Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RDStackingProject
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yifan Wang
RDStackingProject
Commits
15981225
Commit
15981225
authored
Nov 23, 2020
by
frcojimenez
Browse files
Options
Downloads
Patches
Plain Diff
added error options
parent
c11167ed
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
code_new/NR_dynesty_t0_loop.ipynb
+92
-139
92 additions, 139 deletions
code_new/NR_dynesty_t0_loop.ipynb
code_new/NR_dynesty_t0_loop.py
+67
-61
67 additions, 61 deletions
code_new/NR_dynesty_t0_loop.py
with
159 additions
and
200 deletions
code_new/NR_dynesty_t0_loop.ipynb
+
92
−
139
View file @
15981225
Source diff could not be displayed: it is too large. Options to address this:
view the blob
.
This diff is collapsed.
Click to expand it.
code_new/NR_dynesty_t0_loop.py
+
67
−
61
View file @
15981225
#!/usr/bin/env python
#!/usr/bin/env python
# coding: utf-8
# coding: utf-8
# In[
3
]:
# In[
48
]:
#Import relevant modules, import data and all that
#Import relevant modules, import data and all that
...
@@ -49,7 +49,7 @@ except SystemExit:
...
@@ -49,7 +49,7 @@ except SystemExit:
pass
pass
# In[4]:
# In[4
9
]:
# path
# path
...
@@ -64,9 +64,10 @@ simulation_number = np.int(simulation_number)
...
@@ -64,9 +64,10 @@ simulation_number = np.int(simulation_number)
output_folder
=
parser
.
get
(
'
output-folder
'
,
'
output-folder
'
)
output_folder
=
parser
.
get
(
'
output-folder
'
,
'
output-folder
'
)
overwrite
=
parser
.
get
(
'
setup
'
,
'
overwrite
'
)
overwrite
=
parser
.
get
(
'
setup
'
,
'
overwrite
'
)
downfactor
=
np
.
int
(
parser
.
get
(
'
setup
'
,
'
plot_down_factor
'
))
downfactor
=
np
.
int
(
parser
.
get
(
'
setup
'
,
'
plot_down_factor
'
))
sampler
=
parser
.
get
(
'
setup
'
,
'
sampler
'
)
# In[5]:
# In[5
0
]:
if
not
os
.
path
.
exists
(
output_folder
):
if
not
os
.
path
.
exists
(
output_folder
):
...
@@ -74,7 +75,7 @@ if not os.path.exists(output_folder):
...
@@ -74,7 +75,7 @@ if not os.path.exists(output_folder):
print
(
"
Directory
"
,
output_folder
,
"
Created
"
)
print
(
"
Directory
"
,
output_folder
,
"
Created
"
)
# In[
6
]:
# In[
51
]:
# time config
# time config
...
@@ -89,7 +90,7 @@ t_align=parser.get('time-setup','t_align')
...
@@ -89,7 +90,7 @@ t_align=parser.get('time-setup','t_align')
t_align
=
np
.
float
(
t_align
)
t_align
=
np
.
float
(
t_align
)
# In[
7
]:
# In[
52
]:
# n-tones & nlive
# n-tones & nlive
...
@@ -101,7 +102,7 @@ npoints=parser.get('n-live-points','npoints')
...
@@ -101,7 +102,7 @@ npoints=parser.get('n-live-points','npoints')
npoints
=
np
.
int
(
npoints
)
npoints
=
np
.
int
(
npoints
)
# In[8]:
# In[8
1
]:
# model
# model
...
@@ -120,16 +121,16 @@ print('tshift:',tshift)
...
@@ -120,16 +121,16 @@ print('tshift:',tshift)
print
(
'
error:
'
,
error_str
)
print
(
'
error:
'
,
error_str
)
# In[
10
]:
# In[
83
]:
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
+
'
_
'
+
str
(
error_str
)
if
not
os
.
path
.
exists
(
output_folder_1
):
if
not
os
.
path
.
exists
(
output_folder_1
):
os
.
mkdir
(
output_folder_1
)
os
.
mkdir
(
output_folder_1
)
print
(
"
Directory
"
,
output_folder_1
,
"
Created
"
)
print
(
"
Directory
"
,
output_folder_1
,
"
Created
"
)
# In[
11
]:
# In[
84
]:
corner_plot
=
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
corner_plot
=
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
...
@@ -137,14 +138,14 @@ diagnosis_plot=output_folder_1+'/Dynesty_diagnosis'+str(simulation_number)+'_'+m
...
