Skip to content
Snippets Groups Projects
Select Git revision
  • 0e49aa78b2210708437d14e4c32b7b87eeeb4cf8
  • master default protected
  • develop-GA
  • timeFstatmap
  • add-higher-spindown-components
  • develop-DK
  • adds-header-to-grid-search
  • v1.2
  • v1.1.2
  • v1.1.0
  • v1.0.1
11 results

tests.py

Blame
  • Forked from Gregory Ashton / PyFstat
    Source project has a limited visibility.
    • Gregory Ashton's avatar
      e20d4a9a
      Improvements to the template estimation (V, Vsky, Vpe) · e20d4a9a
      Gregory Ashton authored
      1) Moves the actual estimation to external function since it is not
      contingent on using the MCMC methods etc
      2) Change notation to V, Vsky and Vpe
      3) Fix some table outputs (Tcoh was forcing integer)
      4) Rename of names -> detector_names
      5) Adds tests
      6) Writes a simpler table if the sky is not searched over
      e20d4a9a
      History
      Improvements to the template estimation (V, Vsky, Vpe)
      Gregory Ashton authored
      1) Moves the actual estimation to external function since it is not
      contingent on using the MCMC methods etc
      2) Change notation to V, Vsky and Vpe
      3) Fix some table outputs (Tcoh was forcing integer)
      4) Rename of names -> detector_names
      5) Adds tests
      6) Writes a simpler table if the sky is not searched over
    fft_execute.cpp 15.21 KiB
    
    //
    // File:       fft_execute.cpp
    //
    // Version:    <1.0>
    //
    // Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Inc. ("Apple")
    //             in consideration of your agreement to the following terms, and your use,
    //             installation, modification or redistribution of this Apple software
    //             constitutes acceptance of these terms.  If you do not agree with these
    //             terms, please do not use, install, modify or redistribute this Apple
    //             software.¬
    //
    //             In consideration of your agreement to abide by the following terms, and
    //             subject to these terms, Apple grants you a personal, non - exclusive
    //             license, under Apple's copyrights in this original Apple software ( the
    //             "Apple Software" ), to use, reproduce, modify and redistribute the Apple
    //             Software, with or without modifications, in source and / or binary forms;
    //             provided that if you redistribute the Apple Software in its entirety and
    //             without modifications, you must retain this notice and the following text
    //             and disclaimers in all such redistributions of the Apple Software. Neither
    //             the name, trademarks, service marks or logos of Apple Inc. may be used to
    //             endorse or promote products derived from the Apple Software without specific
    //             prior written permission from Apple.  Except as expressly stated in this
    //             notice, no other rights or licenses, express or implied, are granted by
    //             Apple herein, including but not limited to any patent rights that may be
    //             infringed by your derivative works or by other works in which the Apple
    //             Software may be incorporated.
    //
    //             The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
    //             WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
    //             WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
    //             PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
    //             ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
    //
    //             IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
    //             CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    //             SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    //             INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
    //             AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
    //             UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
    //             OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    //
    // Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
    //
    ////////////////////////////////////////////////////////////////////////////////////////////////////
    
    
    #include "fft_internal.h"
    #include "clFFT.h"
    #include <stdlib.h>
    #include <stdio.h>
    #include <math.h>
    
    #define max(a,b) (((a)>(b)) ? (a) : (b))
    #define min(a,b) (((a)<(b)) ? (a) : (b))
    
    static cl_int
    allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
    {
        cl_int err = CL_SUCCESS;
        if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
        {
            plan->last_batch_size = batchSize;
            size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
    
            if(plan->tempmemobj)
                clReleaseMemObject(plan->tempmemobj);
    
            plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
        }
        return err;
    }
    
    static cl_int
    allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
    {
        cl_int err = CL_SUCCESS;
        cl_int terr;
        if(plan->temp_buffer_needed && plan->last_batch_size != batchSize)
        {
            plan->last_batch_size = batchSize;
            size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
    
            if(plan->tempmemobj_real)
                clReleaseMemObject(plan->tempmemobj_real);
    
            if(plan->tempmemobj_imag)
                clReleaseMemObject(plan->tempmemobj_imag);
    
            plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
            plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
            err |= terr;
        }
        return err;
    }
    
    void
    getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
    {
        *lWorkItems = kernelInfo->num_workitems_per_workgroup;
        int numWorkGroups = kernelInfo->num_workgroups;
        int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
    
        switch(kernelInfo->dir)
        {
            case cl_fft_kernel_x:
                *batchSize *= (plan->n.y * plan->n.z);
                numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
                numWorkGroups *= kernelInfo->num_workgroups;
                break;
            case cl_fft_kernel_y:
                *batchSize *= plan->n.z;
                numWorkGroups *= *batchSize;
                break;
            case cl_fft_kernel_z:
                numWorkGroups *= *batchSize;
                break;
        }
    
        *gWorkItems = numWorkGroups * *lWorkItems;
    }
    
    cl_int
    clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
                             cl_mem data_in, cl_mem data_out,
                             cl_int num_events, cl_event *event_list, cl_event *event )
    {
        int s;
        cl_fft_plan *plan = (cl_fft_plan *) Plan;
        if(plan->format != clFFT_InterleavedComplexFormat)
            return CL_INVALID_VALUE;
    
        cl_int err;
        size_t gWorkItems, lWorkItems;
        int inPlaceDone = -1;
    
        cl_int isInPlace = data_in == data_out ? 1 : 0;
    
        if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
            return err;
    
        cl_mem memObj[3];
        memObj[0] = data_in;
        memObj[1] = data_out;
        memObj[2] = plan->tempmemobj;
        cl_fft_kernel_info *kernelInfo = plan->kernel_info;
        int numKernels = plan->num_kernels;
    
        int numKernelsOdd = numKernels & 1;
        int currRead  = 0;
        int currWrite = 1;
    
