Skip to content
Snippets Groups Projects
Select Git revision
  • Binary
  • add-version-information
  • master default protected
  • os-path-join
  • develop-GA
  • timeFstatmap
  • add-higher-spindown-components
  • develop-DK
  • adds-header-to-grid-search
  • v1.3
  • v1.2
  • v1.1.2
  • v1.1.0
  • v1.0.1
14 results

fully_coherent_search_using_MCMC.py

Blame
  • Forked from Gregory Ashton / PyFstat
    160 commits behind the upstream repository.
    fully_coherent_search_using_MCMC.py 1.67 KiB
    import pyfstat
    import numpy as np
    
    # Properties of the GW data
    sqrtSX = 1e-23
    tstart = 1000000000
    duration = 100*86400
    tend = tstart + duration
    
    # Properties of the signal
    F0 = 30.0
    F1 = -1e-10
    F2 = 0
    Alpha = np.radians(83.6292)
    Delta = np.radians(22.0144)
    tref = .5*(tstart+tend)
    
    depth = 10
    h0 = sqrtSX / depth
    label = 'fully_coherent_search_using_MCMC'
    outdir = 'data'
    
    data = pyfstat.Writer(
        label=label, outdir=outdir, tref=tref,
        tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
        Delta=Delta, h0=h0, sqrtSX=sqrtSX)
    data.make_data()
    
    # The predicted twoF, given by lalapps_predictFstat can be accessed by
    twoF = data.predict_fstat()
    print 'Predicted twoF value: {}\n'.format(twoF)
    
    DeltaF0 = 1e-7
    DeltaF1 = 1e-13
    VF0 = (np.pi * duration * DeltaF0)**2 / 3.0
    VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
    print '\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1)
    
    theta_prior = {'F0': {'type': 'unif',
                          'lower': F0-DeltaF0/2.,
                          'upper': F0+DeltaF0/2.},
                   'F1': {'type': 'unif',
                          'lower': F1-DeltaF1/2.,
                          'upper': F1+DeltaF1/2.},
                   'F2': F2,
                   'Alpha': Alpha,
                   'Delta': Delta
                   }
    
    ntemps = 1
    log10beta_min = -1
    nwalkers = 100
    nsteps = [300, 300]
    
    mcmc = pyfstat.MCMCSearch(
        label=label, outdir=outdir,
        sftfilepattern='{}/*{}*sft'.format(outdir, label), theta_prior=theta_prior,
        tref=tref, minStartTime=tstart, maxStartTime=tend, nsteps=nsteps,
        nwalkers=nwalkers, ntemps=ntemps, log10beta_min=log10beta_min)
    mcmc.run(subtractions=[F0, F1])
    mcmc.plot_corner(add_prior=True)
    mcmc.print_summary()