Skip to content
Snippets Groups Projects
Commit 00a02b1b authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Update to the MC runs

parent e6370ecf
No related branches found
No related tags found
No related merge requests found
......@@ -28,7 +28,8 @@ VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
depths = np.linspace(100, 400, 7)
#depths = np.linspace(100, 400, 7)
depths = [50, 75]
nsteps = 50
run_setup = [((nsteps, 0), 20, False),
......
......@@ -79,8 +79,10 @@ fig.tight_layout()
fig.savefig('allsky_recovery.png')
total_number_steps = 6 * 50.
fig, ax = plt.subplots()
ax.hist(df.runTime, bins=20)
ax.set_xlabel('runTime per follow-up [s]')
ax.hist(df.runTime/total_number_steps, bins=50)
ax.set_xlabel('run-time per step [s]')
fig.tight_layout()
fig.savefig('runTimeHist.png')
Paper/AllSkyMC/runTimeHist.png

21.1 KiB

......@@ -9,4 +9,4 @@ Log=CollectedOutput/log.$(Process)
request_cpus = 1
request_memory = 16 GB
Queue 90
Queue 100
......@@ -4,6 +4,9 @@ import numpy as np
import os
from tqdm import tqdm
from oct2py import octave
import glob
filenames = glob.glob("CollectedOutput/*.txt")
plt.style.use('paper')
......@@ -25,11 +28,14 @@ def binomialConfidenceInterval(N, K, confidence=0.95):
[l, u] = octave.eval(cmd, verbose=False, return_both=True)[0].split('\n')
return float(l.split('=')[1]), float(u.split('=')[1])
results_file_name = 'MCResults.txt'
df_list = []
for fn in filenames:
df = pd.read_csv(
results_file_name, sep=' ', names=['depth', 'h0', 'dF0', 'dF1',
'twoF_predicted', 'twoF', 'runTime'])
fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF_predicted',
'twoF', 'runTime'])
df['CLUSTER_ID'] = fn.split('_')[1]
df_list.append(df)
df = pd.concat(df_list)
twoFstar = 60
depths = np.unique(df.depth.values)
......@@ -73,8 +79,11 @@ fig.tight_layout()
fig.savefig('directed_recovery.png')
total_number_steps = 5*20.
df_clean = df[df.CLUSTER_ID == '969049'] # Hack due to a change in the code
fig, ax = plt.subplots()
ax.hist(df.runTime, bins=50)
ax.set_xlabel('runTime per follow-up [s]')
ax.hist(df_clean.runTime/total_number_steps, bins=50)
ax.set_xlabel('run-time per step [s]')
fig.tight_layout()
fig.savefig('runTimeHist.png')
Paper/DirectedMC/runTimeHist.png

22.8 KiB

Paper/allsky_recovery.png

50.7 KiB | W: | H:

Paper/allsky_recovery.png

50.9 KiB | W: | H:

Paper/allsky_recovery.png
Paper/allsky_recovery.png
Paper/allsky_recovery.png
Paper/allsky_recovery.png
  • 2-up
  • Swipe
  • Onion skin
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment