Skip to content
Snippets Groups Projects
Select Git revision
  • f4b294c0ca28bc82d21ecda30c46fca6a0e71249
  • master default
  • mingw_gcc44
  • release_ABP1_012
  • release_ABP1_008
  • release_ABP1_006
  • release_ABP1_007
  • release_ABP1_005
  • release_ABP1_004
  • release_ABP1_003
  • pre_release_0.15
  • release_ABP1_001
  • release_ABP1_002
  • pre_release_0.13
  • pre_release_0.14
  • pre_release_0.11
  • pre_release_0.12
  • pre_release_0.10
  • pre_release_0.09
  • pre_release_0.08
20 results

boinc.filesys.cpp.mingw.patch

Blame
  • Forked from einsteinathome / graphicsframework
    Source project has a limited visibility.
    • Oliver Bock's avatar
      11ca8fc9
      Use BOINC's server_stable branch · 11ca8fc9
      Oliver Bock authored
      * Contains latest API and server components (former branch focuses on client only)
      * Using even more explicit configure options
      * BOINC's include directory is now lowercase
      * Also: added required tool
      * Also: improved binary output filenames for deployment
      11ca8fc9
      History
      Use BOINC's server_stable branch
      Oliver Bock authored
      * Contains latest API and server components (former branch focuses on client only)
      * Using even more explicit configure options
      * BOINC's include directory is now lowercase
      * Also: added required tool
      * Also: improved binary output filenames for deployment
    fully_coherent_search.py 789 B
    from pyfstat import MCMCSearch
    
    F0 = 30.0
    F1 = -1e-10
    F2 = 0
    Alpha = 5e-3
    Delta = 6e-2
    tref = 362750407.0
    
    tstart = 1000000000
    duration = 100*86400
    tend = tstart = duration
    
    theta_prior = {'F0': {'type': 'norm', 'loc': F0, 'scale': abs(1e-6*F0)},
                   'F1': {'type': 'norm', 'loc': F1, 'scale': abs(1e-6*F1)},
                   'F2': F2,
                   'Alpha': Alpha,
                   'Delta': Delta
                   }
    
    ntemps = 1
    nwalkers = 100
    nsteps = [100, 500, 1000]
    
    mcmc = MCMCSearch('fully_coherent', 'data', sftlabel='basic', sftdir='data',
                      theta_prior=theta_prior, tref=tref, tstart=tstart, tend=tend,
                      nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
                      scatter_val=1e-10)
    mcmc.run()
    mcmc.plot_corner()
    mcmc.print_summary()