Skip to content
Snippets Groups Projects
Commit 274059a7 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Remove old paper directory

parent afbb9815
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 979 deletions
#!/bin/bash
. /home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
for ((n=0;n<10;n++))
do
/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
done
cp /local/user/gregory.ashton/MCResults_"$1".txt $(pwd)/CollectedOutput
import pyfstat
import numpy as np
import os
import sys
import time
ID = sys.argv[1]
outdir = sys.argv[2]
label = 'run_{}'.format(ID)
data_label = '{}_data'.format(label)
results_file_name = '{}/MCResults_{}.txt'.format(outdir, ID)
# Properties of the GW data
sqrtSX = 1e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = -1e-10
F2 = 0
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
DeltaAlpha = 0.02
DeltaDelta = 0.02
depths = np.linspace(100, 400, 9)
depths = [118.75, 156.25]
nsteps = 50
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 11, False),
((nsteps, 0), 6, False),
((nsteps, 0), 3, False),
((nsteps, nsteps), 1, False)]
for depth in depths:
h0 = sqrtSX / float(depth)
F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
Alpha_center = np.random.uniform(DeltaAlpha, 2*np.pi-DeltaAlpha)
Delta_center = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
startTime = time.time()
theta_prior = {'F0': {'type': 'unif',
'lower': F0_center-DeltaF0,
'upper': F0_center+DeltaF0},
'F1': {'type': 'unif',
'lower': F1_center-DeltaF1,
'upper': F1_center+DeltaF1},
'F2': F2,
'Alpha': {'type': 'unif',
'lower': Alpha_center-DeltaAlpha,
'upper': Alpha_center+DeltaAlpha},
'Delta': {'type': 'unif',
'lower': Delta_center-DeltaDelta,
'upper': Delta_center+DeltaDelta},
}
ntemps = 2
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run(run_setup=run_setup, create_plots=False, log_table=False,
gen_tex_table=False)
d, maxtwoF = mcmc.get_max_twoF()
dF0 = F0 - d['F0']
dF1 = F1 - d['F1']
runTime = time.time() - startTime
with open(results_file_name, 'a') as f:
f.write('{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
.format(depth, h0, dF0, dF1, maxtwoF, runTime))
os.system('rm {}/*{}*'.format(outdir, label))
import pyfstat
import numpy as np
import os
import time
outdir = 'data'
label = 'run_failures'
data_label = '{}_data'.format(label)
results_file_name = '{}/MCResults_failures.txt'.format(outdir)
# Properties of the GW data
sqrtSX = 2e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = 1e-10
F2 = 0
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
DeltaAlpha = 0.02
DeltaDelta = 0.02
depths = [140]
nsteps = 50
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 11, False),
((nsteps, 0), 6, False),
((nsteps, 0), 3, False),
((nsteps, nsteps), 1, False)]
for depth in depths:
h0 = sqrtSX / float(depth)
F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
Alpha_center = np.random.uniform(0, 2*np.pi)
Delta_center = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
predicted_twoF = data.predict_fstat()
startTime = time.time()
theta_prior = {'F0': {'type': 'unif',
'lower': F0_center-DeltaF0,
'upper': F0_center+DeltaF0},
'F1': {'type': 'unif',
'lower': F1_center-DeltaF1,
'upper': F1_center+DeltaF1},
'F2': F2,
'Alpha': {'type': 'unif',
'lower': Alpha_center-DeltaAlpha,
'upper': Alpha_center+DeltaAlpha},
'Delta': {'type': 'unif',
'lower': Delta_center-DeltaDelta,
'upper': Delta_center+DeltaDelta},
}
ntemps = 2
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run(run_setup=run_setup, create_plots=True, log_table=False,
gen_tex_table=False)
d, maxtwoF = mcmc.get_max_twoF()
print 'MaxtwoF = {}'.format(maxtwoF)
import pyfstat
import numpy as np
outdir = 'data'
label = 'allsky_setup'
data_label = '{}_data'.format(label)
# Properties of the GW data
sqrtSX = 2e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = 1e-10
F2 = 0
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
DeltaAlpha = 0.02
DeltaDelta = 0.02
depth = 100
nsteps = 50
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 11, False),
((nsteps, 0), 6, False),
((nsteps, 0), 3, False),
((nsteps, nsteps), 1, False)]
h0 = sqrtSX / float(depth)
r = np.random.uniform(0, 1)
theta = np.random.uniform(0, 2*np.pi)
F0 = F0_center + 3*np.sqrt(r)*np.cos(theta)/(np.pi**2 * Tspan**2)
F1 = F1_center + 45*np.sqrt(r)*np.sin(theta)/(4*np.pi**2 * Tspan**4)
Alpha_center = 0
Delta_center = 0
Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
predicted_twoF = data.predict_fstat()
theta_prior = {'F0': {'type': 'unif',
'lower': F0_center-DeltaF0,
'upper': F0_center+DeltaF0},
'F1': {'type': 'unif',
'lower': F1_center-DeltaF1,
'upper': F1_center+DeltaF1},
'F2': F2,
'Alpha': {'type': 'unif',
'lower': Alpha_center-DeltaAlpha,
'upper': Alpha_center+DeltaAlpha},
'Delta': {'type': 'unif',
'lower': Delta_center-DeltaDelta,
'upper': Delta_center+DeltaDelta},
}
ntemps = 2
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps, nsteps=[nsteps, nsteps],
log10temperature_min=log10temperature_min)
mcmc.run(Nsegs0=20, R=10)
#mcmc.run(run_setup)
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
from oct2py import octave
import glob
filenames = glob.glob("CollectedOutput/*.txt")
plt.style.use('paper')
Tspan = 100 * 86400
def Recovery(Tspan, Depth, twoFstar=60, detectors='H1,L1'):
numDetectors = len(detectors.split(','))
cmd = ("DetectionProbabilityStackSlide('Nseg', 1, 'Tdata', {},"
"'misHist', createDeltaHist(0), 'avg2Fth', {}, 'detectors', '{}',"
"'Depth', {})"
).format(numDetectors*Tspan, twoFstar, detectors, Depth)
return octave.eval(cmd, verbose=False)
def binomialConfidenceInterval(N, K, confidence=0.95):
cmd = '[fLow, fUpper] = binomialConfidenceInterval({}, {}, {})'.format(
N, K, confidence)
[l, u] = octave.eval(cmd, verbose=False, return_both=True)[0].split('\n')
return float(l.split('=')[1]), float(u.split('=')[1])
df_list = []
for fn in filenames:
df = pd.read_csv(
fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF', 'runTime'])
df['CLUSTER_ID'] = fn.split('_')[1]
df_list.append(df)
df = pd.concat(df_list)
twoFstar = 70
depths = np.unique(df.depth.values)
recovery_fraction = []
recovery_fraction_CI = []
for d in depths:
twoFs = df[df.depth == d].twoF.values
N = len(twoFs)
K = np.sum(twoFs > twoFstar)
print d, N, K
recovery_fraction.append(K/float(N))
[fLower, fUpper] = binomialConfidenceInterval(N, K)
recovery_fraction_CI.append([fLower, fUpper])
yerr = np.abs(recovery_fraction - np.array(recovery_fraction_CI).T)
fig, ax = plt.subplots()
ax.errorbar(depths, recovery_fraction, yerr=yerr, fmt='sr', marker='s', ms=2,
capsize=1, capthick=0.5, elinewidth=0.5,
label='Monte-Carlo result', zorder=10)
fname = 'analytic_data_{}.txt'.format(twoFstar)
if os.path.isfile(fname):
depths_smooth, recovery_analytic = np.loadtxt(fname)
else:
depths_smooth = np.linspace(10, 550, 100)
recovery_analytic = []
for d in tqdm(depths_smooth):
recovery_analytic.append(Recovery(Tspan, d, twoFstar))
np.savetxt(fname, np.array([depths_smooth, recovery_analytic]))
depths_smooth = np.concatenate(([0], depths_smooth))
recovery_analytic = np.concatenate(([1], recovery_analytic))
ax.plot(depths_smooth, recovery_analytic, '-k', label='Theoretical maximum')
ax.set_ylim(0, 1.05)
ax.set_xlabel(r'Sensitivity depth', size=10)
ax.set_ylabel(r'Recovered fraction', size=10)
ax.legend(loc=1, frameon=False)
fig.tight_layout()
fig.savefig('allsky_recovery.png')
total_number_steps = 6 * 50.
fig, ax = plt.subplots()
ax.hist(df.runTime/total_number_steps, bins=50)
ax.set_xlabel('run-time per step [s]')
fig.tight_layout()
fig.savefig('runTimeHist.png')
Paper/AllSkyMC/runTimeHist.png

19.5 KiB

Executable=AllSkyMC_repeat.sh
Arguments=$(Cluster)_$(Process)
Universe=vanilla
Input=/dev/null
accounting_group = ligo.dev.o2.cw.explore.test
Output=CollectedOutput/out.$(Cluster).$(Process)
Error=CollectedOutput/err.$(Cluster).$(Process)
Log=CollectedOutput/log.$(Cluster).$(Process)
request_cpus = 1
request_memory = 16 GB
Queue 1
#!/bin/bash
. /home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
for ((n=0;n<90;n++))
do
/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
done
cp /local/user/gregory.ashton/NoiseOnlyMCResults_"$1".txt $(pwd)/CollectedOutput
import pyfstat
import numpy as np
import os
import sys
import time
ID = sys.argv[1]
outdir = sys.argv[2]
label = 'run_{}'.format(ID)
data_label = '{}_data'.format(label)
results_file_name = '{}/NoiseOnlyMCResults_{}.txt'.format(outdir, ID)
# Properties of the GW data
sqrtSX = 1e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = -1e-10
F2 = 0
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
DeltaAlpha = 0.02
DeltaDelta = 0.02
nsteps = 50
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 11, False),
((nsteps, 0), 6, False),
((nsteps, 0), 3, False),
((nsteps, nsteps), 1, False)]
h0 = 0
F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
Alpha_center = np.random.uniform(DeltaAlpha, 2*np.pi-DeltaAlpha)
Delta_center = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
startTime = time.time()
theta_prior = {'F0': {'type': 'unif',
'lower': F0_center-DeltaF0,
'upper': F0_center+DeltaF0},
'F1': {'type': 'unif',
'lower': F1_center-DeltaF1,
'upper': F1_center+DeltaF1},
'F2': F2,
'Alpha': {'type': 'unif',
'lower': Alpha_center-DeltaAlpha,
'upper': Alpha_center+DeltaAlpha},
'Delta': {'type': 'unif',
'lower': Delta_center-DeltaDelta,
'upper': Delta_center+DeltaDelta},
}
ntemps = 2
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run(run_setup=run_setup, create_plots=False, log_table=False,
gen_tex_table=False)
d, maxtwoF = mcmc.get_max_twoF()
dF0 = F0 - d['F0']
dF1 = F1 - d['F1']
runTime = time.time() - startTime
with open(results_file_name, 'a') as f:
f.write('{:1.8e} {:1.8e} {:1.8e} {}\n'
.format(dF0, dF1, maxtwoF, runTime))
os.system('rm {}/*{}*'.format(outdir, label))
import pyfstat
import numpy as np
outdir = 'data'
label = 'allsky_setup'
data_label = '{}_data'.format(label)
# Properties of the GW data
sqrtSX = 2e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = 1e-10
F2 = 0
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
DeltaAlpha = 0.05
DeltaDelta = 0.05
depth = 100
nsteps = 50
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 11, False),
((nsteps, 0), 6, False),
((nsteps, 0), 3, False),
((nsteps, nsteps), 1, False)]
h0 = sqrtSX / float(depth)
r = np.random.uniform(0, 1)
theta = np.random.uniform(0, 2*np.pi)
F0 = F0_center + 3*np.sqrt(r)*np.cos(theta)/(np.pi**2 * Tspan**2)
F1 = F1_center + 45*np.sqrt(r)*np.sin(theta)/(4*np.pi**2 * Tspan**4)
Alpha = 0
Delta = 0
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
predicted_twoF = data.predict_fstat()
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': {'type': 'unif',
'lower': Alpha-DeltaAlpha/2.,
'upper': Alpha+DeltaAlpha/2.},
'Delta': {'type': 'unif',
'lower': Delta-DeltaDelta/2.,
'upper': Delta+DeltaDelta/2.},
}
ntemps = 1
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run(run_setup)
import pyfstat
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
from oct2py import octave
import glob
from scipy.stats import rv_continuous, chi2
filenames = glob.glob("CollectedOutput/*.txt")
plt.style.use('paper')
Tspan = 100 * 86400
class maxtwoFinNoise_gen(rv_continuous):
def _pdf(self, twoF, Ntrials):
F = twoF/2.0
alpha = (1 + F)*np.exp(-F)
a = Ntrials/2.0*F*np.exp(-F)
b = (1 - alpha)**(Ntrials-1)
return a*b
df_list = []
for fn in filenames:
df = pd.read_csv(
fn, sep=' ', names=['dF0', 'dF1', 'twoF', 'runTime'])
df['CLUSTER_ID'] = fn.split('_')[1]
df_list.append(df)
df = pd.concat(df_list)
print 'Number of samples = ', len(df)
fig, ax = plt.subplots()
ax.hist(df.twoF, bins=50, histtype='step', color='k', normed=True, linewidth=1,
label='Monte-Carlo histogram')
maxtwoFinNoise = maxtwoFinNoise_gen(a=0)
Ntrials_effective, loc, scale = maxtwoFinNoise.fit(df.twoF.values, floc=0, fscale=1)
print 'Ntrials effective = {:1.2e}'.format(Ntrials_effective)
twoFsmooth = np.linspace(0, df.twoF.max(), 1000)
best_fit_pdf = maxtwoFinNoise.pdf(twoFsmooth, Ntrials_effective)
ax.plot(twoFsmooth, best_fit_pdf, '-r',
label=r'$p(2\mathcal{{F}}_{{\rm max}})$ for {} $N_{{\rm trials}}$'
.format(pyfstat.texify_float(Ntrials_effective, d=2)))
pval = 1e-6
twoFsmooth_HD = np.linspace(
twoFsmooth[np.argmax(best_fit_pdf)], df.twoF.max(), 100000)
best_fit_pdf_HD = maxtwoFinNoise.pdf(twoFsmooth_HD, Ntrials_effective)
spacing = twoFsmooth_HD[1]-twoFsmooth_HD[0]
print twoFsmooth_HD[np.argmin(np.abs(best_fit_pdf_HD - pval))], spacing
ax.set_xlabel('$\widetilde{2\mathcal{F}}$')
ax.set_xlim(0, 60)
ax.legend(frameon=False, fontsize=6, loc=2)
fig.tight_layout()
fig.savefig('allsky_noise_twoF_histogram.png')
from latex_macro_generator import write_to_macro
write_to_macro('AllSkyMCNoiseOnlyMaximum', '{:1.1f}'.format(np.max(df.twoF)),
'../macros.tex')
write_to_macro('AllSkyMCNoiseN', len(df), '../macros.tex')
Executable= AllSkyMCNoiseOnly_repeat.sh
Arguments= $(Cluster)_$(Process)
Universe=vanilla
Input=/dev/null
accounting_group = ligo.dev.o2.cw.explore.test
Output=CollectedOutput/out.$(Cluster).$(Process)
Error=CollectedOutput/err.$(Cluster).$(Process)
Log=CollectedOutput/log.$(Cluster).$(Process)
request_cpus = 1
request_memory = 16 GB
Queue 100
#!/bin/bash
. /home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
for ((n=0;n<10;n++))
do
/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
done
cp /local/user/gregory.ashton/MCResults_"$1".txt $(pwd)/CollectedOutput
import pyfstat
import numpy as np
import os
import sys
import time
ID = sys.argv[1]
outdir = sys.argv[2]
label = 'run_{}'.format(ID)
data_label = '{}_data'.format(label)
results_file_name = '{}/MCResults_{}.txt'.format(outdir, ID)
# Properties of the GW data
sqrtSX = 1e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
depths = np.linspace(100, 400, 9)
depths = [118.75, 156.25]
nsteps = 25
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 7, False),
((nsteps, 0), 2, False),
((nsteps, nsteps), 1, False)]
for depth in depths:
h0 = sqrtSX / float(depth)
F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
startTime = time.time()
theta_prior = {'F0': {'type': 'unif',
'lower': F0_center-DeltaF0,
'upper': F0_center+DeltaF0},
'F1': {'type': 'unif',
'lower': F1_center-DeltaF1,
'upper': F1_center+DeltaF1},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
}
ntemps = 2
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run(run_setup=run_setup, create_plots=False, log_table=False,
gen_tex_table=False)
mcmc.print_summary()
d, maxtwoF = mcmc.get_max_twoF()
dF0 = F0 - d['F0']
dF1 = F1 - d['F1']
runTime = time.time() - startTime
with open(results_file_name, 'a') as f:
f.write('{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}\n'
.format(depth, h0, dF0, dF1, maxtwoF, runTime))
os.system('rm {}/*{}*'.format(outdir, label))
import pyfstat
import numpy as np
outdir = 'data'
label = 'directed_setup'
data_label = '{}_data'.format(label)
# Properties of the GW data
sqrtSX = 1e-23
tstart = 1000000000
Tspan = 100*86400
tend = tstart + Tspan
# Fixed properties of the signal
F0_center = 30
F1_center = 1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
VF0 = VF1 = 100
DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
depth = 100
nsteps = 25
run_setup = [((nsteps, 0), 20, False),
((nsteps, 0), 7, False),
((nsteps, 0), 2, False),
((nsteps, nsteps), 1, False)]
h0 = sqrtSX / float(depth)
r = np.random.uniform(0, 1)
theta = np.random.uniform(0, 2*np.pi)
F0 = F0_center + 3*np.sqrt(r)*np.cos(theta)/(np.pi**2 * Tspan**2)
F1 = F1_center + 45*np.sqrt(r)*np.sin(theta)/(4*np.pi**2 * Tspan**4)
psi = np.random.uniform(-np.pi/4, np.pi/4)
phi = np.random.uniform(0, 2*np.pi)
cosi = np.random.uniform(-1, 1)
data = pyfstat.Writer(
label=data_label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
detector='H1,L1')
data.make_data()
predicted_twoF = data.predict_fstat()
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0,
'upper': F0+DeltaF0},
'F1': {'type': 'unif',
'lower': F1-DeltaF1,
'upper': F1+DeltaF1},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
}
ntemps = 1
log10temperature_min = -1
nwalkers = 100
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepath='{}/*{}*sft'.format(outdir, data_label),
theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, ntemps=ntemps, nsteps=[nsteps, nsteps],
log10temperature_min=log10temperature_min)
#mcmc.run(Nsegs0=20, R=10)
mcmc.run(run_setup)
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
from oct2py import octave
import glob
filenames = glob.glob("CollectedOutput/*.txt")
plt.style.use('paper')
Tspan = 100 * 86400
def Recovery(Tspan, Depth, twoFstar=60, detectors='H1,L1'):
numDetectors = len(detectors.split(','))
cmd = ("DetectionProbabilityStackSlide('Nseg', 1, 'Tdata', {},"
"'misHist', createDeltaHist(0), 'avg2Fth', {}, 'detectors', '{}',"
"'Depth', {})"
).format(numDetectors*Tspan, twoFstar, detectors, Depth)
return octave.eval(cmd, verbose=False)
def binomialConfidenceInterval(N, K, confidence=0.95):
cmd = '[fLow, fUpper] = binomialConfidenceInterval({}, {}, {})'.format(
N, K, confidence)
[l, u] = octave.eval(cmd, verbose=False, return_both=True)[0].split('\n')
return float(l.split('=')[1]), float(u.split('=')[1])
df_list = []
for fn in filenames:
df = pd.read_csv(
fn, sep=' ', names=['depth', 'h0', 'dF0', 'dF1', 'twoF', 'runTime'])
df['CLUSTER_ID'] = fn.split('_')[1]
df_list.append(df)
df = pd.concat(df_list)
twoFstar = 60
depths = np.unique(df.depth.values)
recovery_fraction = []
recovery_fraction_CI = []
for d in depths:
twoFs = df[df.depth == d].twoF.values
N = len(twoFs)
K = np.sum(twoFs > twoFstar)
print d, N, K
recovery_fraction.append(K/float(N))
[fLower, fUpper] = binomialConfidenceInterval(N, K)
recovery_fraction_CI.append([fLower, fUpper])
yerr = np.abs(recovery_fraction - np.array(recovery_fraction_CI).T)
fig, ax = plt.subplots()
ax.errorbar(depths, recovery_fraction, yerr=yerr, fmt='sr', marker='s', ms=2,
capsize=1, capthick=0.5, elinewidth=0.5,
label='Monte-Carlo result', zorder=10)
fname = 'analytic_data_{}.txt'.format(twoFstar)
if os.path.isfile(fname):
depths_smooth, recovery_analytic = np.loadtxt(fname)
else:
depths_smooth = np.linspace(10, 550, 100)
recovery_analytic = []
for d in tqdm(depths_smooth):
recovery_analytic.append(Recovery(Tspan, d, twoFstar))
np.savetxt(fname, np.array([depths_smooth, recovery_analytic]))
depths_smooth = np.concatenate(([0], depths_smooth))
recovery_analytic = np.concatenate(([1], recovery_analytic))
ax.plot(depths_smooth, recovery_analytic, '-k', label='Theoretical maximum')
ax.set_ylim(0, 1.05)
ax.set_xlabel(r'Sensitivity depth', size=10)
ax.set_ylabel(r'Recovered fraction', size=10)
ax.legend(loc=1, frameon=False)
fig.tight_layout()
fig.savefig('directed_recovery.png')
total_number_steps = 5*25.
fig, ax = plt.subplots()
ax.hist(df.runTime/total_number_steps, bins=50)
ax.set_xlabel('run-time per step [s]')
fig.tight_layout()
fig.savefig('runTimeHist.png')
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
def Recovery(Tspan, Depth, twoFstar=60):
rho2 = 4*Tspan/25./Depth**2
twoF_Hs = scipy.stats.distributions.ncx2(df=4, nc=rho2)
return 1 - twoF_Hs.cdf(twoFstar)
N = 500
Tspan = np.linspace(0.1, 365*86400, N)
Depth = np.linspace(10, 300, N)
X, Y = np.meshgrid(Tspan, Depth)
X = X / 86400
Z = [[Recovery(t, d) for t in Tspan] for d in Depth]
fig, ax = plt.subplots()
pax = ax.pcolormesh(X, Y, Z, cmap=plt.cm.viridis)
CS = ax.contour(X, Y, Z, [0.95])
plt.clabel(CS, inline=1, fontsize=12, fmt='%s', manual=[(200, 180)])
plt.colorbar(pax, label='Recovery fraction')
ax.set_xlabel(r'$T_{\rm span}$ [days]', size=16)
ax.set_ylabel(r'Depth=$\frac{\sqrt{S_{\rm n}}}{h_0}$', size=14)
ax.set_xlim(min(Tspan)/86400., max(Tspan)/86400.)
ax.set_ylim(min(Depth), max(Depth))
fig.savefig('recovery.png')
Paper/DirectedMC/runTimeHist.png

20.7 KiB

Executable=DirectedMC_repeat.sh
Arguments=$(Cluster)_$(Process)
Universe=vanilla
Input=/dev/null
accounting_group = ligo.dev.o2.cw.explore.test
Output=CollectedOutput/out.$(Cluster).$(Process)
Error=CollectedOutput/err.$(Cluster).$(Process)
Log=CollectedOutput/log.$(Cluster).$(Process)
request_cpus = 1
request_memory = 16 GB
Queue 1
#!/bin/bash
. /home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
export PATH="/home/gregory.ashton/anaconda2/bin:$PATH"
export MPLCONFIGDIR=/home/gregory.ashton/.config/matplotlib
for ((n=0;n<100;n++))
do
/home/gregory.ashton/anaconda2/bin/python generate_data.py "$1" /local/user/gregory.ashton --no-template-counting --no-interactive
done
cp /local/user/gregory.ashton/NoiseOnlyMCResults_"$1".txt $(pwd)/CollectedOutput
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment