#!/usr/bin/env python # coding: utf-8 ''' This script calculates the RDGW150914 constraints with ptemcee - specifically, the n=1 case both varying or not varying the fundamental frequencies. It produces the chain plot, corner plot, parameter constraints, and data plotted with the 1-sigma band. Since we are working specifically for the n=1 case, we also add in the corner plot the combined chain of alpha_0 and alpha_1, in order to demonstrate that the two are indistinguishable with each other. --- R^a_{yne} L^i_u, 08/09/2020 ''' import numpy as np import corner import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from matplotlib import rc #plt.rcParams['font.family'] = 'DejaVu Sans' #rc('text', usetex=True) plt.rcParams.update({'font.size': 16.5}) import ptemcee from pycbc.pool import choose_pool #from multiprocessing import Pool import math import h5py import inspect import pandas as pd import json import qnm import random from scipy.optimize import minimize #Remember to change the following global variables #rootpath: root path to nr data #npoints: number of points you re using for your sampling #nmax: tone index --> nmax = 0 if fitting the fundamental tone #tshift: time shift after the strain peak #vary_fund: whether you vary the fundamental frequency. Works in the model_dv function. rootpath="/Users/RayneLiu"# "/work/rayne.liu" nmax=1 tshift=19 vary_fund = True #sampler parameters npoints=101 nwalkers = 42 ntemps=12 ndim = int(4*(nmax+1)) burnin = 10 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit. #This is trivial but often forgotten: this cannot be more than npoints! Usually 1/5~1/4 npoints is what I observe. numbins = 21 #corner plot parameter - how many bins you want datacolor = '#105670' #'#4fa3a7' pkcolor = '#f2c977' #'#ffb45f' mediancolor = '#f7695c' #'#9b2814' #Import data and necessary functions #TimeOfMaximum def FindTmaximum(y): #Determines the maximum absolute value of the complex waveform absval = y[:,1]*y[:,1]+y[:,2]*y[:,2] vmax=np.max(absval) index = np.argmax(absval == vmax) timemax=gw_sxs_bbh_0305[index,0] return timemax #This loads the 22 mode data gw = {} gw["SXS:BBH:0305"] = h5py.File(rootpath+"/git/rdstackingproject/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440/Lev6/rhOverM_Asymptotic_GeometricUnits_CoM.h5", 'r') gw_sxs_bbh_0305 = gw["SXS:BBH:0305"]["Extrapolated_N2.dir"]["Y_l2_m2.dat"] # Remember to download metadata.json from the simulation with number: 0305. Download Lev6/metadata.json # This postprocesses the metadata file to find the final mass and final spin metadata = {} with open(rootpath+"/git/rdstackingproject/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440/Lev6/metadata.json") as file: metadata["SXS:BBH:0305"] = json.load(file) af = metadata["SXS:BBH:0305"]['remnant_dimensionless_spin'][-1] mf = metadata["SXS:BBH:0305"]['remnant_mass'] #times --> x axis of your data times = gw_sxs_bbh_0305[:,0] tmax=FindTmaximum(gw_sxs_bbh_0305) t0=tmax +tshift #Select the data from t0 onwards position = np.argmax(times >= (t0)) gw_sxs_bbh_0305rd=gw_sxs_bbh_0305[position:-1] timesrd=gw_sxs_bbh_0305[position:-1][:,0] # Depending on nmax, you load nmax number of freqs. and damping times from the qnm package omegas = [qnm.modes_cache(s=-2,l=2,m=2,n=i)(a=af)[0] for i in range (0,nmax+1)] #Fitting #RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here. def model_dv(theta): #x0, y0= theta #Your nmax might not align with the dim of theta. Better check it here. assert int(len(theta)/4) == nmax + 1, 'Please recheck your n and parameters' w = (np.real(omegas))/mf tau=-1/(np.imag(omegas))*mf dim =int(len(theta)/4) avars = theta[ : (nmax+1)] bvars = theta[(nmax+1) : 2*(nmax+1)] xvars = theta[2*(nmax+1) : 3*(nmax+1)] yvars = theta[3*(nmax+1) : ] if vary_fund == False: avars[0]=0 bvars[0]=0 ansatz = 0 for i in range (0,dim): #bvars[1]=0 #avars[1]=0 ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-(timesrd-timesrd[0])/(tau[i]*(1+bvars[i]))) * (np.cos((1+avars[i])*w[i]*timesrd)-1j*np.sin((1+avars[i])*w[i]*timesrd)) # -1j to agree with SXS convention return ansatz # Logprior distribution. It defines the allowed range my variables can vary over. #It works for the (xn*Exp[iyn]) version. def log_prior(theta): #Warning: we are specifically working with nmax=1 so here individual prior to the parameters are manually adjusted. This does not apply to all other nmax's. a_0 = theta[0] a_1 = theta[1] b_0 = theta[2] b_1 = theta[3] x_0 = theta[4] x_1 = theta[5] y_0 = theta[6] y_1 = theta[7] if all([nmax == 1, 0 <= tshift <= 5, vary_fund == True, 0 <= x_0 <= 2.0, 0 <= y_0 <= 2*np.pi, -0.4 <= a_0 <= 0.4, -1.0 <= b_0 <= 1.6, 0 <= x_1 <= 1.8, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 1.6, -1.0 <= b_1 <= 2.0]): return 0.0 elif all([nmax == 1, tshift == 19, vary_fund == True, 0 <= x_0 <= 1.5, 0 <= y_0 <= 2*np.pi, -1.0 <= a_0 <= 3.0, -1.0 <= b_0 <= 2.0, 0 <= x_1 <= 1.8, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 3.0, -1.0 <= b_1 <= 2.0]): return 0.0 #PAY EXTRA ATTENTION TO THESE TWO CASES, SINCE WE SHIFTED y_0. THE CORNER PLOTS LABELS NEED TO BE TREATED WITH CARE. elif all([nmax == 1, 0 <= tshift <= 5, vary_fund == False, 0 <= x_0 <= 2.0, 0 <= y_0-np.pi <= 2*np.pi, -1.0 <= a_0 <= 1.0, -1.0 <= b_0 <= 1.0, 0 <= x_1 <= 1.6, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 1.2, -1.0 <= b_1 <= 2.8]): return 0.0 elif all([nmax == 1, tshift == 19, vary_fund == False, 0 <= x_0 <= 0.6, 0 <= y_0-np.pi <= 2*np.pi, -1.0 <= a_0 <= 1.0, -1.0 <= b_0 <= 1.0, 0 <= x_1 <= 1.2, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 3.0, -1.0 <= b_1 <= 2.0]): return 0.0 return -np.inf # LogLikelihood function. It is just a Gaussian loglikelihood based on computing the residuals^2 def log_likelihood(theta): modelev = model_dv(theta) return -np.sum((gw_sxs_bbh_0305rd[:,1] - (modelev.real))**2+(gw_sxs_bbh_0305rd[:,2] - (modelev.imag))**2) # Logposterior distribution for the residuals case. # The evidence is just a normalization factor def log_probability(theta): lp = log_prior(theta) #print('lp:') #print(lp) if not np.isfinite(lp): return -np.inf return lp + log_likelihood(theta) #Fit with ptemcee #Set the number of cores of your processors pool = choose_pool(4) pool.size = 4 vary_param = float(vary_fund) pos = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), 4.28313743e-01, random.uniform(2.5, 2.6) + (1-vary_param) * np.pi]]) for i in range (1,nmax+1): pos_aux = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), random.uniform(0.3,0.4), random.uniform(2.01, 2.02) + (1-vary_param) * np.pi]]) pos = np.concatenate((pos, pos_aux), axis = 0) pos = pos.T.flatten() pos = list(pos) pos += 1e-5 * np.random.randn(ntemps, nwalkers, ndim) #print(pos) sampler = ptemcee.Sampler(nwalkers, ndim, log_likelihood, log_prior, ntemps=ntemps, pool=pool) sampler.run_mcmc(pos,npoints) #Define labels and start plotting paramlabels_a = [r'$\alpha_'+str(i)+'$' for i in range (nmax+1)] paramlabels_b = [r'$\beta_'+str(i)+'$' for i in range (nmax+1)] paramlabels_x = [r'$x_'+str(i)+'$' for i in range (nmax+1)] paramlabels_y = [r'$y_'+str(i)+'$' for i in range (nmax+1)] if vary_fund == True else ['$y_'+str(i)+'-\pi$' for i in range (nmax+1)] paramlabels = paramlabels_a + paramlabels_b + paramlabels_x + paramlabels_y #Need to delete alpha_0 and alpha_1 for the corner plot paramlabels_corner = paramlabels_a + paramlabels_b + paramlabels_x + paramlabels_y if vary_fund == False: del paramlabels_corner[0] del paramlabels_corner[1] #Chain plot fig, axes = plt.subplots(4*(nmax+1), 1, sharex=True, figsize=(12, 9*(nmax+1))) for i in range(4*(nmax+1)): axes[i].plot(sampler.chain[0,:, :, i].T, color="k", alpha=0.4) axes[i].yaxis.set_major_locator(MaxNLocator(5)) axes[i].set_ylabel(paramlabels[i]) axes[-1].set_xlabel('Iterations') #plt.show() fig.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_chain.pdf', format = 'pdf') #Burn samples, calculate peak likelihood value (not necessarily so in atlas) and make corner plot samples = sampler.chain[0,:, burnin:, :].reshape((-1, ndim)) #samples for corner plot samples_corn = samples if vary_fund == True else np.delete(samples, np.s_[0,2], 1) #print('Values with peak likelihood:') lglk = np.array([log_likelihood(samples[i]) for i in range(len(samples))]) pk = samples[np.argmax(lglk)] #print('pk:') #print(pk) pk_corn = pk if vary_fund == True else np.delete(pk, [0,2]) #print('pkFalse:') #print(pk) #print(pk) #Now calculate median (50-percentile) value median = np.median(samples_corn, axis=0) #print(samples) #print(samples_corn) figcorn = corner.corner(samples_corn, bins = numbins, hist_bin_factor = 5, color = datacolor, truths=pk_corn, truth_color = pkcolor, plot_contours = True, labels = paramlabels_corner, quantiles=(0.05, 0.16, 0.5, 0.84, 0.95), levels=[1-np.exp(-0.5), 1-np.exp(-1.64 ** 2/2)], show_titles=True) #Extract the axes in order to add more important line plots naxes = len(pk_corn) axes = np.array(figcorn.axes).reshape((naxes, naxes)) # Loop over the diagonal for i in range(naxes): ax = axes[i, i] ax.axvline(median[i], color=mediancolor) # Loop over the histograms for yi in range(naxes): for xi in range(yi): ax = axes[yi, xi] ax.axvline(median[xi], color=mediancolor) ax.axhline(median[yi], color=mediancolor) ax.plot(median[xi], median[yi], color = mediancolor, marker = 's') figcorn.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_corner.pdf', format = 'pdf') #Now plot alpha_0 on top of alpha_1 - only on top, not stacked, and only valid for vary_fund == True if vary_fund == True: samplea0 = samples.T[0] samplea1 = samples.T[1] fighist1 = plt.figure(figsize = (8, 6)) n0, bins0, patches0 = plt.hist(samplea0, bins = numbins * 6, alpha = 0.5, label = r'$\alpha_0$') n1, bins1, patches1 = plt.hist(samplea1, bins = numbins * 10, alpha = 0.5, label = r'$\alpha_1$') #n01, bins01, patches01 = plt.hist([samplea0, samplea1], numbins * 10, rwidth = 3, alpha = 0.5, label = [r'$\alpha_0$', r'$\alpha_1$']) plt.legend() fighist1.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_histtop.pdf', format = 'pdf') #This plot is stacked fighist1 = plt.figure(figsize = (8, 6)) sn01, sbins01, spatches01 = plt.hist([samplea0, samplea1], numbins * 10, rwidth = 1, stacked = True, alpha = 0.5, label = [r'$\alpha_0$', r'$\alpha_1$']) plt.legend() fighist1.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_histstack.pdf', format = 'pdf') #Now plot the NR data against the mcmc fit data, together with the 1-sigma varying error data onesig_bounds = np.array([np.percentile(samples[:, i], [16, 84]) for i in range(len(samples[0]))]).T modelfitpk = model_dv(pk) figband = plt.figure(figsize = (12, 9)) #Plot the 1-sigma_percentile for j in range(len(samples)): sample = samples[j] if np.all(onesig_bounds[0] <= sample) and np.all(sample <= onesig_bounds[1]): plt.plot(timesrd, model_dv(sample).real, "#79CAF2", alpha=0.3) plt.plot(timesrd, gw_sxs_bbh_0305rd[:,1], "k", alpha=0.7, lw=2, label=r'NR_re') plt.plot(timesrd, modelfitpk.real, "r", alpha=0.7, lw=2, label=r'FitMCmax_re') plt.title(r'Comparison of the MC fit data and the $1-\sigma$ error band') plt.legend() plt.xlim(timesrd[0], timesrd[0]+80) plt.xlabel("t") plt.ylabel("h") figband.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_band.pdf', format = 'pdf')