Select Git revision
gfr_parallel.m
Axel Schnitger authored
m-files in the release directory are now executable from the release diretory. No need to change the path to the repo's root level.
gfr_parallel.m 9.22 KiB
%% GRACE gravity field recovery (GFR)
%
% GFR_PARALLEL is the main m-file preforming the gravity field estimation. It
% is optimised for parallel computing using local and global parameters for
% different arcs. All necessary parameters and data are specified in the
% following. You have to set a number of iterations you want to perform. With
% the m-file continue_gfr_par_from_iteration.m you can continue a GFR from an
% iteration. Therefore you need to save all necessary variables, e.g. use the
% file save_vars2continue_itr.m to save them in one .mat file. In the end some
% example plots are given you may change or extend.
%
% Written by Florian Wöske, ZARM Uni Bremen, and
% Neda Darbeheshti, AEI Hannover, 2018-07.
%%
format longg;
%% variable inputs
% add folder with all functions
Release1_Path = pwd;
addpath(genpath(Release1_Path));
% EBA_Path = fullfile(Release1_Path,'/../function_eba/');
% addpath(genpath(EBA_Path));
GFR_Path = fullfile(Release1_Path,'/../function_gfr/');
addpath(genpath(GFR_Path));
% folder to save intermediate results
mkdir('results/OutputArcParall');
mkdir('results/OutputNormalEqu');
% folder where observation data are stored
Input_Observation_Path = fullfile(Release1_Path,'/../input_data','MockData_do10_nod4');
addpath(genpath(Input_Observation_Path));
% Define the number of iterations for batch processor,
ItrNo_max = 5;
% order of spherical harmonic coefficients to be estimated
lmaxcs = 10;
% parameters of background gravity field
lmaxf = 10;
% number of days
nods = 4;
% number of observations in each arc (one day, 17280 is the standard)
mKBR = 17280;
%% fixed inputs
% n: size of gravity fields in vec format, estimated and background
n_est = ((lmaxcs+1)^2 + lmaxcs+1)/2;
n_back = ((lmaxf+1)^2 + lmaxf+1)/2;
% GM and Earth radius of gravity field
GM = 0.3986004415E+15;
ae = 0.6378136300E+07;
% reference for comparison
ggm05s = readGFC('../input_data/GGM05S.gfc');
ggm05s = ggm05s(1:n_back,:); % cut to desired length
ggm05s_cs = vec2cs([ggm05s(:,1) ggm05s(:,2)]',ggm05s(:,3),ggm05s(:,4));
% d_vec_i = ggm05s(:,3:4)-gravityf(:,3:4);
% d_vec_i = [ggm05s(:,1:2) d_vec_i];
% Load a-priori/ reference gravity field
egm96 = readGFC('../input_data/EGM96.gfc');
egm96 = egm96(1:n_back,:); % cut to desired length
egm96_cs = vec2cs([egm96(:,1) egm96(:,2)]',egm96(:,3),egm96(:,4));
% reformatting spherical harmonics coefficients
field_cs = egm96_cs;
field_sc = cs2sc(egm96_cs(1:lmaxf+1,1:lmaxf+1),0);
field = field_sc(:)';
[outC1,outS1,nm1] = cs2vec(egm96_cs,false);
field_vec0 = [nm1',outC1',outS1'];
err_vec = egm96;
err_vec(:,3:4) = ggm05s(:,3:4) - egm96(:,3:4);
% initialzes Legendre polynomial calculation
data_plm = initplm(lmaxf,2);
%% load observations data and initial states for all days from files
t0 = [2005 05 01 0 0 2];
date0 = time2str(t0);
KBRL1B = zeros(mKBR,4,nods);
state0 = zeros(12,nods);
% State deviation:
x0x = zeros(12,nods);
t0i = t0;
for Mday = 1:nods
if Mday >1
t0i(3)=t0i(3)+1;
end
date = time2str(t0i);
% load KBR data
data_KBR = ['KBR1B_', date, '_X_02.asc'];
data_file = fullfile(Input_Observation_Path, date, data_KBR);
KBRL1Bi = readKBR(data_file);
KBRL1B(:,:,Mday) = KBRL1Bi(1:mKBR,1:4);
% load GNV data GRACE A
data_GNV = ['GNV1B_', date, '_A_02.asc'];
data_file = fullfile(Input_Observation_Path, date, data_GNV);
GNVi = readGNV(data_file);
state0(1:6,Mday) = GNVi(1,2:7);
% load GNV data GRACE B
data_GNV = ['GNV1B_', date, '_B_02.asc'];
data_file = fullfile(Input_Observation_Path, date, data_GNV);
GNVi = readGNV(data_file);
state0(7:12,Mday) = GNVi(1,2:7);
end
% save initial state vector for comparisons
state00 = state0;
%% iteration
% number of coefficients
% Minimum degree and order of coefficients to be estimated
lmincs=2;
noc=lmaxcs^2-lmincs^2+2*lmaxcs+1; %total number of coefficients to be estimated
xhat_save = zeros (12, nods, ItrNo_max+1);
chat_save = zeros (noc, ItrNo_max+1);
eps_save = zeros(mKBR,nods,ItrNo_max+1);
chat_dv_save = zeros (ItrNo_max+1,lmaxcs-1);
dv_save = zeros (ItrNo_max+1,lmaxcs-1);
for ItrNo = 0:ItrNo_max
% batch over all days
parfor Mday = 1:nods
tic
batch_processor_partitioned(Mday,Release1_Path,lmaxcs,mKBR,field,data_plm,GM,ae,lmaxf,state0(:,Mday),KBRL1B(:,1,Mday),KBRL1B(:,3,Mday),x0x(:,Mday))
toc
end
%% solve normal equations
% read data from arc parallel
invMxx = zeros(12,12,nods);
iMxc = zeros(12,noc,nods);
iMcc = zeros(noc,noc,nods);
iNx = zeros(12,1,nods);
iNc = zeros(noc,1,nods);
iL = zeros(noc,noc,nods);
iN = zeros(noc,1,nods);
iHx = zeros(mKBR,12,nods);
iHc = zeros(mKBR,noc,nods);
irhodot_deviation = zeros(mKBR,nods);
for Mday = 1:nods
FileName = ['arcmatrix',num2str(Mday,'%.2d'),'.mat'];
File = fullfile(Release1_Path,'results/OutputArcParall', FileName);
arcstru=load(File);
invMxx(:,:,Mday) = arcstru.invMxx;
iMxc(:,:,Mday) = arcstru.Mxc;
iMcc(:,:,Mday) = arcstru.Mcc;
iNx(:,:,Mday) = arcstru.Nx;
iNc(:,:,Mday) = arcstru.Nc;
McxTinvMxx = iMxc(:,:,Mday)'*invMxx(:,:,Mday);
iL(:,:,Mday) = McxTinvMxx*iMxc(:,:,Mday);
iN(:,:,Mday) = McxTinvMxx*iNx(:,:,Mday);
iHx(:,:,Mday) = arcstru.Hx_save;
iHc(:,:,Mday) = arcstru.Hc_save;
irhodot_deviation(:,Mday) = arcstru.rhodot_deviation;
end
% sum over the number of days
sumiMcc = sum(iMcc,3);
sumiNc = sum(iNc,3);
sumiL = sum(iL,3);
sumiN = sum(iN,3);
L = sumiMcc-sumiL;
N = sumiNc-sumiN;
% estimate global parameters
chat = L \ N;
% estimate local parameters
xhat = zeros(12,nods);
yhat = zeros(mKBR,nods);
for Mday = 1:nods
xhat(:,Mday) = invMxx(:,:,Mday)*iNx(:,:,Mday)-invMxx(:,:,Mday)*iMxc(:,:,Mday)*chat;
% estimate range rate residuals
yhat(:,Mday)=iHx(:,:,Mday)*xhat(:,Mday)+iHc(:,:,Mday)*chat;
eps = irhodot_deviation(:,Mday)-yhat(:,Mday);
eps_save(:,Mday,ItrNo+1) = eps;
% figure;plot(eps)
% xlabel('Observation Number');
% ylabel('residuals [m/s]');
% title(['Range-rate residuals, Itr',num2str(ItrNo,'%.2d'),',Day',num2str(Mday,'%.2d')])
end
% save xhat and chat of iterations
xhat_save(:,:,ItrNo+1) = xhat;
chat_save(:,ItrNo+1) = chat;
% put coefficients in right order for plotting and output
ko=1;
for i=1:lmaxcs+1
for j=1:lmaxcs+1
if i<=j
ordering1(ko,1)=j-1;
ordering1(ko,2)=i-1;
ko=ko+1;
end
end
end
nocC=(noc+lmaxcs-1)/2;
ordering1(3:end,3)=[chat(1:lmaxcs-1)', 0 ,chat(lmaxcs:nocC)']; % put C coeffs.
ordering1(3+lmaxcs:end,4)=chat(nocC+1:end); % put S coeffs.
ordering1_cs = vec2cs([ordering1(:,1) ordering1(:,2)]',ordering1(:,3),ordering1(:,4));
chat_cs = ordering1_cs;
% chat_vec = ordering1; % orderwise ordering
[outC1,outS1,nm1] = cs2vec(chat_cs,false); %degreewise
chat_vec = [nm1',outC1',outS1'];
chat_dv_save(ItrNo+1,:) = dv_geoidn_no_plot(chat_vec,lmaxcs);
% dv_geoidn(chat_vec,lmaxcs);
% % save final monthly gravity solution in a file
% FileName= ['gfr_NODs',num2str(nods,'%.2d'),'_DO',num2str(lmaxcs,'%.2d'),'_ItrNo',num2str(ItrNo,'%.2d'),'.gfc'];
% File = fullfile(Release1_Path,'results/OutputNormalEqu', FileName);
% fileID = fopen(File,'w');
% for i=1:length(ordering2)
% fprintf(fileID,'%4i %4i %17.16e %17.16e\n',ordering2(i,:));
% end
% fclose(fileID);
% set up values for next iteration
state0 = state0 + xhat;
x0x = x0x - xhat;
% Add CS coeffs in cs format to reference field (just up to the order
% that was estimated)
field_cs(1:lmaxcs+1,1:lmaxcs+1) = field_cs(1:lmaxcs+1,1:lmaxcs+1) + chat_cs;
field_sc = cs2sc(field_cs(1:lmaxf+1,1:lmaxf+1),0);
field = field_sc(:)';
[outC1,outS1,nm1] = cs2vec(field_cs,false);
field_vec = [nm1',outC1',outS1'];
% save dv of true gravity field minus estimated from each iteration
d_vec = ggm05s(1:n_back,3:4)-field_vec(:,3:4);
d_vec = [field_vec(:,1:2) d_vec];
dv_save(ItrNo+1,:) = dv_geoidn_no_plot(d_vec,lmaxcs);
fprintf('done with iteration %d \n', ItrNo)
end
% plot chat from all iterations:
figure;
for i = 1:ItrNo_max+1
semilogy(2:lmaxcs,chat_dv_save(i,:),'.-','LineWidth',2,'MarkerSize',20);
hold on
end
fs = 12;
set(gcf,'PaperPositionMode','auto')
set(gca,'FontSize',fs);
xlabel('Spherical harmonic degree n')
ylabel('Square root of degree variances')
title('chat from each iteration')
grid on
figure;
dv_geoidn(ggm05s,lmaxcs);
hold on
% dv_geoidn(d_vec_i,lmaxcs);
[outC1,outS1,nm1] = cs2vec(field_cs,false);
final_field_vec = [nm1',outC1',outS1'];
dv_geoidn(final_field_vec,lmaxcs);
d_vec = ggm05s(1:n_back,3:4)-final_field_vec(:,3:4);
d_vec = [final_field_vec(:,1:2) d_vec];
dv_geoidn(d_vec,lmaxcs);
legend('ggm05s', 'estimated field', 'ggm05 - estimated field')
% plot gravity field error from each iteration additional to initial fields and
% initial error
figure;
dv_geoidn(ggm05s,lmaxcs);
hold on
dv_geoidn(field_vec0,lmaxcs);
dv_geoidn(err_vec,lmaxcs);
legend('ggm05s','ggm05s + error field', 'error field')
for i = 1:ItrNo_max+1
str = ['error iter ',num2str(i-1)];
semilogy(2:lmaxcs,dv_save(i,:),'.-','LineWidth',2,'MarkerSize',16,'DisplayName', str);
end