9}, {3.752226821839292*^9, 3.752226841252283*^9}, { + 3.7522269087894497`*^9, 3.7522269113670807`*^9}, {3.752227006931594*^9, + 3.7522270736780376`*^9}, {3.752227118069972*^9, 3.752227138711067*^9}, { + 3.752227221901513*^9, 3.7522272579199038`*^9}, {3.752227313422024*^9, + 3.752227334406859*^9}, {3.752227438229046*^9, 3.752227443051566*^9}, { + 3.752227554273136*^9, 3.752227563342155*^9}, {3.752227670227501*^9, + 3.75222772869241*^9}, {3.752227858829393*^9, 3.752227876761191*^9}, { + 3.752228025046372*^9, 3.7522280274498053`*^9}, {3.752228161796549*^9, + 3.7522282030314083`*^9}, {3.752228440580614*^9, 3.7522284451987553`*^9}, { + 3.7522286049563637`*^9, 3.752228614626943*^9}, {3.752233670581884*^9, + 3.752233671080874*^9}, 3.7522338556718493`*^9, {3.75223466839053*^9, + 3.7522347065447407`*^9}, {3.752413203362537*^9, 3.752413224640437*^9}, { + 3.75241346650229*^9, 3.752413480171154*^9}, {3.7524135649458723`*^9, + 3.752413605740526*^9}, {3.752413759764978*^9, 3.7524137647649193`*^9}, { + 3.757147436108445*^9, 3.75714752868994*^9}, {3.7571476885249357`*^9, + 3.757147691120302*^9}, {3.757147727105349*^9, 3.757147777137907*^9}, { + 3.757147812585622*^9, 3.7571478308864813`*^9}, {3.757148186835968*^9, + 3.757148190842628*^9}, {3.757820714840118*^9, 3.757820731952281*^9}, { + 3.7578207671689463`*^9, 3.75782077362683*^9}, {3.7578208226123037`*^9, + 3.757820826477024*^9}, {3.757820950983934*^9, 3.757820983849414*^9}, { + 3.757821026048717*^9, 3.757821026703146*^9}, {3.7578210648635597`*^9, + 3.7578211626559772`*^9}, {3.757821584112419*^9, 3.75782173574968*^9}, { + 3.7578222849687567`*^9, 3.757822363483889*^9}, {3.757822984488474*^9, + 3.757822992479261*^9}, {3.757826798645417*^9, 3.757826963279611*^9}, { + 3.7578270552691307`*^9, 3.75782711873971*^9}, {3.7578284436770983`*^9, + 3.757828446187387*^9}, 3.757828482771422*^9, {3.758959874880513*^9, + 3.758959890557139*^9}, {3.758959926662064*^9, 3.7589599601648293`*^9}, { + 3.758959991096417*^9, 3.758959996979047*^9}, {3.758960339543404*^9, + 3.7589603426621513`*^9}, {3.7589833973519173`*^9, + 3.7589835475088873`*^9}, {3.7592110485665913`*^9, 3.759211053096925*^9}, + 3.759216321187221*^9, {3.7603485498428917`*^9, 3.760348573574058*^9}, { + 3.760348619593515*^9, 3.7603487709948683`*^9}, {3.7603488180472517`*^9, + 3.76034885507169*^9}, {3.760348945156185*^9, 3.760349415862315*^9}, { + 3.760350097219532*^9, 3.760350324766295*^9}, {3.761191804544631*^9, + 3.761191808295714*^9}, {3.761191931820159*^9, 3.761192345732918*^9}, { + 3.761193839376589*^9, 3.761193904597291*^9}, {3.761193949904818*^9, + 3.761194051544373*^9}, 3.761194535920648*^9, {3.761194569630628*^9, + 3.761194582613164*^9}, 3.761194664710396*^9, {3.761194946768532*^9, + 3.761195024868537*^9}, {3.761195108962014*^9, 3.761195138319393*^9}, { + 3.761195174742742*^9, 3.7611955234868393`*^9}, {3.761195701890441*^9, + 3.761195702341032*^9}, 3.761196485634391*^9, {3.761196658559492*^9, + 3.761196661141837*^9}, 3.7611968379516068`*^9, {3.761197023030426*^9, + 3.7611970255263033`*^9}, {3.761197076692329*^9, 3.761197118552474*^9}, { + 3.79973097002567*^9, 