@@ -137,14 +138,14 @@ diagnosis_plot=output_folder_1+'/Dynesty_diagnosis'+str(simulation_number)+'_'+m
fit_plot
=
output_folder_1
+
'
/Fit_results_
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
fit_plot
=
output_folder_1
+
'
/Fit_results_
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
# In[
12
]:
# In[
85
]:
sumary_data
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
sumary_data
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
best_data
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
best_data
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
# In[
6
6]:
# In[
8
6]:
# loading priors
# loading priors
...
@@ -193,7 +194,7 @@ if model == 'w-tau-fixed':
...
@@ -193,7 +194,7 @@ if model == 'w-tau-fixed':
prior_dim
=
len
(
priors_min
)
prior_dim
=
len
(
priors_min
)
# In[
6
7]:
# In[
8
7]:
vary_fund
=
True
vary_fund
=
True
...
@@ -241,7 +242,7 @@ def tauRD_to_t_Phys(tau,M):
...
@@ -241,7 +242,7 @@ def tauRD_to_t_Phys(tau,M):
return
((
M
*
MS
*
G
)
/
c
**
3
)
*
tau
return
((
M
*
MS
*
G
)
/
c
**
3
)
*
tau
# In[
6
8]:
# In[
8
8]:
#This loads the 22 mode data
#This loads the 22 mode data
...
@@ -273,7 +274,7 @@ tmax5=FindTmaximum(gw5_sxs_bbh_0305)
...
@@ -273,7 +274,7 @@ tmax5=FindTmaximum(gw5_sxs_bbh_0305)
times5
=
times5
-
tmax5
times5
=
times5
-
tmax5
# In[
6
9]:
# In[
8
9]:
#Select the data from 0 onwards
#Select the data from 0 onwards
...
@@ -285,7 +286,7 @@ timesrd=gw_sxs_bbh_0305[position:-1][:,0][:-1]-tmax
...
@@ -285,7 +286,7 @@ timesrd=gw_sxs_bbh_0305[position:-1][:,0][:-1]-tmax
timesrd5
=
gw5_sxs_bbh_0305
[
position5
:
-
1
][:,
0
][:
-
1
]
-
tmax5
timesrd5
=
gw5_sxs_bbh_0305
[
position5
:
-
1
][:,
0
][:
-
1
]
-
tmax5
# In[
7
0]:
# In[
9
0]:
#Test plot real part (data was picked in the last cell). Aligning in time
#Test plot real part (data was picked in the last cell). Aligning in time
...
@@ -297,7 +298,7 @@ plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2
...
@@ -297,7 +298,7 @@ plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2
plt
.
legend
()
plt
.
legend
()
# In[
7
1]:
# In[
9
1]:
#Test plot im part (data was picked in the last cell). Aligning in time
#Test plot im part (data was picked in the last cell). Aligning in time
...
@@ -309,7 +310,7 @@ plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2
...
@@ -309,7 +310,7 @@ plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2
plt
.
legend
()
plt
.
legend
()
# In[
7
2]:
# In[
9
2]:
# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
...
@@ -318,7 +319,7 @@ w = (np.real(omegas))/mf
...
@@ -318,7 +319,7 @@ w = (np.real(omegas))/mf
tau
=-
1
/
(
np
.
imag
(
omegas
))
*
mf
tau
=-
1
/
(
np
.
imag
(
omegas
))
*
mf
# In[
7
3]:
# In[
9
3]:
gwnew_re
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
kind
=
'
cubic
'
)
gwnew_re
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
kind
=
'
cubic
'
)
...
@@ -328,7 +329,7 @@ gwnew_re5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,1], kind = 'cubi
...
@@ -328,7 +329,7 @@ gwnew_re5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,1], kind = 'cubi
gwnew_im5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
2
],
kind
=
'
cubic
'
)
gwnew_im5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
2
],
kind
=
'
cubic
'
)
# In[
7
4]:
# In[
9
4]:
if
timesrd5
[
-
1
]
>=
timesrd
[
-
1
]:
if
timesrd5
[
-
1
]
>=
timesrd
[
-
1
]:
...
@@ -345,7 +346,7 @@ gwdatanew = gwdatanew_re - 1j*gwdatanew_im
...
@@ -345,7 +346,7 @@ gwdatanew = gwdatanew_re - 1j*gwdatanew_im
gwdatanew5
=
gwdatanew_re5
-
1j
*
gwdatanew_im5
gwdatanew5
=
gwdatanew_re5
-
1j
*
gwdatanew_im5
# In[
7
5]:
# In[
9
5]:
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
0
+
90
)
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
0
+
90
)
...
@@ -353,7 +354,7 @@ error=np.sqrt(2*mismatch)
...
@@ -353,7 +354,7 @@ error=np.sqrt(2*mismatch)
print
(
mismatch
)
print
(
mismatch
)
# In[
7
6]:
# In[
9
6]:
# Phase alignement
# Phase alignement
...
@@ -365,7 +366,7 @@ plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$')
...
@@ -365,7 +366,7 @@ plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$')
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
# In[
7
7]:
# In[
9
7]:
position
=
np
.
argmax
(
timesrd_final
>=
(
t_align
))
position
=
np
.
argmax
(
timesrd_final
>=
(
t_align
))
...
@@ -384,7 +385,7 @@ plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$')
...
@@ -384,7 +385,7 @@ plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$')
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
# In[
7
8]:
# In[
9
8]:
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
+
90
)
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
+
90
)
...
@@ -395,10 +396,11 @@ else :
...
@@ -395,10 +396,11 @@ else :
error
=
1
error
=
1
# In[
79
]:
# In[
100
]:
#Test the new interpolated data
#Test the new interpolated data
if
error_str
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
plt
.
plot
(
timesrd_final
,
gwdatanew5
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev5
'
)
plt
.
plot
(
timesrd_final
,
gwdatanew5
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev5
'
)
...
@@ -406,10 +408,11 @@ plt.plot(timesrd_final, error.real, "b", alpha=0.3, lw=2, label='error')
...
@@ -406,10 +408,11 @@ plt.plot(timesrd_final, error.real, "b", alpha=0.3, lw=2, label='error')
plt
.
legend
()
plt
.
legend
()
# In[
80
]:
# In[
101
]:
#Test the error data
#Test the error data
if
error_str
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error real
'
)
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error real
'
)
plt
.
plot
(
timesrd_final
,
error
.
imag
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error imag
'
)
plt
.
plot
(
timesrd_final
,
error
.
imag
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error imag
'
)
...
@@ -417,7 +420,7 @@ plt.plot(timesrd_final, np.sqrt(error.imag**2+error.real**2), "r", alpha=0.3, lw
...
@@ -417,7 +420,7 @@ plt.plot(timesrd_final, np.sqrt(error.imag**2+error.real**2), "r", alpha=0.3, lw
plt
.
legend
()
plt
.
legend
()
# In[
8
1]:
# In[1
03
]:
#Take the piece of waveform you want
#Take the piece of waveform you want
...
@@ -426,10 +429,13 @@ position_end = np.argmax(timesrd_final >= tend)
...
@@ -426,10 +429,13 @@ position_end = np.argmax(timesrd_final >= tend)
timesrd_final_tsh
=
timesrd_final
[
position_in
:
position_end
]
timesrd_final_tsh
=
timesrd_final
[
position_in
:
position_end
]
gwdatanew_re_tsh
=
gwdatanew_re
[
position_in
:
position_end
]
gwdatanew_re_tsh
=
gwdatanew_re
[
position_in
:
position_end
]
gwdatanew_im_tsh
=
gwdatanew_im
[
position_in
:
position_end
]
gwdatanew_im_tsh
=
gwdatanew_im
[
position_in
:
position_end
]
if
error_str
:
error_tsh
=
error
[
position_in
:
position_end
]
error_tsh
=
error
[
position_in
:
position_end
]
else
:
error_tsh
=
1
# In[
82
]:
# In[
104
]:
#Fitting
#Fitting
...
@@ -504,13 +510,13 @@ def log_probability(theta):
...
@@ -504,13 +510,13 @@ def log_probability(theta):
return
lp
+
log_likelihood
(
theta
)
return
lp
+
log_likelihood
(
theta
)
# In[
83
]:
# In[
105
]:
dict
=
{
'
w-tau
'
:
model_dv_tau
,
'
w-q
'
:
model_dv_q
,
'
w-tau-fixed
'
:
model_dv
}
dict
=
{
'
w-tau
'
:
model_dv_tau
,
'
w-q
'
:
model_dv_q
,
'
w-tau-fixed
'
:
model_dv
}
# In[
84
]:
# In[
106
]:
#I need to provid an initial guess for 4*(nmax+1) the parameters
#I need to provid an initial guess for 4*(nmax+1) the parameters
...
@@ -524,14 +530,14 @@ vars_ml=soln.x
...
@@ -524,14 +530,14 @@ vars_ml=soln.x
print
(
vars_ml
)
print
(
vars_ml
)
# In[
85
]:
# In[
107
]:
f2
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
prior_dim
,
nlive
=
npoints
,
sample
=
'
rwalk
'
)
f2
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
prior_dim
,
nlive
=
npoints
,
sample
=
sampler
)
f2
.
run_nested
()
f2
.
run_nested
()
# In[8
7
]:
# In[
10
8]:
wstr
=
r
'
$\omega_
'
wstr
=
r
'
$\omega_
'
...
@@ -563,7 +569,7 @@ if model=='w-tau-fixed':
...
@@ -563,7 +569,7 @@ if model=='w-tau-fixed':
labels
=
np
.
concatenate
((
amp_lab
,
pha_lab
))
labels
=
np
.
concatenate
((
amp_lab
,
pha_lab
))
# In[
88
]:
# In[
109
]:
if
model
==
'
w-tau-fixed
'
:
if
model
==
'
w-tau-fixed
'
:
...
@@ -586,7 +592,7 @@ else:
...
@@ -586,7 +592,7 @@ else:
npamps
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
npamps
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
# In[
89
]:
# In[
110
]:
res
=
f2
.
results
res
=
f2
.
results
...
@@ -595,20 +601,20 @@ res.summary()
...
@@ -595,20 +601,20 @@ res.summary()
samps
=
f2
.
results
.
samples
samps
=
f2
.
results
.
samples
# In[
90
]:
# In[
111
]:
evidence
=
res
.
logz
[
-
1
]
evidence
=
res
.
logz
[
-
1
]
evidence_error
=
res
.
logzerr
[
-
1
]
evidence_error
=
res
.
logzerr
[
-
1
]
# In[
9
1]:
# In[1
12
]:
summary_titles
=
[
'
n
'
,
'
id
'
,
'
t_shift
'
,
'
dlogz
'
,
'
dlogz_err
'
]
summary_titles
=
[
'
n
'
,
'
id
'
,
'
t_shift
'
,
'
dlogz
'
,
'
dlogz_err
'
]
# In[
92
]:
# In[
113
]:
if
os
.
path
.
exists
(
sumary_data
):
if
os
.
path
.
exists
(
sumary_data
):
...
@@ -624,14 +630,14 @@ with open(sumary_data, 'a') as file:
...
@@ -624,14 +630,14 @@ with open(sumary_data, 'a') as file:
writer
.
writerow
(
outvalues
[
0
])
writer
.
writerow
(
outvalues
[
0
])
# In[
93
]:
# In[
114
]:
samps
=
f2
.
results
.
samples
samps
=
f2
.
results
.
samples
samps_tr
=
np
.
transpose
(
samps
)
samps_tr
=
np
.
transpose
(
samps
)
# In[
94
]:
# In[
115
]:
sigma_vars_m
=
np
.
empty
(
prior_dim
)
sigma_vars_m
=
np
.
empty
(
prior_dim
)
...
@@ -644,18 +650,18 @@ for i in range(prior_dim):
...
@@ -644,18 +650,18 @@ for i in range(prior_dim):
sigma_vars_p
[
i
]
=
np
.
quantile
(
amps_aux
,
0.9
)
sigma_vars_p
[
i
]
=
np
.
quantile
(
amps_aux
,
0.9
)
# In[
95
]:
# In[
116
]:
sigma_vars_all
=
[
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
]
sigma_vars_all
=
[
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
]
sigma_vars_all
=
np
.
stack
([
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
],
axis
=
0
)
sigma_vars_all
=
np
.
stack
([
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
],
axis
=
0
)
# In[
96
]:
# In[
117
]:
key
=
[
'
max val
'
,
'
lower bound
'
,
'
higher bound
'
]
key
=
[
'
max val
'
,
'
lower bound
'
,
'
higher bound
'
]
dfslist
=
[
pd
.
DataFrame
(
np
.
concatenate
(([
tshift
],
sigma_vars_all
[
1
])).
reshape
((
-
1
,
prior_dim
+
1
)),
columns
=
np
.
concatenate
(([
'
tshift
'
],
labels
)),
index
=
[
key
[
i
]])
for
i
in
range
(
3
)]
dfslist
=
[
pd
.
DataFrame
(
np
.
concatenate
(([
tshift
],
sigma_vars_all
[
i
])).
reshape
((
-
1
,
prior_dim
+
1
)),
columns
=
np
.
concatenate
(([
'
tshift
'
],
labels
)),
index
=
[
key
[
i
]])
for
i
in
range
(
3
)]
df2
=
pd
.
concat
(
dfslist
)
df2
=
pd
.
concat
(
dfslist
)
if
os
.
path
.
exists
(
best_data
):
if
os
.
path
.
exists
(
best_data
):
df2
.
to_csv
(
best_data
,
mode
=
'
a
'
,
header
=
False
,
index
=
True
)
df2
.
to_csv
(
best_data
,
mode
=
'
a
'
,
header
=
False
,
index
=
True
)
...
@@ -663,7 +669,7 @@ else:
...
@@ -663,7 +669,7 @@ else:
df2
.
to_csv
(
best_data
,
index
=
True
)
df2
.
to_csv
(
best_data
,
index
=
True
)
# In[
97
]:
# In[
118
]:
if
model
==
'
w-q
'
:
if
model
==
'
w-q
'
:
...
@@ -676,7 +682,7 @@ elif model == 'w-tau-fixed':
...
@@ -676,7 +682,7 @@ elif model == 'w-tau-fixed':
truths
=
npamps
truths
=
npamps
# In[9
8
]:
# In[
11
9]:
fg
,
ax
=
dyplot
.
cornerplot
(
res
,
color
=
'
blue
'
,
fg
,
ax
=
dyplot
.
cornerplot
(
res
,
color
=
'
blue
'
,
...
@@ -688,13 +694,13 @@ fg, ax = dyplot.cornerplot(res, color='blue',
...
@@ -688,13 +694,13 @@ fg, ax = dyplot.cornerplot(res, color='blue',
)
)
# In[
99
]:
# In[
121
]:
fg
.
savefig
(
corner_plot
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
fg
.
savefig
(
corner_plot
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
# In[1
00
]:
# In[1
22
]:
from
dynesty
import
plotting
as
dyplot
from
dynesty
import
plotting
as
dyplot
...
@@ -704,13 +710,13 @@ fig, axes = dyplot.runplot(res, lnz_truth=lnz_truth)
...
@@ -704,13 +710,13 @@ fig, axes = dyplot.runplot(res, lnz_truth=lnz_truth)
fig
.
tight_layout
()
fig
.
tight_layout
()
# In[
44
]:
# In[
123
]:
fig
.
savefig
(
diagnosis_plot
,
format
=
'
png
'
,
dpi
=
384
,
bbox_inches
=
'
tight
'
)
fig
.
savefig
(
diagnosis_plot
,
format
=
'
png
'
,
dpi
=
384
,
bbox_inches
=
'
tight
'
)
# In[1
01
]:
# In[1
24
]:
figband
=
plt
.
figure
(
figsize
=
(
12
,
9
))
figband
=
plt
.
figure
(
figsize
=
(
12
,
9
))
...
@@ -720,7 +726,7 @@ onesig_bounds = np.array([np.percentile(samps[:, i], [16, 84]) for i in range(le
...
@@ -720,7 +726,7 @@ onesig_bounds = np.array([np.percentile(samps[:, i], [16, 84]) for i in range(le
samples_1sigma
=
filter
(
lambda
sample
:
np
.
all
(
onesig_bounds
[
0
]
<=
sample
)
and
np
.
all
(
sample
<=
onesig_bounds
[
1
]),
samps
)
samples_1sigma
=
filter
(
lambda
sample
:
np
.
all
(
onesig_bounds
[
0
]
<=
sample
)
and
np
.
all
(
sample
<=
onesig_bounds
[
1
]),
samps
)
samples_1sigma_down
=
list
(
samples_1sigma
)[::
downfactor
]
samples_1sigma_down
=
list
(
samples_1sigma
)[::
downfactor
]
for
sample
in
samples_1sigma_down
:
for
sample
in
samples_1sigma_down
:
plt
.
plot
(
timesrd_final_tsh
,
dict
[
model
](
sample
).
real
,
"
r-
"
,
alpha
=
0.0
1
,
lw
=
3
)
plt
.
plot
(
timesrd_final_tsh
,
dict
[
model
](
sample
).
real
,
"
r-
"
,
alpha
=
0.0
4
,
lw
=
3
)
plt
.
title
(
r
'
Comparison of the MC fit data and the $1-\sigma$ error band
'
)
plt
.
title
(
r
'
Comparison of the MC fit data and the $1-\sigma$ error band
'
)
plt
.
legend
()
plt
.
legend
()
plt
.
xlabel
(
'
t
'
)
plt
.
xlabel
(
'
t
'
)
...
@@ -728,7 +734,7 @@ plt.ylabel('h')
...
@@ -728,7 +734,7 @@ plt.ylabel('h')
plt
.
show
()
plt
.
show
()
# In[1
0
2]:
# In[12
5
]:
figband
.
savefig
(
fit_plot
)
figband
.
savefig
(
fit_plot
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment