Select Git revision
MainDocument.cpp
-
David Anderson authored
Turns out WxWidgets has functions for localized number formatting. This was added in 2.9 so we weren't able to use it last time I checked. Remove our own number-formatting code. Don't do localized number formatting in client.
David Anderson authoredTurns out WxWidgets has functions for localized number formatting. This was added in 2.9 so we weren't able to use it last time I checked. Remove our own number-formatting code. Don't do localized number formatting in client.
antenna.cpp 12.96 KiB
// Copyright Bruce Allen 2017
// Compile with gcc -o antenna antenna.c -lm
// REMAINING THINGS TO CHECK:
// (a) sign conventions for h, which arm is positive
// (b) direction and origin conventions for the polarization axis
// (c) double check the hand calculations
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
// Structure for passing information about the GW source and detectors
struct InputStruct {
// orbital orientation in degrees, 0 to 180. Zero degrees has
// orbital angular momentum pointing to the earth
double iota;
// orientation of long axis of ellipse, 0 to 360, in degrees CCW
// from North
double psi;
// orientation of detector arms away from actual, 0 to 360, in
// degrees CCW when viewed from directly overhead
// Ordering is LLO, LHO, VIRGO
double orientation[3];
};
// Structure for returning information about the response. The array
// elements are in the order LLO, LHO, VIRGO
struct OutputStruct {
// amplitude of sin function, dimensionless
double amp[3];
// phase of sin function, in degrees from 0 to 360
double phase[3];
// time delays, in milliseconds
double dt[3];
};
// Global variables for passing information. Ugly style but doesn't
// matter for this!
struct InputStruct inputdata;
// For converting degrees to radians
const double deg_to_rad = M_PI/180.0;
// For computing arrival time delays, need mean radius of the earth in
// milliseconds. Get this by dividing radius in km by speed of light in
// km/s.
const double radius_earth = 6371.0*1000.0/299792.458;
// Event time
// GPS 1187008882
// UTC: Thu 2017 Aug 17 12:41:04
// Julian Day 2457983.02852
// Modified Julian Day 57982.52852
// The convention in this code is that Lattitude is measured north of
// the equator. So Lattitude -10 means 10 degrees SOUTH of the
// equator. Longitude is measured East of Greenwich. So longitude
// -90 means 90 degrees West of Greenwich (somewhere in the USA).
// Galaxy NGC 4993 (from Wikipedia):
// Right ascension: 13h 09m 47.2s
// Declination: −23° 23′ 4″
// We will need to convert this to location over the Earth at the
// event time. It will turn out to be:
// Lattitude −23.3844 degrees (south of equator)
// Longitude 41.092981 degrees (east of Greenwich)
// From Chapter 11 of "Astronomical Algorithms" by Jean Meeus, published 1991
void print_galaxy_coordinates() {
// Here is the Julian day of the event, including a fractional part
double JD = 2457983.02852;
// This is the Julian day (note previous integer part!)
double JD0 = 2457982.5;
// Compute Julian century t
double day = JD0-2451545.0;
double t = day/36525.0;
// The following is equation 11.4 of the previous reference
double degrees = 280.46061837 + 360.98564736629*(JD-2451545.0)+t*t*0.000387933 - t*t*t/38710000.0;
degrees = fmod(degrees,360.0);
printf("Greenwich Mean Sidereal time is %f degrees\n", degrees);
// Now the longitude of our source (with sign conventions above) is given by L = RA - MST, where
// MST (in degrees) is given above and RA is the RA of our source
// Here a positive number means "East of Greenwich"
double longitude = (13*3600.0+9*60+47.2)/240 - degrees;
printf("Longitude of source is %f degrees\n", longitude);
}
// Note these are in the order lattitude,longitude. See routine
// "print_galaxy_coordinates" to convert location on sky to Earth
// location at event time. These are set/used in the function
// populate_source() below.
struct Source {
// lattitude north of equator, radians
// longitude east from Greenwich, radians
double location[2];
// Unit vector from Earth to source
double vec[3];
// Unit vectors defining plane perpendicular to the source
// direction. U points east, V points north
double u[3];
double v[3];
};
struct Source source;
struct Detector {
// null terminated char string
char name[8];
// lattitude north of equator, radians
// longitude east from Greenwich, radians
double location[2];
// orientation of Y arm CCW from North, radians
double orientation;
// Unit vector from center of Earth to detector
double vec[3];
// Unit vectors pointing along the north and east directions at the
// detector site
double north[3];
double east[3];
// Unit vectors along the two arms
double lx[3];
double ly[3];
};
// LLO, LHO, Virgo, in that order
struct Detector detectors[3];
// input is a lattitude/longitude set in radians
// output is unit vectors
void make_unit_vectors(double *out, double *in) {
double lat = in[0];
double lon = in[1];
out[0] = cos(lon)*cos(lat);
out[1] = sin(lon)*cos(lat);
out[2] = sin(lat);
}
void make_u_v_vectors(struct Source *src) {
// lattitude and longitude
double lat = src->location[0];
double lon = src->location[1];
// construct unit vectors perpendicular to line of sight
// u points east
src->u[0] = -sin(lon);
src->u[1] = cos(lon);
src->u[2] = 0.0;
// v points north, so u,v are a right-handed pair like x,y
src->v[0] = -sin(lat)*cos(lon);
src->v[1] = -sin(lat)*sin(lon);
src->v[2] = cos(lat);
}
// input is a lattitude/longitude set in radians
// output is unit vectors in the north and east directions
void make_north_east_vectors(struct Detector *det) {
double lat = det->location[0];
double lon = det->location[1];
det->north[0] = -sin(lat)*cos(lon);
det->north[1] = -sin(lat)*sin(lon);
det->north[2] = cos(lat);
det->east[0] = -sin(lon);
det->east[1] = cos(lon);
det->east[2] = 0.0;
double cpsi = cos(det->orientation);
double spsi = sin(det->orientation);
int i;
for (i=0; i<3; i++) {
det->lx[i] = cpsi*det->east[i] + spsi*det->north[i];
det->ly[i] = -spsi*det->east[i] + cpsi*det->north[i];
}
}
// sets up the different vectors needed to define the source
void populate_source() {
source.location[0] = -1.0*deg_to_rad*(23.0 + 23.0/60.0 + 4.0/3600.0);
source.location[1] = deg_to_rad*41.092981;
make_unit_vectors(source.vec,source.location);
make_u_v_vectors(&source);
}
// initially take detector locations and orientations from
// https://arxiv.org/pdf/gr-qc/9607075.pdf
// Be sure to check this later!!
void populate_detectors(){
// LLO
// Sanity checked using Google Earth!
strcpy(detectors[0].name, " LLO ");
detectors[0].location[0] = 30.56*deg_to_rad;
detectors[0].location[1] = -90.77*deg_to_rad;
detectors[0].orientation = (198.0+inputdata.orientation[0])*deg_to_rad;
// LHO
// Sanity checked using Google Earth!
strcpy(detectors[1].name, " LHO ");
detectors[1].location[0] = 46.45*deg_to_rad;
detectors[1].location[1] = -119.41*deg_to_rad;
detectors[1].orientation = (126.8+inputdata.orientation[1])*deg_to_rad;
// VIRGO
// Sanity checked using Google Earth!
strcpy(detectors[2].name, "VIRGO");
detectors[2].location[0] = 43.63*deg_to_rad;
detectors[2].location[1] = 10.5*deg_to_rad;
detectors[2].orientation = (71.5+inputdata.orientation[2])*deg_to_rad;
int i;
// Coordinate system has x/y plane through the equator, north pole
// along positive z axis, and Greenwich passing through x axis (ie
// y=0).
for (i=0;i<3;i++) {
make_unit_vectors(detectors[i].vec, detectors[i].location);
make_north_east_vectors(detectors+i);
}
}
void print_detector(int det) {
printf("name: %s\n"
"lattitude (north): %f\n"
"longitude (east): %f\n"
"orientation: (CCW from North): %f\n"
"earth center to detector %f %f %f\n"
"vector along X arm %f %f %f\n"
"vector along Y arm %f %f %f\n\n",
detectors[det].name,
detectors[det].location[0],
detectors[det].location[1],
detectors[det].orientation,
detectors[det].vec[0], detectors[det].vec[1], detectors[det].vec[2],
detectors[det].lx[0], detectors[det].lx[1], detectors[det].lx[2],
detectors[det].ly[0], detectors[det].ly[1], detectors[det].ly[2]
);
}
void print_source() {
printf("source at:\n"
"lattitude: %f\n"
"longitude: %f\n"
"earth center to source: %f %f %f\n"
"U vector: %f %f %f\n"
"V vector: %f %f %f\n\n",
source.location[0],
source.location[1],
source.vec[0], source.vec[1],source.vec[2],
source.u[0],source.u[1],source.u[2],
source.v[0],source.v[1],source.v[2]
);
}
// This dots the mass quadrupole with the antenna functions
void get_UV_combinations(int det, double *alpha, double *beta, double *rdotn) {
double a=0,b=0,dot=0;
int i, j;
double *su=source.u;
double *sv=source.v;
double *n=source.vec;
double *dx=detectors[det].lx;
double *dy=detectors[det].ly;
double *r=detectors[det].vec;
for (i=0; i<3; i++)
for (j=0; j<3; j++)
a += (su[i]*su[j] - sv[i]*sv[j]) * (dx[i]*dx[j] - dy[i]*dy[j]);
for (i=0; i<3; i++)
for (j=0; j<3; j++)
b += (su[i]*sv[j] + sv[i]*su[j]) * (dx[i]*dx[j] - dy[i]*dy[j]);
// The quantity dot is positive if the vector from the earth center
// to a detector has the SAME direction as the vector from the
// earth center to the source. This means that the signal arrives
// EARLIER at that detector. Hence the signal waveform seen at the
// detector is of the form h(t) = wave(t + R*dot) where R is the
// (positive) earth radius in units of time and wave(t) is the
// emitted source waveform.
for (i=0; i<3; i++)
dot += n[i]*r[i];
*alpha = a;
*beta = b;
*rdotn = dot;
}
// library function that can be called either from the GUI code or
// from a stand-alone terminal program. This function does not modify
// the input struct, but does populate/modify the output strut!
void get_antenna(struct OutputStruct *out, struct InputStruct *in) {
int i;
// set up the source and detectors
inputdata=*in;
populate_source();
populate_detectors();
double iota = inputdata.iota;
double psi = inputdata.psi;
#ifdef DEBUG
fprintf(stderror, "Iota = %f degrees\nPsi = %f degrees\n", iota, psi);
#endif
iota *= deg_to_rad;
psi *= deg_to_rad;
// get angles needed to calculate antenna response. The minus sign
// in the definition of cos(iota) is because my calculational notes
// assume that iota=0 corresponds to orbital motion CCW in the
// (right-handed) UV coordinate system. That corresponds to having
// the orbital angular momentum pointing radially AWAY from earth.
// But the standard convention is that iota=0 is face-on, meaning
// orbital angular momentum pointing TO the earth. So I change the
// sign of cos(iota) below to correct for this.
double ci = -cos(iota);
double c2p = cos(2*psi);
double s2p = sin(2*psi);
// Now find waveforms. At each site, waveform is w^2 [X sin(2wt) + Y cos(2wt) ]
// loop over detectors
for (i=0; i<3; i++) {
double alpha, beta, X, Y, dt;
// get antenna pattern overlap with source plane
get_UV_combinations(i, &alpha, &beta, &dt);
// form combinations as functions of inclination and polarization angles
X = 2.0*ci*(alpha*s2p - beta*c2p);
Y = -(ci*ci + 1.0)*(alpha*c2p + beta*s2p);
// compute time delay in milliseconds
dt *= radius_earth;
// printf("For detector %s the waveform is w^2 [ %.3f sin(2w(t%+.1f ms))%+.3f cos(2w(t%+.1f ms)) ]\n", detectors[i].name, X, dt, Y, dt);
// compute alternative form of output
// X sin(phi) + Y cos(phi) = sqrt(X^2+Y^2) sin(phi + ang) where ang=atan2(Y,X)
double amp = sqrt(X*X + Y*Y);
double ang = 180.0*atan2(Y, X)/M_PI;
// pass outputs
out->amp[i]= amp;
out->phase[i] = ang;
out->dt[i] = dt;
#ifdef DEBUG
// degree character in UTF-8 character set (most likely terminal type!)
int deg1=0xC2, deg2=0xB0;
fprintf(stderr, "For detector %s the waveform is %.3f w^2 sin(2w[t%+.1f ms]%+.1f%c%c)\n", detectors[i].name, amp, dt, ang, deg1, deg2);
#endif
}
return;
}
// This function requires two floating point arguments on the command
// line, iota and psi, angles in degrees.
int main(int argc, char *argv[]) {
// to loop over detectors
int i;
// to pass data in and out
struct InputStruct myinput;
struct OutputStruct myoutput;
// check syntax crudely, issue usage message
if (argc != 3) {
fprintf(stderr,
"Wrong argument count! Correct usage:\n"
"%s float_iota_in_degrees float_psi_in_degrees\n",
argv[0]);
exit(1);
}
// pass inclination angle, polarization axis, orientation offsets
myinput.iota = atof(argv[1]);
myinput.psi = atof(argv[2]);
for (i=0;i<3;i++) myinput.orientation[i]=0.0;
printf("Iota = %f degrees\nPsi = %f degrees\n", myinput.iota, myinput.psi);
// now compute responses
get_antenna(&myoutput, &myinput);
// degree character in UTF-8 character set (most likely terminal type!)
int deg1=0xC2, deg2=0xB0;
// Now display waveforms
for (i=0; i<3; i++)
printf("For detector %s the waveform is %.3f w^2 sin(2w[t%+.1f ms]%+.1f%c%c)\n", detectors[i].name, myoutput.amp[i], myoutput.dt[i], myoutput.phase[i], deg1, deg2);
return 0;
}