3.799730994204389*^9}, {3.799731024367084*^9, + 3.799731086926413*^9}, {3.7997311261169252`*^9, 3.799731132399192*^9}, { + 3.79973124118622*^9, 3.79973125969013*^9}, 3.799731972509701*^9, { + 3.799732195538846*^9, 3.79973219829803*^9}, 3.799732363970727*^9, { + 3.799732485907164*^9, 3.7997325170248833`*^9}, {3.799732562559083*^9, + 3.7997325773676977`*^9}, {3.7997327616671677`*^9, 3.799732776773637*^9}, { + 3.799732955832143*^9, 3.799733006749688*^9}, 3.7997330372231007`*^9, { + 3.799733079432432*^9, 3.799733115607945*^9}, {3.799733234074205*^9, + 3.79973325617085*^9}, {3.7997333899754953`*^9, 3.7997333988737698`*^9}, { + 3.799734578742381*^9, 3.7997346140397377`*^9}, {3.799734708096471*^9, + 3.799734735575932*^9}, {3.799734766768032*^9, 3.7997347742308903`*^9}, { + 3.799734897349547*^9, 3.7997349017321177`*^9}, {3.799735189295854*^9, + 3.799735195201284*^9}, {3.799739954009355*^9, 3.799739956346936*^9}, { + 3.799740074559992*^9, 3.7997400750403223`*^9}, {3.799740146668169*^9, + 3.799740146877178*^9}, {3.799740432611566*^9, 3.799740527363008*^9}, { + 3.7997406360526876`*^9, 3.799740637027987*^9}, {3.799740712749544*^9, + 3.799740749426177*^9}, 3.799741055042562*^9, {3.799741088206442*^9, + 3.799741122183194*^9}, {3.799741170641355*^9, 3.799741187729862*^9}, { + 3.799741233795031*^9, 3.799741233969874*^9}, {3.79974137137066*^9, + 3.799741396173649*^9}, {3.799741435103573*^9, 3.799741435289009*^9}, { + 3.79974149565993*^9, 3.79974149909788*^9}, {3.799741548137055*^9, + 3.799741549828787*^9}, {3.7997416627503777`*^9, 3.799741665147204*^9}, { + 3.799741715792798*^9, 3.7997418282047358`*^9}, {3.799744111375866*^9, + 3.799744113973298*^9}},ExpressionUUID->"5c8ab894-f16c-44e7-9d93-\ +adc4a4231419"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 1486712, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685490547278413119663134985305171373845323211257069590032, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685490547278413119663134985305171373845323211257069590032, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 1487712, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685490547278413119663134985305171373863769955330779130688, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685490547278413119663134985305171373863769955330779130688, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 1496208, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685490547278413119663134985305171373882216699404488681504, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685490547278413119663134985305171373882216699404488681504, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", + TagBox[ + TemplateBox[{RowBox[{ + StyleBox[ + TagBox["InterpolatingFunction", "SummaryHead"], + "NonInterpretableSummary"], + StyleBox["[", "NonInterpretableSummary"], + DynamicModuleBox[{ + Typeset`open$$ = False, Typeset`embedState$$ = "Ready"}, + TemplateBox[{ + TemplateBox[{ + PaneSelectorBox[{False -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquarePlusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = True), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}], True -> GridBox[{{ + PaneBox[ + ButtonBox[ + DynamicBox[ + FEPrivate`FrontEndResource[ + "FEBitmaps", "SquareMinusIconMedium"]], + ButtonFunction :> (Typeset`open$$ = False), Appearance -> + None, Evaluator -> Automatic, Method -> "Preemptive"], + Alignment -> {Center, Center}, ImageSize -> + Dynamic[{ + Automatic, + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])}]], + GraphicsBox[{{ + GrayLevel[0.6], + AbsolutePointSize[5], + PointBox[{1, 1}], + PointBox[{2, 4}], + PointBox[{3, 2}], + PointBox[{4, 3}]}, {{}, {}, { + AbsoluteThickness[1], + Opacity[1.], + LineBox[CompressedData[" +1:eJwBMQPO/CFib1JlAgAAADIAAAACAAAA4ScLwZmZ6T/ACPskWpOYv4AjHgZ5 +3Os/cnpQh5xu1j/qWn1XCVDuP5K7ih5ptuc/r+pongFN8D/CUK87BHLxP46d +cUQ/bPE/ujUa8/qu9j9TbqBw1aPyP/TWyyAhFfw/neDJZqDG8z+QAqdF9GsA +QM1wGePDAfU/VsVD/9nXAkCidscSKDf2P6Bp73exDQVA/B1wDMFX9z+TpM3k +wfUGQDzjPoyykPg/7M3Z+O7ZCEABSgjW2LT5P3pl9LwNcgpAbCYw0z/T+j86 +ypori9cLQL0gflb/Cfw/lpOs9xIqDUCTvMaj8yv9Pw4alcoYNg5AT3Y1d0Bm +/j+pB2LLtyIPQLClAv7Nmv8/NnA5bbjSD0BLO2UnSF0AQFrcILXmpw9AsTLc +klX5AED+sDHBQukOQNp6UGP9igFAbZ+lR/sLDkD10dd20SgCQNHi3Mj38wxA +42MO5MXDAkAZdr6AZb8LQJRGQrZUVANArv7zEMKHCkA4OInLD/EDQLBlMO3M +IglAnnrNRWWDBEA3d8OX6skHQNf3wBnbEgVAD3D3ndNyBkADhMcwfa4FQHOK +7Wak/wRA8WDLrLk/BkC/MhCgYawDQNJM4msi3QZAwss/TmVLAkCGc6iEq3cH +QIsIg92+BgFA/OprAs8HCECrPCvgePD/P2VxQsMepAhAKXVLE0Xg/j+RSBbp +CDYJQPRz0a7WJ/4/kFqZaBPFCUDN4sX5uLj9P4J7LytKYApAvh1MbRmT/T82 +7cJSG/EKQHzT1YZwwv0/3W1pvRiOC0B2LZ/10lT+P0c/DY2wIAxAVrX8MJA7 +/z+DS2C2aLAMQElWzbMzPQBAsmbGIk1MDUCi9bAadCABQKTSKfTL3Q1AYexd +q+EpAkCJTaAId3sOQFyS/ndEhgNAQAPGdkIWD0BHWcLdahwFQLoJ6Umopg9A +vd1CiejSBkCTjw8wnSEQQPiVkXD08QhAq0KpbbNqEEBsk2Azxi4LQCyTGthZ +shBAYCBYjj+gDUAnaxVkFgARQMwfdA9ySBBAg+uOIqBIEUBj/5rHgMsRQNFn +q5SZmRFAL++xNeOlE0Dwt3AR + "]]}}}, AspectRatio -> 1, Axes -> + False, Background -> GrayLevel[0.93], Frame -> True, + FrameStyle -> Directive[ + GrayLevel[0.7], + Thickness[Tiny]], FrameTicks -> None, + ImageSize -> {Automatic, + Dynamic[ + 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ + Magnification])]}, PlotRange -> {{0, 5}, {0, 5}}], + GridBox[{{ + RowBox[{ + TagBox["\"Domain: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox[ + RowBox[{"{", + RowBox[{"{", + + RowBox[{"1.`30.*^-5", ",", + "2432.54875486206306193226869743926439284881`30."}], + "}"}], "}"}], "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Output: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"scalar\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Order: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["3", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Method: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["\"Hermite\"", "SummaryItem"]}]}, { + RowBox[{ + TagBox["\"Periodic: \"", "SummaryItemAnnotation"], + "\[InvisibleSpace]", + TagBox["False", "SummaryItem"]}]}}, + GridBoxAlignment -> { + "Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> { + "Columns" -> {{2}}, "Rows" -> {{Automatic}}}, + BaseStyle -> { + ShowStringCharacters -> False, NumberMarks -> False, + PrintPrecision -> 3, ShowSyntaxStyles -> False}]}}, + GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> + False, GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + BaselinePosition -> {1, 1}]}, + Dynamic[Typeset`open$$], ImageSize -> Automatic]}, + "SummaryPanel"], + ButtonBox[ + DynamicBox[ + ToBoxes[ + If[ + + Or[$VersionNumber < 11.2, CurrentValue["RunningEvaluator"] =!= + "Local"], + Style["This object cannot be used as input.", "SummaryEmbed"], + BoxForm`EmbedSummaryLabel[InterpolatingFunction, 1907024, + Dynamic[Typeset`embedState$$]]], StandardForm]], + ButtonFunction :> + BoxForm`EmbedSummaryInterpretation[ + InterpolatingFunction, + 6685490547278413119663134985305171373900663443478198241120, + EvaluationBox[], + Dynamic[Typeset`embedState$$], StandardForm], DefaultBaseStyle -> + "SummaryEmbedButton", BaseStyle -> {"DialogStyle"}, Enabled -> + Dynamic[ + + And[$VersionNumber >= 11.2, CurrentValue["RunningEvaluator"] === + "Local", Typeset`embedState$$ === "Ready"]], Appearance -> + Inherited, Method -> Inherited, Evaluator -> Automatic]}, + "SummaryEmbedGrid"], DynamicModuleValues :> {}], + StyleBox["]", "NonInterpretableSummary"]}]}, + "CopyTag", + DisplayFunction->(#& ), + InterpretationFunction->( + " -5\n\ +InterpolatingFunction[{{1.0000000000000000000000000000 10 , \ +2432.54875486206306193226869744}}, <>]"& )], + False, + BoxID -> 6685490547278413119663134985305171373900663443478198241120, + Editable->False, + SelectWithContents->True, + Selectable->False], ",", "0", ",", + FractionBox["3773", "25000"], ",", "0"}], "}"}], "}"}]], "Output", + CellChangeTimes->{ + 3.799741502689794*^9, {3.799741535849461*^9, 3.799741552421587*^9}, + 3.7997416176554737`*^9, {3.799741660596031*^9, 3.7997416680719147`*^9}, { + 3.799741733773654*^9, 3.7997418543101997`*^9}}, + CellLabel-> + "Out[137]=",ExpressionUUID->"6ecdd54a-2d95-4153-938e-1cfc86d7d97b"] +}, Open ]] +}, Open ]] +}, Open ]] +}, +WindowSize->{808, 911}, +WindowMargins->{{436, Automatic}, {-67, Automatic}}, +FrontEndVersion->"12.0 for Mac OS X x86 (64-bit) (April 8, 2019)", +StyleDefinitions->"Default.nb" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[558, 20, 166, 3, 35, "Text",ExpressionUUID->"607aa170-a31b-46bf-853d-1323334df302"], +Cell[727, 25, 617, 12, 127, "Text",ExpressionUUID->"95f42b5d-055c-4dbf-84a0-f12b50c01fc0"], +Cell[1347, 39, 203, 4, 30, "Input",ExpressionUUID->"48ed9086-116a-42f0-a5b0-679401b983a5"], +Cell[CellGroupData[{ +Cell[1575, 47, 211, 4, 67, "Section",ExpressionUUID->"359dd1e5-ec51-45ba-a423-1546b165ab5d"], +Cell[CellGroupData[{ +Cell[1811, 55, 152, 3, 54, "Subsection",ExpressionUUID->"362c3668-1de1-490e-a5cb-8a4e0ce170c9"], +Cell[1966, 60, 243, 4, 52, "Code",ExpressionUUID->"51ee50b1-943d-429a-8a98-22f1b5129b56"] +}, Closed]], +Cell[CellGroupData[{ +Cell[2246, 69, 258, 4, 38, "Subsection",ExpressionUUID->"b4cafe99-5c10-49df-bec1-70b77254830c"], +Cell[CellGroupData[{ +Cell[2529, 77, 731, 14, 110, "Code",ExpressionUUID->"28d9c623-2f35-4b48-afc0-bf102c8402c2"], +Cell[3263, 93, 4072, 62, 42, "Message",ExpressionUUID->"3a083d41-624c-433b-8f6c-7554d496da5d"], +Cell[7338, 157, 3931, 61, 24, "Message",ExpressionUUID->"53368634-5397-480e-86b4-81420dba9e61"], +Cell[11272, 220, 3968, 60, 24, "Message",ExpressionUUID->"d23e9f49-eabe-49e7-81c0-b72f5919b75a"], +Cell[15243, 282, 4249, 65, 42, "Message",ExpressionUUID->"eef537de-e7c0-4112-ab75-d5eb954989ae"], +Cell[19495, 349, 4283, 65, 42, "Message",ExpressionUUID->"b5bdc1f5-72c3-480e-bccd-59fb8caa8275"], +Cell[23781, 416, 4253, 65, 42, "Message",ExpressionUUID->"a7f5fd78-4a9d-4d3e-ba04-3b2dc7fa838e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[28071, 486, 424, 7, 52, "Code",ExpressionUUID->"2038f51c-ef1d-478a-a6d8-12f5b4a73949"], +Cell[28498, 495, 30902, 779, 34, "Output",ExpressionUUID->"f92f6d8d-3a3f-4fd9-8774-4ee9966c211a"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[59449, 1280, 172, 3, 38, "Subsection",ExpressionUUID->"35de4bd5-32a5-45fa-b33c-c1c4fc79cc04"], +Cell[59624, 1285, 1335, 38, 167, "Code",ExpressionUUID->"a948f404-6fd9-4fe5-a838-380ebe7da944"] +}, Closed]], +Cell[CellGroupData[{ +Cell[60996, 1328, 190, 3, 38, "Subsection",ExpressionUUID->"50fb9a2d-d04b-4421-9e43-ccbb4c1c0bd3"], +Cell[CellGroupData[{ +Cell[61211, 1335, 5296, 136, 224, "Code",ExpressionUUID->"1ad43db6-9498-4d09-bd75-e999ffd7c57c"], +Cell[66510, 1473, 2405, 39, 70, "Print",ExpressionUUID->"f9a60beb-52dc-48b6-99fd-766e2c1a49a3"] +}, Open ]], +Cell[CellGroupData[{ +Cell[68952, 1517, 5223, 134, 205, "Code",ExpressionUUID->"0fd01fca-9e4d-45c8-aa33-cd917ee1a17c"], +Cell[74178, 1653, 1237, 26, 70, "Print",ExpressionUUID->"387174a0-e39d-4e4a-9f9e-81ac4cefcb4e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[75452, 1684, 5776, 139, 224, "Code",ExpressionUUID->"77ab1cfc-93f2-4366-a35a-f2f21c62690e"], +Cell[81231, 1825, 872, 17, 70, "Print",ExpressionUUID->"a84cd5ca-f2d0-4f50-b4b2-33f2d4e43472"] +}, Open ]], +Cell[CellGroupData[{ +Cell[82140, 1847, 5971, 142, 224, "Code",ExpressionUUID->"f7117468-dbb9-4616-a069-36663920d67a"], +Cell[88114, 1991, 1028, 19, 70, "Print",ExpressionUUID->"ca853243-7719-479d-9642-9bee5294e811"] +}, Open ]], +Cell[CellGroupData[{ +Cell[89179, 2015, 6420, 153, 224, "Code",ExpressionUUID->"dc83ef56-f120-4495-9245-8a021c3a3982"], +Cell[95602, 2170, 873, 17, 70, "Print",ExpressionUUID->"a092876b-0262-4cc7-a80b-027026a449cb"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[96524, 2193, 161, 3, 38, "Subsection",ExpressionUUID->"5d30e1c1-8625-4a00-be98-1c819cd86f4c"], +Cell[96688, 2198, 687, 13, 52, "Input",ExpressionUUID->"b5d331c0-4beb-4074-96a9-fbaf549e0231"], +Cell[97378, 2213, 7643, 205, 126, "Code",ExpressionUUID->"cfc40657-89f8-4127-89c9-d0b86703f68c"], +Cell[105024, 2420, 6161, 159, 74, "Code",ExpressionUUID->"2da6bdd4-9a3e-491c-8ac0-864bd1df73dc"], +Cell[111188, 2581, 7183, 180, 74, "Code",ExpressionUUID->"e677e2a6-f3af-4ae7-a350-40d556f009cb"], +Cell[118374, 2763, 8371, 217, 126, "Code",ExpressionUUID->"cab98d8f-8fbd-48d0-b448-9471155c97cb"], +Cell[126748, 2982, 7744, 194, 87, "Code",ExpressionUUID->"0267a229-a6d0-4957-983c-48ec871caa20"], +Cell[134495, 3178, 7742, 194, 87, "Code",ExpressionUUID->"757b9d70-4a08-4bc0-a1be-a30efbfd8eb8"], +Cell[142240, 