Skip to content
Snippets Groups Projects
Select Git revision
  • a0eee809ebe8a4f5daec839d39d2f1619f997241
  • master default protected
  • develop-GA
  • timeFstatmap
  • add-higher-spindown-components
  • develop-DK
  • adds-header-to-grid-search
  • v1.2
  • v1.1.2
  • v1.1.0
  • v1.0.1
11 results

semi_coherent_glitch_search_using_MCMC.py

Blame
  • Forked from Gregory Ashton / PyFstat
    Source project has a limited visibility.
    fft_execute.cpp 13.99 KiB
    
    //
    // File:       fft_execute.cpp
    //
    // Version:    <1.0>
    //
    // Disclaimer: IMPORTANT:  This Apple software is supplied to you by Apple Inc. ("Apple")
    //             in consideration of your agreement to the following terms, and your use,
    //             installation, modification or redistribution of this Apple software
    //             constitutes acceptance of these terms.  If you do not agree with these
    //             terms, please do not use, install, modify or redistribute this Apple
    //             software.¬
    //
    //             In consideration of your agreement to abide by the following terms, and
    //             subject to these terms, Apple grants you a personal, non - exclusive
    //             license, under Apple's copyrights in this original Apple software ( the
    //             "Apple Software" ), to use, reproduce, modify and redistribute the Apple
    //             Software, with or without modifications, in source and / or binary forms;
    //             provided that if you redistribute the Apple Software in its entirety and
    //             without modifications, you must retain this notice and the following text
    //             and disclaimers in all such redistributions of the Apple Software. Neither
    //             the name, trademarks, service marks or logos of Apple Inc. may be used to
    //             endorse or promote products derived from the Apple Software without specific
    //             prior written permission from Apple.  Except as expressly stated in this
    //             notice, no other rights or licenses, express or implied, are granted by
    //             Apple herein, including but not limited to any patent rights that may be
    //             infringed by your derivative works or by other works in which the Apple
    //             Software may be incorporated.
    //
    //             The Apple Software is provided by Apple on an "AS IS" basis.  APPLE MAKES NO
    //             WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
    //             WARRANTIES OF NON - INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A
    //             PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS USE AND OPERATION
    //             ALONE OR IN COMBINATION WITH YOUR PRODUCTS.
    //
    //             IN NO EVENT SHALL APPLE BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR
    //             CONSEQUENTIAL DAMAGES ( INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    //             SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    //             INTERRUPTION ) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION
    //             AND / OR DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER
    //             UNDER THEORY OF CONTRACT, TORT ( INCLUDING NEGLIGENCE ), STRICT LIABILITY OR
    //             OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    //
    // Copyright ( C ) 2008 Apple Inc. All Rights Reserved.
    //
    ////////////////////////////////////////////////////////////////////////////////////////////////////
    
    
    #include "fft_internal.h"
    #include "clFFT.h"
    #include <stdlib.h>
    #include <stdio.h>
    #include <math.h>
    
    #define max(a,b) (((a)>(b)) ? (a) : (b))
    #define min(a,b) (((a)<(b)) ? (a) : (b))
    
    static cl_int
    allocateTemporaryBufferInterleaved(cl_fft_plan *plan, cl_uint batchSize)
    {
    	cl_int err = CL_SUCCESS;
    	if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) 
    	{
    		plan->last_batch_size = batchSize; 
    		size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * 2 * sizeof(cl_float);
    		
    		if(plan->tempmemobj)
    			clReleaseMemObject(plan->tempmemobj);
    			
    		plan->tempmemobj = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
    	}
    	return err;	
    }
    
    static cl_int
    allocateTemporaryBufferPlannar(cl_fft_plan *plan, cl_uint batchSize)
    {
    	cl_int err = CL_SUCCESS;
    	cl_int terr;
    	if(plan->temp_buffer_needed && plan->last_batch_size != batchSize) 
    	{
    		plan->last_batch_size = batchSize; 
    		size_t tmpLength = plan->n.x * plan->n.y * plan->n.z * batchSize * sizeof(cl_float);
    		
    		if(plan->tempmemobj_real)
    			clReleaseMemObject(plan->tempmemobj_real);
    
    		if(plan->tempmemobj_imag)
    			clReleaseMemObject(plan->tempmemobj_imag);			
    			
    		plan->tempmemobj_real = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &err);
    		plan->tempmemobj_imag = clCreateBuffer(plan->context, CL_MEM_READ_WRITE, tmpLength, NULL, &terr);
    		err |= terr;
     	}	
    	return err;
    }
    
    void
    getKernelWorkDimensions(cl_fft_plan *plan, cl_fft_kernel_info *kernelInfo, cl_int *batchSize, size_t *gWorkItems, size_t *lWorkItems)
    {
    	*lWorkItems = kernelInfo->num_workitems_per_workgroup;
    	int numWorkGroups = kernelInfo->num_workgroups;
        int numXFormsPerWG = kernelInfo->num_xforms_per_workgroup;
    	
    	switch(kernelInfo->dir)
    	{
    		case cl_fft_kernel_x:
                *batchSize *= (plan->n.y * plan->n.z);
                numWorkGroups = (*batchSize % numXFormsPerWG) ? (*batchSize/numXFormsPerWG + 1) : (*batchSize/numXFormsPerWG);
                numWorkGroups *= kernelInfo->num_workgroups;
    			break;
    		case cl_fft_kernel_y:
    			*batchSize *= plan->n.z;
    			numWorkGroups *= *batchSize;
    			break;
    		case cl_fft_kernel_z:
    			numWorkGroups *= *batchSize;
    			break;
    	}
    	
    	*gWorkItems = numWorkGroups * *lWorkItems;
    }
    
    cl_int 
    clFFT_ExecuteInterleaved( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, 
    						 cl_mem data_in, cl_mem data_out, 
    						 cl_int num_events, cl_event *event_list, cl_event *event )
    {	
    	int s;
    	cl_fft_plan *plan = (cl_fft_plan *) Plan;
    	if(plan->format != clFFT_InterleavedComplexFormat)
    		return CL_INVALID_VALUE;
    	
    	cl_int err;
    	size_t gWorkItems, lWorkItems;
    	int inPlaceDone;
    	
    	cl_int isInPlace = data_in == data_out ? 1 : 0;
    	
    	if((err = allocateTemporaryBufferInterleaved(plan, batchSize)) != CL_SUCCESS)
    		return err;	
    	
    	cl_mem memObj[3];
    	memObj[0] = data_in;
    	memObj[1] = data_out;
    	memObj[2] = plan->tempmemobj;
    	cl_fft_kernel_info *kernelInfo = plan->kernel_info;
    	int numKernels = plan->num_kernels;
    	
    	int numKernelsOdd = numKernels & 1;
    	int currRead  = 0;
    	int currWrite = 1;
    	
    	// at least one external dram shuffle (transpose) required
    	if(plan->temp_buffer_needed) 
    	{
    		// in-place transform
    		if(isInPlace) 
    		{
    			inPlaceDone = 0;
    			currRead  = 1;
    			currWrite = 2;
    		}
    		else
    		{
    			currWrite = (numKernels & 1) ? 1 : 2;
    		}
    		
    		while(kernelInfo) 
    		{
    			if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) 
    			{
    				currWrite = currRead;
    				inPlaceDone = 1;
    			}
    			
    			s = batchSize;
    			getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
    			err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
    			err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
    			err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
    			err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
    			
    			err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
    			if(err)
    				return err;
    			
    			currRead  = (currWrite == 1) ? 1 : 2;
    			currWrite = (currWrite == 1) ? 2 : 1; 
    			
    			kernelInfo = kernelInfo->next;
    		}			
    	}
    	// no dram shuffle (transpose required) transform
    	// all kernels can execute in-place.
    	else {
    		
    		while(kernelInfo)
    		{
    		    s = batchSize;
    		    getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
    		    err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj[currRead]);
    		    err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj[currWrite]);
    		    err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_int), &dir);
    		    err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_int), &s);
    		
    		    err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
    		    if(err)
    			    return err;		
    			
    			currRead  = 1;
    			currWrite = 1;
    			
    			kernelInfo = kernelInfo->next;
    		}
    	}
    	
    	return err;
    }
    
    cl_int 
    clFFT_ExecutePlannar( cl_command_queue queue, clFFT_Plan Plan, cl_int batchSize, clFFT_Direction dir, 
    					  cl_mem data_in_real, cl_mem data_in_imag, cl_mem data_out_real, cl_mem data_out_imag,
    					  cl_int num_events, cl_event *event_list, cl_event *event)
    {	
    	int s;
    	cl_fft_plan *plan = (cl_fft_plan *) Plan;
    	
    	if(plan->format != clFFT_SplitComplexFormat)
    		return CL_INVALID_VALUE;
    	
    	cl_int err;
    	size_t gWorkItems, lWorkItems;
    	int inPlaceDone;
    	
    	cl_int isInPlace = ((data_in_real == data_out_real) && (data_in_imag == data_out_imag)) ? 1 : 0;
    	
    	if((err = allocateTemporaryBufferPlannar(plan, batchSize)) != CL_SUCCESS)
    		return err;	
    	
    	cl_mem memObj_real[3];
    	cl_mem memObj_imag[3];
    	memObj_real[0] = data_in_real;
    	memObj_real[1] = data_out_real;
    	memObj_real[2] = plan->tempmemobj_real;
    	memObj_imag[0] = data_in_imag;
    	memObj_imag[1] = data_out_imag;
    	memObj_imag[2] = plan->tempmemobj_imag;
    		
    	cl_fft_kernel_info *kernelInfo = plan->kernel_info;
    	int numKernels = plan->num_kernels;
    	
    	int numKernelsOdd = numKernels & 1;
    	int currRead  = 0;
    	int currWrite = 1;
    	
    	// at least one external dram shuffle (transpose) required
    	if(plan->temp_buffer_needed) 
    	{
    		// in-place transform
    		if(isInPlace) 
    		{
    			inPlaceDone = 0;
    			currRead  = 1;
    			currWrite = 2;
    		}
    		else
    		{
    			currWrite = (numKernels & 1) ? 1 : 2;
    		}
    		
    		while(kernelInfo) 
    		{
    			if( isInPlace && numKernelsOdd && !inPlaceDone && kernelInfo->in_place_possible) 
    			{
    				currWrite = currRead;
    				inPlaceDone = 1;
    			}
    			
    			s = batchSize;
    			getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
    			err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
    			err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
    			err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
    			err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
    			err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
    			err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
    			
    			err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
    			if(err)
    				return err;			
    			
    			currRead  = (currWrite == 1) ? 1 : 2;
    			currWrite = (currWrite == 1) ? 2 : 1; 
    			
    			kernelInfo = kernelInfo->next;
    		}			
    	}
    	// no dram shuffle (transpose required) transform
    	else {
    		
    		while(kernelInfo)
    		{
    		    s = batchSize;
    		    getKernelWorkDimensions(plan, kernelInfo, &s, &gWorkItems, &lWorkItems);
    		    err |= clSetKernelArg(kernelInfo->kernel, 0, sizeof(cl_mem), &memObj_real[currRead]);
    		    err |= clSetKernelArg(kernelInfo->kernel, 1, sizeof(cl_mem), &memObj_imag[currRead]);
    		    err |= clSetKernelArg(kernelInfo->kernel, 2, sizeof(cl_mem), &memObj_real[currWrite]);
    		    err |= clSetKernelArg(kernelInfo->kernel, 3, sizeof(cl_mem), &memObj_imag[currWrite]);
    		    err |= clSetKernelArg(kernelInfo->kernel, 4, sizeof(cl_int), &dir);
    		    err |= clSetKernelArg(kernelInfo->kernel, 5, sizeof(cl_int), &s);
    		
    		    err |= clEnqueueNDRangeKernel(queue,  kernelInfo->kernel, 1, NULL, &gWorkItems, &lWorkItems, 0, NULL, NULL);
    		    if(err)
    			    return err;	
    			
    			currRead  = 1;
    			currWrite = 1;
    		
    			kernelInfo = kernelInfo->next;
    		}
    	}
    	
    	return err;
    }
    
    cl_int 
    clFFT_1DTwistInterleaved(clFFT_Plan Plan, cl_command_queue queue, cl_mem array, 
    						 size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir)
    {
    	cl_fft_plan *plan = (cl_fft_plan *) Plan;
    	
    	unsigned int N = numRows*numCols;
    	unsigned int nCols = numCols;
    	unsigned int sRow = startRow;
    	unsigned int rToProcess = rowsToProcess;
    	int d = dir;
    	int err = 0;
    	
    	cl_device_id device_id;
    	err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
    	if(err)
    	    return err;
    	
    	size_t gSize;
    	err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
    	if(err)
    	    return err;
    	      
    	gSize = min(128, gSize);
    	size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
    	size_t numLocalThreads[1]  = { gSize };
    	
    	err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array);
    	err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(unsigned int), &sRow);
    	err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &nCols);
    	err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &N);
    	err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &rToProcess);
    	err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(int), &d);
    	
    	err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);            
    	
    	return err;	
    }
    
    cl_int 
    clFFT_1DTwistPlannar(clFFT_Plan Plan, cl_command_queue queue, cl_mem array_real, cl_mem array_imag, 
    					 size_t numRows, size_t numCols, size_t startRow, size_t rowsToProcess, clFFT_Direction dir)
    {
    	cl_fft_plan *plan = (cl_fft_plan *) Plan;
    	
    	unsigned int N = numRows*numCols;
    	unsigned int nCols = numCols;
    	unsigned int sRow = startRow;
    	unsigned int rToProcess = rowsToProcess;
    	int d = dir;
    	int err = 0;
    	
    	cl_device_id device_id;
    	err = clGetCommandQueueInfo(queue, CL_QUEUE_DEVICE, sizeof(cl_device_id), &device_id, NULL);
    	if(err)
    	    return err;
    	
    	size_t gSize;
    	err = clGetKernelWorkGroupInfo(plan->twist_kernel, device_id, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &gSize, NULL);
    	if(err)
    	    return err;
    	      
    	gSize = min(128, gSize);
    	size_t numGlobalThreads[1] = { max(numCols / gSize, 1)*gSize };
    	size_t numLocalThreads[1]  = { gSize };
    	
    	err |= clSetKernelArg(plan->twist_kernel, 0, sizeof(cl_mem), &array_real);
    	err |= clSetKernelArg(plan->twist_kernel, 1, sizeof(cl_mem), &array_imag);
    	err |= clSetKernelArg(plan->twist_kernel, 2, sizeof(unsigned int), &sRow);
    	err |= clSetKernelArg(plan->twist_kernel, 3, sizeof(unsigned int), &nCols);
    	err |= clSetKernelArg(plan->twist_kernel, 4, sizeof(unsigned int), &N);
    	err |= clSetKernelArg(plan->twist_kernel, 5, sizeof(unsigned int), &rToProcess);
    	err |= clSetKernelArg(plan->twist_kernel, 6, sizeof(int), &d);
    	
    	err |= clEnqueueNDRangeKernel(queue, plan->twist_kernel, 1, NULL, numGlobalThreads, numLocalThreads, 0, NULL, NULL);            
    	
    	return err;	
    }