diff --git a/code/NR_Interpolate-0001_t_10M.py b/code/NR_Interpolate-0001_t_10M.py
new file mode 100644
index 0000000000000000000000000000000000000000..6622dd7f365b4a95e52ae64a9bbac8d718b585c9
--- /dev/null
+++ b/code/NR_Interpolate-0001_t_10M.py
@@ -0,0 +1,301 @@
+#!/usr/bin/env python
+# coding: utf-8
+
+# ### Let's try the NR_Interpolate for the 0.0001 stepsize.
+
+# In[99]:
+
+
+#Import relevant modules, import data and all that
+import numpy as np
+from scipy import interpolate
+import corner
+import matplotlib.pyplot as plt
+from matplotlib.ticker import MaxNLocator
+from matplotlib import rc
+#plt.rcParams['font.family'] = 'DejaVu Sans'
+#rc('text', usetex=True)
+plt.rcParams.update({'font.size': 16.5})
+
+import ptemcee
+from pycbc.pool import choose_pool
+import h5py
+import inspect
+import pandas as pd
+import json
+import qnm
+import random
+
+#Remember to change the following global variables
+#rootpath: root path to nr data
+#npoints: number of points you re using for your sampling
+#nmax: tone index --> nmax = 0 if fitting the fundamental tone
+#tshift: time shift after the strain peak
+#vary_fund: whether you vary the fundamental frequency. Works in the model_dv function.
+
+rootpath= "/work/rayne.liu/git/rdstackingproject"#"/Users/RayneLiu/git/rdstackingproject"
+nmax=1
+tshift=10
+vary_fund = True
+
+#sampler parameters
+npoints = 100
+nwalkers = 50
+ntemps=16
+dim = nmax+1
+ndim = 4*dim
+burnin = 50  #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
+            #This is trivial but often forgotten: this cannot be more than npoints! I usually use half the points.
+numbins = 42 #corner plot parameter - how many bins you want
+datacolor = '#105670' #'#4fa3a7'
+pkcolor = '#f2c977' #'#ffb45f'
+mediancolor = '#f7695c' #'#9b2814'
+
+#Import data and necessary functions
+
+#TimeOfMaximum
+def FindTmaximum(y):
+    #Determines the maximum absolute value of the complex waveform
+    absval = y[:,1]*y[:,1]+y[:,2]*y[:,2]
+    vmax=np.max(absval)
+    index = np.argmax(absval == vmax)
+    timemax=gw_sxs_bbh_0305[index,0]
+    return timemax
+
+
+
+
+#This loads the 22 mode data
+gw = {}
+gw["SXS:BBH:0305"] = h5py.File(rootpath+"/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440/Lev6/rhOverM_Asymptotic_GeometricUnits_CoM.h5", 'r')
+gw_sxs_bbh_0305 = gw["SXS:BBH:0305"]["Extrapolated_N2.dir"]["Y_l2_m2.dat"]
+
+# Remember to download metadata.json from the simulation with number: 0305. Download Lev6/metadata.json
+# This postprocesses the metadata file to find the final mass and final spin
+metadata = {}
+with open(rootpath+"/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440/Lev6/metadata.json") as file:
+    metadata["SXS:BBH:0305"] = json.load(file)
+
+af = metadata["SXS:BBH:0305"]['remnant_dimensionless_spin'][-1]
+mf = metadata["SXS:BBH:0305"]['remnant_mass']
+
+
+
+#times --> x axis of your data
+times = gw_sxs_bbh_0305[:,0]
+tmax=FindTmaximum(gw_sxs_bbh_0305)
+t0=tmax +tshift
+
+#Select the data from t0 onwards
+position = np.argmax(times >= (t0))
+gw_sxs_bbh_0305rd=gw_sxs_bbh_0305[position:-1]
+timesrd=gw_sxs_bbh_0305[position:-1][:,0][:920]
+#print(timesrd[0])
+#print(t0) #(This checks that timesrd[0] is indeed t0 - acturally this is a bit off due to stepsize issues, 
+          #but nvm, we'll fix it right away)
+t0 = timesrd[0]
+#print(t0)
+timespan = timesrd - t0
+gwdata_re = gw_sxs_bbh_0305rd[:,1][:920]
+gwdata_im = gw_sxs_bbh_0305rd[:,2][:920]
+
+# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
+omegas = [qnm.modes_cache(s=-2,l=2,m=2,n=i)(a=af)[0] for i in range (0,dim)]
+w = (np.real(omegas))/mf
+tau=-1/(np.imag(omegas))*mf
+
+
+# In[84]:
+
+gwnew_re = interpolate.interp1d(timespan, gwdata_re, kind = 'cubic')
+gwnew_im = interpolate.interp1d(timespan, gwdata_im, kind = 'cubic')
+
+
+# In[87]:
+
+
+timespan_new = np.linspace(0, timespan[-1], len(timespan)*1000)
+gwdatanew_re = gwnew_re(timespan_new)
+gwdatanew_im = gwnew_im(timespan_new)
+
+
+
+# In[92]:
+
+
+#Test the new interpolated data
+figtest = plt.figure(figsize = (12, 8))
+plt.plot(timespan, gwdata_re, "r", alpha=0.3, lw=2, label='Before_re')
+plt.plot(timespan_new, gwdatanew_re, "b", alpha=0.3, lw=2, label='After_re')
+plt.plot(timespan, gwdata_im, alpha=0.3, lw=2, label='Before_im')
+plt.plot(timespan_new, gwdatanew_im, alpha=0.3, lw=2, label='After_im')
+plt.legend()
+figtest.savefig(rootpath + '/plotsmc/001_interpolated_datatest.png', format='png', bbox_inches='tight', dpi=300)
+
+
+# ### Now the interpolation seems nice according to what we have above...let's start sampling!
+
+# In[100]:
+
+
+#Fitting
+#RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here.
+def model_dv(theta):
+    #x0, y0= theta
+    #Your nmax might not align with the dim of theta. Better check it here.
+    assert int(len(theta)/4) == dim, 'Please recheck your n and parameters'
+    
+    avars = theta[ : (dim)]
+    bvars = theta[(dim) : 2*(dim)]
+    xvars = theta[2*(dim) : 3*(dim)]
+    yvars = theta[3*(dim) : ]
+    
+    if vary_fund == False:
+        avars[0]=0
+        bvars[0]=0
+        
+    ansatz = 0
+    for i in range (0,dim):
+        #bvars[1]=0
+        #avars[1]=0
+        ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-timespan_new/(tau[i]*(1+bvars[i]))) * (np.cos((1+avars[i])*w[i]*timespan_new)-1j*np.sin((1+avars[i])*w[i]*timespan_new))
+    # -1j to agree with SXS convention
+    return ansatz
+
+# Logprior distribution. It defines the allowed range my variables can vary over. 
+#It works for the (xn*Exp[iyn]) version. 
+def log_prior(theta): 
+    #Warning: we are specifically working with nmax=1 so here individual prior to the parameters are manually adjusted. This does not apply to all other nmax's.
+    #avars = theta[ : (dim)]
+    #bvars = theta[(dim) : 2*(dim)]
+    #xvars = theta[2*(dim) : 3*(dim)]
+    #yvars = theta[3*(dim) : ]
+    alpha0, alpha1, beta0, beta1, xvar0, xvar1, yvar0, yvar1 = theta
+    if tshift == 0:
+        if all([-0.06 <= alpha0 <= 0.06, -0.32 <= alpha1 <= -0.08, -0.19 <= beta0 <= 1.0, 0. <= beta1 <= 1.5, 0 <= xvar0 <= 1.1, 0 <= xvar1 <= 1.2, -np.pi <= yvar0 <= np.pi, -np.pi <= yvar1 <= np.pi]):        
+            return 0.0
+    elif tshift == 10:
+        if all([-0.08 <= alpha0 <= 0.12, -0.6 <= alpha1 <= 0.4, -0.3 <= beta0 <= 1.5, -1. <= beta1 <= 3.2, 0 <= xvar0 <= 1.1, 0 <= xvar1 <= 1.2, -np.pi <= yvar0 <= np.pi, -np.pi <= yvar1 <= np.pi]):        
+            return 0.0
+    """
+    if nmax == 0:
+        if all([0 <= tshift <= 5, vary_fund == True, -0.45 <= avars[0] <= 0.05, -0.95 <= bvars[0] <= 3.0, 0 <= xvars[0] <= 3.0, -np.pi <= yvars[0] <= np.pi]):        
+            return 0.0
+            
+        elif all([tshift == 19, vary_fund == True, -3.0 <= avars[0] <= 3.0, -2.0 <= bvars[0] <= 5.0, 0 <= xvars[0] <= 1.0, 0 <= yvars[0] <= 2*np.pi]):        
+            return 0.0
+        if all([0 <= tshift <= 5, vary_fund == False, -1.0 <= avars[0] <= 1.0, -1.0 <= bvars[0] <= 1.0, 0 <= xvars[0] <= 3.0, -np.pi <= yvars[0] <= np.pi]):        
+            return 0.0
+        if all([tshift == 19, vary_fund == False, -1.0 <= avars[0] <= 1.0, -1.0 <= bvars[0] <= 1.0, 0 <= xvars[0] <= 3.0, 0 <= yvars[0] <= 2*np.pi]):        
+            return 0.0
+        
+    elif nmax == 1:
+        if all([0 <= tshift <= 5, vary_fund == True, -3.0 <= avars[0] <= 3.0, -3.0 <= avars[1] <= 3.0, -2.0 <= bvars[0] <= 12.0, -4.0 <= bvars[1] <= 30.0, 0 <= xvars[0] <= 1.6, 0 <= xvars[1] <= 1.4, -np.pi <= yvars[0] <= np.pi, -np.pi <= yvars[1] <= np.pi]):        
+            return 0.0
+        elif all([tshift == 19, vary_fund == True, -10.0 <= avars[0] <= 10.0, -10.0 <= avars[1] <= 10.0, -20.0 <= bvars[0] <= 30.0, -25.0 <= bvars[1] <= 30.0, 0 <= xvars[0] <= 0.6, 0 <= xvars[1] <= 0.9, 0 <= yvars[0] <= 2*np.pi, -np.pi <= yvars[1] <= np.pi]):
+            return 0.0
+
+        elif all([0 <= tshift <= 5, vary_fund == False, -10.0 <= avars[0] <= 10.0, -1.5 <= avars[1] <= 1.5, -9.0 <= bvars[0] <= 9.0, -6.0 <= bvars[1] <= 20.0, 0 <= xvars[0] <= 2.4, 0 <= xvars[1] <= 2.5, -np.pi <= yvars[0] <= np.pi, -np.pi <= yvars[1] <= np.pi]):
+            return 0.0
+        elif all([tshift == 19, vary_fund == False, -10.0 <= avars[0] <= 10.0, -8.0 <= avars[1] <= 8.0, -9.0 <= bvars[0] <= 9.0, -10.0 <= bvars[1] <= 12.0, 0 <= xvars[0] <= 0.6, 0 <= xvars[1] <= 0.7, 0 <= yvars[0] <= 2*np.pi, 0 <= yvars[1] <= 2* np.pi]):
+            return 0.0
+    """
+    return -np.inf
+
+
+# LogLikelihood function. It is just a Gaussian loglikelihood based on computing the residuals^2
+def log_likelihood(theta):
+    modelev = model_dv(theta)
+    result = -np.sum((gwdatanew_re - (modelev.real))**2+(gwdatanew_im - (modelev.imag))**2)
+    if np.isnan(result):
+        return -np.inf
+    return result
+
+
+# Logposterior distribution for the residuals case.
+# The evidence is just a normalization factor
+def log_probability(theta):
+    lp = log_prior(theta)
+    if not np.isfinite(lp):
+        return -np.inf
+    return lp + log_likelihood(theta)
+
+
+# In[101]:
+
+
+#This cell uses the tshift=10 results
+#Set the number of cores of your processors
+pool = choose_pool(8)
+pool.size = 8
+np.random.seed(42)
+pos = np.array([random.uniform(-0.05,0.05), random.uniform(-0.25,-0.15), random.uniform(0.,0.8),                 random.uniform(0.5,1.), random.uniform(0.4,0.8), random.uniform(0.5, 1.), random.uniform(0.5, 0.6),                 random.uniform(0.5, 0.6)])
+pos = list(pos)
+pos += 1e-5 * np.random.randn(ntemps, nwalkers, ndim)
+sampler = ptemcee.Sampler(nwalkers, ndim, log_likelihood, log_prior, ntemps=ntemps, pool=pool)
+sampler.run_mcmc(pos,npoints)
+
+dim = 2
+paramlabels_a = [r'$\alpha_'+str(i)+'$' for i in range (dim)]
+paramlabels_b = [r'$\beta_'+str(i)+'$' for i in range (dim)]
+paramlabels_x = [r'$x_'+str(i)+'$' for i in range (dim)]
+paramlabels_y = [r'$y_'+str(i)+'$' for i in range (dim)] 
+
+paramlabels = paramlabels_a + paramlabels_b + paramlabels_x + paramlabels_y
+
+print('The chain plot:')
+#Chain plot
+figchain, axes = plt.subplots(ndim, 1, sharex=True, figsize=(12, 4*(4)))
+for i in range(ndim):
+    axes[i].plot(sampler.chain[0,:, :, i].T, color="k", alpha=0.4, rasterized=True)
+    axes[i].yaxis.set_major_locator(MaxNLocator(5))
+    axes[i].set_ylabel(paramlabels[i])
+axes[-1].set_xlabel('Iterations')
+figchain.savefig(rootpath + '/plotsmc/0001_10M_interpolated_chainplot.png', format='png', bbox_inches='tight', dpi=300)
+
+print('We\'re using ptemcee. Our constraints:')
+#Burn samples, calculate peak likelihood value (not necessarily so in atlas) and make corner plot
+samples = sampler.chain[0,:, burnin:, :].reshape((-1, ndim))
+#samples for corner plot
+samples_corn = samples #if vary_fund == True else np.delete(samples, np.s_[0,2], 1)
+
+#print('Values with peak likelihood:')
+lglk = np.array([log_likelihood(samples[i]) for i in range(len(samples))])
+pk = samples[np.argmax(lglk)]
+#print('pk:')
+#print(pk)
+pk_corn = pk #if vary_fund == True else np.delete(pk, [0,2])
+#y_0 range needs some messaging to make the plot. But in order to make the whole picture consistent, better change the range of y_1 too.
+#if vary_fund == False:
+#    samples_corn.T[-dim:] -= np.pi #This indeed changes samples_corn itself
+#    pk[-dim:] -= np.pi
+
+#print('pkFalse:')
+#print(pk)
+    
+#print(pk) 
+#Now calculate median (50-percentile) value
+median = np.median(samples_corn, axis=0)
+#print(samples)
+#print(samples_corn)
+
+figcorn = corner.corner(samples_corn, bins = numbins, hist_bin_factor = 5, color = datacolor, truths=pk_corn, truth_color = pkcolor, plot_contours = True, labels = paramlabels, quantiles=(0.05, 0.16, 0.5, 0.84, 0.95), levels=[1-np.exp(-0.5), 1-np.exp(-1.64 ** 2/2)], show_titles=True)
+
+
+#Extract the axes in order to add more important line plots
+naxes = len(pk_corn)
+axes = np.array(figcorn.axes).reshape((naxes, naxes))
+
+# Loop over the diagonal
+for i in range(naxes):
+    ax = axes[i, i]
+    ax.axvline(median[i], color=mediancolor)
+
+# Loop over the histograms
+for yi in range(naxes):
+    for xi in range(yi):
+        ax = axes[yi, xi]
+        ax.axvline(median[xi], color=mediancolor)
+        ax.axhline(median[yi], color=mediancolor)
+        ax.plot(median[xi], median[yi], color = mediancolor, marker = 's')
+figcorn.savefig(rootpath + '/plotsmc/0001_10M_interpolated_cornerplot.png', format='png', bbox_inches='tight', dpi=300)
\ No newline at end of file