3374, 4794, 125, 87, "Code",ExpressionUUID->"970dfa80-5cdd-4f81-91fc-d1a3907c1372"] +}, Closed]] +}, Open ]], +Cell[CellGroupData[{ +Cell[147083, 3505, 166, 3, 67, "Section",ExpressionUUID->"f03bc825-1521-4851-a5f1-6b1883555b64"], +Cell[CellGroupData[{ +Cell[147274, 3512, 1179, 18, 81, "Subsection",ExpressionUUID->"72589bbd-52d7-448c-9e07-de570aaa91a1"], +Cell[148456, 3532, 1221, 19, 30, "Input",ExpressionUUID->"64505dfe-3bce-42a2-b055-674f282dde89"], +Cell[CellGroupData[{ +Cell[149702, 3555, 1022, 28, 73, "Input",ExpressionUUID->"719fbc17-d50a-4f25-ac5d-a6aef37f69ae"], +Cell[150727, 3585, 600, 9, 51, "Output",ExpressionUUID->"3847cf13-919c-4a6b-938a-398839373961"], +Cell[151330, 3596, 581, 8, 34, "Output",ExpressionUUID->"b3f85246-65e3-41d8-8483-b38b57662aca"] +}, Open ]], +Cell[CellGroupData[{ +Cell[151948, 3609, 525, 12, 30, "Input",ExpressionUUID->"3985141c-be0d-4e4e-a042-57220e2c8e73"], +Cell[152476, 3623, 713, 18, 54, "Output",ExpressionUUID->"673921fa-9f44-4817-b066-54a2b4882ccb"] +}, Open ]], +Cell[153204, 3644, 536, 16, 30, "Input",ExpressionUUID->"d14ed336-3d9c-4223-a7b0-60c6dacdcad0"], +Cell[153743, 3662, 1066, 25, 30, "Input",ExpressionUUID->"bb1e81bf-6f7b-4d93-a9ac-53d6fd8c1489"], +Cell[154812, 3689, 475, 10, 30, "Input",ExpressionUUID->"024bcf28-8095-42df-9004-51269bdbc461"], +Cell[CellGroupData[{ +Cell[155312, 3703, 534, 11, 30, "Input",ExpressionUUID->"37047281-e390-4fa8-8ee7-c348b35cfac5"], +Cell[155849, 3716, 681, 20, 78, "Output",ExpressionUUID->"70a0d93b-5686-4212-8bd8-09e2583efa57"] +}, Open ]], +Cell[CellGroupData[{ +Cell[156567, 3741, 825, 18, 30, "Input",ExpressionUUID->"cf9b9008-43f4-4e17-bf0d-421fed27767c"], +Cell[157395, 3761, 32893, 609, 230, "Output",ExpressionUUID->"7bada2d9-6367-4955-824d-e8ff7c661ccc"] +}, Open ]], +Cell[CellGroupData[{ +Cell[190325, 4375, 814, 24, 52, "Input",ExpressionUUID->"7a19f391-ea85-4ac1-9169-0e71076cc730"], +Cell[191142, 4401, 351, 7, 34, "Output",ExpressionUUID->"087ecfed-9943-4551-b692-661afb206f5c"], +Cell[191496, 4410, 1014, 30, 37, "Output",ExpressionUUID->"ea0c880a-df6d-442d-b50b-47145437344d"] +}, Open ]], +Cell[CellGroupData[{ +Cell[192547, 4445, 1204, 25, 52, "Input",ExpressionUUID->"1c093b45-c7e6-436b-b249-347e2408b6ea"], +Cell[193754, 4472, 1115, 18, 24, "Print",ExpressionUUID->"f2034283-f23d-4ae2-a46d-ca0292694df7"] +}, Open ]], +Cell[CellGroupData[{ +Cell[194906, 4495, 8207, 153, 262, "Input",ExpressionUUID->"84f93c30-180e-48f1-b654-ba099d58a792"], +Cell[203116, 4650, 44103, 881, 476, "Output",ExpressionUUID->"10628954-c335-43d3-9aed-f444bca02ca8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[247256, 5536, 260, 6, 30, "Input",ExpressionUUID->"1e1403dd-e8e6-4dfd-b8d9-a24853eb585c"], +Cell[247519, 5544, 235, 4, 34, "Output",ExpressionUUID->"ed6e3bf3-c813-418f-b1ed-f8a3bd8ece2a"] +}, Open ]], +Cell[CellGroupData[{ +Cell[247791, 5553, 8910, 166, 262, "Input",ExpressionUUID->"5c8ab894-f16c-44e7-9d93-adc4a4231419"], +Cell[256704, 5721, 44222, 883, 476, "Output",ExpressionUUID->"6ecdd54a-2d95-4153-938e-1cfc86d7d97b"] +}, Open ]] +}, Open ]] +}, Open ]] +} +] +*) +