Skip to content
Snippets Groups Projects
Commit 53df8dc7 authored by David Keitel's avatar David Keitel
Browse files

Merge branch '11-move-transient-grid-to-subclass' into 'master'

Create TransientGridSearch to provide transient grid searches

Closes #11

See merge request GregAshton/PyFstat!10
parents b7875932 b0424e38
No related branches found
No related tags found
No related merge requests found
......@@ -30,7 +30,7 @@ Alphas = [Alpha]
Deltas = [Delta]
print('Standard CW search:')
search1 = pyfstat.GridSearch(
search1 = pyfstat.TransientGridSearch(
label='CW', outdir=datadir,
sftfilepattern=os.path.join(datadir,'*simulated_transient_signal*sft'),
F0s=F0s, F1s=F1s, F2s=F2s, Alphas=Alphas, Deltas=Deltas, tref=tref,
......@@ -44,7 +44,7 @@ search1.plot_1D(xkey='F0',
xlabel='freq [Hz]', ylabel='$2\mathcal{F}$')
print('with t0,tau bands:')
search2 = pyfstat.GridSearch(
search2 = pyfstat.TransientGridSearch(
label='tCW', outdir=datadir,
sftfilepattern=os.path.join(datadir,'*simulated_transient_signal*sft'),
F0s=F0s, F1s=F1s, F2s=F2s, Alphas=Alphas, Deltas=Deltas, tref=tref,
......
......@@ -3,4 +3,4 @@ from __future__ import division as _division
from .core import BaseSearchClass, ComputeFstat, SemiCoherentSearch, SemiCoherentGlitchSearch
from .make_sfts import Writer, GlitchWriter, FrequencyModulatedArtifactWriter, FrequencyAmplitudeModulatedArtifactWriter
from .mcmc_based_searches import MCMCSearch, MCMCGlitchSearch, MCMCSemiCoherentSearch, MCMCFollowUpSearch, MCMCTransientSearch
from .grid_based_searches import GridSearch, GridUniformPriorSearch, GridGlitchSearch, FrequencySlidingWindow, DMoff_NO_SPIN, SliceGridSearch
from .grid_based_searches import GridSearch, GridUniformPriorSearch, GridGlitchSearch, FrequencySlidingWindow, DMoff_NO_SPIN, SliceGridSearch, TransientGridSearch
......@@ -34,9 +34,7 @@ class GridSearch(BaseSearchClass):
Deltas, tref=None, minStartTime=None, maxStartTime=None,
nsegs=1, BSGL=False, minCoverFreq=None, maxCoverFreq=None,
detectors=None, SSBprec=None, injectSources=None,
input_arrays=False, assumeSqrtSX=None,
transientWindowType=None, t0Band=None, tauBand=None,
outputTransientFstatMap=False):
input_arrays=False, assumeSqrtSX=None):
"""
Parameters
----------
......@@ -53,19 +51,6 @@ class GridSearch(BaseSearchClass):
GPS seconds of the reference time, start time and end time
input_arrays: bool
if true, use the F0s, F1s, etc as is
transientWindowType: str
If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
can later be computed. ('none' instead of None explicitly calls
the transient-window function, but with the full range, for
debugging). Currently only supported for nsegs=1.
t0Band, tauBand: int
if >0, search t0 in (minStartTime,minStartTime+t0Band)
and tau in (2*Tsft,2*Tsft+tauBand).
if =0, only compute CW Fstat with t0=minStartTime,
tau=maxStartTime-minStartTime.
outputTransientFstatMap: bool
if true, write output files for (t0,tau) Fstat maps
(one file for each doppler grid point!)
For all other parameters, see `pyfstat.ComputeFStat` for details
"""
......@@ -85,8 +70,6 @@ class GridSearch(BaseSearchClass):
tref=self.tref, sftfilepattern=self.sftfilepattern,
minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
detectors=self.detectors,
transientWindowType=self.transientWindowType,
t0Band=self.t0Band, tauBand=self.tauBand,
minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
BSGL=self.BSGL, SSBprec=self.SSBprec,
injectSources=self.injectSources,
......@@ -170,19 +153,7 @@ class GridSearch(BaseSearchClass):
data = []
for vals in tqdm(self.input_data):
detstat = self.search.get_det_stat(*vals)
windowRange = getattr(self.search, 'windowRange', None)
FstatMap = getattr(self.search, 'FstatMap', None)
thisCand = list(vals) + [detstat]
if getattr(self, 'transientWindowType', None):
if self.outputTransientFstatMap:
tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
fo = lal.FileOpen(tCWfile, 'w')
lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
del fo # instead of lal.FileClose() which is not SWIG-exported
Fmn = FstatMap.F_mn.data
maxidx = np.unravel_index(Fmn.argmax(), Fmn.shape)
thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
windowRange.tau+maxidx[1]*windowRange.dtau]
data.append(thisCand)
data = np.array(data, dtype=np.float)
......@@ -372,6 +343,109 @@ class GridSearch(BaseSearchClass):
self.outdir, self.label, dets, type(self).__name__)
class TransientGridSearch(GridSearch):
""" Gridded transient-continous search using ComputeFstat """
@helper_functions.initializer
def __init__(self, label, outdir, sftfilepattern, F0s, F1s, F2s, Alphas,
Deltas, tref=None, minStartTime=None, maxStartTime=None,
BSGL=False, minCoverFreq=None, maxCoverFreq=None,
detectors=None, SSBprec=None, injectSources=None,
input_arrays=False, assumeSqrtSX=None,
transientWindowType=None, t0Band=None, tauBand=None,
outputTransientFstatMap=False):
"""
Parameters
----------
label, outdir: str
A label and directory to read/write data from/to
sftfilepattern: str
Pattern to match SFTs using wildcards (*?) and ranges [0-9];
mutiple patterns can be given separated by colons.
F0s, F1s, F2s, delta_F0s, delta_F1s, tglitchs, Alphas, Deltas: tuple
Length 3 tuple describing the grid for each parameter, e.g
[F0min, F0max, dF0], for a fixed value simply give [F0]. Unless
input_arrays == True, then these are the values to search at.
tref, minStartTime, maxStartTime: int
GPS seconds of the reference time, start time and end time
input_arrays: bool
if true, use the F0s, F1s, etc as is
transientWindowType: str
If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map
can later be computed. ('none' instead of None explicitly calls
the transient-window function, but with the full range, for
debugging). Currently only supported for nsegs=1.
t0Band, tauBand: int
if >0, search t0 in (minStartTime,minStartTime+t0Band)
and tau in (2*Tsft,2*Tsft+tauBand).
if =0, only compute CW Fstat with t0=minStartTime,
tau=maxStartTime-minStartTime.
outputTransientFstatMap: bool
if true, write output files for (t0,tau) Fstat maps
(one file for each doppler grid point!)
For all other parameters, see `pyfstat.ComputeFStat` for details
"""
self.nsegs = 1
if os.path.isdir(outdir) is False:
os.mkdir(outdir)
self.set_out_file()
self.keys = ['_', '_', 'F0', 'F1', 'F2', 'Alpha', 'Delta']
self.search_keys = [x+'s' for x in self.keys[2:]]
for k in self.search_keys:
setattr(self, k, np.atleast_1d(getattr(self, k)))
def inititate_search_object(self):
logging.info('Setting up search object')
self.search = ComputeFstat(
tref=self.tref, sftfilepattern=self.sftfilepattern,
minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq,
detectors=self.detectors,
transientWindowType=self.transientWindowType,
t0Band=self.t0Band, tauBand=self.tauBand,
minStartTime=self.minStartTime, maxStartTime=self.maxStartTime,
BSGL=self.BSGL, SSBprec=self.SSBprec,
injectSources=self.injectSources,
assumeSqrtSX=self.assumeSqrtSX)
self.search.get_det_stat = self.search.get_fullycoherent_twoF
def run(self, return_data=False):
self.get_input_data_array()
old_data = self.check_old_data_is_okay_to_use()
if old_data is not False:
self.data = old_data
return
if hasattr(self, 'search') is False:
self.inititate_search_object()
data = []
for vals in tqdm(self.input_data):
detstat = self.search.get_det_stat(*vals)
windowRange = getattr(self.search, 'windowRange', None)
FstatMap = getattr(self.search, 'FstatMap', None)
thisCand = list(vals) + [detstat]
if getattr(self, 'transientWindowType', None):
if self.outputTransientFstatMap:
tCWfile = os.path.splitext(self.out_file)[0]+'_tCW_%.16f_%.16f_%.16f_%.16g_%.16g.dat' % (vals[2],vals[5],vals[6],vals[3],vals[4]) # freq alpha delta f1dot f2dot
fo = lal.FileOpen(tCWfile, 'w')
lalpulsar.write_transientFstatMap_to_fp ( fo, FstatMap, windowRange, None )
del fo # instead of lal.FileClose() which is not SWIG-exported
Fmn = FstatMap.F_mn.data
maxidx = np.unravel_index(Fmn.argmax(), Fmn.shape)
thisCand += [windowRange.t0+maxidx[0]*windowRange.dt0,
windowRange.tau+maxidx[1]*windowRange.dtau]
data.append(thisCand)
data = np.array(data, dtype=np.float)
if return_data:
return data
else:
self.save_array_to_disk(data)
self.data = data
class SliceGridSearch(GridSearch):
""" Slice gridded search using ComputeFstat """
@helper_functions.initializer
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment