From 599c6566b238c4bde5d8fdcc9ebaa3e142ea12e8 Mon Sep 17 00:00:00 2001
From: Francisco Jimenez Forteza <francisco.jimenez@condor1.atlas.local>
Date: Fri, 7 May 2021 08:19:16 +0000
Subject: [PATCH] cleaning

---
 code_new/rdown.py | 208 ----------------------------------------------
 1 file changed, 208 deletions(-)
 delete mode 100644 code_new/rdown.py

diff --git a/code_new/rdown.py b/code_new/rdown.py
deleted file mode 100644
index 1357ccb..0000000
--- a/code_new/rdown.py
+++ /dev/null
@@ -1,208 +0,0 @@
-# Copyright (C) 2021 Xisco Jimenez Forteza
-#
-# This program is free software; you can redistribute it and/or modify it
-# under the terms of the GNU General Public License as published by the
-# Free Software Foundation; either version 3 of the License, or (at your
-# option) any later version.
-#
-# This program is distributed in the hope that it will be useful, but
-# WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
-# Public License for more details.
-#
-# You should have received a copy of the GNU General Public License along
-# with this program; if not, write to the Free Software Foundation, Inc.,
-# 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
-
-
-#
-# =============================================================================
-#
-#                                   Preamble
-#
-# =============================================================================
-#
-# Module to generate RD waveforms.
-
-import numpy as np
-import qnm
-import os
-
-f_fpars= [[2.95845, -2.58697, 0.0533469], [2.12539, -1.78054, 0.0865503], [1.74755, -1.44776, 0.123666], [1.78287, -1.53203, 0.129475], [2.04028, -1.83224, 0.112497]]
-q_fpars=[[0.584077, 1.52053, -0.480658], [0.00561441, 0.630715, -0.432664], [-0.197965, 0.515956, -0.369706], [-0.275097, 0.455691, -0.331543], [-0.287596, 0.398514, -0.309799]]
-
-
-c=2.99792458*10**8;G=6.67259*10**(-11);MS=1.9885*10**30;
-class Ringdown_Spectrum:
-    """RDown model generator"""
-    def __init__(self,mf,af,l,m,n=4,s=-2,time=[],fixed=False,qnm_model='berti'):
-        self.mf = mf
-        self.af = af
-        self.l = l
-        self.m = m
-        self.n = n
-        self.time = time
-        self.grav_220 = [qnm.modes_cache(s=s,l=self.l,m=self.m,n=i) for i in range (0,self.n+1)]
-        self.dim = self.n+1
-        self.fixed = fixed
-        self.qnm_model = qnm_model
-        dict_omega = {'berti': self.QNM_Berti , 'qnm': self.QNM_spectrum}
-        dic = {'w-tau':self.rd_model_wtau , 'w-q': self.rd_model_wq, 'w-tau-fixed':self.rd_model_wtau_fixed,'w-tau-fixed-m-af': self.rd_model_wtau_m_af}
-      
-        if len(self.time)==0:
-            self.time = np.arange(0,100,0.1)
-            
-        if self.fixed:
-            omegas_new=np.asarray([self.grav_220[i](a=self.af)[0] for i in range (0,self.dim)])
-            self.w = (np.real(omegas_new))/self.mf
-            self.tau=-1/(np.imag(omegas_new))*self.mf
-
-               
-    def QNM_spectrum(self):
-        """ It computes the RD frequencies and damping times in NR units.
-        """     
-        omegas_new=np.asarray([self.grav_220[i](a=self.af)[0] for i in range (0,self.n+1)])
-        w_m_a = (np.real(omegas_new))/self.mf
-        tau_m_a=-1/(np.imag(omegas_new))*self.mf
-    
-        return (w_m_a, tau_m_a)
-    
-    def QNM_Berti(self,rdowndata):
-        """ It computes the RD frequencies and damping times in NR units.
-        """     
-        position=np.argmax(rdowndata[0,0] >= (self.af))
-        #w_m_a=f1+f2*(1-af)**f3
-        w_m_a=[None]*(self.n+1)
-        tau_ma_a=[None]*(self.n+1)
-    
-        for i in range(self.n+1):
-            qnm=rdowndata[i,1:3,position]
-            w_m_a[i] = qnm[0]/self.mf
-            tau_ma_a[i] = -1/(qnm[1])*self.mf
-
-        return w_m_a, tau_ma_a
-    
-
-    def w_fpars_Berti(self,n):
-        return f_fpars[n]
-
-    def tau_qpars_Berti(self,n):
-        return q_fpars[n]
-
-    def mass_from_wtau(self,n,w,tau):
-        f1,f2,f3 = w_fpars_Berti(n)
-        q1,q2,q3 = tau_qpars_Berti(n)
-        res=(f1 + f2*(2**(-1/q3)*((-2*q1 + w*tau)/q2)**(1/q3))**f3)/w
-        return res
-
-    def spin_from_wtau(self,n,w,tau):
-        f1,f2,f3 = w_fpars_Berti(n)
-        q1,q2,q3 = tau_qpars_Berti(n)
-        res=1 - 2**(-1/q3)*((-2*q1 + w*tau)/q2)**(1/q3)
-        return res
-
-    def mass_from_wtau_loop(self,w,tau,l,m):
-        res=[None]*dim
-        for n in range (0,dim):
-            f1,f2,f3 = w_fpars_Berti(n)
-            q1,q2,q3 = tau_qpars_Berti(n)
-            res[n]=(f1 + f2*(2**(-1/q3)*((-2*q1 + w[n]*tau[n])/q2)**(1/q3))**f3)/w[n]
-        return res
-    
-    def spin_from_wtau_loop(self,w,tau,l,m):
-        res=[None]*dim
-        for n in range (0,dim):
-            f1,f2,f3 = w_fpars_Berti(n)
-            q1,q2,q3 = tau_qpars_Berti(n)
-            res[n]= 1 - 2**(-1/q3)*((-2*q1 + w[n]*tau[n])/q2)**(1/q3)
-        return res
-
-    
-    def rd_model_wtau(self,theta):
-        """RD model parametrized with the damping time tau.
-        """ 
-        assert int(len(theta)/4) == self.dim, 'Please recheck your n and parameters'
-    
-        wvars = theta[ : (self.dim)]
-        tvars = theta[(self.dim) : 2*(self.dim)]
-        xvars = theta[2*(self.dim) : 3*(self.dim)]
-        yvars = theta[3*(self.dim) : ]
-    
-        ansatz = 0
-        for i in range (0,self.dim):
-            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-self.time/tvars[i]) * (np.cos(wvars[i]*self.time)-1j*np.sin(wvars[i]*self.time))
-            # -1j to agree with SXS convention
-        return ansatz
-    
-    def rd_model_wtau_m_af(theta):
-        """RD model parametrized with the damping time tau and with the QNM spectrum fixd to GR. The QNM spectrum is given from the mass and spin.
-        """ 
-        xvars = theta[ : (dim)]
-        yvars = theta[(dim) : 2*(dim)]
-        mass_vars = theta[index_mass]
-        spin_vars = theta[index_spin]
-
-        w_m_a , tau_m_a = dict_omega[self.qnm_model](mass_vars,spin_vars,2,2)
-
-        ansatz = 0
-        for i in range (0,dim):
-            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-timesrd_final_tsh/tau_m_a[i]) * (np.cos(w_m_a[i]*timesrd_final_tsh)-1j*np.sin(w_m_a[i]*timesrd_final_tsh))
-        # -1j to agree with SXS convention
-        return ansatz
-    
-    def rd_model_wtau_fixed(theta):
-        """RD model parametrized with the damping time tau and with the QNM spectrum fixd to GR. 
-        """ 
-        xvars = theta[ : (dim)]
-        yvars = theta[(dim) : 2*(dim)]
-
-        ansatz = 0
-        for i in range (0,dim):
-            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-timesrd_final_tsh/tau[i]) * (np.cos(w[i]*timesrd_final_tsh)-1j*np.sin(w[i]*timesrd_final_tsh))
-        # -1j to agree with SXS convention
-        return ansatz
-    
-    def rd_model_wq(self,theta):
-        """RD model parametrized with the quality factor q.
-        """  
-        assert int(len(theta)/4) == self.dim, 'Please recheck your n and parameters'
-    
-        wvars = theta[ : (self.dim)]
-        qvars = theta[(self.dim) : 2*(self.dim)]
-        xvars = theta[2*(self.dim) : 3*(self.dim)]
-        yvars = theta[3*(self.dim) : ]
-        
-        ansatz = 0
-        for i in range (0,self.dim):
-            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-self.time*np.pi*wvars[i]/qvars[i])*(np.cos(wvars[i]*self.time)-1j*np.sin(wvars[i]*self.time))
-            # -1j to agree with SXS convention
-        return ansatz
-    
-    def rd_model_wq_fixed(self,theta):
-        """RD model parametrized with the damping time tau and with the QNM spectrum fixd to GR. 
-        """ 
-        xvars = theta[ : (self.dim)]
-        yvars = theta[(self.dim) : 2*(self.dim)]
-    
-        ansatz = 0
-        for i in range (0,self.dim):
-            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-self.time/self.tau[i]) * (np.cos(self.w[i]*self.time)-1j*np.sin(self.w[i]*self.time))
-        # -1j to agree with SXS convention
-        return ansatz
-    
-    
-    def rd_model_wq_m_a(self,theta):
-        """RD model parametrized with the damping time tau and with the QNM spectrum fixd to GR. The QNM spectrum is given from the mass and spin.
-        """ 
-        xvars = theta[ : (self.dim)]
-        yvars = theta[(self.dim) : 2*(self.dim)]
-        mass_vars = theta[-2]
-        spin_vars = theta[-1]
-
-        w_m_a , tau_m_a = QNM_spectrum()
-
-        ansatz = 0
-        for i in range (0,dim):
-            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-timesrd_final_tsh/tau_m_a[i]) * (np.cos(w_m_a[i]*timesrd_final_tsh)-1j*np.sin(w_m_a[i]*timesrd_final_tsh))
-        # -1j to agree with SXS convention
-        return ansatz
\ No newline at end of file
-- 
GitLab