(* ::Package:: *) (************************************************************************) (* This file was generated automatically by the Mathematica front end. *) (* It contains Initialization cells from a Notebook file, which *) (* typically will have the same name as this file except ending in *) (* ".nb" instead of ".m". *) (* *) (* This file is intended to be loaded into the Mathematica kernel using *) (* the package loading commands Get or Needs. Doing so is equivalent *) (* to using the Evaluate Initialization Cells menu command in the front *) (* end. *) (* *) (* DO NOT EDIT THIS FILE. This entire file is regenerated *) (* automatically each time the parent Notebook file is saved in the *) (* Mathematica front end. Any changes you make to this file will be *) (* overwritten. *) (************************************************************************) rootpath="~/git/rdstackingproject/"; SetDirectory[rootpath<>"code"]; <<RDown.m <<mcmc.m SetOptions[InputNotebook[], AutoGeneratedPackage -> Automatic] mysxscase=rootpath<>"/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440"; ntones=2; tshift=12; npoints=37000; (*n=1:19, n=2:12, n=3:8, n=4:5, n=5:3, n=6:1, n=7:0 (not sure; is that really a minimum???) *) allspectrum = {x0,x1,x2,x3,x4,x5,x6,x7}; allalphas = {\[Alpha]1,\[Alpha]2,\[Alpha]3,\[Alpha]4,\[Alpha]5,\[Alpha]6,\[Alpha]7}; allbetas = {\[Beta]1,\[Beta]2,\[Beta]3,\[Beta]4,\[Beta]5,\[Beta]6,\[Beta]7}; spectrum = allspectrum[[;;ntones+1]] alphas = allalphas[[;;ntones]] betas = allbetas[[;;ntones]] \[Omega]fact=0.1; \[Tau]fact=0.1; params = {tshift, ntones, \[Omega]fact, \[Tau]fact} (* Change them accordingly *) (*Notebook directory*) notdir=rootpath<>"code/"; (*Directory of the l's Ringdown data *) modedir=rootpath; (* True if you want to export the plots *) ExportQ=False ExportDir=notdir (* PlotStyle *) markers={"\[FilledCircle]","\[FilledSquare]","\[FilledDiamond]","\[FilledUpTriangle]","\[FilledDownTriangle]","\[EmptyCircle]","\[EmptySquare]","\[EmptyDiamond]","\[EmptyUpTriangle]","\[EmptyDownTriangle]"} colors=ColorData[97,"ColorList"] l1=.025; l2=.001; s=l1/2; Options[pdf]={"SNR"->1}; pdf[ansatz_,data_,tend_?NumericQ,x_?(VectorQ[#,NumericQ]&),OptionsPattern[]]:=Block[{ansl,cfit,cfitd,h1red,h2red,norm1,norm2,myTable,snr,tmax}, snr=OptionValue["SNR"]; tmax=data[[1,1]]; ansl=ansatz; cfitd=Transpose[{data[[All,1]],ansl/.t->data[[All,1]]}]; h1red=Select[data,tmax<=#[[1]]<=tmax+tend&][[All,2]]; h2red=Select[cfitd,tmax<=#[[1]]<=tmax+tend&][[All,2]]; norm1=Total[(Abs@h1red)^2 ]; norm2=Total[(Abs@h2red)^2 ]; myTable=h1red Conjugate@h2red; -snr^2(1-(Re@Total[myTable]/Sqrt[norm1 norm2]))] Options[pdfFit]={"SNR"->1}; pdfFit[ansatz_,data_,tend_?NumericQ,x_?(VectorQ[#,NumericQ]&),OptionsPattern[]]:=Block[{ansl,cfit,cfitd,h1red,h2red,norm1,norm2,myTable,snr,tmax}, snr=OptionValue["SNR"]; tmax=data[[1,1]]; ansl=ansatz; cfitd=Transpose[{data[[All,1]],ansl/.t->data[[All,1]]}]; h1red=Select[data,tmax<=#[[1]]<=tmax+tend&][[All,2]]; h2red=Select[cfitd,tmax<=#[[1]]<=tmax+tend&][[All,2]]; Total[(Re[h1red-h2red]^2+Im[h1red-h2red]^2)] ] (* Import all the modes you want to use *) modelist={{2,2,0},{2,2,1},{2,2,2},{2,2,3},{2,2,4},{2,2,5},{2,2,6},{2,2,7}} (* Files for the modes. Note that in this file notation the fundamental tone corresponds to n=1. However, for the code notation we will always use n=0. *) Modefiles=Table[modedir<>"l"<>ToString[modelist[[j,1]]]<>"/n"<>ToString[modelist[[j,3]]+1]<>"l"<>ToString[modelist[[j,1]]]<>"m"<>ToString[modelist[[j,2]]]<>".dat",{j,Length@modelist}] (* Import modes data *) Modedata=Import/@Modefiles; modes={{2,2}} mysxscaserh=Reverse[Select[FileNames["*Lev6/rh*",mysxscase,2],Not@StringMatchQ[#,"*raw*"]&]] mysxscasemetafile=FileNames["metadata.txt",mysxscase,2][[1]] metadata=SXSMetaFilesToRules[mysxscasemetafile]; Print["mass1 = ",mass1=("initial-mass1"/.metadata)[[1]]] Print["mass2 = ",mass2=("initial-mass2"/.metadata)[[1]]] Print["\[Chi]1 = ",\[Chi]1=Chop[(("initial-dimensionless-spin1"/.metadata)[[-1]])]] Print["\[Chi]2 = ",\[Chi]2=Chop[(("initial-dimensionless-spin2"/.metadata)[[-1]])]] Print["m1/m2 = ",q=Max[{mass1/mass2,1}]] Print["m1\[CenterDot]m2 = ",\[Eta]=q/(1+q)^2*1.] Print["af = ",af=("remnant-dimensionless-spin"/.metadata)[[-1]]] Print["mf = ",mf=("remnant-mass"/.metadata)[[1]]] Print["Tag = ",tag=("alternative-names"/.metadata)[[2]]] sxsrhs=Flatten[Conjugate/@GetAsymptoticMultiMode[#,2,modes,"ReSample"->True]&/@mysxscaserh,1]; tmax = TimeOfMaximum[sxsrhs[[1]]] t0 = tmax+tshift data = Select[sxsrhs[[1]],#[[1]]>= t0&]; (*mysxscase22modeRD=Select[sxsrhs[[1]],#[[1]]\[GreaterEqual] tmax-25&]; data1 = Select[mysxscase22modeRD, #[[1]]\[GreaterEqual]tmax+tshift&]*) tabvars=Table[ randomvar\[Alpha]s= RandomReal[{-\[Omega]fact, \[Omega]fact}, ntones]; randomvar\[Beta]s = RandomReal[{-\[Omega]fact, \[Omega]fact}, ntones]; ansatz=OvertoneModelV2[ntones,{\[Eta],\[Chi]1,\[Chi]2},t0,"Fit\[Alpha]"->Range[1, ntones],"Fit\[Tau]"->Range[1, ntones],"ModesData"->Modedata] /.Table[alphas[[i]]->randomvar\[Alpha]s[[i]],{i,ntones}]/.Table[betas[[j]]->randomvar\[Beta]s[[j]],{j,ntones}]; cfit=NonlinearModelFit[data,ansatz,spectrum,t]; cfitd=Transpose[{data[[All,1]],Normal[cfit]/.t->data[[All,1]]}]; alphasandmis = Join[alphas/.Table[alphas[[i]]->randomvar\[Alpha]s[[i]],{i,ntones}], {1-EasyMatchT[data,cfitd,t0,t0+90]}]; (* This extra step is to make sure everything's correct, and also to make the output a uniform shape *) betasandtfit = Join[betas/.Table[betas[[j]]->randomvar\[Beta]s[[j]],{j,ntones}], {tshift}]; complexamps = spectrum/.cfit["BestFitParameters"]; amplitudes = Re[Sqrt[complexamps * Conjugate[complexamps]]]; phases = Mod[Arg[complexamps], 2 Pi]; {alphasandmis, betasandtfit, amplitudes, phases}, {j,npoints}]; Export[rootpath<>"plots/n="<>ToString[ntones]<>"_params.fits", params] Export[rootpath<>"plots/n="<>ToString[ntones]<>"_t0="<>ToString[tshift]<>"M_data.fits", tabvars]