        // at least one external dram shuffle (transpose) required
        if(plan->temp_buffer_needed)
        {
            // in-place transform
            if(isInPlace)
            {
                inPlaceDone = 0;
                currRead  = 1;
                currWrite = 2;
            }
            else
            {
                currWrite = (numKernels & 1) ? 1 : 2;
            }
    
            while(kernelInfo)
            {
                if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
                {
                    currWrite = currRead;
                    inPlaceDone = 1;
                }
    
                s = batchSize;
                getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
                err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
                err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
                err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
                err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
    
                err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
                if(err)
                    return err;
    
                currRead  = (currWrite == 1) ? 1 : 2;
                currWrite = (currWrite == 1) ? 2 : 1;
    
                kernelInfo = kernelInfo->next;
            }
        }
        // no dram shuffle (transpose required) transform
        // all kernels can execute in-place.
        else {
    
            while(kernelInfo)
            {
                s = batchSize;
                getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
                err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
                err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
                err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
                err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
    
                err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
                if(err)
                    return err;
    
                currRead  = 1;
                currWrite = 1;
    
                kernelInfo = kernelInfo->next;
            }
        }
    
        return err;
    }
    
    cl_int
    clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir,
                          cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
                          cl_int num_events, cl_event *event_list, cl_event *event)
    {
        int s;
        cl_fft_plan *plan = (cl_fft_plan *) Plan;
    
        if(plan->format != clFFT_SplitComplexFormat)
            return CL_INVALID_VALUE;
    
        cl_int err;
        size_t gWorkItems, lWorkItems;
        int inPlaceDone = -1;
    
        cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
    
        if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
            return err;
    
        cl_mem memObj_real[3];
        cl_mem memObj_imag[3];
        memObj_real[0] = data_in_real;
        memObj_real[1] = data_out_real;
        memObj_real[2] = plan->tempmemobj_real;
        memObj_imag[0] = data_in_imag;
        memObj_imag[1] = data_out_imag;
        memObj_imag[2] = plan->tempmemobj_imag;
    
        cl_fft_kernel_info *kernelInfo = plan->kernel_info;
        int numKernels = plan->num_kernels;
    
        int numKernelsOdd = numKernels & 1;
        int currRead  = 0;
        int currWrite = 1;
    
        // at least one external dram shuffle (transpose) required
        if(plan->temp_buffer_needed)
        {
            // in-place transform
            if(isInPlace)
            {
                inPlaceDone = 0;
                currRead  = 1;
                currWrite = 2;
            }
            else
            {
                currWrite = (numKernels & 1) ? 1 : 2;
            }
    
            while(kernelInfo)
            {
                if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible)
                {
                    currWrite = currRead;
                    inPlaceDone = 1;
                }
    
                s = batchSize;
                getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
                err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
                err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
                err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
                err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
                err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
                err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
    
                err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
                if(err)
                    return err;
    
                currRead  = (currWrite == 1) ? 1 : 2;
                currWrite = (currWrite == 1) ? 2 : 1;
    
                kernelInfo = kernelInfo->next;
            }
        }
        // no dram shuffle (transpose required) transform
        else {
    
            while(kernelInfo)
            {
                s = batchSize;
                getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
                err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
                err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
                err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
                err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
                err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
                err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
    
                err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
                if(err)
                    return err;
    
                currRead  = 1;
                currWrite = 1;
    
                kernelInfo = kernelInfo->next;
            }
        }
    
        return err;
    }
    
    cl_int
    clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array,
                             size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir)
    {
        cl_fft_plan *plan = (cl_fft_plan *) Plan;
    
        unsigned int N = numRows*numCols;
        unsigned int nCols = numCols;
        unsigned int sRow = startRow;
        unsigned int rToProcess = rowsToProcess;
        int d = dir;
        int err = 0;
    
        cl_device_id device_id;
        err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
        if(err)
            return err;
    
        size_t gSize;
        err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
        if(err)
            return err;
    
        gSize = min(128, gSize);
        size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
        size_t numLocalThreads[1]  = { gSize };
    
        err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
        err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
        err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
        err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
        err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
        err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
    
        err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
    
        return err;
    }
    
    cl_int
    clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag,
                         size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir)
    {
        cl_fft_plan *plan = (cl_fft_plan *) Plan;
    
        unsigned int N = numRows*numCols;
        unsigned int nCols = numCols;
        unsigned int sRow = startRow;
        unsigned int rToProcess = rowsToProcess;
        int d = dir;
        int err = 0;
    
        cl_device_id device_id;
        err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
        if(err)
            return err;
    
        size_t gSize;
        err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
        if(err)
            return err;
    
        gSize = min(128, gSize);
        size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
        size_t numLocalThreads[1]  = { gSize };
    
        err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
        err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
        err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
        err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
        err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
        err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
        err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
    
        err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);
    
        return err;
    }