Skip to content
Snippets Groups Projects
Select Git revision
  • 98327cb432b4564e8356dfcef82f1ef49243b640
  • master default protected
  • Binary
  • add-version-information
  • os-path-join
  • develop-GA
  • timeFstatmap
  • add-higher-spindown-components
  • develop-DK
  • adds-header-to-grid-search
  • v1.3
  • v1.2
  • v1.1.2
  • v1.1.0
  • v1.0.1
15 results

generate_data.py

Blame
  • Forked from Gregory Ashton / PyFstat
    Source project has a limited visibility.
    generate_data.py 2.96 KiB
    import pyfstat
    import numpy as np
    import os
    import sys
    import time
    
    
    ID = sys.argv[1]
    outdir = sys.argv[2]
    
    label = 'run_{}'.format(ID)
    data_label = '{}_data'.format(label)
    results_file_name = '{}/NoiseOnlyMCResults_{}.txt'.format(outdir, ID)
    
    # Properties of the GW data
    sqrtSX = 1e-23
    tstart = 1000000000
    Tspan = 100*86400
    tend = tstart + Tspan
    
    # Fixed properties of the signal
    F0_center = 30
    F1_center = -1e-10
    F2 = 0
    Alpha = np.radians(83.6292)
    Delta = np.radians(22.0144)
    tref = .5*(tstart+tend)
    
    VF0 = VF1 = 200
    dF0 = np.sqrt(3)/(np.pi*Tspan)
    dF1 = np.sqrt(45/4.)/(np.pi*Tspan**2)
    DeltaF0 = VF0 * dF0
    DeltaF1 = VF1 * dF1
    
    nsteps = 25
    run_setup = [((nsteps, 0), 20, False),
                 ((nsteps, 0), 7, False),
                 ((nsteps, 0), 2, False),
                 ((nsteps, nsteps), 1, False)]
    
    h0 = 0
    F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
    F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
    
    psi = np.random.uniform(-np.pi/4, np.pi/4)
    phi = np.random.uniform(0, 2*np.pi)
    cosi = np.random.uniform(-1, 1)
    
    # Next, taking the same signal parameters, we include a glitch half way through
    dtglitch = Tspan/2.0
    delta_F0 = 0.25*DeltaF0
    delta_F1 = -0.1*DeltaF1
    
    glitch_data = pyfstat.Writer(
        label=data_label, outdir=outdir, tref=tref, tstart=tstart, F0=F0,
        F1=F1, F2=F2, duration=Tspan, Alpha=Alpha, Delta=Delta, h0=h0,
        sqrtSX=sqrtSX, dtglitch=dtglitch, delta_F0=delta_F0, delta_F1=delta_F1)
    glitch_data.make_data()
    
    
    startTime = time.time()
    theta_prior = {'F0': {'type': 'unif', 'lower': F0-DeltaF0/2.,
                          'upper': F0+DeltaF0/2},
                   'F1': {'type': 'unif', 'lower': F1-DeltaF1/2.,
                          'upper': F1+DeltaF1/2},
                   'F2': F2,
                   'Alpha': Alpha,
                   'Delta': Delta,
                   'tglitch': {'type': 'unif', 'lower': tstart+0.1*Tspan,
                               'upper': tend-0.1*Tspan},
                   'delta_F0': {'type': 'halfnorm', 'loc': 0, 'scale': DeltaF0},
                   'delta_F1': {'type': 'norm', 'loc': 0, 'scale': DeltaF1},
                   }
    ntemps = 2
    log10temperature_min = -0.1
    nwalkers = 100
    nsteps = [500, 500]
    glitch_mcmc = pyfstat.MCMCGlitchSearch(
        label=label, outdir=outdir,
        sftfilepath='{}/*{}*sft'.format(outdir, data_label),
        theta_prior=theta_prior,
        tref=tref, minStartTime=tstart, maxStartTime=tend, nsteps=nsteps,
        nwalkers=nwalkers, ntemps=ntemps,
        log10temperature_min=log10temperature_min)
    glitch_mcmc.run(run_setup=run_setup, create_plots=False, log_table=False,
                    gen_tex_table=False)
    glitch_mcmc.print_summary()
    d, maxtwoF = glitch_mcmc.get_max_twoF()
    dF0 = F0 - d['F0']
    dF1 = F1 - d['F1']
    tglitch = d['tglitch']
    R = (tglitch - tstart) / Tspan
    delta_F0 = d['delta_F0']
    delta_F1 = d['delta_F1']
    runTime = time.time() - startTime
    with open(results_file_name, 'a') as f:
        f.write('{:1.8e} {:1.8e} {} {:1.8e} {:1.8e} {:1.8e} {}\n'
                .format(dF0, dF1, R, delta_F0, delta_F1, maxtwoF, runTime))
    os.system('rm {}/*{}*'.format(outdir, label))