Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
PyFstat
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
Pep Covas Vidal
PyFstat
Commits
5b3a1c6d
Commit
5b3a1c6d
authored
8 years ago
by
Gregory Ashton
Browse files
Options
Downloads
Patches
Plain Diff
Add rhohatmax and normalisation constant
parent
cfc9d8fe
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
pyfstat/mcmc_based_searches.py
+29
-13
29 additions, 13 deletions
pyfstat/mcmc_based_searches.py
with
29 additions
and
13 deletions
pyfstat/mcmc_based_searches.py
+
29
−
13
View file @
5b3a1c6d
...
...
@@ -37,7 +37,7 @@ class MCMCSearch(core.BaseSearchClass):
def
__init__
(
self
,
label
,
outdir
,
theta_prior
,
tref
,
minStartTime
,
maxStartTime
,
sftfilepath
=
None
,
nsteps
=
[
100
,
100
],
nwalkers
=
100
,
ntemps
=
1
,
log10temperature_min
=-
5
,
theta_initial
=
None
,
scatter_val
=
1e-10
,
theta_initial
=
None
,
scatter_val
=
1e-10
,
rhohatmax
=
1000
,
binary
=
False
,
BSGL
=
False
,
minCoverFreq
=
None
,
maxCoverFreq
=
None
,
detectors
=
None
,
earth_ephem
=
None
,
sun_ephem
=
None
,
injectSources
=
None
,
assumeSqrtSX
=
None
):
...
...
@@ -70,6 +70,10 @@ class MCMCSearch(core.BaseSearchClass):
log10temperature_min float < 0
The log_10(tmin) value, the set of betas passed to PTSampler are
generated from np.logspace(0, log10temperature_min, ntemps).
rhohatmax: float
Upper bound for the SNR scale parameter (required to normalise the
Bayes factor) - this needs to be carefully set when using the
evidence.
binary: Bool
If true, search over binary parameters
detectors: str
...
...
@@ -107,6 +111,8 @@ class MCMCSearch(core.BaseSearchClass):
if
args
.
clean
and
os
.
path
.
isfile
(
self
.
pickle_path
):
os
.
rename
(
self
.
pickle_path
,
self
.
pickle_path
+
"
.old
"
)
self
.
lnlikelihoodcoef
=
np
.
log
(
70.
/
self
.
rhohatmax
**
4
)
self
.
_log_input
()
def
_log_input
(
self
):
...
...
@@ -139,7 +145,7 @@ class MCMCSearch(core.BaseSearchClass):
self
.
fixed_theta
[
theta_i
]
=
theta
[
j
]
FS
=
search
.
compute_fullycoherent_det_stat_single_point
(
*
self
.
fixed_theta
)
return
FS
return
FS
+
self
.
lnlikelihoodcoef
def
_unpack_input_theta
(
self
):
full_theta_keys
=
[
'
F0
'
,
'
F1
'
,
'
F2
'
,
'
Alpha
'
,
'
Delta
'
]
...
...
@@ -1161,7 +1167,7 @@ class MCMCSearch(core.BaseSearchClass):
maxtwoF
=
self
.
logl
(
p
,
self
.
search
)
self
.
search
.
BSGL
=
self
.
BSGL
else
:
maxtwoF
=
maxlogl
maxtwoF
=
maxlogl
-
self
.
lnlikelihoodcoef
repeats
=
[]
for
i
,
k
in
enumerate
(
self
.
theta_keys
):
...
...
@@ -1431,9 +1437,10 @@ class MCMCGlitchSearch(MCMCSearch):
def
__init__
(
self
,
label
,
outdir
,
sftfilepath
,
theta_prior
,
tref
,
minStartTime
,
maxStartTime
,
nglitch
=
1
,
nsteps
=
[
100
,
100
],
nwalkers
=
100
,
ntemps
=
1
,
log10temperature_min
=-
5
,
theta_initial
=
None
,
scatter_val
=
1e-10
,
dtglitchmin
=
1
*
86400
,
theta0_idx
=
0
,
detectors
=
None
,
BSGL
=
False
,
minCoverFreq
=
None
,
maxCoverFreq
=
None
,
earth_ephem
=
None
,
sun_ephem
=
None
):
theta_initial
=
None
,
scatter_val
=
1e-10
,
rhohatmax
=
1000
,
dtglitchmin
=
1
*
86400
,
theta0_idx
=
0
,
detectors
=
None
,
BSGL
=
False
,
minCoverFreq
=
None
,
maxCoverFreq
=
None
,
earth_ephem
=
None
,
sun_ephem
=
None
):
"""
Parameters
----------
...
...
@@ -1466,6 +1473,10 @@ class MCMCGlitchSearch(MCMCSearch):
dtglitchmin: int
The minimum duration (in seconds) of a segment between two glitches
or a glitch and the start/end of the data
rhohatmax: float
Upper bound for the SNR scale parameter (required to normalise the
Bayes factor) - this needs to be carefully set when using the
evidence.
nwalkers, ntemps: int,
The number of walkers and temperates to use in the parallel
tempered PTSampler.
...
...
@@ -1513,6 +1524,8 @@ class MCMCGlitchSearch(MCMCSearch):
self
.
old_data_is_okay_to_use
=
self
.
_check_old_data_is_okay_to_use
()
self
.
_log_input
()
self
.
lnlikelihoodcoef
=
(
self
.
nglitch
+
1
)
*
np
.
log
(
70.
/
self
.
rhohatmax
**
4
)
def
_initiate_search_object
(
self
):
logging
.
info
(
'
Setting up search object
'
)
self
.
search
=
core
.
SemiCoherentGlitchSearch
(
...
...
@@ -1546,7 +1559,7 @@ class MCMCGlitchSearch(MCMCSearch):
for
j
,
theta_i
in
enumerate
(
self
.
theta_idxs
):
self
.
fixed_theta
[
theta_i
]
=
theta
[
j
]
FS
=
search
.
compute_nglitch_fstat
(
*
self
.
fixed_theta
)
return
FS
return
FS
+
self
.
lnlikelihoodcoef
def
_unpack_input_theta
(
self
):
glitch_keys
=
[
'
delta_F0
'
,
'
delta_F1
'
,
'
tglitch
'
]
...
...
@@ -1682,10 +1695,11 @@ class MCMCSemiCoherentSearch(MCMCSearch):
def
__init__
(
self
,
label
,
outdir
,
theta_prior
,
tref
,
sftfilepath
=
None
,
nsegs
=
None
,
nsteps
=
[
100
,
100
,
100
],
nwalkers
=
100
,
binary
=
False
,
ntemps
=
1
,
log10temperature_min
=-
5
,
theta_initial
=
None
,
scatter_val
=
1e-10
,
detectors
=
None
,
BSGL
=
False
,
minStartTime
=
None
,
maxStartTime
=
None
,
minCoverFreq
=
None
,
maxCoverFreq
=
None
,
earth_ephem
=
None
,
sun_ephem
=
None
,
injectSources
=
None
,
assumeSqrtSX
=
None
):
theta_initial
=
None
,
scatter_val
=
1e-10
,
rhohatmax
=
1000
,
detectors
=
None
,
BSGL
=
False
,
minStartTime
=
None
,
maxStartTime
=
None
,
minCoverFreq
=
None
,
maxCoverFreq
=
None
,
earth_ephem
=
None
,
sun_ephem
=
None
,
injectSources
=
None
,
assumeSqrtSX
=
None
):
"""
"""
...
...
@@ -1713,6 +1727,8 @@ class MCMCSemiCoherentSearch(MCMCSearch):
self
.
_log_input
()
self
.
lnlikelihoodcoef
=
self
.
nsegs
*
np
.
log
(
70.
/
self
.
rhohatmax
**
4
)
def
_get_data_dictionary_to_save
(
self
):
d
=
dict
(
nsteps
=
self
.
nsteps
,
nwalkers
=
self
.
nwalkers
,
ntemps
=
self
.
ntemps
,
theta_keys
=
self
.
theta_keys
,
...
...
@@ -1742,7 +1758,7 @@ class MCMCSemiCoherentSearch(MCMCSearch):
self
.
fixed_theta
[
theta_i
]
=
theta
[
j
]
FS
=
search
.
run_semi_coherent_computefstatistic_single_point
(
*
self
.
fixed_theta
)
return
FS
return
FS
+
self
.
lnlikelihoodcoef
class
MCMCFollowUpSearch
(
MCMCSemiCoherentSearch
):
...
...
@@ -2097,7 +2113,7 @@ class MCMCTransientSearch(MCMCSearch):
if
in_theta
[
1
]
>
self
.
maxStartTime
:
return
-
np
.
inf
FS
=
search
.
run_computefstatistic_single_point
(
*
in_theta
)
return
FS
return
FS
+
self
.
lnlikelihoodcoef
def
_unpack_input_theta
(
self
):
full_theta_keys
=
[
'
transient_tstart
'
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment