Select Git revision
grid_based_searches.py
Forked from
Gregory Ashton / PyFstat
Source project has a limited visibility.
master2.py 9.67 KiB
from pykat import finesse
from pykat.commands import *
import pylab as pl
import scipy
from scipy.optimize import fmin
import numpy as np
import shelve
import copy
import sys
def main():
print """
--------------------------------------------------------------
Example file for using PyKat to automate Finesse simulations
Finesse: http://www.gwoptics.org/finesse
PyKat: http://www.gwoptics.org/pykat
The file runs through the various Finesse simulations
to generate the Finesse results reported in the document:
`Comparing Finesse simulations, analytical solutions and OSCAR
simulations of Fabry-Perot alignment signals', LIGO-T1300345
This file is part of a collection; it outputs the results
shown the document's sections 5 and 6 and saves temporary
data and a new Finesse input file to be read by master3.py,
and master4.py.
Andreas Freise 16.01.2014
--------------------------------------------------------------
"""
# shall we clear the workspace?
# %reset -f
# making these global during testing and debugging
#global kat
#global out
kat = finesse.kat(tempdir=".",tempname="test")
kat.verbose = False
tmpresultfile = 'myshelf1.dat'
# loading data saved by master.py
kat.loadKatFile('asc_base2.kat')
try:
tmpfile = shelve.open(tmpresultfile)
result=tmpfile['result']
tmpfile.close()
except: raise Exception("Could not open temprary results file {0}".format(tmpresultfile))
# overwriting some variables
kat.maxtem=3
Lambda=1064.0e-9
# disable PDH photo diode as we won't need it for most of this
kat.PDrefl_p.enabled = False
kat.PDrefl_q.enabled = False
# simulating a tuned cavity
kat.ETM.phi=result['phi_tuned']
print "--------------------------------------------------------"
print " 5. checking wavefronts for ITM/ETM tilt of 0.1nrad"
tilt(kat)
print "--------------------------------------------------------"
print " 6. compute beam tilt from beam propogation"
gravity_tilt(kat)
print "--------------------------------------------------------"
print " 7. compute optimal demodulation phase of WFS1 and WFS2"
# adding wave front sensors to global kat object, will need them later
# on as well.
code_WFS1 = """
pd1 WFS1_I 9M 0 nWFS1
pdtype WFS1_I y-split
pd1 WFS1_Q 9M 90 nWFS1
pdtype WFS1_Q y-split
scale 2 WFS1_I % compensate the 0.5 gain of the demodulation
scale 2 WFS1_Q % compensate the 0.5 gain of the demodulation
"""
code_WFS2 = """
pd1 WFS2_I 9M 0 nWFS2
pdtype WFS2_I y-split
pd1 WFS2_Q 9M 90 nWFS2
pdtype WFS2_Q y-split
scale 2 WFS2_I % compensate the 0.5 gain of the demodulation
scale 2 WFS2_Q % compensate the 0.5 gain of the demodulation
"""
kat.parseKatCode(code_WFS1)
kat.parseKatCode(code_WFS2)
(WFS1_phase, WFS2_phase) = asc_phases(kat)
kat.WFS1_I.phi[0]=WFS1_phase
kat.WFS1_Q.phi[0]=WFS1_phase+90.0
kat.WFS2_I.phi[0]=WFS2_phase
kat.WFS2_Q.phi[0]=WFS2_phase+90.0
result['WFS1_phase']=WFS1_phase
result['WFS2_phase']=WFS2_phase
print "--------------------------------------------------------"
print " 8. compute ASC signal matrix at WFS1 and WFS2"
signal = asc_signal(kat)
print "--------------------------------------------------------"
print " Saving results in temp. files to be read by master3.py"
# re-enable PDH photo diode for savinf
kat.PDrefl_p.enabled = True
kat.PDrefl_q.enabled = True
tmpkatfile = "asc_base3.kat"
tmpresultfile = "myshelf2.dat"
print " kat object saved in: {0}".format(tmpkatfile)
print " current results saved in: {0}".format(tmpresultfile)
# first the current kat file
kat.saveScript(tmpkatfile)
# now the result variables:
tmpfile = shelve.open(tmpresultfile)
tmpfile['result']=result
tmpfile.close()
#-----------------------------------------------------------------------------------
def asc_signal(tmpkat):
kat = copy.deepcopy(tmpkat)
code_lock = """
set err PDrefl_p re
lock z $err 900 1p
put* ETM phi $z
noplot z
"""
kat.parseKatCode(code_lock)
# need to re-enable the photo diode for lock
kat.PDrefl_p.enabled = True
kat.parseKatCode('yaxis abs')
kat.noxaxis = True
kat.maxtem=1
signal=np.zeros((2, 2))
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
out = kat.run()
signal[0,0] = out["WFS1_I"]
signal[1,0] = out["WFS2_I"]
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
out = kat.run()
signal[0,1] = out["WFS1_I"]
signal[1,1] = out["WFS2_I"]
signal = signal *1e10
sensors=('WFS1', 'WFS2')
mirrors=('ITM', 'ETM')
print " ASC Matrix:"
for i in range(2):
print " ", sensors[i], " ",
for j in range(2):
print "%12.10g" % signal[i,j],
print mirrors[i]
return signal
def asc_phases(tmpkat):
kat = copy.deepcopy(tmpkat)
kat.parseKatCode('yaxis abs')
kat.noxaxis = True
kat.maxtem=1
def demod_phase1(x):
kat.WFS1_I.phi[0]=x[0]
out = kat.run()
signal = out["WFS1_I"]
print '\r minimising: function value %g ' % signal ,
sys.stdout.flush()
return -1*abs(signal)
def demod_phase2(x):
kat.WFS2_I.phi[0]=x[0]
out = kat.run()
signal = out["WFS2_I"]
print '\r minimising: function value %g ' % signal ,
sys.stdout.flush()
return -1*abs(signal)
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
res = fmin(demod_phase1, [0.0], xtol=1e-8, disp=False)
WFS1_phase = res[0]
print ""
print " WFS1 demod phase : %.10g deg" % WFS1_phase
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
res = fmin(demod_phase2, [0.0], xtol=1e-8, disp=False)
WFS2_phase = res[0]
print ""
print " WFS2 demod phase : %.10g deg" % WFS2_phase
return(WFS1_phase, WFS2_phase)
def gravity_tilt(tmpkat):
kat = copy.deepcopy(tmpkat)
def compute_gravity_tilt(tmpkat):
kat = copy.deepcopy(tmpkat)
out = kat.run()
y1 = out["b1"]
y2 = out["b1_1k"]
# shift of beam center on detector 1 (as m/w0y)
x1 = np.sum(out.x*y1)/np.sum(y1)
# shift of beam center on detector 2 (as m/w0y)
x2 = np.sum(out.x*y2)/np.sum(y2)
# calibrate this in meter by mutliplying with w0y
# and compute the angle geometrically
w0=out["w0y"][0]
detector_distance = 1000.0
tilt=w0*(x2-x1)/detector_distance
print " Wavefront tilt : %g nrad" % tilt
code_WFS1 = """
beam b1 nWFS1
beam b1_1k nL1_in
bp w0y y w0 nWFS1
"""
code_WFS2 = """
m md 0 1 0 nWFS2 nWFS2b
s sd 1k nWFS2b nWFS2c
beam b1 nWFS2*
beam b1_1k nWFS2c
bp w0y y w0 nWFS2
"""
code_xaxis= """
xaxis b1 y lin -40 40 800
put b1_1k y $x1
yaxis abs
"""
print " WFS1:"
print " ITM ybeta 0.1nm"
kat.parseKatCode(code_WFS1)
kat.parseKatCode(code_xaxis)
kat.spo1.L=1000.0
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
compute_gravity_tilt(kat)
print " ETM ybeta -0.1nm"
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
compute_gravity_tilt(kat)
print " WFS2:"
print " ITM ybeta 0.1nm"
kat = copy.deepcopy(tmpkat)
kat.parseKatCode(code_WFS2)
kat.parseKatCode(code_xaxis)
kat.spo1.L=1.0e-9
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
compute_gravity_tilt(kat)
print " ETM ybeta -0.1nm"
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
compute_gravity_tilt(kat)
def tilt(tmpkat):
kat = copy.deepcopy(tmpkat)
def compute_tilt(tmpkat):
kat = copy.deepcopy(tmpkat)
out = kat.run()
# compute data x range in meters
beamsize = out["w0y"][0,0]
xrange = beamsize*(out.x.max()-out.x.min())
stepsize=xrange/(len(out.x)-1)
print " Beamsize %e m" % beamsize
print " Measurement range: %e m, stepszie: %e m" % (xrange, stepsize)
# compute difference in angle between wavefront of carrier and sidebands
diff_l = (out["PDrefl_low"][:,1]-out["PDrefl_car"][:,1])/stepsize
diff_u = (out["PDrefl_up"][:,1]-out["PDrefl_car"][:,1])/stepsize
tilt_l = diff_l[1:-1]-diff_l[0:-2]
tilt_u = diff_u[1:-1]-diff_u[0:-2]
print " Tilt (upper - car), mean: %e m/deg, stddev %e m/deg" % (np.mean(tilt_u), np.std(tilt_u))
print " Tilt (lower - car), mean: %e m/deg, stddev %e m/deg" % (np.mean(tilt_l), np.std(tilt_l))
return (np.mean(tilt_l), np.mean(tilt_u))
code_WFS1 = """
beam PDrefl_car 0 nWFS1
beam PDrefl_up 9M nWFS1
beam PDrefl_low -9M nWFS1
bp w0y y w0 nWFS1
"""
code_WFS2 = """
beam PDrefl_car 0 nWFS2
beam PDrefl_up 9M nWFS2
beam PDrefl_low -9M nWFS2
bp w0y y w0 nWFS2
"""
code_comm = """
xaxis PDrefl_car y lin -1 1 100
put PDrefl_up y $x1
put PDrefl_low y $x1
yaxis abs:deg
"""
print " WFS1:"
print " ITM ybeta 0.1nm"
kat.parseKatCode(code_comm)
kat.parseKatCode(code_WFS1)
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
(a1, a2) = compute_tilt(kat)
print " ETM ybeta -0.1nm"
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
(a3, a4) = compute_tilt(kat)
print " WFS2:"
print " ITM ybeta 0.1nm"
kat = copy.deepcopy(tmpkat)
kat.parseKatCode(code_comm)
kat.parseKatCode(code_WFS2)
kat.ITM.ybeta=1e-10
kat.ETM.ybeta=0.0
(a5, a6) = compute_tilt(kat)
print " ETM ybeta -0.1nm"
kat.ITM.ybeta=0.0
kat.ETM.ybeta=-1e-10
(a6, a7) = compute_tilt(kat)
return
if __name__ == '__main__':
main()