Skip to content
Snippets Groups Projects
Commit a2acfcff authored by Reinhard Prix's avatar Reinhard Prix
Browse files

apply 'black' coding style (stricter subset of PEP8)

- supply consistent flake8 settings in setup.cfg
parent 96e1046c
No related branches found
No related tags found
No related merge requests found
Showing
with 1989 additions and 1074 deletions
......@@ -13,38 +13,45 @@ F1 = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 10
h0 = sqrtSX / depth
label = 'fully_coherent_search_using_MCMC'
outdir = 'data'
label = "fully_coherent_search_using_MCMC"
outdir = "data"
data = pyfstat.Writer(
label=label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=label,
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print('Predicted twoF value: {}\n'.format(twoF))
print("Predicted twoF value: {}\n".format(twoF))
DeltaF0 = 1e-7
DeltaF1 = 1e-13
VF0 = (np.pi * duration * DeltaF0) ** 2 / 3.0
VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
print('\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1))
VF1 = (np.pi * duration ** 2 * DeltaF1) ** 2 * 4 / 45.0
print("\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n".format(VF0 * VF1, VF0, VF1))
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 2
......@@ -53,13 +60,22 @@ nwalkers = 100
nsteps = [300, 300]
mcmc = pyfstat.MCMCSearch(
label=label, outdir=outdir,
sftfilepattern='{}/*{}*sft'.format(outdir, label), theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend, nsteps=nsteps,
nwalkers=nwalkers, ntemps=ntemps, log10beta_min=log10beta_min)
label=label,
outdir=outdir,
sftfilepattern="{}/*{}*sft".format(outdir, label),
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
mcmc.transform_dictionary = dict(
F0=dict(subtractor=F0, symbol='$f-f^\mathrm{s}$'),
F1=dict(subtractor=F1, symbol='$\dot{f}-\dot{f}^\mathrm{s}$'))
F0=dict(subtractor=F0, symbol="$f-f^\mathrm{s}$"),
F1=dict(subtractor=F1, symbol="$\dot{f}-\dot{f}^\mathrm{s}$"),
)
mcmc.run()
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()
......@@ -13,38 +13,45 @@ F1 = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 10
h0 = sqrtSX / depth
label = 'semicoherent_search_using_MCMC'
outdir = 'data'
label = "semicoherent_search_using_MCMC"
outdir = "data"
data = pyfstat.Writer(
label=label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=label,
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print('Predicted twoF value: {}\n'.format(twoF))
print("Predicted twoF value: {}\n".format(twoF))
DeltaF0 = 1e-7
DeltaF1 = 1e-13
VF0 = (np.pi * duration * DeltaF0) ** 2 / 3.0
VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
print('\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1))
VF1 = (np.pi * duration ** 2 * DeltaF1) ** 2 * 4 / 45.0
print("\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n".format(VF0 * VF1, VF0, VF1))
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 1
......@@ -53,14 +60,23 @@ nwalkers = 100
nsteps = [300, 300]
mcmc = pyfstat.MCMCSemiCoherentSearch(
label=label, outdir=outdir, nsegs=10,
sftfilepattern='{}/*{}*sft'.format(outdir, label),
theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend,
nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
log10beta_min=log10beta_min)
label=label,
outdir=outdir,
nsegs=10,
sftfilepattern="{}/*{}*sft".format(outdir, label),
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
mcmc.transform_dictionary = dict(
F0=dict(subtractor=F0, symbol='$f-f^\mathrm{s}$'),
F1=dict(subtractor=F1, symbol='$\dot{f}-\dot{f}^\mathrm{s}$'))
F0=dict(subtractor=F0, symbol="$f-f^\mathrm{s}$"),
F1=dict(subtractor=F1, symbol="$\dot{f}-\dot{f}^\mathrm{s}$"),
)
mcmc.run()
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()
......@@ -13,36 +13,44 @@ sqrtSX = 1e-23
tstart = 1000000000
duration = 100 * 86400
tend = tstart + duration
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 40
label = 'semicoherent_directed_follow_up'
outdir = 'data'
label = "semicoherent_directed_follow_up"
outdir = "data"
h0 = sqrtSX / depth
data = pyfstat.Writer(
label=label, outdir=outdir, tref=tref, tstart=tstart, F0=F0, F1=F1,
F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=label,
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print('Predicted twoF value: {}\n'.format(twoF))
print("Predicted twoF value: {}\n".format(twoF))
# Search
VF0 = VF1 = 1e5
DeltaF0 = np.sqrt(VF0) * np.sqrt(3) / (np.pi * duration)
DeltaF1 = np.sqrt(VF1) * np.sqrt(180) / (np.pi * duration ** 2)
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 3
......@@ -51,23 +59,35 @@ nwalkers = 100
nsteps = [100, 100]
mcmc = pyfstat.MCMCFollowUpSearch(
label=label, outdir=outdir,
sftfilepattern='{}/*{}*sft'.format(outdir, label),
theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend,
nwalkers=nwalkers, nsteps=nsteps, ntemps=ntemps,
log10beta_min=log10beta_min)
label=label,
outdir=outdir,
sftfilepattern="{}/*{}*sft".format(outdir, label),
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
nwalkers=nwalkers,
nsteps=nsteps,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
NstarMax = 1000
Nsegs0 = 100
fig, axes = plt.subplots(nrows=2, figsize=(3.4, 3.5))
fig, axes = mcmc.run(
NstarMax=NstarMax, Nsegs0=Nsegs0, labelpad=0.01,
plot_det_stat=False, return_fig=True, fig=fig,
axes=axes)
NstarMax=NstarMax,
Nsegs0=Nsegs0,
labelpad=0.01,
plot_det_stat=False,
return_fig=True,
fig=fig,
axes=axes,
)
for ax in axes:
ax.grid()
ax.set_xticks(np.arange(0, 600, 100))
ax.set_xticklabels([str(s) for s in np.arange(0, 700, 100)])
axes[-1].set_xlabel(r'$\textrm{Number of steps}$', labelpad=0.1)
axes[-1].set_xlabel(r"$\textrm{Number of steps}$", labelpad=0.1)
fig.tight_layout()
fig.savefig('{}/{}_walkers.png'.format(mcmc.outdir, mcmc.label), dpi=400)
fig.savefig("{}/{}_walkers.png".format(mcmc.outdir, mcmc.label), dpi=400)
from pyfstat import Writer, GlitchWriter
import numpy as np
outdir = 'data'
outdir = "data"
# First, we generate data with a reasonably strong smooth signal
# Define parameters of the Crab pulsar as an example
......@@ -22,8 +22,19 @@ tend = tstart+duration
tref = tstart + 0.5 * duration
data = Writer(
label='0_glitch', outdir=outdir, tref=tref, tstart=tstart, F0=F0, F1=F1,
F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label="0_glitch",
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
# Next, taking the same signal parameters, we include a glitch half way through
......@@ -32,9 +43,22 @@ delta_F0 = 5e-6
delta_F1 = 0
glitch_data = GlitchWriter(
label='1_glitch', outdir=outdir, tref=tref, tstart=tstart, F0=F0, F1=F1,
F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX,
dtglitch=dtglitch, delta_F0=delta_F0, delta_F1=delta_F1)
label="1_glitch",
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
dtglitch=dtglitch,
delta_F0=delta_F0,
delta_F1=delta_F1,
)
glitch_data.make_data()
# Making data with two glitches
......@@ -46,8 +70,22 @@ delta_F1_2 = [0, 0]
delta_F2_2 = [0, 0]
two_glitch_data = GlitchWriter(
label='2_glitch', outdir=outdir, tref=tref, tstart=tstart, F0=F0, F1=F1,
F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX,
dtglitch=dtglitch_2, delta_phi=delta_phi_2, delta_F0=delta_F0_2,
delta_F1=delta_F1_2, delta_F2=delta_F2_2)
label="2_glitch",
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
dtglitch=dtglitch_2,
delta_phi=delta_phi_2,
delta_F0=delta_F0_2,
delta_F1=delta_F1_2,
delta_F2=delta_F2_2,
)
two_glitch_data.make_data()
......@@ -3,33 +3,41 @@ import matplotlib.pyplot as plt
import pyfstat
import gridcorner
import time
from make_simulated_data import tstart, duration, tref, F0, F1, F2, Alpha, Delta, delta_F0, dtglitch, outdir
from make_simulated_data import (
tstart,
duration,
tref,
F0,
F1,
F2,
Alpha,
Delta,
delta_F0,
dtglitch,
outdir,
)
plt.style.use('./paper.mplstyle')
plt.style.use("./paper.mplstyle")
label = 'semicoherent_glitch_robust_directed_MCMC_search_on_1_glitch'
label = "semicoherent_glitch_robust_directed_MCMC_search_on_1_glitch"
Nstar = 1000
F0_width = np.sqrt(Nstar) * np.sqrt(12) / (np.pi * duration)
F1_width = np.sqrt(Nstar) * np.sqrt(180) / (np.pi * duration ** 2)
theta_prior = {
'F0': {'type': 'unif',
'lower': F0-F0_width/2.,
'upper': F0+F0_width/2.},
'F1': {'type': 'unif',
'lower': F1-F1_width/2.,
'upper': F1+F1_width/2.},
'F2': F2,
'delta_F0': {'type': 'unif',
'lower': 0,
'upper': 1e-5},
'delta_F1': 0,
'tglitch': {'type': 'unif',
'lower': tstart+0.1*duration,
'upper': tstart+0.9*duration},
'Alpha': Alpha,
'Delta': Delta,
"F0": {"type": "unif", "lower": F0 - F0_width / 2.0, "upper": F0 + F0_width / 2.0},
"F1": {"type": "unif", "lower": F1 - F1_width / 2.0, "upper": F1 + F1_width / 2.0},
"F2": F2,
"delta_F0": {"type": "unif", "lower": 0, "upper": 1e-5},
"delta_F1": 0,
"tglitch": {
"type": "unif",
"lower": tstart + 0.1 * duration,
"upper": tstart + 0.9 * duration,
},
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 3
......@@ -38,33 +46,49 @@ nwalkers = 100
nsteps = [250, 250]
mcmc = pyfstat.MCMCGlitchSearch(
label=label, sftfilepattern='data/*1_glitch*sft', theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tstart+duration,
nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
log10beta_min=log10beta_min, nglitch=1)
mcmc.transform_dictionary['F0'] = dict(
subtractor=F0, multiplier=1e6, symbol='$f-f_\mathrm{s}$')
mcmc.unit_dictionary['F0'] = '$\mu$Hz'
mcmc.transform_dictionary['F1'] = dict(
subtractor=F1, multiplier=1e12, symbol='$\dot{f}-\dot{f}_\mathrm{s}$')
mcmc.unit_dictionary['F1'] = '$p$Hz/s'
mcmc.transform_dictionary['delta_F0'] = dict(
multiplier=1e6, subtractor=delta_F0,
symbol='$\delta f-\delta f_\mathrm{s}$')
mcmc.unit_dictionary['delta_F0'] = '$\mu$Hz/s'
mcmc.transform_dictionary['tglitch']['subtractor'] = tstart + dtglitch
mcmc.transform_dictionary['tglitch']['label'] ='$t^\mathrm{g}-t^\mathrm{g}_\mathrm{s}$\n[d]'
label=label,
sftfilepattern="data/*1_glitch*sft",
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tstart + duration,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
nglitch=1,
)
mcmc.transform_dictionary["F0"] = dict(
subtractor=F0, multiplier=1e6, symbol="$f-f_\mathrm{s}$"
)
mcmc.unit_dictionary["F0"] = "$\mu$Hz"
mcmc.transform_dictionary["F1"] = dict(
subtractor=F1, multiplier=1e12, symbol="$\dot{f}-\dot{f}_\mathrm{s}$"
)
mcmc.unit_dictionary["F1"] = "$p$Hz/s"
mcmc.transform_dictionary["delta_F0"] = dict(
multiplier=1e6, subtractor=delta_F0, symbol="$\delta f-\delta f_\mathrm{s}$"
)
mcmc.unit_dictionary["delta_F0"] = "$\mu$Hz/s"
mcmc.transform_dictionary["tglitch"]["subtractor"] = tstart + dtglitch
mcmc.transform_dictionary["tglitch"][
"label"
] = "$t^\mathrm{g}-t^\mathrm{g}_\mathrm{s}$\n[d]"
t1 = time.time()
mcmc.run()
dT = time.time() - t1
fig_and_axes = gridcorner._get_fig_and_axes(4, 2, 0.05)
mcmc.plot_corner(label_offset=0.25, truths=[0, 0, 0, 0],
fig_and_axes=fig_and_axes, quantiles=(0.16, 0.84),
mcmc.plot_corner(
label_offset=0.25,
truths=[0, 0, 0, 0],
fig_and_axes=fig_and_axes,
quantiles=(0.16, 0.84),
hist_kwargs=dict(lw=1.5, zorder=-1),
truth_color='C3')
truth_color="C3",
)
mcmc.print_summary()
print(('Prior widths =', F0_width, F1_width))
print(("Prior widths =", F0_width, F1_width))
print(("Actual run time = {}".format(dT)))
import pyfstat
import numpy as np
import matplotlib.pyplot as plt
from make_simulated_data import tstart, duration, tref, F0, F1, F2, Alpha, Delta, delta_F0, outdir, dtglitch
from make_simulated_data import (
tstart,
duration,
tref,
F0,
F1,
F2,
Alpha,
Delta,
delta_F0,
outdir,
dtglitch,
)
import time
try:
......@@ -9,18 +21,19 @@ try:
except ImportError:
raise ImportError(
"Python module 'gridcorner' not found, please install from "
"https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")
"https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner"
)
label = 'semicoherent_glitch_robust_directed_grid_search_on_1_glitch'
label = "semicoherent_glitch_robust_directed_grid_search_on_1_glitch"
plt.style.use('./paper.mplstyle')
plt.style.use("./paper.mplstyle")
Nstar = 1000
F0_width = np.sqrt(Nstar) * np.sqrt(12) / (np.pi * duration)
F1_width = np.sqrt(Nstar) * np.sqrt(180) / (np.pi * duration ** 2)
N = 20
F0s = [F0-F0_width/2., F0+F0_width/2., F0_width/N]
F1s = [F1-F1_width/2., F1+F1_width/2., F1_width/N]
F0s = [F0 - F0_width / 2.0, F0 + F0_width / 2.0, F0_width / N]
F1s = [F1 - F1_width / 2.0, F1 + F1_width / 2.0, F1_width / N]
F2s = [F2]
Alphas = [Alpha]
Deltas = [Delta]
......@@ -33,10 +46,21 @@ delta_F1s = [0]
t1 = time.time()
search = pyfstat.GridGlitchSearch(
label, outdir, 'data/*1_glitch*sft', F0s=F0s, F1s=F1s, F2s=F2s,
Alphas=Alphas, Deltas=Deltas, tref=tref, minStartTime=tstart,
maxStartTime=tstart+duration, tglitchs=tglitchs, delta_F0s=delta_F0s,
delta_F1s=delta_F1s)
label,
outdir,
"data/*1_glitch*sft",
F0s=F0s,
F1s=F1s,
F2s=F2s,
Alphas=Alphas,
Deltas=Deltas,
tref=tref,
minStartTime=tstart,
maxStartTime=tstart + duration,
tglitchs=tglitchs,
delta_F0s=delta_F0s,
delta_F1s=delta_F1s,
)
search.run()
dT = time.time() - t1
......@@ -44,24 +68,32 @@ F0_vals = np.unique(search.data[:, 0]) - F0
F1_vals = np.unique(search.data[:, 1]) - F1
delta_F0s_vals = np.unique(search.data[:, 5]) - delta_F0
tglitch_vals = np.unique(search.data[:, 7])
tglitch_vals_days = (tglitch_vals-tstart) / 86400. - dtglitch/86400.
tglitch_vals_days = (tglitch_vals - tstart) / 86400.0 - dtglitch / 86400.0
twoF = search.data[:, -1].reshape((len(F0_vals), len(F1_vals),
len(delta_F0s_vals), len(tglitch_vals)))
twoF = search.data[:, -1].reshape(
(len(F0_vals), len(F1_vals), len(delta_F0s_vals), len(tglitch_vals))
)
xyz = [F0_vals * 1e6, F1_vals * 1e12, delta_F0s_vals * 1e6, tglitch_vals_days]
labels = ['$f - f_\mathrm{s}$\n[$\mu$Hz]',
'$\dot{f} - \dot{f}_\mathrm{s}$\n[$p$Hz/s]',
'$\delta f-\delta f_\mathrm{s}$\n[$\mu$Hz]',
'$t^\mathrm{g} - t^\mathrm{g}_\mathrm{s}$\n[d]',
'$\widehat{2\mathcal{F}}$']
labels = [
"$f - f_\mathrm{s}$\n[$\mu$Hz]",
"$\dot{f} - \dot{f}_\mathrm{s}$\n[$p$Hz/s]",
"$\delta f-\delta f_\mathrm{s}$\n[$\mu$Hz]",
"$t^\mathrm{g} - t^\mathrm{g}_\mathrm{s}$\n[d]",
"$\widehat{2\mathcal{F}}$",
]
fig, axes = gridcorner(
twoF, xyz, projection='log_mean', labels=labels,
showDvals=False, lines=[0, 0, 0, 0], label_offset=0.25,
max_n_ticks=4)
fig.savefig('{}/{}_projection_matrix.png'.format(outdir, label),
bbox_inches='tight')
twoF,
xyz,
projection="log_mean",
labels=labels,
showDvals=False,
lines=[0, 0, 0, 0],
label_offset=0.25,
max_n_ticks=4,
)
fig.savefig("{}/{}_projection_matrix.png".format(outdir, label), bbox_inches="tight")
print(('Prior widths =', F0_width, F1_width))
print(("Prior widths =", F0_width, F1_width))
print(("Actual run time = {}".format(dT)))
print(("Actual number of grid points = {}".format(search.data.shape[0])))
......@@ -3,24 +3,20 @@ import matplotlib.pyplot as plt
import pyfstat
from make_simulated_data import tstart, duration, tref, F0, F1, F2, Alpha, Delta, outdir
plt.style.use('paper')
plt.style.use("paper")
label = 'standard_directed_MCMC_search_on_1_glitch'
label = "standard_directed_MCMC_search_on_1_glitch"
Nstar = 10000
F0_width = np.sqrt(Nstar) * np.sqrt(12) / (np.pi * duration)
F1_width = np.sqrt(Nstar) * np.sqrt(180) / (np.pi * duration ** 2)
theta_prior = {
'F0': {'type': 'unif',
'lower': F0-F0_width/2.,
'upper': F0+F0_width/2.},
'F1': {'type': 'unif',
'lower': F1-F1_width/2.,
'upper': F1+F1_width/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta,
"F0": {"type": "unif", "lower": F0 - F0_width / 2.0, "upper": F0 + F0_width / 2.0},
"F1": {"type": "unif", "lower": F1 - F1_width / 2.0, "upper": F1 + F1_width / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 2
......@@ -29,15 +25,22 @@ nwalkers = 100
nsteps = [500, 2000]
mcmc = pyfstat.MCMCSearch(
label=label, sftfilepattern='data/*1_glitch*sft', theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tstart+duration,
nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
log10beta_min=log10beta_min)
mcmc.transform_dictionary['F0'] = dict(
subtractor=F0, symbol='$f-f^\mathrm{s}$')
mcmc.transform_dictionary['F1'] = dict(
subtractor=F1, symbol='$\dot{f}-\dot{f}^\mathrm{s}$')
label=label,
sftfilepattern="data/*1_glitch*sft",
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tstart + duration,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
mcmc.transform_dictionary["F0"] = dict(subtractor=F0, symbol="$f-f^\mathrm{s}$")
mcmc.transform_dictionary["F1"] = dict(
subtractor=F1, symbol="$\dot{f}-\dot{f}^\mathrm{s}$"
)
mcmc.run()
mcmc.plot_corner()
......
......@@ -7,7 +7,8 @@ try:
except ImportError:
raise ImportError(
"Python module 'gridcorner' not found, please install from "
"https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner")
"https://gitlab.aei.uni-hannover.de/GregAshton/gridcorner"
)
F0 = 30.0
F1 = 1e-10
......@@ -20,18 +21,28 @@ sqrtSX = 1e-23
tstart = 1000000000
duration = 10 * 86400
tend = tstart + duration
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 20
label = 'grid_F0F1F2'
outdir = 'data'
label = "grid_F0F1F2"
outdir = "data"
h0 = sqrtSX / depth
data = pyfstat.Writer(
label=label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=label,
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
m = 0.01
......@@ -42,14 +53,24 @@ N = 100
DeltaF0 = N * dF0
DeltaF1 = N * dF1
DeltaF2 = N * dF2
F0s = [F0-DeltaF0/2., F0+DeltaF0/2., dF0]
F1s = [F1-DeltaF1/2., F1+DeltaF1/2., dF1]
F2s = [F2-DeltaF2/2., F2+DeltaF2/2., dF2]
F0s = [F0 - DeltaF0 / 2.0, F0 + DeltaF0 / 2.0, dF0]
F1s = [F1 - DeltaF1 / 2.0, F1 + DeltaF1 / 2.0, dF1]
F2s = [F2 - DeltaF2 / 2.0, F2 + DeltaF2 / 2.0, dF2]
Alphas = [Alpha]
Deltas = [Delta]
search = pyfstat.GridSearch(
'grid_F0F1F2', 'data', data.sftfilepath, F0s, F1s,
F2s, Alphas, Deltas, tref, tstart, tend)
"grid_F0F1F2",
"data",
data.sftfilepath,
F0s,
F1s,
F2s,
Alphas,
Deltas,
tref,
tstart,
tend,
)
search.run()
F0_vals = np.unique(search.data[:, 2]) - F0
......@@ -57,8 +78,13 @@ F1_vals = np.unique(search.data[:, 3]) - F1
F2_vals = np.unique(search.data[:, 4]) - F2
twoF = search.data[:, -1].reshape((len(F0_vals), len(F1_vals), len(F2_vals)))
xyz = [F0_vals, F1_vals, F2_vals]
labels = ['$f - f_0$', '$\dot{f} - \dot{f}_0$', '$\ddot{f} - \ddot{f}_0$',
'$\widetilde{2\mathcal{F}}$']
labels = [
"$f - f_0$",
"$\dot{f} - \dot{f}_0$",
"$\ddot{f} - \ddot{f}_0$",
"$\widetilde{2\mathcal{F}}$",
]
fig, axes = gridcorner(
twoF, xyz, projection='log_mean', labels=labels, whspace=0.1, factor=1.8)
fig.savefig('{}/{}_projection_matrix.png'.format(outdir, label))
twoF, xyz, projection="log_mean", labels=labels, whspace=0.1, factor=1.8
)
fig.savefig("{}/{}_projection_matrix.png".format(outdir, label))
......@@ -13,50 +13,70 @@ sqrtSX = 1e-23
tstart = 1000000000
duration = 100 * 86400
tend = tstart + duration
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 70
data_label = 'grided_frequency_depth_{:1.0f}'.format(depth)
data_label = "grided_frequency_depth_{:1.0f}".format(depth)
h0 = sqrtSX / depth
data = pyfstat.Writer(
label=data_label, outdir='data', tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=data_label,
outdir="data",
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
m = 0.001
dF0 = np.sqrt(12 * m) / (np.pi * duration)
DeltaF0 = 800 * dF0
F0s = [F0-DeltaF0/2., F0+DeltaF0/2., dF0]
F0s = [F0 - DeltaF0 / 2.0, F0 + DeltaF0 / 2.0, dF0]
F1s = [F1]
F2s = [F2]
Alphas = [Alpha]
Deltas = [Delta]
search = pyfstat.GridSearch(
'grided_frequency_search', 'data', 'data/*'+data_label+'*sft', F0s, F1s,
F2s, Alphas, Deltas, tref, tstart, tend)
"grided_frequency_search",
"data",
"data/*" + data_label + "*sft",
F0s,
F1s,
F2s,
Alphas,
Deltas,
tref,
tstart,
tend,
)
search.run()
fig, ax = plt.subplots()
xidx = search.keys.index('F0')
xidx = search.keys.index("F0")
frequencies = np.unique(search.data[:, xidx])
twoF = search.data[:, -1]
# mismatch = np.sign(x-F0)*(duration * np.pi * (x - F0))**2 / 12.0
ax.plot(frequencies, twoF, 'k', lw=1)
ax.plot(frequencies, twoF, "k", lw=1)
DeltaF = frequencies - F0
sinc = np.sin(np.pi * DeltaF * duration) / (np.pi * DeltaF * duration)
A = np.abs((np.max(twoF) - 4) * sinc ** 2 + 4)
ax.plot(frequencies, A, '-r', lw=1)
ax.set_ylabel('$\widetilde{2\mathcal{F}}$')
ax.set_xlabel('Frequency')
ax.plot(frequencies, A, "-r", lw=1)
ax.set_ylabel("$\widetilde{2\mathcal{F}}$")
ax.set_xlabel("Frequency")
ax.set_xlim(F0s[0], F0s[1])
dF0 = np.sqrt(12 * 1) / (np.pi * duration)
xticks = [F0 - 10 * dF0, F0, F0 + 10 * dF0]
ax.set_xticks(xticks)
xticklabels = ['$f_0 {-} 10\Delta f$', '$f_0$', '$f_0 {+} 10\Delta f$']
xticklabels = ["$f_0 {-} 10\Delta f$", "$f_0$", "$f_0 {+} 10\Delta f$"]
ax.set_xticklabels(xticklabels)
plt.tight_layout()
fig.savefig('{}/{}_1D.png'.format(search.outdir, search.label), dpi=300)
fig.savefig("{}/{}_1D.png".format(search.outdir, search.label), dpi=300)
......@@ -13,23 +13,43 @@ F1 = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 60
h0 = sqrtSX / depth
data_label = 'sliding_window'
data_label = "sliding_window"
data = pyfstat.Writer(
label=data_label, outdir='data', tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=data_label,
outdir="data",
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
DeltaF0 = 1e-5
search = pyfstat.FrequencySlidingWindow(
label='sliding_window', outdir='data', sftfilepattern='data/*sliding_window*sft',
F0s=[F0-DeltaF0, F0+DeltaF0, DeltaF0/100.], F1=F1, F2=0,
Alpha=Alpha, Delta=Delta, tref=tref, minStartTime=tstart,
maxStartTime=tend, window_size=25*86400, window_delta=1*86400)
label="sliding_window",
outdir="data",
sftfilepattern="data/*sliding_window*sft",
F0s=[F0 - DeltaF0, F0 + DeltaF0, DeltaF0 / 100.0],
F1=F1,
F2=0,
Alpha=Alpha,
Delta=Delta,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
window_size=25 * 86400,
window_delta=1 * 86400,
)
search.run()
search.plot_sliding_window()
......@@ -13,37 +13,45 @@ F1 = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 100
h0 = sqrtSX / depth
data_label = 'twoF_cumulative'
data_label = "twoF_cumulative"
data = pyfstat.Writer(
label=data_label, outdir='data', tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX, detectors='H1,L1')
label=data_label,
outdir="data",
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
detectors="H1,L1",
)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print('Predicted twoF value: {}\n'.format(twoF))
print("Predicted twoF value: {}\n".format(twoF))
DeltaF0 = 1e-7
DeltaF1 = 1e-13
VF0 = (np.pi * duration * DeltaF0) ** 2 / 3.0
VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
print('\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1))
VF1 = (np.pi * duration ** 2 * DeltaF1) ** 2 * 4 / 45.0
print("\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n".format(VF0 * VF1, VF0, VF1))
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 1
......@@ -52,10 +60,18 @@ nwalkers = 100
nsteps = [50, 50]
mcmc = pyfstat.MCMCSearch(
label='twoF_cumulative', outdir='data',
sftfilepattern='data/*'+data_label+'*sft', theta_prior=theta_prior, tref=tref,
minStartTime=tstart, maxStartTime=tend, nsteps=nsteps, nwalkers=nwalkers,
ntemps=ntemps, log10beta_min=log10beta_min)
label="twoF_cumulative",
outdir="data",
sftfilepattern="data/*" + data_label + "*sft",
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
mcmc.run()
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()
......
......@@ -13,38 +13,45 @@ F1 = -1e-10
F2 = 0
Alpha = np.radians(83.6292)
Delta = np.radians(22.0144)
tref = .5*(tstart+tend)
tref = 0.5 * (tstart + tend)
depth = 10
h0 = sqrtSX / depth
label = 'using_initialisation'
outdir = 'data'
label = "using_initialisation"
outdir = "data"
data = pyfstat.Writer(
label=label, outdir=outdir, tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
label=label,
outdir=outdir,
tref=tref,
tstart=tstart,
F0=F0,
F1=F1,
F2=F2,
duration=duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print('Predicted twoF value: {}\n'.format(twoF))
print("Predicted twoF value: {}\n".format(twoF))
DeltaF0 = 1e-7
DeltaF1 = 1e-13
VF0 = (np.pi * duration * DeltaF0) ** 2 / 3.0
VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
print('\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1))
VF1 = (np.pi * duration ** 2 * DeltaF1) ** 2 * 4 / 45.0
print("\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n".format(VF0 * VF1, VF0, VF1))
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
}
ntemps = 1
......@@ -53,11 +60,18 @@ nwalkers = 100
nsteps = [100, 100]
mcmc = pyfstat.MCMCSearch(
label=label, outdir=outdir,
sftfilepattern='{}/*{}*sft'.format(outdir, label),
theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend,
nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
log10beta_min=log10beta_min)
label=label,
outdir=outdir,
sftfilepattern="{}/*{}*sft".format(outdir, label),
theta_prior=theta_prior,
tref=tref,
minStartTime=tstart,
maxStartTime=tend,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
)
mcmc.setup_initialisation(100, scatter_val=1e-10)
mcmc.run()
mcmc.plot_corner(add_prior=True)
......
......@@ -16,19 +16,18 @@ tref = minStartTime
DeltaF0 = 6e-7
DeltaF1 = 1e-13
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta,
'transient_tstart': minStartTime,
'transient_duration': {'type': 'halfnorm',
'loc': 0.001*Tspan,
'scale': 0.5*Tspan}
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
"transient_tstart": minStartTime,
"transient_duration": {
"type": "halfnorm",
"loc": 0.001 * Tspan,
"scale": 0.5 * Tspan,
},
}
ntemps = 2
......@@ -37,12 +36,19 @@ nwalkers = 100
nsteps = [100, 100]
mcmc = pyfstat.MCMCTransientSearch(
label='transient_search', outdir='data_l',
sftfilepattern='data_l/*simulated_transient_signal*sft',
theta_prior=theta_prior, tref=tref, minStartTime=minStartTime,
maxStartTime=maxStartTime, nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
label="transient_search",
outdir="data_l",
sftfilepattern="data_l/*simulated_transient_signal*sft",
theta_prior=theta_prior,
tref=tref,
minStartTime=minStartTime,
maxStartTime=maxStartTime,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
transientWindowType='rect')
transientWindowType="rect",
)
mcmc.run()
mcmc.plot_corner(label_offset=0.7)
mcmc.print_summary()
......@@ -19,8 +19,20 @@ h0 = 1e-23
sqrtSX = 1e-22
transient = pyfstat.Writer(
label='simulated_transient_signal', outdir='data_l', tref=tref,
tstart=transient_tstart, F0=F0, F1=F1, F2=F2, duration=transient_duration,
Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX, minStartTime=minStartTime,
maxStartTime=maxStartTime, transientWindowType='rect')
label="simulated_transient_signal",
outdir="data_l",
tref=tref,
tstart=transient_tstart,
F0=F0,
F1=F1,
F2=F2,
duration=transient_duration,
Alpha=Alpha,
Delta=Delta,
h0=h0,
sqrtSX=sqrtSX,
minStartTime=minStartTime,
maxStartTime=maxStartTime,
transientWindowType="rect",
)
transient.make_data()
......@@ -18,21 +18,22 @@ Tsft = 1800
DeltaF0 = 1e-2
DeltaF1 = 1e-9
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta,
'transient_tstart': {'type': 'unif',
'lower': minStartTime,
'upper': maxStartTime-2*Tsft},
'transient_duration': {'type': 'unif',
'lower': 2*Tsft,
'upper': Tspan-2*Tsft}
theta_prior = {
"F0": {"type": "unif", "lower": F0 - DeltaF0 / 2.0, "upper": F0 + DeltaF0 / 2.0},
"F1": {"type": "unif", "lower": F1 - DeltaF1 / 2.0, "upper": F1 + DeltaF1 / 2.0},
"F2": F2,
"Alpha": Alpha,
"Delta": Delta,
"transient_tstart": {
"type": "unif",
"lower": minStartTime,
"upper": maxStartTime - 2 * Tsft,
},
"transient_duration": {
"type": "unif",
"lower": 2 * Tsft,
"upper": Tspan - 2 * Tsft,
},
}
ntemps = 2
......@@ -41,12 +42,19 @@ nwalkers = 100
nsteps = [100, 100]
mcmc = pyfstat.MCMCTransientSearch(
label='transient_search', outdir='data_s',
sftfilepattern='data_s/*simulated_transient_signal*sft',
theta_prior=theta_prior, tref=tref, minStartTime=minStartTime,
maxStartTime=maxStartTime, nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
label="transient_search",
outdir="data_s",
sftfilepattern="data_s/*simulated_transient_signal*sft",
theta_prior=theta_prior,
tref=tref,
minStartTime=minStartTime,
maxStartTime=maxStartTime,
nsteps=nsteps,
nwalkers=nwalkers,
ntemps=ntemps,
log10beta_min=log10beta_min,
transientWindowType='rect')
transientWindowType="rect",
)
mcmc.run()
mcmc.plot_corner(label_offset=0.7)
mcmc.print_summary()
......@@ -5,7 +5,7 @@ import os
import numpy as np
import matplotlib.pyplot as plt
datadir = 'data_s'
datadir = "data_s"
F0 = 30.0
F1 = -1e-10
......@@ -23,37 +23,53 @@ Tsft = 1800
m = 0.001
dF0 = np.sqrt(12 * m) / (np.pi * Tspan)
DeltaF0 = 100 * dF0
F0s = [F0-DeltaF0/2., F0+DeltaF0/2., dF0]
F0s = [F0 - DeltaF0 / 2.0, F0 + DeltaF0 / 2.0, dF0]
F1s = [F1]
F2s = [F2]
Alphas = [Alpha]
Deltas = [Delta]
print('Standard CW search:')
print("Standard CW search:")
search1 = pyfstat.GridSearch(
label='CW', outdir=datadir,
sftfilepattern=os.path.join(datadir,'*simulated_transient_signal*sft'),
F0s=F0s, F1s=F1s, F2s=F2s, Alphas=Alphas, Deltas=Deltas, tref=tref,
minStartTime=minStartTime, maxStartTime=maxStartTime,
BSGL=False)
label="CW",
outdir=datadir,
sftfilepattern=os.path.join(datadir, "*simulated_transient_signal*sft"),
F0s=F0s,
F1s=F1s,
F2s=F2s,
Alphas=Alphas,
Deltas=Deltas,
tref=tref,
minStartTime=minStartTime,
maxStartTime=maxStartTime,
BSGL=False,
)
search1.run()
search1.print_max_twoF()
search1.plot_1D(xkey='F0',
xlabel='freq [Hz]', ylabel='$2\mathcal{F}$')
search1.plot_1D(xkey="F0", xlabel="freq [Hz]", ylabel="$2\mathcal{F}$")
print('with t0,tau bands:')
print("with t0,tau bands:")
search2 = pyfstat.TransientGridSearch(
label='tCW', outdir=datadir,
sftfilepattern=os.path.join(datadir,'*simulated_transient_signal*sft'),
F0s=F0s, F1s=F1s, F2s=F2s, Alphas=Alphas, Deltas=Deltas, tref=tref,
minStartTime=minStartTime, maxStartTime=maxStartTime,
transientWindowType='rect', t0Band=Tspan-2*Tsft, tauBand=Tspan,
label="tCW",
outdir=datadir,
sftfilepattern=os.path.join(datadir, "*simulated_transient_signal*sft"),
F0s=F0s,
F1s=F1s,
F2s=F2s,
Alphas=Alphas,
Deltas=Deltas,
tref=tref,
minStartTime=minStartTime,
maxStartTime=maxStartTime,
transientWindowType="rect",
t0Band=Tspan - 2 * Tsft,
tauBand=Tspan,
BSGL=False,
outputTransientFstatMap=True,
tCWFstatMapVersion='lal')
tCWFstatMapVersion="lal",
)
search2.run()
search2.print_max_twoF()
search2.plot_1D(xkey='F0',
xlabel='freq [Hz]', ylabel='$2\mathcal{F}$')
search2.plot_1D(xkey="F0", xlabel="freq [Hz]", ylabel="$2\mathcal{F}$")
......@@ -17,15 +17,27 @@ tref = minStartTime
h0 = 1e-23
sqrtSX = 1e-22
detectors = 'H1,L1'
detectors = "H1,L1"
Tsft = 1800
transient = pyfstat.Writer(
label='simulated_transient_signal', outdir='data_s',
tref=tref, tstart=transient_tstart, duration=transient_duration,
F0=F0, F1=F1, F2=F2, Alpha=Alpha, Delta=Delta, h0=h0,
detectors=detectors,sqrtSX=sqrtSX,
minStartTime=minStartTime, maxStartTime=maxStartTime,
transientWindowType='rect', Tsft=Tsft)
label="simulated_transient_signal",
outdir="data_s",
tref=tref,
tstart=transient_tstart,
duration=transient_duration,
F0=F0,
F1=F1,
F2=F2,
Alpha=Alpha,
Delta=Delta,
h0=h0,
detectors=detectors,
sqrtSX=sqrtSX,
minStartTime=minStartTime,
maxStartTime=maxStartTime,
transientWindowType="rect",
Tsft=Tsft,
)
transient.make_data()
from .core import BaseSearchClass, ComputeFstat, SemiCoherentSearch, SemiCoherentGlitchSearch
from .make_sfts import Writer, GlitchWriter, FrequencyModulatedArtifactWriter, FrequencyAmplitudeModulatedArtifactWriter
from .mcmc_based_searches import MCMCSearch, MCMCGlitchSearch, MCMCSemiCoherentSearch, MCMCFollowUpSearch, MCMCTransientSearch
from .grid_based_searches import GridSearch, GridUniformPriorSearch, GridGlitchSearch, FrequencySlidingWindow, DMoff_NO_SPIN, SliceGridSearch, TransientGridSearch
from .core import (
BaseSearchClass,
ComputeFstat,
SemiCoherentSearch,
SemiCoherentGlitchSearch,
)
from .make_sfts import (
Writer,
GlitchWriter,
FrequencyModulatedArtifactWriter,
FrequencyAmplitudeModulatedArtifactWriter,
)
from .mcmc_based_searches import (
MCMCSearch,
MCMCGlitchSearch,
MCMCSemiCoherentSearch,
MCMCFollowUpSearch,
MCMCTransientSearch,
)
from .grid_based_searches import (
GridSearch,
GridUniformPriorSearch,
GridGlitchSearch,
FrequencySlidingWindow,
DMoff_NO_SPIN,
SliceGridSearch,
TransientGridSearch,
)
This diff is collapsed.
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment