Skip to content
Snippets Groups Projects
Select Git revision
  • 2173389a1305fb838ba8eaa9a0a92e0466a204d9
  • master default
  • mingw_gcc44
  • release_ABP1_012
  • release_ABP1_008
  • release_ABP1_006
  • release_ABP1_007
  • release_ABP1_005
  • release_ABP1_004
  • release_ABP1_003
  • pre_release_0.15
  • release_ABP1_001
  • release_ABP1_002
  • pre_release_0.13
  • pre_release_0.14
  • pre_release_0.11
  • pre_release_0.12
  • pre_release_0.10
  • pre_release_0.09
  • pre_release_0.08
20 results

boinc.filesys.cpp.mingw.patch

Blame
  • Forked from einsteinathome / graphicsframework
    Source project has a limited visibility.
    • Oliver Bock's avatar
      11ca8fc9
      Use BOINC's server_stable branch · 11ca8fc9
      Oliver Bock authored
      * Contains latest API and server components (former branch focuses on client only)
      * Using even more explicit configure options
      * BOINC's include directory is now lowercase
      * Also: added required tool
      * Also: improved binary output filenames for deployment
      11ca8fc9
      History
      Use BOINC's server_stable branch
      Oliver Bock authored
      * Contains latest API and server components (former branch focuses on client only)
      * Using even more explicit configure options
      * BOINC's include directory is now lowercase
      * Also: added required tool
      * Also: improved binary output filenames for deployment
    plot_recovery.py 875 B
    import matplotlib.pyplot as plt
    import numpy as np
    import scipy.stats
    
    
    def Recovery(Tspan, Depth, twoFstar=60):
        rho2 = 4*Tspan/25./Depth**2
        twoF_Hs = scipy.stats.distributions.ncx2(df=4, nc=rho2)
        return 1 - twoF_Hs.cdf(twoFstar)
    
    N = 500
    Tspan = np.linspace(0.1, 365*86400, N)
    Depth = np.linspace(10, 300, N)
    
    X, Y = np.meshgrid(Tspan, Depth)
    X = X / 86400
    
    Z = [[Recovery(t, d) for t in Tspan] for d in Depth]
    
    fig, ax = plt.subplots()
    pax = ax.pcolormesh(X, Y, Z, cmap=plt.cm.viridis)
    CS = ax.contour(X, Y, Z, [0.95])
    plt.clabel(CS, inline=1, fontsize=12, fmt='%s', manual=[(200, 180)])
    plt.colorbar(pax, label='Recovery fraction')
    ax.set_xlabel(r'$T_{\rm span}$ [days]', size=16)
    ax.set_ylabel(r'Depth=$\frac{\sqrt{S_{\rm n}}}{h_0}$', size=14)
    ax.set_xlim(min(Tspan)/86400., max(Tspan)/86400.)
    ax.set_ylim(min(Depth), max(Depth))
    
    fig.savefig('recovery.png')